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Equation Sheet
All results below, unless overwise stated, refer to diploid individuals

and autosomal loci. More general results are often given in the rele-

vant sections.

Equation, ref.

Equation, ref.

Relatedness (Inbreeding) coefficient
Fij =0 xro+ (Ya)ro + (Y2)r2, (2.4)

Inbreeding coefﬁcient
F=3" g (L4 fa,) , (211)

Relationship among F statistics

(1 - Fir) = (1 - Fis)(1 — Fsr) , (3.4)
Decay of LD
Di=(1-0)'Dy, (3.22)

Equilibrium level of neutral heterozygosity

H= (e~ ANy, (4.13)

Number pairwise diffs. & segregating sites
Eln] = 4Nep, E[S]=4Nepd i, 5y, (4.24), (4.39)

Model-based Fst expectations.

Fst = Fryv = (6.4), (6.7)

_ T 1
TF4N, TH4N[m 9.(
Cross trait (1 & 2) covar. between relatives

Cov(X1,i, Xo,5) = 2Fi,jVa,2, (7.23)

Multi-variate breeders equation
R=GV!'S=Gg, (9.2)

Frequency next generation (haploid & diploid).

wupf-&-wlzqu
w

w
Pt+1 = T Pt, Pit1

Haploid cumulative change (use s/2 for diploid case)
Py~ 7~ og (WO) . (10.9) (10.11)

Po
po+qoe™ 57

Diploid mutation-selection equilibrium

ge=qr =45, ge=+/% (ifh=0), (1L6), (1L7)
Selected prob. fixation (haploid & diploid)
pr (Y2n) =2s, Pr(1/2n) ~2hs, , Ns>1, (12.7), (12.8)

Generalized HWE
(1-F)p*+Fp, (1—F)2pq, (1—F)¢>+ Fq, (2.5)

F statistics

FIT=1—f HS

Flszl—f Fsr=1—- 7

Linkage disequilibrium (LD)
D =pap —paps , (3.15)

Decay of Heterozygosity
t
H; = (17ﬁ) Ho , (4_2)

Coalescent time and time to MRCA
E[Ti] = 7%,
(2)

Expectation of dn/dg
axjis = (1—C — B)+2NBfp , (5.1)

Phenotypic covar. between relatives (i & j)
CO’U(X1,X2) = 2F172VA +reVp , (w), (’@)

Breeder’s equation

R=h"S=Vaf =252, (8.4), (816), (8.19)
Hamilton’s Rule
2F, ;B > C, (9.13)

Frequency change
Ap, = 122l p,q, = Jpede 40 (10.23), (10.24)

Heterozygote advantage equilibrium
2 (10.31)

s1+s2

Pe =

Migration-selection equil. & cline width.
0.60/v/5 . (11.12), (1113)

_ m
Ge,1 = hs?

Prob. fixation for weakly selected alleles (h = 1/2)

Pr (ﬁ) = 11;%;5 , 8§ < 0 for deleterious allele.

» (3.1)-(3.3).

E[Thrcal = 4Ne(1 - 1/n), (4.32) (4.36)

(12.12)
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Introduction

BIOLOGICAL EVOLUTION IS THE CHANGE OVER TIME IN THE
GENETIC COMPOSITION OF A POPULATION.! Our population is
made up of a set of interbreeding individuals, the genetic composition
of which is made up of the genomes that each individual carries. The
genetic composition of the population alters due to the death of indi-
viduals or the migration of individuals in or out of the population. If
our individuals vary in the number of children they have, this also al-
ters the genetic composition of the population in the next generation.
Every new individual born into the population subtly changes the
genetic composition of the population. Their genome is a unique com-
bination of their parents’ genomes, having been shuffled by segregation
and recombination during meioses, and possibly changed by mutation.
These individual events seem minor at the level of the population, but
it is the accumulation of small changes in aggregate across individuals
and generations that is the stuff of evolution. It is the compounding
of these small changes over tens, hundreds, and millions of genera-
tions that drives the amazing diversity of life that has emerged on this
earth.

Population genetics is the study of the genetic composition of natu-
ral populations and its evolutionary causes and consequences. Quanti-
tative genetics is the study of the genetic basis of phenotypic variation
and how phenotypic changes evolve over time. Both fields are closely
conceptually aligned as we’ll see throughout these notes. They seek to
describe how the genetic and phenotypic composition of populations
can be changed over time by the forces of mutation, recombination,
selection, migration, and genetic drift. To understand how these forces
interact, it is helpful to develop simple theoretical models to help our
intuition. In these notes we will work through these models and sum-
marize the major areas of population- and quantitative-genetic theory.

rWhile the models we will develop will seem naive, and indeed they
are, they are nonetheless incredibly useful and powerful. Throughout

'DoBzHANSKY, T., 1951 Genetics
and the Origin of Species (3rd Ed.
ed.)., pp. 16

“All models are wrong but some are
useful” - Box (1979).



10 GRAHAM COOP

the course we will see that these simple models often yield accurate
predictions, such that much of our understanding of the process of
evolution is built on these models. We will also see how these models
are incredibly useful for understanding real patterns we see in the evo-
lution of phenotypes and genomes, such that much of our analysis of
evolution, in a range of areas from human medical genetics to conser-
vation, is based on these models. Therefore, population and quantita-
tive genetics are key to understanding various applied questions, from
how medical genetics identifies the genes involved in disease to how we
preserve species from extinction.

Population genetics emerged from early efforts to reconcile Mendelian

genetics with Darwinian thought. Part of the power of population See PROVINE (2001)  for a history
of early population genetics.
ProviNE, W. B., 2001 The
origins of theoretical population
things about population genetics is that many of the important ideas genetics: with a new afterword.
University of Chicago Press

genetics comes from the fact that the basic rules of transmission ge-
netics are simple and nearly universal. One of the truly remarkable

and mathematical models emerged before the 1940s, long before the
mechanistic-basis of inheritance (DNA) was discovered, and yet the
usefulness of these models has not diminished. This is a testament to
the fact that the models are established on a very solid foundation,
building from the basic rules of genetic transmission combined with
simple mathematical and statistical models.

Much of this early work traces to the ideas of R.A. Fisher, Sewall
Wright, and J.B.S. Haldane, who, along with many others, described
the early principals and mathematical models underlying our under-
standing of the evolution of populations. Building on this conceptual
fusion of genetics and evolution, there followed a flourishing of evolu-
tionary thought, the modern evolutionary synthesis, combining these
ideas with those from the study of speciation, biodiversity, and paleon-
tology. In total, this work showed that both short-term evolutionary
change and the long-term evolution of biodiversity could be well un-
derstood through the gradual accumulation of evolutionary change
within and among populations. This evolutionary synthesis contin-
ues to this day, combining new insights from genomics, phylogenetics,

ecology, and developmental biology. “DoBZHANSKY (1951)

Population and quantitative genetics are a necessary but not suf- once defined evolution as ’a
ficient description of evolution; it is only by combining the insights change in the genetic com-
of many fields that a rich and comprehensive picture of evolution position of the populations’

emerges. We certainly do not need to know the genes underlying the an epigram that should not

. . . . istaken for the clai
displays of the birds of paradise to study how the divergence of these be mistaken ot the ¢ a
that everything worth saying

. . . L ,
displays, due to sexual selection, may drive speciation. Indeed, as we’ll about evolution is contained
see in our discussion of quantitative genetics, we can predict how pop- in statements about genes”
ulations respond to selection, including sexual selection and assortative ~ LEWONTIN (2001)

mating, without any knowledge of the loci involved. Nor do we need

to know the precise selection pressures and the ordering of genetic
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changes to study the emergence of the tetrapod body plan. We do
not necessarily need to know all the genetic details to appreciate the
beauty of these, and many other, evolutionary case studies. However,
every student of biology gains from understanding the basics of pop-
ulation and quantitative genetics, allowing them to base their studies
on a solid bedrock of understanding of the processes that underpin all
evolutionary change.
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Genetics, Eugenics, and Scientific Racism.

The history of genetics and evolutionary biology is intertwined with
the history of eugenics and scientific racism. Francis Galton, one of
the first people to systematically study human inheritance, coined the
term “eugenics” in 1883 to describe the idea of ‘human improvement’
through controlled breeding of humans (GALTON, 1883). Historically,
eugenics is much more than just the idea that selection through breed-
ing would work in humans; it is the idea that particular people are
“genetically inferior” and therefore “unfit” to reproduce (PAUL, 2014).
Eugenicists’ obsession with human worth and genetic inferiority also
meant that eugenicists also often held that people from some races and
ethnicities are genetically superior to others. Thus, ideas about eu-
genics also built on older racist fields of science that sought to classify
humans into a discrete racial hierarchy, while in parallel scientists in
these fields were forcing ideas from genetics and evolution into an es-
sentialist view of race. These deeply flawed hierarchies have frequently
been used by the powerful to justify subjugating and disenfranchising
minorities and Indigenous people.

Although eugenics is often correctly associated with the Nazi
party and the Holocaust, eugenic ideas and eugenic policies were
also widespread in the US and UK during the 1920s and 1930s and
sometimes aligned with progressive causes of that era (PAUL, 1984;
KEVLES, 1995). Eugenic ideas were also implemented as policy —
with horrific consequences—in a number of countries. Immigration
policies based explicitly on eugenic arguments were put in place in
the US from the 1920s until their repeal in the 1950s and 60s. These
policies strongly favoured immigration from Northern Europe and
were a deliberate action to restrict or bar immigration from Asia and
eastern and southern Europe based on xenophobic, racist, and anti-
Semitic views (OKRENT, 2020). During the 20th Century, many US
states passed eugenics sterilization laws (REILLY, 2015), that in prac-
tice were often targeted against Black, Latino, and Indigenous people
(HANSEN and KING, 2013). For example, the state of California

from 1919 to 1972 used eugenics ideas to justify the sterilization of
20,000 people who had been labelled unfit and mentally defective, a
disproportionate number of whom were Latino (STERN et al., 2017;
NovAK et al., 2018)

Many early geneticists during this time were proponents of eugen-

ics and many supported racist views in their genetics research. One
notable example is R.A. Fisher, who we’ll encounter throughout this
book. Fisher is arguably the father of much of evolutionary genetics
and modern statistics, having made huge contributions to the foun-
dations of both fields. He pursued these fields in part because of his

This is a complex historical topic,
with many geneticists adopting differ-
ent, sometimes conflicting positions
over their lifetimes as their views and
those of society changed. I cite both
the primary genetics literature and
historical analysis (where available).
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eugenic interests and concerns about the “genetically inferiority” of
the lower classes (NORTON, 1983; MAZUMDAR, 2005). For example,
he devoted a number of the later chapters in his classic evolutionary

genetics book to eugenics (FISHER, 1930). He was hardly alone in his
views, with many prominent geneticists lending their voices to eugenic
and racist arguments. Indeed, many famous genetics institutions grew
from roots in eugenics. For example, the Cold Spring Harbor Labo-
ratory hosted a large Eugenics Record Office, and prior to 1954, the
journal Annals of Human Genetics was called Annals of Eugenics. Sci-
entists and their institutions strongly shaped the eugenic views and
policies of their time and at times bent science to lend support to their
racist views. Given their lasting contributions to our field, we should
not shy away from reading and discussing their work. But despite
their scientific accomplishments, we should resist the urge to celebrate
or idolize them. We should also guard against inheriting their thinking
by continually questioning the frameworks and language they put in
place.

From its inception, geneticists have also been central to move-
ments against eugenics and scientific racism on scientific as well as
moral grounds. For instance, Thomas Hunt Morgan and Lancelot
Hogben were both prominent geneticists who argued that eugenicists
failed to recognize the environmental and social causes of inequality
(HOGBEN, 1933; TABERY, 2008; ALLEN, 2011). These arguments
thread into later debates, where geneticists pushed back on simplistic

and erroneous claims about genetics, IQ and behavioural differences
among human populations (DOBZHANSKY, 1961; LEWONTIN, 1970a;

PAUL, 1994). Population geneticists have also been central to the
pushback against scientific racism, highlighting the close genetic re-
lationships among all humans due to their recent common ancestry
and the ephemeral nature of populations (UNESCO, 1952; LEWON-
TIN, 1972; PROVINE, 1986; GANNETT, 2013). Racists continue to

advance a selective view of population-genetic results to further their
ends. As scientists, it is too easy to claim that we are just interested
in the facts and ignore others who seek to present a distorted view of
the science to advance their own political and social agendas. It is our
job as population geneticists to argue against misuse of our field. As
human genomics and personal genomics rise in prominence, we also
need to resist public adoption of genetic determinism and essentialist,
racialized thinking. We must question the topics we choose to investi-
gate, the assumptions we make, and the conversations we prioritize as
a field. Through exploring our own biases and those embedded in the
presentation and use of our field, we can help to combat the misrep-
resentations of genetics and evolution that continue to cause harm in
our society.






2
Allele and Genotype Frequencies.

In this chapter we will work through how the basics of Mendelian
genetics play out at the population level in sexually reproducing or-
ganisms.

Loci and alleles are the basic currency of population genetics—and
indeed of genetics. A locus may be an entire gene, or a single nu-
cleotide base pair such as A-T. At each locus, there may be multiple
genetic variants segregating in the population—these different genetic
variants are known as alleles. If all individuals in the population carry
the same allele, we say that the locus is monomorphic; at this locus
there is no genetic variability in the population. If there are multiple
alleles in the population at a locus, we say that this locus is polymor-
phic (this is sometimes referred to as a segregating site).

Table 2.1 shows a small stretch of orthologous sequence for the
ADH locus from samples from Drosophila melanogaster, D. simulans,

and D. yakuba. D. melanogaster and D. simulans are sister species and

D. yakuba is a close outgroup to the two. Each column represents a
single haplotype from an individual (the individuals are diploid but
were inbred so they’re homozygous for their haplotype). Ounly sites
that differ among individuals of the three species are shown. Site 834
is an example of a polymorphism; some D. simulans individuals carry
a C allele while others have a T'. Fized differences are sites that differ
between the species but are monomorphic within the species. Site 781
is an example of a fixed difference between D. melanogaster and the
other two species.

We can also annotate the alleles and loci in various ways. For ex-
ample, position 781 is a non-synonymous fixed difference. We call the
less common allele at a polymorphism the minor allele and the com-
mon allele the major allele, e.g. at site 1068 the T" allele is the minor
allele in D. melanogaster. We call the more evolutionarily recent of
the two alleles the derived allele and the older of the two the ancestral
allele. We infer that the T allele at site 1068 is the derived allele be-
cause the C is found in both other species, suggesting that the T allele

A locus (plural: loci) is a specific spot
in the genome. The term allele was
coined by Edith Rebecca Saunders
and William Bateson in 1902 in their
paper “The facts of heredity in the
light of Mendel’s discovery” .

Figure 2.1: Drosophila melanogaster
holds a special place in the history

of genetics and population genetics.
From Morgan’s fly room discovering
the principals of genetics to Dobzhan-
sky’s early work on natural genetic

variation.

Contributions to the genetics of Drosophila
melanogaster (1919). Morgan T.H., Bridges C.B.,
Sturtevant A. H. Image from the Biodiversity
Heritage Library. Contributed by MBLWHOI
Library. Not in copyright.


https://en.wikipedia.org/wiki/Edith_Rebecca_Saunders
https://www.biodiversitylibrary.org/page/805594#page/147/mode/1up
https://www.biodiversitylibrary.org/page/805594#page/147/mode/1up
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arose via a C' — T mutation.
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Question 1.

Table 2.1: Variable sites in exons 2
and 3 of the ADH gene in Drosophila
McDoNALD and KREITMAN (1991).
The first column (pos.) gives the
position in the gene; exon 2 begins

at position 778 and we’ve truncated
the dataset at site 1175. The second
column gives the consensus nucleotide
(con.), i.e. the most common base

at that position; individuals with
nucleotides that match the consensus
are marked with a dash. The first
columns of sequence (a-1) are from

D. melanogaster; the next columns

A) How many segregating sites does the sample from D. simu-
lans have in the ADH gene?

B) How many fixed differences are there between D.

melanogaster and D. yakuba?

2.1 Allele frequencies

Allele frequencies are a central unit of population genetics analysis,
but from diploid individuals we only get to observe genotype counts.
Our first task then is to calculate allele frequencies from genotype
counts. Consider a diploid autosomal locus segregating for two alleles
(A7 and As). We'll use these arbitrary labels for our alleles, merely
to keep this general. Let N1; and N5 be the number of A; A; ho-
mozygotes and Ay Ay heterozygotes, respectively. Moreover, let N

be the total number of diploid individuals in the population. We can
then define the relative frequencies of A3 A; and A; As genotypes as
f11 = N11/N and f15 = N1/ N, respectively. The frequency of allele

(a-f) give sequences from D. simulans,
and the final set of columns (a-1)
from D. yakuba. The last column
shows whether the difference is a non-
synonymous (N) or synonymous (S)
change.
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A; in the population is then given by
~ 2N71 + Nig
P="9N

Note that this follows directly from how we count alleles given in-

:f11+%f12~ (2.1)

dividuals’ genotypes, and holds independently of Hardy—Weinberg
proportions and equilibrium (discussed below). The frequency of the
alternate allele (As) is then just ¢ =1 — p.

2.1.1 Measures of genetic variability

Nucleotide diversity (m) One common measure of genetic diversity is
the average number of single nucleotide differences between haplotypes
chosen at random from a sample. This is called nucleotide diversity
and is often denoted by 7. For example, we can calculate 7 for our
ADH locus from Table 2.1 above: we have 6 sequences from D. sim-
ulans (a-f), there’s a total of 15 ways of pairing these sequences, and

= %5((2+1+1+1+0)+(3+3+3+2)+(0+0+1)+(0+1)+(1)) =1.26
(2.2)

where the first bracketed term gives the pairwise differences between

a and b-f, the second bracketed term the differences between b and c-f

and so on.

Our 7 measure will depend on the length of sequence it is calcu-
lated for. Therefore, 7 is usually normalized by the length of sequence,
to be a per site (or per base) measure. For example, our ADH se-
quence covers 397bp of DNA and so 7 = 1.26/397 = 0.0032 per site
in D. simulans for this region. Note that we could also calculate 7
per synonymous site (or non-synonymous). For synonymous site 7, we
would count up number of synonymous differences between our pairs
of sequences, and then divide by the total number of sites where a

synonymous change could have occurred.! ! Technically we would need to divide
by the total number of possible
point mutations that would result
Number of segregating sites. Another measure of genetic variability in a synonymous change; this is
is the total number of sites that are polymorphic (segregating) in our because some mutational changes at
. i . . . a particular nucleotide will result in
sample. One issue is that the number of segregating sites will grow A NOT-SYNONYMOUS Or Synonymous

as we sequence more individuals (unlike 7). Later in the course, we’ll change depending on the base-pair
talk about how to standardize the number of segregating sites for the change.

number of individuals sequenced (see eqn(4.40)).

The frequency spectrum. We also often want to compile information
about the frequency of alleles across sites. We call alleles that are
found once in a sample singletons, alleles that are found twice in a

sample doubletons, and so on. We count up the number of loci where
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an allele is found ¢ times out of n, e.g. how many singletons are there
in the sample, and this is called the frequency spectrum. We’ll want to
do this in some consistent manner, such as calculating the frequency
spectrum of the minor allele or the derived allele.

Question 2.

How many minor-allele singletons are there in D. simulans in
the ADH region? [Defining minor allele just within D. simu-
lans.]

Levels of genetic variability across species. Two observations have
puzzled population geneticists since the inception of molecular popula-
tion genetics. The first is the relatively high level of genetic variation
observed in most obligately sexual species. This first observation,

in part, drove the development of the Neutral theory of molecular
evolution, the idea that much of this molecular polymorphism may
simply reflect a balance between genetic drift and mutation. The sec-
ond observation is the relatively narrow range of polymorphism across
species with vastly different census sizes. This observation represented
a puzzle as the Neutral theory predicts that levels of genetic diver-

sity should scale with population size. Much effort in theoretical and )
empirical population genetics has been devoted to trying to reconcile ' A
models with these various observations. We’ll return to discuss these
ideas throughout our course.

The first observations of molecular genetic diversity within natural Figure 2.2: Sea Squirt (Ciona intesti-

nalis).
Einleitung in die vergleichende gehirnphysi-
ologie und Vergleichende psychologie. Loeb,

populations were made from surveys of allozyme data, but we can

revisit these general patterns with modern data. For example, LEF- J. 1899. Image from the Biodiversity Heritage
. L A Library. Contributed by MBLWHOI Library.
FLER et al. (2012) compiled data on levels of within-population, No known copyright restrictions.

autosomal nucleotide diversity (7) for 167 species across 14 phyla from
non-coding and synonymous sites (Figure 2.3). The species with the
lowest levels of 7 in their survey was Lynx, with 7 = 0.01%, i.e. only
1/10000 bases differed between two sequences. In contrast, some of the
highest levels of diversity were found in Ciona savignyi, Sea Squirts,
where a remarkable 1/12 bases differ between pairs of sequences. This
800-fold range of diversity seems impressive, but census population
sizes have a much larger range.


https://www.flickr.com/photos/internetarchivebookimages/21016139168/in/photolist-y28cZ3-xatkQu-w6Ki9C-wLcTJy-tLanR7-wKRZbh-w79C6u-toKNq1-u3ojn3-y8KsPP-xK7CZj-bu2usR-wLkfdM-wbkfau-x8n51o-ygpRAN-xMgGnk-towSTe-xQtix3-xMrift-wQoMNq-y51RxU-xPH4Cu-x4uB1v-xPGVFs-x4GN5a-y6rT8N-y6Aous-y7jV9n-yb6s66-x7F6Wh-y7upRp-xkz9VY-u1qerd-wYE4Cz-y5aH2Y-y7uJpM-xPSvFU-y6ALo7-xPZ3FM-xPHUef-yaa3dw-xPSKSC-w7A1aj-x4bgsH-tLas4q-x1e1dv-w7BkZB-xrQxFJ-y8acDr
https://www.flickr.com/photos/internetarchivebookimages/21016139168/in/photolist-y28cZ3-xatkQu-w6Ki9C-wLcTJy-tLanR7-wKRZbh-w79C6u-toKNq1-u3ojn3-y8KsPP-xK7CZj-bu2usR-wLkfdM-wbkfau-x8n51o-ygpRAN-xMgGnk-towSTe-xQtix3-xMrift-wQoMNq-y51RxU-xPH4Cu-x4uB1v-xPGVFs-x4GN5a-y6rT8N-y6Aous-y7jV9n-yb6s66-x7F6Wh-y7upRp-xkz9VY-u1qerd-wYE4Cz-y5aH2Y-y7uJpM-xPSvFU-y6ALo7-xPZ3FM-xPHUef-yaa3dw-xPSKSC-w7A1aj-x4bgsH-tLas4q-x1e1dv-w7BkZB-xrQxFJ-y8acDr
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Figure 2.3: Levels of autosomal

nucleotide diversity for 167 species

across 14 phyla. Figure 1 from LEF-

FLER et al. (2012), licensed under CC

BY 4.0. Points are ranked by their m,
and coloured by their phylum. Note

the log-scale.

Weinberg proportions

2 Hardy
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Imagine a population mating at random with respect to genotypes,
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i.e. no inbreeding,

no sex differences in allele frequencies. The frequency of allele A; in

the population at the time of reproduction is p. An A;A; genotype is

made by reaching out into our population and independently drawing

two A; allele gametes to form a zygote. Therefore, the probability

that an individual is an A; A; homozygote is p?. This probability is

also the expected frequencies of the A; A; homozygote in the popula-

tion. The expected frequency of the three possible genotypes are

Figure 2.4: Eurasian Lynx (Lynz

lynz).

f12 f22

Ju

living and extinct. Flower, W.H. and Lydekker,
R. 1891. Image from the Biodiversity Heritage
Library. Contributed by Cornell University

An introduction to the study of mammals
Library. No known copyright restrictions.

Throughout this chapter we’ll be

i.e. their Hardy-Weinberg expectations (HARDY et al., 1908; WEIN-

making use of the basic rules of
probability to find the probabilities of
combinations of events, e.g. the alleles

BERG, 1908). Note that we only need to assume random mating with
respect to our focal allele in order for these expected frequencies to

found in an individual, see Appendix

A.2.2 for a refresher.

hold in the zygotes forming the next generation. Evolutionary forces,

change allele frequencies within generations, but

such as selection,

do not change this expectation for new zygotes, as long as p is the

frequency of the A; allele in the population at the time when gametes

fuse. We only need the assumptions of no migration, selection, and

mutation in order for these Hardy-Weinberg expectations of genotypes

to represent a long term equilibrium.


https://www.flickr.com/photos/internetarchivebookimages/20731949565/in/photolist-x5Jzv2-x6QVyp-xir9rH-wYHrQD-wPn1sP-w9PsqY-xDcqri-sMcQoB-trrkVd-x6Nx1H-wPea7N-sM28N9-tJ3zsp-xneVdx-wGJRtQ-xnfHZ8-wPfga7-xCUPrN-x7kXDV-xmAb9E-xm3x4k-xBoSKb-wGTgyB-xBoSbf-wGGvzA-xmzYTJ-oeKJcH-xA1Ffr-xA1Eji-xqWTQZ-xF4Lru-oxJfrH-x7ojSn-xra8zP-wGGibY-xgb21y-xY1jH9-xY1iyf-wGHxTS-wGQEoR-xmtPQh-x8uFKK-xdTkoU-wPggQf-wPfvHN-wPfc27-w9YnGF-wPeauS-wPiVxK-w6aiSi
https://www.flickr.com/photos/internetarchivebookimages/20731949565/in/photolist-x5Jzv2-x6QVyp-xir9rH-wYHrQD-wPn1sP-w9PsqY-xDcqri-sMcQoB-trrkVd-x6Nx1H-wPea7N-sM28N9-tJ3zsp-xneVdx-wGJRtQ-xnfHZ8-wPfga7-xCUPrN-x7kXDV-xmAb9E-xm3x4k-xBoSKb-wGTgyB-xBoSbf-wGGvzA-xmzYTJ-oeKJcH-xA1Ffr-xA1Eji-xqWTQZ-xF4Lru-oxJfrH-x7ojSn-xra8zP-wGGibY-xgb21y-xY1jH9-xY1iyf-wGHxTS-wGQEoR-xmtPQh-x8uFKK-xdTkoU-wPggQf-wPfvHN-wPfc27-w9YnGF-wPeauS-wPiVxK-w6aiSi
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On the coastal islands of British Columbia there is a subspecies
of black bear (Ursus americanus kermodei, Kermode’s bear).
Many members of this black bear subspecies are white; they’re
sometimes called spirit bears. These bears aren’t hybrids with
polar bears, nor are they albinos. They are homozygotes for a
recessive change at the MC1R gene. Individuals who are GG at
this SNP are white, while AA and AG individuals are black.
Below are the genotype counts for the MC1R polymorphism in
a sample of bears from British Columbia’s island populations
from RITLAND et al. (2001).

AA AG GG
42 24 21

What are the expected frequencies of the three genotypes under
HW?

See Figure 2.6 for a nice empirical demonstration of Hardy—Weinberg
proportions. The mean frequency of each genotype closely matches its
HW expectations, and much of the scatter of the dots around the ex-
pected line is due to our small sample size (~ 60 individuals). While
HW often seems like a silly model, it often holds remarkably well
within populations. This is because individuals don’t mate at random,
but they do mate at random with respect to their genotype at most of
the loci in the genome.

Question 4.

You are investigating a locus with three alleles, A, B, and
C, with allele frequencies p4, pp, and pc. What fraction of
the population is expected to be homozygotes under Hardy—
Weinberg?

Microsatellites are regions of the genome where individuals vary
for the number of copies of some short DNA repeat that they carry.
These regions are often highly variable across individuals, making
them a suitable way to identify individuals from a DNA sample. This
so-called DNA fingerprinting has a range of applications from estab-
lishing paternity and identifying human remains to matching individ-
uals to DNA samples from a crime scene. The FBI make use of the
CODIS database?. The CODIS database contains the genotypes of
over 13 million people, most of whom have been convicted of a crime.
Most of the profiles record genotypes at 13 microsatellite loci that are
tetranucleotide repeats (since 2017, 20 sites have been genotyped).

The allele counts for two loci (D16S539 and THO1) are shown in

Prate IV

S

Kermode Bear

Figure 2.5: Kermode’s bear (Ursus
americanus kermodei). It’s possible
that this morph is favoured as the
salmon these bears eat have a harder
time seeing the light morph (KLINKA
and REIMCHEN, 2009). The adaptive
value of tasting like cinnamon is

unknown.

Field book of North American mammals;
descriptions of every mammal known north

of the Rio Grande. Anthony, (1928) H. E.
Image from the Biodiversity Heritage Library.
Contributed by MBLWHOI Library. No known
copyright restrictions.

2 CODIS: Combined DNA Index
System


https://www.biodiversitylibrary.org/item/38166#page/115/mode/1up

table 2.2 and 2.3 for a sample of 155 people of European ancestry. You

can assume these two loci are on different chromosomes.

allele name 80 90 100 110 120 121 130 140 150

allele count 3 34 13 102 97 1 44 13 3

allele name 60 70 80 90 93 100 110

allele counts 84 42 37 67 77 1 2

You extract a DNA sample from a crime scene. The genotype
is 100/80 at the D16S539 locus and 70/93 at THO1.

A) You have a suspect in custody. Assuming this suspect is
innocent and of European ancestry, what is the probability
that their genotype would match this profile by chance (a false-
match probability)?

B) The FBI uses > 13 markers. Why is this higher number
necessary to make the match statement convincing evidence in
court?

C) An early case that triggered debate among forensic ge-
neticists was a crime among the Abenaki, a Native American
community in Vermont (see LEWONTIN, 1994, for discussion).

There was a DNA sample from the crime scene, and the per-
petrator was thought likely to be a member of the Abenaki
community. Given that allele frequencies vary among popula-
tions, why would people be concerned about using data from a
non-Abenaki population to compute a false match probability?

2.1.8 Assortative mating

One major violation of the assumptions of Hardy Weinberg is non-
random mating with respect to the genotype at a locus. One way
that individuals can mate non-randomly is if individuals choose to
mate based on a phenotype determined by (in part) the genotype
at a locus. This non-random mating can be between: 1) individuals
with similar phenotype, so called positive assortative mating or 2)
individuals with dissimilar phenotypes, negative assortative mating
or disassortative mating. Here we’ll briefly discuss a couple of real
examples of assortative mating to make sure we’re all on the same
page. We’ll encounter other forms of non-random mating, due to
inbreeding and population structure, in the next few chapters.

POPULATION AND
QUANTITATIVE
GENETICS 21

Table 2.2: Data for 155 Europeans

at the D16S539 microsatellite from
CODIS from ALGEE-HEWITT et al.
(2016). The top row gives the number
of tetranucleotide repeats for each
allele, the bottom row gives the
sample counts.

Table 2.3: Same as 2.2 but for the
THO1 microsatellite.
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HapMap YRI (Africans)

HapMap CEU (Europeans)

Figure 2.6: Demonstrating Hardy—
Weinberg proportions using 10,000

2 PT— 2+ Homomrane oA SNPs from the HapMap European
Homazygote aa Homozygote aa (CEU) and African (YRI) popula—
- —_ G‘é‘:ﬁ“‘ Yot Aa - Uzt:nmmmem tions. Within each of these popula-
e _ Hardy Weinberg Expectation | e 7 Herdy Weinherg Expectato tions the allele frequency against the
. frequency of the 3 genotypes; each
g oo Z oo SNP is represented by 3 different
g E coloured points. The solid lines show
%‘E . % . the mean genotype frequency. The
g ° 5 < dashed lines show the predicted geno-
type frequency from Hardy—Weinberg
o ~ equilibrium. Code here. Blog post on
° © figure here.
2 2
T T T T T T T T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 02 04 06 0.8 10
allele frequency allele frequency
H. cydno chioneus H. melpomene rosina Figure 2.7: Wing pattern phenotypes

F1 hybrid.

N /

of top, H. cydno chioneus (left),
H. melpomene rosina (right), their

nonmimetic first-generation hybrid
(center); and bottom, their sympatric
comimics H. sapho sapho (left) and
H. erato demophoon (right). Figure
and caption modified from M ERRILL
et al. (2019), licensed under CC BY
4.0.

sympatric comimic

sympatric comimic

Positive assortative mating on the basis of a phenotype can cre-
ate an excess of homozygotes. Heliconius butterflies are famous for
their mimicry, where poisonous pairs of distantly related species mimic
each others’ bright colour patterns and so share the benefits of being
avoided by visual predators (Miillerian mimics). H. melpomene rosina
and H. cydno chioneus are closely related species that co-occur in
central Panama, but mimic different other co-occuring species (Fig-
ure 2.7 ). These differences in colouration pattern are due to a few
loci with large phenotypic effects. The two species can hybridize and
produce viable F1 hybrids. These F1 hybrids are heterozygotes at the
colour loci, and their intermediate appearance means that they’re poor
mimics and so are quickly eaten by predators. However, these het-
erzygote (F1) hybrids are very rare in nature < 1/1000, as the parental
species show strong positive assortatively mating based on colour pat-
tern, based on genetic differences in mate preference MERRILL et al.



https://github.com/cooplab/popgen-notes/blob/master/Rcode/HWE_exercise/HWE_HAPMAP.R
http://gcbias.org/2011/10/13/population-genetics-course-resources-Hardy--Weinberg-eq/

(2019).

Disassortative mating, mating of unlike individuals, can lead to an
excess of heterozygotes and a deficit of homozygotes. One example of
very strong disassortative mating is offered by white-throated spar-
rows (Zonotrichia albicollis). In white-throated sparrows, there is a
white-striped and a tan-striped morph, with female and male white-
striped morphs have a much brighter white stripe and throat. There
is very strong disassortative mating in this system, with 1099 out of
1116 nesting pairs consisting of one tan- and one white-striped morph
and only 17 of these nesting pairs being different morphs (TUTTLE
et al., 2016). The difference between these morphs has a simple in-
heritance pattern, with white being due to a single dominant allele
(called 2m) and tan colour from a recessive allele called 2. Thus strong
disassortative mating has a strong effect on the genotype frequencies:

Tan White (Super)White
2/2  2/2m 2m/2m
978 1011 3

There are almost no 2m homozygotes (so called Super white individu-
als) despite the 2m allele being common in the population (data from
TUTTLE et al., 2016, table S1).

Another important example of disassortative mating are mating

type systems, which are present in many fungi, algae, and protozoa.
Gametes of the same species can only fuse to form a zygote if they
differ in mating type. The mating type of gametes is genetically con-
troled by a mating type locus, and so individuals are nearly always
heterozygous at this locus. In some groups of organisms, there are just
two different alleles, in other clades these loci have tens or hundreds of
alleles.

2.2 Allele sharing among related individuals and Identity by
Descent

All of the individuals in a population are related to each other by a
giant pedigree (family tree). For most pairs of individuals in a pop-
ulation these relationships are very distant (e.g. distant cousins),
while some individuals will be more closely related (e.g. sibling/first
cousins). All individuals are related to one another by varying levels
of relatedness, or kinship. Related individuals can share alleles that
have both descended from the shared common ancestor. To be shared,
these alleles must be inherited through all meioses connecting the two
individuals (e.g. surviving the 1/2 probability of segregation each meio-
sis). As closer relatives are separated by fewer meioses, closer relatives
share more alleles. In Figure 2.10 we show the sharing of chromosomal
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Figure 2.8: White-throated spar-
rows (Zonotrichia albicollis) with a
white morph (bottom, male) and tan
morph (top, female). The difference
between the morphs wasn’t fully ap-
preciated until the 1960’s (LOWTHER,
1961), previously birders thought

the tan morphs were just young or
females individuals (so Audubon’s
male and female labels may well by
wrong). There are also a number of
behavioural differences, with both
sexes of the white-striped morph in-
vest more in territorial defense and
the tan-striped morphs more parental
care.

From John James Audubon’s Birds of America
(1827). Image from Audubon.org, public

domain.

Figure 2.9: Cauliflower mushrooms
(Sparassis crispa) parasitize tree
roots and form these amazing, edible
fruiting bodies, which can weigh in
at up to 30lb and apparently taste
like noodles. In a collection of 18
fruiting bodies from a Sparassis
population, all individuals were
heterozygotes for mating type and 17
different mating types were genetically
identified (JAMES, 2015; MARTIN
and GILBERTSON, 1978).

Atlas champignons comestibles et vénéneux
(1891 ). Dufour, L Image from the Biodiversity
Heritage Library. Contributed by New York
Botanical Garden. Not in copyright.



https://www.audubon.org/birds-of-america/white-throated-sparrow
https://www.biodiversitylibrary.org/page/3270858#page/225/mode/1up
https://www.biodiversitylibrary.org/page/3270858#page/225/mode/1up
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regions between two cousins. As we’ll see, many population and quan-
titative genetic concepts rely on how closely related individuals are,
and thus we need some way to quantify the degree of kinship among
individuals.

BD—48

We will define two alleles to be identical by descent (IBD) if they
are identical due to transmission from a common ancestor in the past
few generations®. For the moment, we ignore mutation, and we will
be more precise about what we mean by ‘past few generations’ later
on. For example, parent and child share exactly one allele identical
by descent at a locus, assuming that the two parents of the child are
randomly mated individuals from the population. In Figure 2.16, I
show a pedigree demonstrating some configurations of IBD.

One summary of how related two individuals (let’s call them 4
and j) are is the probability that our pair of individuals share 0, 1,
or 2 alleles identical by descent (see Figure 2.11). We denote these
identity-by-descent probabilities by 7, r1, and ro respectively. See
Table 2.4 for some examples. We can also interpret these probabilities
as genome-wide averages. For example, on average, at a quarter of all
their autosomal loci full-sibs share zero alleles identical by descent.

One summary of relatedness that will be important is the probabil-
ity that two alleles (I & J) picked at random, one from each of the two
different individuals ¢ and j, are identical by descent (P(I&J IBD)).
We call this quantity the coefficient of kinship of individuals i and j,
and denote it by Fj;. It is calculated as

F;; =P(I&J IBD) (2.3)
—P(I&J IBD| i&j 0 IBD)P(i&;j 0 IBD)
+ P(1&J IBD| i&j 1 IBD)P(i&j 1 IBD)

+ P(I&J IBD| i&j 2 IBD)P(i&j 2 IBD) (2.4)
1 1
=0 x rg + ik + 572 (2.5)

Figure 2.10: First cousins sharing a
stretch of chromosome identical by
descent. The different grandparental
diploid chromosomes are coloured

so we can track them and recom-
binations between them across the
generations. Notice that the identity
by descent between the cousins per-
sists for a long stretch of chromosome
due to the limited number of genera-
tions for recombination. The squares
represent males and circles females.

3COTTERMAN, C. W., 1940 A
calculus for statistico-genetics. Ph.
D. thesis, The Ohio State Univer-
sity; and MALEcOT, G., 1948 Les
mathématiques de ’hérédité

| J
i j

ry
[ j

Figure 2.11: A pair of diploid individ-
uals (i and j) sharing 0, 1, or 2 alleles
IBD where lines show the sharing of
alleles by descent (e.g. from a shared
ancestor).

Here we’ll focus on IBD of outbred
individuals. Dealing with sharing
between inbred individuals requires 6
more identity-by-descent r coefficients,
which honestly makes my head spin.
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In the above step, eqn(2.4), we're summing the conditional prob-
ability of alleles I & J being IBD over whether our individuals i &
j share 0, 1, or 2 alleles IBD, an example of using the Law of Total
Probability (see Appendix eqn(A.12)). We've then, in eqn2.5, used the
fact that we can calculate our condition probabilities of I & J being
IBD using the rules of Mendelian transmision. Consider the probabil-
ity P(1&J IBD| i&j 1 IBD), i.e. that our pair of alleles (I & J) drawn
from individuals ¢ and j are IBD given that ¢ and j share one allele
IBD, this is a 1/4 as we need to draw the allele that is IBD from both
i and j, i.e. drawing both black alleles in the middle panel of Figure
2.11, which happens with probability 1/2 x 1/2. The coefficient of kin-
ship will appear multiple times, in both our discussion of inbreeding
and in the context of phenotypic resemblance between relatives.

Relationship (i,j)* P(i&j 0 IBD) P(i&j 1 IBD) P(i&j 2 IBD) P(I&J IBD)

Relationship (i,j)* 70 71 ro F;
parent—child 0 1 0 /4
full siblings 1/4 1/2 1/4 1/4
Monozygotic twins 0 0 1 1/2
1% cousins 3/4 1/4 0 /16

Table 2.4: Probability that two

lationship share 0, 1, or 2 alleles

What are 79, 71, and rg for 1/2 sibs? (1/2 sibs share one parent identical by descent on the autosomes.
* Assuming that our individuals are
but not the Other)' outbred and that this the only close

relationship the pair shares.

Explain in words why P(I&J IBD| i&j 2 IBD) = 1/2.

Genotypic sharing between pairs of individuals. Our r coefficients are
going to have various uses. For example, they allow us to calculate the
probability of the genotypes of a pair of relatives. Consider a biallelic
locus where allele A, is at frequency p, and two individuals who have
IBD allele sharing probabilities rg, 71, ro. What is the overall prob-
ability that these two individuals are both homozygous for allele 1?7
Well that’s

P(both A1 A;) =P(both A; 4]0 alleles IBD)P(0 alleles IBD)
+ P(both A;A;|1 allele IBD)P(1 allele IBD)
+ P(both A;A;|2 alleles IBD)P(2 alleles IBD) (2.6)
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Or, in our rg, r1, 72 notation:

P(both A1 A;) =P(both A;A,|0 alleles IBD)rg
+ P(both A; A;|1 alleles IBD)r;
+ P(both A; A;|2 alleles IBD)ry (2.7)

If our pair of relatives share 0 alleles IBD, then the probability that
they are both homozygous is P(both A; A4;|0 alleles IBD) = p? x p?,
as all four alleles represent independent draws from the popula-

tion. If they share 1 allele IBD, then the shared allele is of type A;
with probability p, and then the other non-IBD allele, in both rel-
atives, also needs to be A; which happens with probability p?, so
P(both A;A;|1 alleles IBD) = p x p?. Finally, our pair of relatives can
share two alleles IBD, in which case P(both A; A;|2 alleles IBD) = p?,
because if one of our individuals is homozygous for the A; allele, both
individuals will be. Putting this all together our eqn(2.7) becomes

P(both Ay A1) = p'ro + p*r1 + p*ro (2.8)

Note that for specific cases we could also calculate this by summing
over all the possible genotypes their shared ancestor(s) had; however,
that would be much more involved and not as general as the form we
have derived here.

We can write out terms like eqn(2.8) for all of the possible configu-
rations of genotype sharing/non-sharing between a pair of individuals.
Based on this we can write down the expected number of polymorphic
sites where our individuals are observed to share 0, 1, or 2 alleles.

Question 8. (Trickier question.)

The genotype of our suspect in Question 2.1.2 turns out to be
100/80 for D16S539 and 70/80 at THO1. The suspect is not a
match to the DNA from the crime scene; however, they could

be a sibling.

Calculate the joint probability of observing the genotype from
the crime and our suspect:

A) Assuming that they share no close relationship.

B) Assuming that they are full sibs.

C) Briefly explain your findings.

There’s a variety of ways to estimate the relationships among in-
dividuals using genetic data. An example of using allele sharing to
identify relatives is offered by the work of Nancy Chen (in collabo-
ration with Stepfanie Aguillon, see CHEN et al., 2016; AGUILLON
et al., 2017). CHEN et al. has collected genotyping data from thou-

sands of Florida Scrub Jays at over ten thousand loci. These Jays

NTAL P1.233,

Ay
Dt
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Figure 2.12: Florida Scrub-Jays

(Aphelocoma coerulescens).

The birds of America : from drawings made in
the United States and their territories. 1880.
Audubon J.J. Image from the Biodiversity
Heritage Library. Contributed by Smithsonian
Libraries. Licensed under CC BY-2.0.


https://www.biodiversitylibrary.org/page/40447048#page/169/mode/1up
https://www.biodiversitylibrary.org/page/40447048#page/169/mode/1up
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live at the Archbold field site, and have been carefully monitored for
many decades allowing the pedigree of many of the birds to be known.
Using these data, she estimates allele frequencies at each locus. Then
by equating the observed number of times that a pair of individuals
share 0, 1, or 2 alleles to the theoretical expectation, she estimates
the probability of rg, 71, and ro for each pair of birds. A plot of these
are shown in Figure 2.13, showing how well the estimates match those
known from the pedigree.

Figure 2.13: Estimated coefficient
of kinship from Florida Scrub Jays.
Each point is a pair of individuals,

o | N
- ¢ Rarent-Offspring plotted by their estimated IBD (r;
¢ Grandparent and r2) from their genetic data. The
® 1/2 siblings . .
© | éunt/l/{ncltelu | points are coloured by their known
s reathunt/Uncle pedigree relationships. Note that
most pairs have low kinship, and no
[\
é e 4 recent genealogical relationship, and
> so appear as black points in the lower
§ left corner. Thanks to Nancy Chen for
@ S supplying the data. Code here.
g T o o & °
o
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Sharing of genomic blocks among relatives. We can more directly see
the sharing of the genome among close relatives using high-density
SNP genotyping arrays. In Figure 2.14 we show a simulation of first
cousins’ genomic sharin from their shared grandmother. Colored pur-
ple are regions where they have matching genomic material, due to
having inherited it IBD from their shared grandmother.

First cousins will share at least one allele of your genotype at all
of the polymorphic loci in these purple regions. There’s a range of
methods to detect such sharing. One way is to look for unusually long
stretches of the genome where two individuals are never homozygous
for different alleles. By identifying pairs of individuals who share an
unusually large number of such putative IBD blocks, we can hope to
identify unknown relatives in genotyping datasets. In fact, compa-
nies like 23&me and Ancestry.com use signals of IBD to help identify
family ties.

As another example, consider the case of third cousins. You share
one of eight sets of great-great-grandparents with each of your (likely


https://github.com/cooplab/popgen-notes/blob/master/Rcode/FSJ_IBD/FSJ_IBD_plotting.R
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Figure 2.14: A simulation of sharing
between first cousins. The regions
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many) third cousins. On average, you and each of your third cousins
each inherit one-sixteenth of your genome from each of those two
great-great-grandparents. This turns out to imply that on average, a
little less than one percent of your and your third cousin’s genomes

(2 x (1/16)? = 0.78%) will be identical by virtue of descent from
those shared ancestors. A simulated example where third cousins share
blocks of their genome (on chromosome 16 and 2) due to their great-
great-grandmother is shown in Figure 2.15.

Note how if you compare Figure 2.15 and Figure 2.14, individuals
inherit less IBD from a shared great-great-grandmother than from a
shared grandmother, as they inherit from more total ancestors further
back. Also notice how the sharing occurs in shorter genomic blocks,
as it has passed through more generations of recombination during
meiosis. These blocks are still detectable, and so third cousins can be
detected using high-density genotyping chips, allowing more distant

relatives to be identified than single marker methods alone. 4 More 4Indeed the suspect in case of the
Golden State Killer was identified

L. . . . through identifying third cousins that
a significant probability of sharing none of their genome IBD. But you genetically matched a DNA sample

distant relations than third cousins, e.g. fourth cousins, start to have

have many fourth cousins, so you will share some of your genome IBD from an old crime scene (see here for
. . . . . . details).

with some of them; however, it gets increasingly hard to identify the more details)
degree of relatedness from genetic data the deeper in the family tree

this sharing goes.


https://gcbias.org/2013/12/02/how-many-genomic-blocks-do-you-share-with-a-cousin/
https://gcbias.org/2018/05/07/how-lucky-was-the-genetic-investigation-in-the-golden-state-killer-case/
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2.2.1 Inbreeding

We can define an inbred individual as an individual whose parents are
more closely related to each other than two random individuals drawn

from some reference population.

When two related individuals produce an offspring, that individ-

ual can receive two alleles that are identical by descent, i.e. they can

be homozygous by descent (sometimes termed autozygous), due to

the fact that they have two copies of an allele through different paths

through the pedigree. This increased likelihood of being homozy-

gous relative to an outbred individual is the most obvious effect of

inbreeding. It is also the one that will be of most interest to us, as

it underlies a lot of our ideas about inbreeding depression and pop-

ulation structure. For example, in Figure 2.16 our offspring of first

cousins is homozygous by descent having received the same IBD allele
via two different routes around an inbreeding loop.

As the offspring receives a random allele from each parent (¢ and j),
the probability that those two alleles are identical by descent is equal
to the kinship coefficient F;; of the two parents (eqn2.5). This follows

from the fact that the genotype of the offspring is made by sampling

an allele at random from each of our parents.

fu

Ja2

(1-F)p?*+Fp (1-F)2pq

(1-F)¢* + Fq

The only way the offspring can be heterozygous (A1 As) is if their
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Figure 2.15: A simulation of sharing
between third cousins, the details are
the same as in Figure 2.14.

M. Granddad M. Grandmother

Cousin Cousin

Child of 1%t cousins

Figure 2.16: Alleles being transmitted
through an inbred pedigree. The two
sisters (mum and aunt) share two
alleles identical by descent (IBD). The
cousins share one allele IBD. The off-
spring of first cousins is homozygous
by descent at this locus.

Table 2.5: Generalized Hardy—
Weinberg. Dropped the indices ¢ and

7 for simplicity.
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two alleles at a locus are not IBD (otherwise they would necessarily be
homozygous). Therefore, the probability that they are heterozygous is

P(A;1Ay) =P(A;1A2|1 & J not IBD)P(I & J not IBD) = 2pg(1 — F;;),
(2.9)

The offspring can be homozygous for the A; allele in two different
ways. They can have two non-IBD alleles that are not IBD but hap-
pen to be of the allelic type A;, or their two alleles can be IBD, such
that they inherited allele A; by two different routes from the same
ancestor. Thus, the probability that an offspring is homozygous for A,
is

P(A1A1) =P(A1 A1 & J not IBD)P(I&J not IBD) + P(A; A, |1&J IBD)P(1&J IBD)
:p2(1 —Fij)-i-pFij. (2.10)

using the Law of Total Probability (see Appendix eqn(A.12)). There-
fore, the frequencies of the three possible genotypes can be written
as given in Table 2.5, which provides a generalization of the Hardy—
Weinberg proportions.

The frequency of the A; allele is p at a biallelic locus. Assume
that our population is randomly mating and that the genotype
frequencies in the population follow from HW. We select two
individuals at random to mate from this population. We then
mate the children from this cross. What is the probability that
the child from this full sib-mating is homozygous?

Multiple inbreeding loops in a pedigree. Up to this point we have as-
sumed that there is at most one inbreeding loop in the recent family
history of our individuals, i.e. the parents of our inbred individual
have at most one recent genealogical connection. However, an indi-
vidual who has multiple inbreeding loops in their pedigree can be
homozygous by descent thanks to receiving IBD alleles via multiple
different different loops. To calculate inbreeding in pedigrees of ar-
bitrary complexity, we can extend beyond our original relatedness
coeflicients rg, r1, and 79 to account for higher order sharing of alleles
IBD among relatives. For example, we can ask, what is the probability
that both of the alleles in the first individual are shared IBD with one
allele in the second individual? There are nine possible relatedness
coefficients in total to completely describe kinship between two diploid
individuals, and we won’t go in to them here as it’s a lot to keep track



of. However, we will show how we can calculate the inbreeding coeffi-
cient of an individual with multiple inbreeding loops more directly.
Let’s say the parents of our inbred individual (B and C) have K
shared ancestors, i.e. individuals who appear in both B and C’s recent
family trees. We denote these shared ancestors by Ay, ..., Ak, and
we denote by n the total number of individuals in the chain from B
to C via ancestor A;, including B, C, and A;. For example, if B is C’s
aunt, then B and C share two ancestors, which are B’s parents and,
equivalently, C’s grandparents. In this case, there are n=4 individuals
from B to C through each of these two shared ancestor. In the general
case, the kinship coefficient of B and C, i.e. the inbreeding coefficient
of their child, is

F=Y%" 2}” (1+ fa,) (2.11)
1=1

where f4, is the inbreeding coefficient of the ancestor A4;. What’s hap-
pening here is that we sum over all the mutually-exclusive paths in
the pedigree through which B and C can share an allele IBD. With
probability 1/27:, a pair of alleles picked at random from B and C is
descended from the same ancestral allele in individual A;, in which
case the alleles are IBD. ® However, even if B inherits the maternal
allele and C inherits the paternal allele of shared ancestor A;, if A;
was themselves inbred, with probability fa, those two alleles are them-
selves IBD. Thus a shared inbred ancestor further increases the kinship
of B and C.

I
Isabella of  Charles V, Holy
Portugal Roman Emperor
1503-39) {1500-58)

sabella of Christian |
Burgundy of Denmark
1501-26) (1481-1559)

Ferdinand |, Holy ~ Anna of Boh
Roman Emperor ~ an

(1503-64)

I L
Maximilian Il, Holy Charles Il
Roman Emperor of Austria
603) (1527.76) (1540-90)

Philip II Mana of Christina of  Francis |, Duke
] ! enmark of
1522-90 {

Anne of
Austria
(1543.80)

William V, Duke Renata of
Loraine
(1544-1802)

Mana Anna

Ferdinand II, Holy
Roman Emperor
(1578-1637)

Ferdinand Ill, Holy
Roman Ermperor
(1608.57)

]

1
Manana of
Austria
(1634-95)

Charles 'II of Spain
(1661-1700)
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5 For example, in the case of our
aunt-nephew case, assuming that

the aunt’s two parents are their

only recent shared ancestors, then

F = 1/2% 4+ 1/24 = 1/8 in agreement
with the answer we would obtain from
eqn(2.5).

Figure 2.17: The pedigree of King
Charles II of Spain. Pedigree from
wikimedia drawn by Lec CRP1, public
domain.

Figure 2.18: Charles II of Spain (by
Juan Carrefio de Miranda, 1685).
Public Domain.


https://commons.wikimedia.org/wiki/File:Carlos_segundo80.png
https://en.wikipedia.org/wiki/User:Lec_CRP1
https://it.wikipedia.org/wiki/Carlo_II_di_Spagna#/media/File:Juan_de_Miranda_Carreno_002.jpg
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Multiple inbreeding loops increase the probability that a child is
homozygous by descent at a locus, which can be calculated simply by
plugging in F, the child’s inbreeding coefficient, into our generalized
HW equation.

As one extreme example of the impact of multiple inbreeding loops
in an individual’s pedigree, let’s consider king Charles II of Spain, the
last of the Spanish Habsburgs. Charles was the son of Philip IV of
Spain and Mariana of Austria, who were uncle and niece. If this were
the only inbreeding loop, then Charles would have had an inbreeding
coefficient of 1/s. Unfortunately for Charles, the Spanish Habsburgs
had long kept wealth and power within their family by arranging
marriages between close kin. The pedigree of Charles II is shown in
Figure 2.17, and multiple inbreeding loops are apparent. For example,
Phillip ITI, Charles IT'’s grandfather and great-grandfather, was himself
a child of an uncle-niece marriage.

ALVAREZ et al. (2009) calculated that Charles IT had an inbreed-
ing coeflicient of 0.254, equivalent to a full-sib mating, thanks to all of

the inbreeding loops in his pedigree. Therefore, he is expected to have
been homozygous by descent for a full quarter of his genome. As we’ll
talk about later in these notes, this means that Charles may have been
homozygous for a number of recessive disease alleles, and indeed he
was a very sickly man who left no descendants due to his infertility. 6
Thus plausibly the end of one of the great European dynasties came
about through inbreeding.

2.2.2  Calculating inbreeding coefficients from genetic data

If the observed heterozygosity in a population is Hp, and we assume
that the generalized Hardy—Weinberg proportions hold, we can set Hp
equal to fi2, and solve Eq. (2.9) for F' to obtain an estimate of the
inbreeding coefficient as

5 J12_ 2pg— fio

F=1 (2.12)
2pq 2pq

As before, p is the frequency of allele A; in the population. This can

be rewritten in terms of the observed heterozygosity (Hp) and the
heterozygosity expected in the absence of inbreeding, Hg = 2pq, as

F

|

|

—
|

(2.13)

Hence, 2 quantifies the deviation due to inbreeding of the observed
heterozygosity from the one expected under random mating, relative
to the latter.

8 Pedro Gargantilla, who performed
Charles’s autopsy, stated that his
body “did not contain a single drop
of blood; his heart was the size of a
peppercorn; his lungs corroded; his
intestines rotten and gangrenous; he
had a single testicle, black as coal,
and his head was full of water.” While
some of this description may refer to
actual medical conditions, some of
these details seem a little unlikely. See
here.

The hat on the F here denotes that
this is an estimate from a sample.


https://www.thevintagenews.com/2017/03/23/when-charles-ii-of-spain-died-the-autopsy-stated-that-his-body-did-not-contain-a-single-drop-of-blood-and-his-head-was-full-of-water/
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Question 10.

Suppose the following genotype frequencies were observed for
an esterase locus in a population of Drosophila (A denotes the
“fast” allele and B denotes the “slow” allele):

AA AB BB
0.6 02 02

What is the estimate of the inbreeding coefficient at the es-
terase locus?

If we have multiple loci, we can replace Hp and Hg by their means
over loci, Hp and Hp, respectively. Note that, in principle, we could
also calculate F' for each individual locus first, and then take the aver-
age across loci. However, this procedure is more prone to introducing
a bias if sample sizes vary across loci, which is not unlikely when we
are dealing with real data.

Genetic markers are commonly used to estimate inbreeding for wild
and/or captive populations of conservation concern. As an example
of this, consider the case of the Mexican wolf (Canis lupus baileyi), a

sub-species of gray wolf.

They were extirpated in the wild during the mid-1900s due to hunt-
ing, and the remaining five Mexican wolves in the wild were captured
to start a breeding program. VONHOLDT et al. (2011) estimated the
current-day, average expected heterozygosity to be 0.18, based on al-

lele frequencies at over forty thousand SNPs. However, the average

Figure 2.19: Grey wolf (Canis lupus).

Mexican wolf individual was only observed to be heterozygous at 12% of £t Ganiduc. 1860, 3 3.6, Keutomane® 0"
. . . Image from the Biodiversity Heritage Library.
of these SNPs. Therefore, the average inbreeding coefficient for the Contributed by University of Toronto -

Gerstein Science Information Centre. Not in

Mexican wolf is F' = 1 — 0.12/0.18, i.e. ~ 33% of a lobo’s genome is copyright.
homozygous due to recent inbreeding in their pedigree.

Genomic blocks of homozygosity due to inbreeding. As we saw above,
close relatives are expected to share alleles IBD in large genomic
blocks. Thus, when related individuals mate and transmit alleles to
an inbred offspring, they transmit these alleles in big blocks through
meiosis. As an example, let’s return to the case of our hypothetical
first cousins from Figure 2.10. If this pair of individuals had a child,
one possible pattern of genetic transmission is shown in Figure 2.20.
The child has inherited the red stretch of chromosome via two differ-
ent routes through their predigree from the grandparents. This is an
example of an autozygous segment, where the child is homozygous

by descent at all of the loci in this red region. The inbreeding coeffi-
cient of the child sets the proportion of their genome that will be in
these autozygous segments. For example, a child of first full cousins is


https://www.biodiversitylibrary.org/page/17002968#page/58/mode/1up
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Lo

expected to have 1/16 of their genome in these segments. The more
distant the loop in the pedigree, the more meioses that chromosomes
have been through and the shorter individual blocks will be. A child of
first cousins will have longer blocks than a child of second cousins, for
example.

Individuals with multiple inbreeding loops in their family tree can
have a high inbreeding coefficient due to the combined effect of many
small blocks of autozygosity. For example, Charles II had an inbreed-
ing coefficient that is equivalent to that of the child of full-sibs, with
a quarter of his genome expected to homozygous by descent, but this
would be made up of many shorter blocks.

We can hope to detect these blocks by looking for unusually long
genomic runs of homozygosity (ROH) sites in an individual’s genome.
One way to estimate an individual’s inbreeding coefficient is then to
total up the proportion of an individual’s genome that falls in such
ROH regions. This estimate is called Frogy.

An example of using Froy to study inbreeding comes from the
work of SAMS and BoyKo (2018b), who identified runs of homozy-
gosity in 2,500 dogs, ranging from 500kb up to many megabases. Fig-

ure 2.21 shows the distribution of Fropm of individuals in each dog
breed for the X and autosome. In Figure 2.23 this is broken down by
the length of ROH segments.

Figure 2.20: A pedigree showing the
offspring of first cousins. The chro-
mosomes of their great-grandparents
are coloured different colours so
their transmission can be tracked.
The child is homozygous by descent
(HBD) for a section of the red chro-

mosome.
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Figure 2.21: The distribution of

3 Aute
= X osome Frop of individuals from various
dog breeds from SAMS and BOYKO
N (2018a), licensed under CC BY 4.0.
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8 '
]
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¢ 3
§ 4
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i it Figure 2.22: English bulldog. The
) Bulldog English o )
E Bulldog French dogs of Boytown. 1918. Dyer, W. A.

Doberman Pinscher
German Shepherd Dog

0.3 Golden Retriever Figure 2.23: Cumulative density of
Labrador Retriever ROH length, measured in megabases
Poodle (Mb) from SAMS and BOYKO
=== Siberian Husky (2018a) for various dog breeds (li-

0.2 —— === Yorkshire Terrier censed under CC BY 4.0). Note that
longer lengths of ROH are on the left

of the plot.
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Dog breeds have been subject to intense breeding that has resulted
in high levels of inbreeding. Of the population samples examined,
Doberman Pinschers have the highest levels of their genome in runs
of homozygosity (From), somewhat higher than English bulldogs.

In 2.23 we can see that English bulldogs have more short ROH than
Doberman Pinschers, but that Doberman Pinschers have more of their
genome in very large ROH (> 16Mb). This suggests that English
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bulldogs have had long history of inbreeding as they have many small
blocks, but that Doberman Pinschers have a lot of recent inbreeding
as their autozygosity is contained in long blocks relatively unbroken by
recombination.

Chapter 2 summary.

e This chapter developed the relationship between allele fre-
quencies and genotype frequencies within a generation and
among relatives.

e Under random mating, we derived expectations of the geno-
type frequencies (Hardy-Weinberg), and we can identify
deviations away from these expectations.

o Identity by descent (IBD) refers to the sharing of alleles due
to a recent shared biological relationship.

e We can predict the probability and expected level of shar-
ing of alleles IBD among pairs of relatives using mendelian
transmission probabilities (as contained in coefficients rq,
r1, and r3). One useful summary of relatedness for a pair of
individuals is the kinship coefficient F; ;.

e We can also learn about genetic relationships from the shar-
ing of genomic segments among relatives, with many long

shared segments revealing a closer relationship.

e An inbred individual has parents who are more closely
related than random draws from some reference population.

e Inbreeding results in decreased heterozygosity and a comple-
mentary increase in homozygosity. We can use the kinship
coefficient of the parents to estimate the distortion away
from Hardy-Weinberg and the expected level of heterozygos-

ity.
o Inbreeding coefficients can be calculated from genetic data,

either for multiple individuals at a single locus or for multi-
ple loci for a single individual.




Question 11.

Calculate rq, 71, 2 and the coefficient of kinship F' between:
A) A grandparent and their grandchild

B) A great grandparent and their great grandchild

C) Full siblings

D) A great aunt and her grand nephew (your great aunt =
your parent’s aunt)

Question 12.

You are studying a codominant flower colour polymorphism.
Skipping through a meadow of flowers you and compile the
following data:

red pink white
200 100 200

A) What frequencies would you expect at this locus under
Hardy-Weinberg equilibrium?

B) Calculate the inbreeding coefficient at this locus.

C) Name two distinct processes that could lead to the devia-
tion you see, and describe how they would result in a deficit of
heterozygotes.

Question 13.

What are the relatedness coefficients of the X chromosome
between:

A) Two male full siblings?

B) Two female full siblings?

C) What is the probability that a female offspring of a full sib
mating is homozygous by descent at a locus on her X chromo-
some?

Question 14.

You are studying the wing spot polymorphism in a butterfly
species. From crosses in the lab you find that the presence of
wing spots is determined by a dominant allele.

You collect 100 butterflies, 84 of them have the wing spots.
What is the frequency of the wing-spot allele? What assump-
tion did you have to make to come to your answer?

POPULATION AND
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Question 15.

An allele has frequency of 0.001 in the population. What is
the probability that both you and your first (full) cousin are
heterozygote for the allele?

Question 16.

The kinship coefficient of the parents is the inbreeding coeffi-

cient of the offspring. Explain, with reference to the weighting
of relatedness coefficients in the inbreeding coefficient, why the
inbreeding coefficient is the probability that a locus is homozy-
gous by descent.

Question 17.

In terms of identity by descent, explain why multiple inbreed-

ing loops in an individual’s pedigree lead to higher levels of
inbreeding.




3

Population Structure and Correlations Among Loci.

INDIVIDUALS RARELY MATE COMPLETELY AT RANDOM; your
parents weren’t two Bilateria plucked at random from the tree of life.
Even within species, there’s often geographically-restricted mating
among individuals. Individuals tend to mate with individuals from the
same, or closely related sets of populations. This form of non-random
mating is called population structure and can have profound effects
on the distribution of genetic variation within and among natural
populations.

Populations can often differ in their allele frequencies, either due to
genetic drift or selection driving differentiation among populations. In
this chapter we’ll talk through some ways to summarize and visualize
population genetic structure. Population differentiation is also a major
driver of correlations in allelic state among loci, and we’ll start our
discussion of these correlations at the end of this chapter. One rea-
son for talking about population structure so early in the book is that
summarizing population structure is often a key initial stage in popu-
lation genomic analyses. Thus you’ll often encounter summaries and
visualizations of population structure when we read research papers,
so it’s good to have some understanding of what they represent.

3.0.1 Inbreeding as a summary of population structure.

Our statements about inbreeding, and inbreeding coefficients, repre-
sent one natural way to summarize population structure. In the pre-
vious chapter, we defined inbreeding as having parents that are more
closely related to each other than two individuals drawn at random
from some reference population. The question that naturally arises is:
Which reference population should we use? While I might not look in-
bred in comparison to allele frequencies in the United Kingdom (UK),
where I am from, my parents certainly are not two individuals drawn

at random from the world-wide population. If we estimated my in-
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breeding coeflicient F' using allele frequencies within the UK, it would
be close to zero, but would likely be larger if we used world-wide fre-
quencies. This is because there is a somewhat lower level of expected
heterozygosity within the UK than in the human population across the
world as a whole.

Building on this idea of inbreeding coefficients estimated at various
levels, WRIGHT developed a set of ‘F-statistics’ (also called ‘fixa-
tion indices’) that formalize the idea of inbreeding with respect to
different levels of population structure (WRIGHT, 1943, 1949). See

Figure 3.1 for a schematic diagram. Wright defined Fxy as the corre-
lation between random gametes, drawn from the same level X, relative
to level Y. We will return to why F-statistics are statements about
correlations between alleles in just a moment. One commonly used
F-statistic is Fig, which is the inbreeding coefficient between an indi-
vidual (I) and the subpopulation (S). Consider a single locus, where
in a subpopulation (S) a fraction H; = f15 of individuals are het-
erozygous. In this subpopulation, let the frequency of allele A; be
ps, such that the expected heterozygosity under random mating is
Hgs = 2pg(1 — ps). We will write Fig as

Hy J12

Fis=1-—=1- )
Hg 2psqs

(3.1)

a direct analog of eqn2.12. Hence, Fig is the relative difference be-
tween observed and expected heterozygosity due to a deviation from
random mating within the subpopulation. We could also compare the
observed heterozygosity in individuals (Hj) to that expected in the
total population, Hr. If the frequency of allele A; in the total popula-
tion is pr, then we can write Fir as

Hy 1 J12

Fr=1-—-L= :
. Hry 2prqr

(3.2)

which compares heterozygosity in individuals to that expected in the
total population. As a simple extension of this, we could imagine
comparing the expected heterozygosity in the subpopulation (Hg) to
that expected in the total population Hp, via Fgr:

Hs 2psqs
Fsr=1—-—-"=1- . 3.3
ST Hr 2prqr (3:3)
We can relate the three F-statistics to each other as
Hr Hg
1-Fr1)=—-—-"=(1- Fig)(1 — Fgr). 3.4
( iT) s o ( is) ( sT) (3.4)

Hence, the reduction in heterozygosity within individuals compared to
that expected in the total population can be decomposed to the reduc-
tion in heterozygosity of individuals compared to the subpopulation,

Individual

Figure 3.1: The hierarchical nature
of F-statistics. The two dots within
an individual represent the two alleles
at a locus for an individual I. We
can compare the heterozygosity in
individuals (Hr), to that found by
randomly drawing alleles from the
sub-population (S), to that found in
the total population (T).



and the reduction in heterozygosity from the total population to that
in the subpopulation.

If we want a summary of population structure across multiple sub-
populations, we can average H; and/or Hg across populations, and
use a pr calculated by averaging pg across subpopulations (or our
samples from sub-populations). For example, the average Fsr across
K subpopulations (sampled with equal effort) is
For=1- % (3.5)
where Hg = 1/k Zfil Hg), and Hg) = 2p,q; is the expected heterozy-
gosity in subpopulation 4. It follows that the average heterozygosity of
the sub-populations Hg < Hyp, and so Fsp > 0 and Fis < Fyr. This
observation that the average heterozygosity of the sub-populations
must be less than of equal to that of the total population is called the
Wahlund effect (WAHLUND, 1928). Furthermore, if we have multiple

sites, we can replace Hy, Hg, and Hp with their averages across loci
1

(as above).

Question 1.

In a species of lemurs, you estimate the allele frequency to be
20%. In a particular population, you estimate that the allele
frequency is 10%. In this population, only 9% of individuals are
heterozygote. What is Fip, Fsr, and Frg for this population?

As an example of comparing a genome-wide estimate of Fgr to that
at individual loci we can look at some data from blue- and golden-
winged warblers ( Vermivora cyanoptera and V. chrysoptera 1-2 & 5-6
in Figure 3.2).

These two species are spread across eastern Northern America, with
the golden-winged warbler having a smaller, more northernly range.
They’re quite different in terms of plumage, but have long been known
to have similar songs and ecologies. The two species hybridize readily
in the wild; in fact two other previously-recognized species, Brewster’s
and Lawrence’s warbler (4 & 3 in 3.2), are actually found to just be
hybrids between theses two species. The golden-winged warbler is
listed as ‘threatened’ under the Canadian endangered species act as its
habitat is under pressure from human activity and and due to increas-
ing hybridization with the blue-winged warbler, which is moving north
into its range. TOEWS et al. (2016) investigated the population ge-

nomics of these warblers, sequencing ten golden- and ten blue-winged
warblers. They found very low divergence among these species, with
a genome-wide Fgr = 0.0045. In Figure 3.3, per SNP Fgr is aver-
aged in 2000bp windows moving along the genome. The average is
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! Averaging heterozygosity across loci
first, then calculating Fgr, rather
than calculating Fgr for each locus
individually and then taking the aver-
age, has better statistical properties as
statistical noise in the denominator is
averaged out.

Prate V

Figure 3.2: Blue-, golden-winged, and

Lawrence’s warblers ( Vermivora).
The warblers of North America. Chapman,
F.M. 1907. Image from the Biodiversity
Heritage Library. Contributed by American
Museum of Natural History Library. Not in
copyright.


https://www.biodiversitylibrary.org/page/9165714#page/101/mode/1up
https://www.biodiversitylibrary.org/page/9165714#page/101/mode/1up
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very low, but some regions of very high Fg7 stand out. Nearly all of
these regions correspond to large allele frequency differences at loci
in, or close, to genes known to be involved in plumage colouration
differences in other birds. To illustrate these frequency differences

1 3 5 7 911 14 17 20 24 28 32 36 41 46 52 58 65 73 83 94 109 131 166 217 300 452 987

Chromosome

TOEWS et al. (2016) genotyped a SNP in each of these high-Fgr re-
gions. Here’s their genotyping counts from the SNP, segregating for

an allele 1 and 2, in the Wnt region, a key regulatory gene involved in

feather development:

Genotypes
Species 11 12 22
Blue-winged 2 21 31
Golden-winged 48 12 1

With reference to the table of Wnt-allele counts:
A) Calculate Frg in blue-winged warblers.

B) Calculate Fgr for the sub-population of blue-winged war-
blers compared to the combined sample.
C) Calculate mean Fgr across both sub-populations.

Interpretations of F-statistics Let’s now return to Wright’s definition
of the F-statistics as correlations between random gametes, drawn
from the same level X, relative to level Y. Without loss of generality,
we may think about X as individuals and S as the subpopulation.
Rewriting Fig in terms of the observed homozygote frequencies (f11,
f22) and expected homozygosities (p%, ¢%) we find

9 _ .2 9
_ 2Psds fiz :f11+f22 Ds — Qg (3.6)

Iis
2psqs 2psqs ’

using the fact that p> + 2pg + ¢*> = 1, and fia = 1 — fi1 — fio.
The form of eqn. (3.6) reveals that Fig is the covariance between pairs
of alleles found in an individual, divided by the expected variance
under binomial sampling. Thus, F-statistics can be understood as the

Figure 3.3: FST between blue- and
golden-winged warbler population
samples at SNPs across the genome.
Each dot is a SNP, and SNPs are
coloured alternating by scaffold.
Thanks to David Toews for the figure.



correlation between alleles drawn from a population (or an individual)
above that expected by chance (i.e. drawing alleles sampled at random
from some broader population). 2

We can also interpret F-statistics as proportions of variance ex-
plained by different levels of population structure. To see this, let
us think about Fgr averaged over K subpopulations, whose fre-
quencies are p1,...,pr. The frequency in the total population is

pr=p=1K ZZK:1 p;. Then, we can write

__ K
Fo 2P0 e Y i _
ST = =

2pgq
_ Var(pl, . 7pK)
Var(p)

K K _ _
(55 ) i
2pq
(3.7)

which shows that Fgr is the proportion of the variance explained by
the subpopulation labels. 3

3.0.2  Other approaches to population structure

There is a broad spectrum of methods to describe patterns of popula-
tion structure in population genetic datasets. We’ll briefly discuss two
broad-classes of methods that appear often in the literature: assign-
ment methods and principal components analysis.

3.0.83 Assignment Methods

Here we’ll describe a simple probabilistic assignment to find the prob-
ability that an individual of unknown population comes from one of
K predefined populations. For example, there are three broad popu-
lations of common chimpanzee (Pan troglodytes) in Africa: western,
central, and eastern. Imagine that we have a chimpanzee whose popu-
lation of origin is unknown (e.g. it’s from an illegal private collection).
If we have genotyped a set of unlinked markers from a panel of in-
dividuals representative of these populations, we can calculate the
probability that our chimp comes from each of these populations.
We’ll then briefly explain how to extend this idea to cluster a set
of individuals into K initially unknown populations. This method is
a simplified version of what population genetics clustering algorithms
such as STRUCTURE and ADMIXTURE do. 4

A simple assignment method We have genotype data from unlinked
S biallelic loci for K populations. The allele frequency of allele A; at
locus ! in population k is denoted by py i, so that the allele frequencies
in population 1 are pi,1,---p1,z and population 2 are pa 1,---po, 1 and
SO on.
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2 To see why the numerator of eqn
(3.6) is the covariance of a discrete
random variable see Appendix
eqn(A.41), where we imagine that
the random variable is 1 if the alleles
drawn from the population are the
same and 0 if not. The denominator
is the binomial variance of a sample
of two, and so our equation is a co-
variance divided by a variance and
so interpretable as a correlation (see
eqn(A.43))

3 This follows because the numerator,
in the middle step of eqn(3.7), is the
averaged squared frequency minus the
squared frequency, i.e. the variance
(see Appendix eqnA.23).

4PRITCHARD, J. K.,

M. STEPHENS, and P. DON-
NELLY, 2000 Inference of population
structure using multilocus genotype
data. Genetics 155(2): 945-959; and
ALEXANDER, D. H., J. NOVEM-
BRE, and K. LANGE, 2009 Fast
model-based estimation of ancestry
in unrelated individuals. Genome
research 19(9): 1655-1664
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You genotype a new individual from an unknown population at
these L loci. This individual’s genotype at locus [ is g;, where g; de-
notes the number of copies of allele A; this individual carries at this
locus (g, =0,1,2).

The probability of this individual’s genotype at locus [ conditional
on coming from population k, i.e. their alleles being a random HW
draw from population k, is

(1—pry)? 91=0
P(gilpop k) = { 2ppi(1 —pry) g1 =1 (3.8)
p%l g =2

Assuming that the loci are independent, the probability of the
individual’s genotype across all S loci, conditional on the individual
coming from population k, is

S

P(ind.|pop k) = [ [ P(:[pop k) (3.9)
=1

We wish to know the probability that this new individual comes
from population k, i.e. P(pop k|ind.). We can obtain this through

Bayes’ rule
. P(ind.|pop k)P(pop k
P(pop klind.) = ( |p]PEnc3 )(p p k) (3.10)
where
K
P(ind.) = Y P(ind.|pop k)P(pop k) (3.11)
k=1

is the normalizing constant.’ We can interpret P(pop k) as the prior
probability of the individual coming from population k, and unless
we have some other prior knowledge we will assume that the new
individual has a equal probability of coming from each population
P(pop k) = 1/k.

We interpret

P(pop klind.) (3.12)

as the posterior probability that our new individual comes from each
of our 1,--- , K populations.

More sophisticated versions of this are now used to allow for hy-
brids, e.g, we can have a proportion g of our individual’s genome
come from population k£ and estimate the set of ¢x’s.

5 See the Appendix (A.16) for more on
Bayes’ Rule



Returning to our chimp example, imagine that we have geno-
typed a set of individuals from the Western and Eastern popu-
lations at two SNPs (we’ll ignore the central population to keep
things simpler). The frequency of the capital allele at two SNPs
(A/a and B/b) is given by

Population locus A locus B
Western 0.1 0.85
Eastern 0.95 0.2

A) Our individual, whose origin is unknown, has the genotype
AA at the first locus and bb at the second. What is the pos-
terior probability that our individual comes from the Western
population versus Eastern chimp population?

B) (Trickier) Lets assume that our individual from part A is a
hybrid (not necessarily an F1). At each locus, with probability
qw our individual draws an allele from the Western population
and with probability gz = 1 — qw they draw an allele from the
Eastern population. What is the probability of our individual’s
genotype given qy?

Optional You could plot this probability as a function of gy .
How does your plot change if our individual is heterozygous at
both loci?

Clustering based on assignment methods While it is great to be able
to assign our individuals to a particular population, these ideas can
be pushed to learn about how best to describe our genotype data in
terms of discrete populations without assigning any of our individuals
to populations a priori. We wish to cluster our individuals into K un-
known populations. We begin by assigning our individuals at random
to these K populations.

1. Given these assignments we estimate the allele frequencies at all of
our loci in each population.

2. Given these allele frequencies we chose to reassign each individual
to a population k with a probability given by eqn(3.9).

We iterate steps 1 and 2 for many iterations (technically, this ap-
proach is known as Gibbs Sampling). If the data is sufficiently infor-
mative, the assignments and allele frequencies will quickly converge on
a set of likely population assignments and allele frequencies for these
populations.
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Figure 3.4: Chimpanzee.

Archives du Muséum d’Histoire Naturelle,
Paris. (tome X, 1856) Image from the Biodiver-
sity Heritage Library. Contributed by Natural
History Museum Library, London. Licensed
under CC BY-2.0.


https://www.flickr.com/photos/biodivlibrary/19930229848/in/photolist-XGMmmV-wnaCYy-wDMHFP-dpNAc7-bw9qDC-bw9orQ-bJPuCF-eV4etD-d9s1By-cbcysm-c5izpA-bvSkgm-bu7ij8-azL7vS-ayF5zC-atDTpg-atDTuz-akH6mL-ag15Rf-ag15Lb
https://www.flickr.com/photos/biodivlibrary/19930229848/in/photolist-XGMmmV-wnaCYy-wDMHFP-dpNAc7-bw9qDC-bw9orQ-bJPuCF-eV4etD-d9s1By-cbcysm-c5izpA-bvSkgm-bu7ij8-azL7vS-ayF5zC-atDTpg-atDTuz-akH6mL-ag15Rf-ag15Lb
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To do this in a full Bayesian scheme we need to place priors on
the allele frequencies (for example, one could use a beta distribution
prior). Technically we are using the joint posterior of our allele fre-
quencies and assignments. Programs like STRUCTURE, use this type
of algorithm to cluster the individuals in an “unsupervised” manner
(i.e. they work out how to assign individuals to an unknown set of
populations). See Figure 3.5 for an example of BECQUET et al. using

STRUCTURE to determine the population structure of chimpanzees.
STRUCTURE-like methods have proven incredible popular and
useful in examining population structure within species. However, the

results of these methods are open to misinterpretation; see LAW-
SON et al. (2018) for a recent discussion. Two common mistakes
are 1) taking the results of STRUCTURE-like approaches for some
particular value of K and taking this to represent the best way to

describe population-genetic variation. 2) Thinking that these clusters
represent ‘pure’ ancestral populations.

There is no right choice of K, the number of clusters to partition
into. There are methods of judging the ‘best’ K by some statistical
measure given some particular dataset, but that is not the same as
saying this is the most meaningful level on which to summarize pop-
ulation structure in data. For example, running STRUCTURE on
world-wide human populations for low value of K will result in popula-
tion clusters that roughly align with continental populations (ROSEN-
BERG et al., 2002). However, that does not tell us that assigning

ancestry at the level of continents is a particularly meaningful way of
partitioning individuals. Running the same data for higher value of K,
or within continental regions, will result in much finer-scale partition-
ing of continental groups (ROSENBERG et al., 2002; L1 et al., 2008).

No one of these layers of population structure identified is privileged
as being more meaningful than another.

It is tempting to think of these clusters as representing ancestral
populations, which themselves are not the result of admixture. How-
ever, that is not the case, for example, running STRUCTURE on
world-wide human data identifies a cluster that contains many Euro-
pean individuals, however, on the basis of ancient DNA we know that
modern Europeans are a mixture of distinct ancestral groups.

Figure 3.5: BECQUET et al. (2007)
genotyped 78 common chimpanzee
and 6 bonobo at over 300 polymor-
phic markers (in this case microsatel-
lites). They ran STRUCTURE to
cluster the individuals using these
data into K = 4 populations. In BEC-
QUET et al. (2007) above figure they
show each individual as a vertical bar
divided into four colours depicting the
estimate of the fraction of ancestry
that each individual draws from each
of the four estimated populations
(licensed under CC BY 4.0). We can
see that these four colours/popula-
tions correspond to: Red, central;
blue, eastern; green, western; yellow,
bonobo.




3.0.4 Principal components analysis

Principal component analysis (PCA) is a common statistical approach
to visualize high dimensional data, and used by many fields. The idea
of PCA is to give a location to each individual data-point on each of
a small number principal component axes. These PC axes are chosen
to reflect major axes of variation in the data, with the first PC being
that which explains largest variance, the second the second most,
and so on. The use of PCA in population genetics was pioneered by
Cavalli-Sforza and colleagues and now with large genotyping datasets,
PCA has made a comeback. 6

Consider a dataset consisting of N individuals at S biallelic SNPs.
The i" individual’s genotype data at locus ¢ takes a value g; , =
0,1, or 2 (corresponding to the number of copies of allele A; an
individual carries at this SNP). We can think of this as a N x .S matrix
(where usually N < S).

Denoting the sample mean allele frequency at SNP ¢ by py, it’s
common to standardize the genotype in the following way

Gie — 2pe

2pe(1 — pe) .

i.e. at each SNP we center the genotypes by subtracting the mean
genotype (2py) and divide through by the square root of the expected
variance assuming that alleles are sampled binomially from the mean
frequency (/2p¢(1 — pe¢)). Doing this to all of our genotypes, we form
a data matrix (of dimension N x S). We can then perform principal
component analysis of this data matrix to uncover the major axes of
genotype variance in our sample. Figure 3.6 shows a PCA from BEC-
QUET et al. (2007) using the same chimpanzee data as in Figure 3.5.
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It is worth taking a moment to delve further into what we are doing
here. There’s a number of equivalent ways of thinking about what
PCA is doing. One of these ways is to think that when we do PCA we
are building the individual by individual covariance matrix and per-
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S MENOzzI, P., A. P1AzzA, and

L. CAVALLI-SFORZA, 1978 Syn-
thetic maps of human gene frequen-
cies in Europeans. Science 201(4358):
786-792; and PATTERSON, N.,

A. L. PRICE, and D. REICH, 2006
Population structure and eigenanaly-
sis. PLoS genetics 2(12): €190

Figure 3.6: Principal Component
Analysis by BECQUET et al. (2007)
using the same chimpanzee data

as in Figure 3.5. Here BECQUET

et _al. (2007) plot the location of each
individual on the first two principal
components (called eigenvectors)

in the left panel, and on the second
and third principal components
(eigenvectors) in the right panel
(licensed under CC BY 4.0). In the
PCA, individuals identified as all

of one ancestry by STRUCTURE
cluster together by population (solid
circles). While the nine individuals
identified by STRUCTURE as hybrids
(open circles) for the most part fall
at intermediate locations in the
PCA. There are two individuals (red
open circles) reported as being of a
particular population but that but
appear to be hybrids.
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forming an eigenvalue decomposition of this matrix (with the eigenvec-
tors being the PCs). This individual by individual covariance matrix
has entries the [i, j] given by

s
Z (9i.e — 2pe) (g5, — 2p¢)

2pe(1 — pe) (8.14)

1

S—1 —~
Note that this is the sample covariance of our standardized allele
frequencies (eqn(3.13)), and is very similar to those we encountered
in discussing F-statistics as correlations (equn(3.6)), except now we
are asking about the covariance between two individuals above that
expected if they were both drawn from the total sample at random
(rather than the covariance of alleles within a single individual). So
by performing PCA on the data we are learning about the major
(orthogonal) axes of the kinship matrix.

As an example of the application of PCA, let’s consider the case
of the putative ring species in the greenish warbler (Phylloscopus
trochiloides) species complex. This set of subspecies exists in a ring
around the edge of the Himalayan plateau. ALCAIDE et al. (2014)

collected 95 greenish warbler samples from 22 sites around the ring,
and the sampling locations are shown in Figure 3.7.

YK BT

Nitidus
Viridanus

Plumbeitarsus

-7

It is thought that these warblers spread from the south, north-
ward in two different directions around the inhospitable Himalayan
plateau, establishing populations along the western edge (green and
blue populations) and the eastern edge (yellow and red populations).
When they came into secondary contact in Siberia, they were repro-
ductively isolated from one another, having evolved different songs
and accumulated other reproductive barriers from each other as they
spread independently north around the plateau, such that P. t. viri-
danus (blue) and P. t. plumbeitarsus (red) populations presently form
a stable hybrid zone.

Figure 3.7: The sampling locations
of 22 populations of greenish war-
blers from ALCAIDE et al. (2014).
The samples are coloured by the
subspecies. Code here.

GREENISH WILLOW-WARBLER

losecgue el pch,

Figure 3.8: Greenish warbler, subspp.
viridanus (Phylloscopus trochiloides

viridanus).

Coloured figures of the birds of the British
Islands. 1885. Lilford T. L. P.. Image from the
Biodiversity Heritage Library. Contributed by
American Museum of Natural History Library.
Not in copyright. (Greenish warblers are rare
visitors to the UK.)


https://github.com/cooplab/popgen-notes/blob/master/Rcode/warblerdata/warbler_ind_PCA.R
https://www.biodiversitylibrary.org/page/34576931#page/147/mode/1up
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ALCAIDE et al. (2014) obtained sequence data for their samples at

2,334 snps. In Figure 3.9 you can see the matrix of kinship coefficients,
using eqn(3.14), between all pairs of samples. You can already see a
lot about population structure in this matrix. Note how the red and
yellow samples, thought to be derived from the Eastern route around
the Himalayas, have higher kinship with each other, and blue and

the (majority) of the green samples, from the Western route, form a
similarly close group in terms of their higher kinship.

Figure 3.9: The matrix of kinship
coefficients calcuated for the 95
samples of greenish warblers. Each
cell in the matrix gives the pairwise
kinship coefficient calculated for

a particular pair. Hotter colours
indicating higher kinship. The x

and y labels of individuals are the
population labels from Figure 3.7, and
coloured by subspecies label as in that
figure. The rows and columns have
been organized to cluster individuals
with high kinship. Code here.

We can then perform PCA on this kinship matrix to identify the
major axes of variation in the dataset. Figure 3.10 shows the sam-
ples plotted on the first two PCs. The two major routes of expansion
clearly occupy different parts of PC space. The first principal com-
ponent distinguishes populations running North to South along the
western route of expansion, while the second principal component
distinguishes among populations running North to South along the
Eastern route of expansion. Thus genetic data supports the hypoth-
esis that the greenish warblers speciated as they moved around the
Himalayan plateau. However, as noted by ALCAIDE et al. (2014), it
also suggests additional complications to the traditional view of these

warblers as an unbroken ring species, a case of speciation by continu-
ous geographic isolation. The Ludlowi subspecies shows a significant
genetic break, with the southern most MN samples clustering with the
Trochiloides subspecies, in both the PCA and kinship matrix (Figures
3.10 and 3.9), despite being much more geographically close to the
other Ludlowi samples. This suggests that genetic isolation is not just
a result of geographic distance, and other biogeographic barriers must


https://github.com/cooplab/popgen-notes/blob/master/Rcode/warblerdata/warbler_ind_PCA.R
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be considered in the case of this broken ring species.

Finally, while PCA is a wonderful tool for visualizing genetic data,
care must be taken in its interpretation. The U-like shape in the case
of the greenish warbler PC might be consistent with some low level
of gene flow between the red and the blue populations, pulling them
genetically closer together and helping to form a genetic ring as well
as a geographic ring. However, U-like shapes are expected to appear in
PCAs even if our populations are just arrayed along a line, and more
complex geometric arrangements of populations in PC space can result
under simple geographic models (NOVEMBRE and STEPHENS,

2008). Inferring the geographical and population-genetic history of
species requires the application of a range of tools; see ALCAIDE
et al. (2014) and BRADBURD et al. (2016) for more discussion of the

greenish warblers.

Figure 3.10: The 95 greenish warbler
samples plotted on their locations on
the first two principal components.
The labels of individuals are the
population labels from Figure 3.7, and
coloured by subspecies label as in that
figure. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/warblerdata/warbler_ind_PCA.R

3.0.5 Correlations between loci, linkage disequilibrium, and recom-

bination

Up to now we have been interested in correlations between alleles
at the same locus, e.g. correlations within individuals (inbreeding)
or between individuals (relatedness). We have seen how relatedness
between parents affects the extent to which their offspring is inbred.
We now turn to correlations between alleles at different loci.

Recombination To understand correlations between loci we need

to understand recombination a bit more carefully. Let us consider

a heterozygous individual, containing AB and ab haplotypes. If no
recombination occurs between our two loci in this individual, then
these two haplotypes will be transmitted intact to the next genera-
tion. While if a recombination (i.e. an odd number of crossing over
events) occurs between the two parental haplotypes, then 1/2 the time
the child receives an Ab haplotype and 1/2 the time the child receives
an aB haplotype. See Figure 3.11. Effectively, recombination breaks
up the association between loci. For linked markers we’ll define the
recombination fraction (x) to be the probability of an odd number of
crossing over events between our loci in a single meiosis. The recom-
bination fraction between a pair of loci can range from 0 to /2, with
¢ = 1/2 corresponding markers far enough apart on a chromosome
that many recombination events occur between them (loci on different
automosomes also have a ¢ = 1/2). In practice we’ll often be interested
in relatively short regions such that recombination is relatively rare,
and so we might think that ¢ = cppLl < %, where cpp is the average
recombination rate (in Morgans) per base pair (typically ~ 1078 ) and
L is the number of base pairs separating our two loci.

Linkage disequilibrium The (horrible) phrase linkage disequilibrium
(LD) refers to the statistical non-independence (i.e. a correlation)

of alleles in a population at different loci (LEWONTIN and Ko-
JIMA, 1960; SLATKIN, 2008). It’s a fantastically useful concept; LD is

key to our understanding of diverse topics, from sexual selection and
speciation to the limits of genome-wide association studies.

Our two biallelic loci, which segregate alleles A/a and B/b, have
allele frequencies of p4 and pp respectively. The frequency of the two
locus haplotype AB is pap, and likewise for our other three combi-
nations. If our loci were statistically independent then pap = paps,
otherwise pap # papp We can define a covariance between the A and
B alleles at our two loci’ as

Dygp =paB —paAPB (3.15)
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Figure 3.11: A cartoon of the possible
outcomes of meiosis. The blue and red
lines are two copies of a chromosome
in an individual who is heterozygote
for a AB and an ab haplotype. The
dotted lines show a possible crossover
between the two chromosomes. The
four possible outcomes of meiosis

are show below, the probability of
each is given to the right (assuming a
recombination fraction of ¢ between
the two loci).

7 Here again we are making use of

a covariance of discrete random
variables, see Appendix eqn(A.41),
where the first variable is drawing
haplotype with an A at the first locus,
and the second is drawing a B allele
at the other locus.
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and likewise for our other combinations at our two loci (D ap, Dap, Dap)-
Gametes with two similar case alleles (e.g. A and B, or a and b)

are known as coupling gametes, and those with different case alleles

are known as repulsion gametes (e.g. a and B, or A and b). Then,

we can think of D as measuring the excess of coupling to repulsion
gametes. These D statistics are all closely related to each other as

Dap = —Dp and so on. Thus we only need to specify one D 4p to
know them all, so we’ll drop the subscript and just refer to D. Also a
handy result is that we can rewrite our haplotype frequency pap as

paB =papp + D. (3.16)

If D = 0 we'll say the two loci are in linkage equilibrium, while if

D > 0or D < 0 we’ll say that the loci are in linkage disequilibrium
(we’ll perhaps want to test whether D is statistically different from

0 before making this choice). Linkage disequilibrium is a horrible
phrase, as it risks muddling the concepts of genetic linkage and linkage
disequilibrium. Genetic linkage refers to the linkage of multiple loci
due to the fact that they are transmitted through meiosis together
(most often because the loci are on the same chromosome). Linkage
disequilibrium merely refers to the covariance between the alleles at
different loci; this may in part be due to the genetic linkage of these
loci but does not necessarily imply this (e.g. genetically unlinked loci
can be in LD due to population structure).

You genotype 2 bi-allelic loci (A & B) segregating in two mouse
subspecies (1 & 2) which mate randomly among themselves,
but have not historically interbreed since they speciated. The
frequencies of haplotypes in each population are:

Pop | paB  PaAb PaB  Pab
1 .02 A8 .08 .72
2 72 A8 .08 .02

A) How much LD is there within species? (i.e. estimate D)
B) If we mixed individuals from the two species together in
equal proportions, we could form a new population with papg
equal to the average frequency of pap across species 1 and 2.
What value would D take in this new population before any
mating has had the chance to occur?

Our linkage disequilibrium statistic D depends strongly on the al-
lele frequencies of the two loci involved. One common way to partially
remove this dependence, and make it more comparable across loci,
is to divide D through by its maximum possible value given the fre-
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quency of the loci. This normalized statistic is called D’ and varies be-
tween +1 and —1. In Figure 3.12 there’s an example of LD across the
TAP2 region in human and chimp. Notice how physically close SNPs,
i.e. those close to the diagonal, have higher absolute values of D’ as
closely linked alleles are separated by recombination less often allowing
high levels of LD to accumulate. Over large physical distances, away
from the diagonal, there is lower D’. This is especially notable in hu-
mans as there is an intense, human-specific recombination hotspot in
this region, which is breaking down LD between opposite sides of this
region.

Another common statistic for summarizing LD is 2 which we write
as

2 _ D?
~ pa(1 —pa)ps(1—pp)

(3.17)

As D is a covariance, and pa(1 — p4) is the variance of an allele drawn
at random from locus A, 72 is the squared correlation coefficient.®
fraction.
Figure 3.14 shows 72 for pairs of SNPs at various physical distances
in two population samples of Mus musculus domesticus. Again LD
is highest between physically close markers as LD is being generated
faster than it can decay via recombination; more distant markers have
much lower LD as here recombination is winning out. Note the decay
of LD is much slower in the advanced-generation cross population than
in the natural wild-caught population. This persistence of LD across
megabases is due to the limited number of generations for recombina-
tion since the cross was created.

The generation of LD. Various population genetic forces can gen-
erate LD (SLATKIN, 2008). Selection can generate LD by favouring
particular combinations of alleles. Genetic drift will also generate LD,
not because particular combinations of alleles are favoured, but simply
because at random particular haplotypes can by chance drift up in
frequency. Mixing between divergent populations can also generate LD
(NEI and L1, 1973), as we saw in the mouse question above.
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Figure 3.12: LD across the TAP2 gene
region in a sample of Humans and
Chimps, from PTAK et al. (2004),
licensed under CC BY 4.0. The rows
and columns are consecutive SNPs;
with each cell giving the absolute

D' value between a pair of SNPs.
Note that these are different sets of
SNPs in the two species, as shared
polymorphisms are very rare.

8 See Appendix eqn(A.43) for the
definition of a correlation coefficient.

Figure 3.13: Mus musculus.

A history of British quadrupeds, including the
Cetacea. 1874. Bell T., Tomes, R. F.m Alston
E. R. Image from the Biodiversity Heritage
Library. Contributed by Cornell University
Library. No known copyright restrictions.


https://www.flickr.com/photos/internetarchivebookimages/20746324002/in/photolist-x4m4C7-v8ZA8q-x5EdgX-w8gFve-x57DCB-v8ZCQE-xBhkkq-vdFPLY-x2JeQJ-x5WJ8J-tG8BSM
https://www.flickr.com/photos/internetarchivebookimages/20746324002/in/photolist-x4m4C7-v8ZA8q-x5EdgX-w8gFve-x57DCB-v8ZCQE-xBhkkq-vdFPLY-x2JeQJ-x5WJ8J-tG8BSM
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The decay of LD due to recombination We will now examine what
happens to LD over the generations if, in a very large population (i.e.
no genetic drift and frequencies of our loci thus follow their expecta-
tions), we only allow recombination to occur. To do so, consider the
frequency of our AB haplotype in the next generation, p’y 5. We lose
a fraction ¢ of our AB haplotypes to recombination ripping our alleles
apart but gain a fraction cpapp per generation from other haplotypes
recombining together to form AB haplotypes. Thus in the next gener-
ation

Pap = (1 = c)pap + cpaps (3.18)

The last term above, in eqn3.18, is ¢(pap + pab)(PaB + Pap) simpli-
fied, which is the probability of recombination in the different diploid
genotypes that could generate a pap haplotype.

We can then write the change in the frequency of the p4p haplo-
type as

Apap =pap — paB = —pap + cpaps = —cD (3.19)

So recombination will cause a decrease in the frequency of pap
if there is an excess of AB haplotypes within the population (D >
0), and an increase if there is a deficit of AB haplotypes within the
population (D < 0). Our LD in the next generation is

D' = pyp — PaPp
= (paB + Apap) — (pa + Apa)(ps + Aps)
=paB + Apap — paPB
—(1-¢)D (3.20)

where we can cancel out Apa4 and App above because recombination
only changes haplotype, not allele, frequencies. So if the level of LD in
generation 0 is Dy, the level ¢ generations later (D) is

Dy =(1—-¢)'Dy (3.21)

Figure 3.14: The decay of LD for
autosomal SNPin Mus musculus
domesticus, as measured by r2, in

a wild-caught mouse population
from Arizona and a set of advanced-
generation crosses between inbred
lines of lab mice. Each dot gives the
r2 for a pair of SNPs a given physical
distance apart, for a total of ~ 3000
SNPs. The solid black line gives the
mean, the jagged red line the 95t
percentile, and the flat red line a
cutoff for significant LD. From LAU-
RIE et al. (2007), licensed under CC
BY 4.0.
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Figure 3.15: The decay of LD from
an initial value of Dy = 0.25 over
time (Generations) for a pair of loci a
recombination fraction ¢ apart. Code
here.
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Figure 3.16: The decay of LD from
an initial value of Dy = 0.25 due

to recombination over ¢ generations,
plotted across possible recombination
fractions (¢) between our pair of loci.
Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/LD/LD_decay.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/LD/LD_decay.R

Recombination is acting to decrease LD, and it does so geometrically
at a rate given by (1 — ¢) (WEINBERG, 1909; JENNINGS, 1917). If
¢ < 1 then we can approximate this by an exponential and say that

D, &~ Dge=¢t (3.22)

which follows from a Taylor series expansion, see Appendix eqn(A.4).

You find a hybrid population between the two mouse sub-
species described in the question above, which appears to be
comprised of equal proportions (50/50) of ancestry from the
two subspecies. You estimate LD between the two markers to
be D =
that the two loci are separated by a recombination fraction

0.0723. On the basis of previous work you estimate

of 0.1. Assuming that this hybrid population is large and was
formed by a single mixture event, can you estimate how long
ago this population formed?

A particularly striking example of the decay of LD generated by the
mixing of populations is offered by the LD created by the interbreed-
ing between humans and Neanderthals (SANKARARAMAN et al.,
2012). Neanderthals and modern humans diverged from each other

likely over half a million years ago, allowing time for allele frequency
differences to accumulate between the Neanderthal and modern hu-
man populations. The two populations spread back into secondary
contact when humans moved out of Africa over the past hundred
thousand years or so. One of the most exciting findings from the se-
quencing of the Neanderthal genome was that modern-day people with
Eurasian ancestry carry a few percent of their genome derived from
the Neanderthal genome, via interbreeding during this secondary con-
tact (GREEN et al., 2010). To date the timing of this interbreeding,
SANKARARAMAN et al. (2012) looked at the LD in modern humans
between pairs of alleles found to be derived from the Neanderthal

genome (and nearly absent from African populations). In Figure 3.18
we show the average LD between these loci as a function of the ge-
netic distance (¢) between them, from the work of SANKARARAMAN
et al..

Assuming a recombination rate r, we can fit the exponential decay
of LD predicted by equ(3.22) to the data points in this figure; the fit is
shown as a red line. Doing this we estimate ¢ = 1200 generations, or
about 35 thousand years (using a human generation time of 29 years).
Thus the LD in modern Eurasians, between alleles derived from the
interbreeding with Neanderthals, represents over thirty thousand years

of recombination slowly breaking down these old associations. °
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Figure 3.17: The earliest discovered
fossil of a Neanderthal, fragments of a
skull found in a cave in the Neander

Valley in Germany.

Man’s place in nature. 1890. Huxley, T. H.
Image from the Internet Archive. Contributed
by The Library of Congress. No known
copyright restrictions.

9 The calculation done by
SANKARARAMAN et al. (2012) is
actually a bit more involved as they
account for inhomogeneity in recom-
bination rates and arrive at a date of
47,334 — 63,146 years.



https://archive.org/stream/mansplaceinnatur02huxl/mansplaceinnatur02huxl#page/154/mode/1up
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Figure 3.18: The LD between
putative-Neanderthal alleles in a
modern European population (the
CEU sample from the 1000 Genomes
Project). Each point represents the

average D statistic between a pair
of alleles at loci at a given genetic
distance apart (as given on the x-axis
and measured in centiMorgans (cM)).

Neanderthal LD

The putative Neanderthal alleles are
alleles where the Neanderthal genome

has a derived allele that is at very low
frequency in a modern-human West
African population sample (thought
to have little admixture from Nean-
derthals). The red line is the fit of

an exponential decay of LD, using
non-linear least squared (nls in R).

0.0 0.2 0.4 0.6 0.8 1.0
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Chapter 3 summary.

¢ Individuals often mate non-randomly, e.g. by geographical
location, this generates population genetic structure that
can be thought of as a form of inbreeding. This inbreeding
at a population level leads to a reduction in heterozygosity
within sub-populations as compared to the total population
(if allele frequencies differ across populations).

o Wright’s F' statistics can be used to measure the extent of
population structure, describing the reduction in heterozy-
gosity at various scales, for example the individual compared
to the sub-population (Frg) or the sub-population com-
pared to the total population (Fsr). We can calculate these
statistics either genome-wide or at individual loci.

e These F statistics can be understood as expressing a cor-
relation between alleles drawn from the same level of pop-
ulation structure, or the proportion of genetic variance
explained by population structure.

e Other ways to visualize population structure include
STRUCTURE-like approaches, which are based on assigning
individuals to populations based on the likelihood of their
genotype given allele frequencies (assignment methods) and
learning the assignment of individuals to discrete popula-
tions. Another common approach relies on identifying major
axes of variation in relatedness via Principal components

analysis.

« We'll often be interested in covariances and correlations
among alleles at different loci, linkage disequilibrium (LD).

o Covariance between loci (LD) can arise between loci for a
variety of reasons, notably population structure and admix-
ture as described in the chapter.

e The decay of LD due recombination can be modelled and
potentially used to date when LD was generated (e.g. via

admixture).




The loss of heterozygosity due to inbreeding can be partitioned
across F statistics at multiple levels. For example we can par-
tition the total inbreeding coefficient of a individuals (Fyr)
compared to a population between Frg and Fg7. For the fol-
lowing example scenarios, do you expect Frg to be larger or
smaller than Fgr? Explain your answer.

A) Charles II, where the subpopulation is Spain and the total
population is Europeans.

B) Subpopulations of plants living on a moutainside, where
pollen disperses long distances via wind, butindividuals self-
pollinate about 50% of the time,

C) Fish that live in lakes with very few accessible waterways
between lakes, but where the fish swim freely within lakes.
Each lake is a subpopulation and the entire lake basin is the
total population.

In a species of beetle, the colour and shape of the wings are

controlled by two distinct polymorphisms (with alleles big/s-
mall and red/yellow respectively). In a museum collection you
estimate the frequency of the four haplotypes to be:

big/red big/yellow small/red small/yellow
0.69 0.00 0.09 0.22

This collection is from 60 years ago. In present day populations
you estimate the frequencies of the haplotypes to be:

0.5452 0.1448 0.2348 0.0752

A) Assuming one generation per year, what is the recombina-~
tion fraction between these loci?

B) Qualitatively, how would your answer change if you deter-
mined that crossing over only occurred in females and not in
males?
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Genetic Drift and Neutral Diversity.

RANDOMNESS IS INHERENT TO EVOLUTION, from the lucky

birds blown off course to colonize some new oceanic island, to which
mutations arise first in the HIV strain infecting an individual taking
anti-retroviral drugs. One major source of stochasticity in evolution-

ary biology is genetic drift. Genetic drift occurs because more or less

copies of an allele by chance can be transmitted to the next generation

(WRIGHT, @)1 This can occur because, by chance, the individu-
als carrying a particular allele can leave more or less offspring in the
next generation. In a sexual population, genetic drift also occurs be-
cause Mendelian transmission means that only one of the two alleles
in an individual, chosen at random at a locus, is transmitted to the
offspring.

Genetic drift can play a role in the dynamics of all alleles in all
populations, but it will play the biggest role for neutral alleles. A
neutral polymorphism occurs when the segregating alleles at a poly-
morphic site have no discernible differences in their effect on fitness.
We'll make clear what we mean by ”discernible” later, but for the
moment think of this as "no effect” on fitness.

The neutral theory of molecular evolution. The role of genetic drift
in molecular evolution has been hotly debated since the 60s when the
Neutral theory of molecular evolution was proposed (see OHTA and
GILLESPIE, 1996, for a history)2. The central premise of Neutral

theory is that patterns of molecular polymorphism within species and

substitution between species can be well understood by supposing that

the vast majority of these molecular polymorphisms and substitutions
were neutral alleles, whose dynamics were just subject to the vagaries

of genetic drift and mutation. Early proponents of this view suggested

that the vast majority of new mutations are either neutral or highly
deleterious (e.g. mutations that disrupt important protein functions).
This latter class of mutations are too deleterious to contribute much

!'FISHER (1923) also discusses mod-
els related to genetic drift, but
WRIGHT’s treatment is more exten-
sive and he uses the name ‘drift’. Both
WRIGHT and FISHER credit earlier
authors (GULICK, 1873; HAGEDOORN
and HAGEDOORN, 1921) with the in-
tuition behind the concept of genetic
drift.

2KIMURA, M., 1968 Evolutionary
rate at the molecular level. Na-
ture 217(5129): 624-626; KING,

J. L. and T. H. JUKES, 1969
Non-darwinian evolution. Sci-

ence 164(3881): 788-798; and
KiMURA, M., 1983 The neutral
theory of molecular evolution. Cam-
bridge University Press
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to common polymorphisms or substitutions between species, because
they are quickly weeded out of the population by selection.

Neutral theory can sound strange given that much of the time our
first brush with evolution often focuses on adaptation and phenotypic
evolution. However, proponents of this world-view didn’t deny the
existence of advantageous mutations, they simply thought that bene-
ficial mutations are rare enough that their contribution to the bulk of
polymorphism or divergence can be largely ignored. They also often
thought that much of phenotypic evolution may well be adaptive, but
again the loci responsible for these phenotypes are a small fraction of
all the molecular change that occur. The neutral theory of molecular
evolution was originally proposed to explain protein polymorphism.
However, we can apply it more broadly to think about neutral evo-
lution genome-wide. With that in mind, what types of molecular
changes could be neutral? Perhaps:

1. Changes in non-coding DNA that don’t disrupt regulatory se-
quences. For example, in the human genome only about 2% of the
genome codes for proteins. The rest is mostly made up of old trans-
posable element and retrovirus insertions, repeats, pseudo-genes,
and general genomic clutter. Current estimates suggest that, even
counting conserved, functional, non-coding regions, less than 10%
of our genome is subject to evolutionary constraint (RANDS et al.,
2014).

2. Synonymous changes in coding regions, i.e. those that don’t change
the amino-acid encoded by a codon.

3. Non-synonymous changes that don’t have a strong effect on the
functional properties of the amino acid encoded, e.g. changes that
don’t change the size, charge, or hydrophobic properties of the

amino acid too much.

4. An amino-acid change with phenotypic consequences, but little
relevance to fitness, e.g. a mutation that causes your ears to be a
slightly different shape, or that prevents an organism from living
past 50 in a species where most individuals reproduce and die by
their 20s.

There are counter examples to all of these ideas, e.g. synonymous
changes can affect the translation speed and accuracy of proteins and
so are subject to selection. However, the list above hopefully convinces
you that the general thinking that some portion of molecular change
may not be subject to selection isn’t as daft as it may have initially
sounded.

Various features of molecular polymorphism and divergence have
been viewed as consistent with the neutral theory of molecular evo-



lution. In this chapter we’ll focus on the prediction of a high level of
molecular polymorphism in many species (see for example Figure 2.3).
In a subsequent chapter we’ll talk about the prediction of a molecular
clock. We’ll see that various aspects of the original neutral theory have
merit in describing some features and types of molecular change, but
we’ll also see that it is demonstrably wrong in some cases. We’ll also
see the primary utility of the neutral theory isn’t whether it is right
or wrong, but that it serves as a simple null model that can be tested
and in some cases rejected, and subsequently built on. The broader
debate currently in the field of molecular evolution is the balance of
neutral, adaptive, and deleterious changes that drive different types of
evolutionary change.

4.1 Loss of heterozygosity due to drift.

Genetic drift will, in the absence of new mutations, slowly purge our
population of neutral genetic diversity, as alleles slowly drift to high or
low frequencies and are lost or fixed over time.

Imagine a randomly mating population of a constant size N diploid
individuals, and that we are examining a locus segregating for two
alleles that are neutral with respect to each other. This population is
randomly mating with respect to the alleles at this locus. See Figures
4.1 and 4.2 to see how genetic drift proceeds, by tracking alleles within
a small population.

In generation ¢ our current level of heterozygosity is Hy, i.e. the
probability that two randomly sampled alleles in generation t are
non-identical is H;. Assuming that the mutation rate is zero (or van-
ishingly small), what is our level of heterozygosity in generation ¢ + 17
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In the next generation (t+ 1) we are looking at the alleles in the off-
spring of generation t. If we randomly sample two alleles in generation
t + 1 which had different parental alleles in generation ¢, that is just
like drawing two random alleles from generation ¢. So the probability
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Figure 4.1: Loss of heterozygosity
over time, in the absence of new
mutations. A diploid population of 5
individuals over the generations, with
lines showing transmission. In the
first generation every individual is a
heterozygote. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R
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that these two alleles in generation t 4+ 1, that have different parental
alleles in generation t, are non-identical is H;.

Conversely, if the two alleles in our pair had the same parental
allele in the proceeding generation (i.e. the alleles are identical by
descent one generation back) then these two alleles must be identical
(as we are not allowing for any mutation).

In a diploid population of size N individuals there are 2N alleles.
The probability that our two alleles have the same parental allele in
the proceeding generation is 1/(2n) and the probability that they have
different parental alleles is is 1 — 1/(2n). So by the above argument, the
expected heterozygosity in generation t 4 1 is

1 1
Hiyy=—x0 1-— | H, 4.1
1= 5N =+ ( 5 N) t (4.1)
Thus, if the heterozygosity in generation 0 is Hy, our expected het-
erozygosity in generation ¢ is

1\

H=(1-—] H 4.2

= (1-55) Ho (1.2
i.e. the expected heterozygosity within our population is decay-

ing geometrically with each passing generation. If we assume that

1/(2N) < 1 then we can approximate this geometric decay by an expo-

nential decay (see Question 4.1 below), such that

H, = Hye™ /M (4.3)

i.e. heterozygosity decays exponentially at a rate 1/(2n).

In Figure 4.3 we show trajectories through time for 40 indepen-
dently simulated loci drifting in a population of 50 individuals. Each
population was started from a frequency of 30%. Some drift up and
some drift down, eventually being lost or fixed from the population,
but, on average across simulations, the allele frequency doesn’t change.

Figure 4.2: Loss of heterozygosity
over time, in the absence of new
mutations. A diploid population of 5
individuals. In the first generation I
colour every allele a different colour so
we can track their descendants. Code
here.

By a similar argument, in a haploid
population the expected proportion of
pairs of differing alleles decays as:

1\¢ .
H =(1——) Hy= Hye 7™
¢ ( 2N) 0 o¢
(4.4)


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R

We also track heterozygosity, you can see that heterozygosity some-
times goes up, and sometimes goes down, but on average we are losing
heterozygosity, and this rate of loss is well predicted by eqn. (4.2).
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You are in charge of maintaining a population of delta smelt in
the Sacramento River delta. Using a large set of microsatellites
you estimate that the mean level of heterozygosity in this pop-
ulation is 0.005. You set yourself a goal of maintaining a level
of heterozygosity of at least 0.0049 for the next two hundred
years. Assuming that the smelt have a generation time of 3
years, and that only genetic drift affects these loci, what is the
smallest fully outbreeding population that you would need to
maintain to meet this goal?

Note how this picture of decreasing heterozygosity stands in con-
trast to the consistency of Hardy-Weinberg equilibrium from the pre-
vious chapter. However, our Hardy-Weinberg proportions still hold
in forming each new generation. As the offspring genotypes in the
next generation (¢ + 1) represent a random draw from the previous
generation (t), if the parental frequency is p, we expect a proportion
2p+(1 — p¢) of our offspring to be heterozygotes (and HW proportions
for our homozygotes). However, because population size is finite, the
observed genotype frequencies in the offspring will (likely) not match
exactly with our expectations. As our genotype frequencies likely
change slightly due to sampling, biologically this reflects random vari-
ation in family size and Mendelian segregation, the allele frequency
will changed. Therefore, while each generation represents a sample
from Hardy-Weinberg proportions based on the generation before, our
genotype proportions are not at an equilibrium (an unchanging state)
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Figure 4.3: Change in allele frequency
and loss of heterozygosity over time
for 40 replicates. Simulations of
genetic drift in a diploid population of
50 individuals, in the absence of new
mutations. We start 40 independent,
biallelic loci each with an initial

allele at 30% frequency. The left
panel shows the allele frequency over
time and the right panel shows the
heterozygosity over time, with the
mean decay matching eqn. (4.2).
Code here.

Figure 4.4: Pond smelt (Hypomesus

olidus), a close relative of delta smelt.
Bulletin of the United States Fish Commission.
1906. Image from the Biodiversity Heritage
Library. Contributed by Smithsonian Libraries.
Not in copyright.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Genetic_drift/WF_loss_of_het.R
https://archive.org/stream/bulletinofunited261906unit/#page/270/mode/1up
https://archive.org/stream/bulletinofunited261906unit/#page/270/mode/1up
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as the underlying allele frequency changes over the generations. We’ll
develop some mathematical models for these allele frequency changes
later on. For now, we’ll simply note that under our simple model of
drift (formally the Wright-Fisher model), our allele count in the ¢ + 1"
generation represents a binomial sample (of size 2N) from the popu-
lation frequency p; in the previous generation. If you’ve read to here,
please email Prof Coop a picture of JBS Haldane in a striped suit with
the title "I'm reading the chapter 3 notes”. (It’s well worth googling
JBS Haldane and to read more about his life; he’s a true character and
one of the last great polymaths. )
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To see how a decline in population size can affect levels of het-
erozygosity, let’s consider the case of black-footed ferrets (Mustela
nigripes). The black-footed ferret population has declined dramatically
through the twentieth century due to destruction of their habitat and
sylvatic plague. In 1979, when the last known black-footed ferret died
in captivity, they were thought to be extinct. In 1981, a very small
wild population was rediscovered (40 individuals), but in 1985 this
population suffered a number of disease outbreaks.

At that point of the 18 remaining wild individuals were brought
into captivity, 7 of which reproduced. Thanks to intense captive
breeding efforts and conservation work, a wild population of over 300
individuals has been established since. However, because all of these
individuals are descended from those 7 individuals who survived the

Figure 4.5: Loss of heterozygosity
in the Black-footed Ferrets in their
declining population. Numbers in
brackets give estimated number of
individuals alive at that time. Data
from WISELY et al. (2002). Code
here.

Figure 4.6: The black-footed ferret
(M. nigripes).

Wild animals of North America, The National
geographical society, 1918. Image from the
Biodiversity Heritage Library. Contributed by
American Museum of Natural History Library.
Not in copyright.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/black_footed_ferrets/black-footed-ferrets_He.R
https://www.biodiversitylibrary.org/page/9727900#page/179/mode/1up
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bottleneck, diversity levels remain low. WISELY et al. measured het-
erozygosity at a number of microsatellites in individuals from museum
collections, showing the sharp drop in diversity as population sizes
crashed (see Figure 4.5).

In mathematical population genetics, a commonly used approx-
imation is (1 — ) = e~ for << 1 (formally, this follows from
the Taylor series expansion of exp(—zx), ignoring second order
and higher terms of z, see Appendix eqn(A.4)). This approxi-
mation is especially useful for approximating a geometric decay

process by an exponential decay process, e.g. (1 — z)! ~ e %
Using your calculator, or R, check how well this expression

approximates the exact expression for two values of z, x = 0.1,
and 0.01, across two different values of t, ¢ = 5andt = 50.

Briefly comment on your results.

4.1.1 Levels of diversity maintained by a balance between mutation
and drift

Next we’re going to consider the amount of neutral polymorphism that
can be maintained in a population as a balance between genetic drift
removing variation and mutation introducing new neutral variation,
see Figure 4.7 for an example. Note in our example, how no single
allele is maintained at a stable equilibrium, rather an equilibrium level
of polymorphism is maintained by a constantly shifting set of alleles.

Figure 4.7: Mutation-drift balance. A
diploid population of 5 individuals. In
‘\‘.«‘ ,) the first generation everyone has the

" 0 W same allele (black). Each generation
"dh% /“ J\\d\vv ' A A the transmitted allele can mutate
/‘ ( ' ' ‘ and we generate a new colour. In the

bottom plot, I trace the frequency of
Past Present
Generations alleles in our population over time.

The mutation rate we use is very
high, simply to maintain diversity in
this small population. Code here.

i

00 02 04 06 08 1.0

The neutral mutation rate. We'll first want to consider the rate at
which neutral mutations arise in the population.Thinking back to our


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R
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discussion of the neutral theory of molecular evolution, let’s suppose
that there are only two classes of mutation that can arise in our ge-
nomic region of interest: neutral mutations and highly deleterious mu-
tations. The total mutation rate at our locus is p per generation, i.e.
per transmission from parent to child. A fraction C of our mutations
are new alleles that are highly deleterious and so quickly removed
from the population. We’ll call this C' parameter the constraint, and it
will differ according to the genomic region we consider. The remaining
fraction (1—C) are our neutral mutations, such that our neutral muta-
tion rate is (1 — C')u. This is the per generation rate. In the rest of the
chapter for simplicity we’ll assume that C' = 0 and use a neutral mu-
tation rate of p. However, we’ll return to this discussion of constaint

when we discuss molecular divergence in a subsequent chapter.

It’s worth taking a minute to get familiar with both how rare,
and how common, mutation is. The per base pair mutation
rate in humans is around 1.5 x 1078 per generation. That
means, on average, we have to monitor a site for ~ 66.6 million
transmissions from parent to child to see a mutation. Yet pop-
ulations and genomes are big places, so mutations are common
at these levels.

A) Your autosomal genome is ~ 3 billion base pairs long (3

x 10%). You have two copies, the one you received from your
mum and one from your dad. What is the average (i.e. the ex-
pected) number of mutations that occurred in the transmission
from your mum and your dad to you?

B) The current human population size is ~7 billion individuals.
How many times, at the level of the entire human population,
is a single base-pair mutated in the transmission from one
generation to the next?

Levels of heterozygosity maintained as a balance between mutation and
drift. Looking backwards in time from one generation to the previ-
ous generation, we are going to say that two alleles which have the
same parental allele (i.e. find their common ancestor) in the preced-
ing generation have coalesced, and refer to this event as a coalescent
event. If our pairs of alleles are to be different from each other in the
present day, a mutation must have occured more recently on one or
other lineage before they found a common ancestor.

The probability that our pair of randomly sampled alleles have
coalesced in the preceding generation is 1/(2n), and the probability
that our pair of alleles fail to coalesce is 1 — 1/(2N).
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The probability that a mutation changes the identity of the trans-
mitted allele is o per generation. So the probability of no mutation
occurring is (1 — p). We'll assume that when a mutation occurs it cre-
ates some new allelic type which is not present in the population. This
assumption (commonly called the infinitely-many-alleles model) makes
the math slightly cleaner, and also is not too bad an assumption bi-
ologically. See Figure 4.7 for a depiction of mutation-drift balance in
this model over the generations.

This model lets us calculate when our two alleles last shared a
common ancestor and whether these alleles are identical as a result of
failing to mutate since this shared ancestor. For example, we can work
out the probability that our two randomly sampled alleles coalesce 2
generations in the past (i.e. they fail to coalesce in generation 1 and
then coalesce in generation 2), and that they are identical as

1 1
- —— ) == (1 —p)? 4.5
(1- 35 s - (15)
Note the power of 4 is because our two alleles have to have failed to
mutate through 2 meioses each.
More generally, the probability that our alleles coalesce in gener-

ation ¢ + 1 (counting backwards in time) and are identical due to no
mutation to either allele in the subsequent generations is

1 1\ 2(t+1
P(coal. in t+1 & tations) = — (1 — — | (1 —p)**) (4.6
(coal. in t+ no mutations) 5N ( 2N) (1—p) (4.6)
To make this slightly easier on ourselves let’s further assume that
t ~t+ 1 and so rewrite this as:

1 1\’
P(coal. in t+1 & no mutations) ~ IN (1 - 2N> (1—pw)?  (47)

This gives us the approximate probability that two alleles will
coalesce in the (¢ + 1) generation. In general, we may not know
when two alleles may coalesce: they could coalesce in generation
t = 1,t = 2,..., and so on. Thus, to calculate the probability that
two alleles coalesce in any generation before mutating, we can write:

P(coal. in any generation & no mutations) ~P(coal. in ¢ = 1 & no mutations) +

P(coal. in t = 2 & no mutations) + . ..

o0
= Z P(coal. in ¢ generations & no mutation)
t=1

(4.8)

an example of using the Law of Total Probability, see Appendix eqn
(A.12), combined with the fact that coalescing in a particular genera-
tion is mutually exclusive with coalescing in a different generation.
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While we could calculate a value for this sum given N and pu, it’s
difficult to get a sense of what’s going on with such a complicated
expression. Here, we turn to a common approximation in popula-
tion genetics (and all applied mathematics), where we assume that
/2Ny < 1 and g < 1. This allows us to approximate the geometric
decay as an exponential decay (see Appendix eqn (A.2)). Then, the
probability two alleles coalesce in generation t + 1 and don’t mutate
can be written as:

1 1\’
P(coal. in t+1 & no mutations) ~ (1 - ) (1—p)?  (4.9)

2N N
~ 1 —t/(2N) ,—2ut
~ g e (4.10)
_ 1 euryeny
= 53¢ (4.11)

Then we can approximate the summation by an integral, giving us:

b /Oo o 12ut1/(2N)) gy 1/(2N) (4.12)
2N J, 1/(2N) + 2u

The equation above gives us the probability that our two alleles
coalesce at some point in time, and do not mutate before reaching
their common ancestor. Equivalently, this can be thought of as the
probability our two alleles coalesce before mutating, i.e. that they are
homozygous.

Then, the complementary probability that our pair of alleles are
non-identical (or heterozygous) is simply one minus this. The follow-
ing equation gives the equilibrium heterozygosity in a population at
equilibrium between mutation and drift:

_ 21 _ 4Np
~ 1/(2N)+2u  1+4Np

The compound parameter 4N i, the population-scaled mutation rate,

H

(4.13)

will come up a number of times so we’ll give it its own name:
0=4Npu (4.14)

What’s the intuition of our eqn(4.13), well the probability that any

event happens in a particular generation is P(mutation or coalescence) ~

1/(2N) + 2, so conditional 3 on an event happening the probability
that it is a mutation is P(mutation | mutation or coalescence) =
218/ (1) 2y +2).

So all else being equal, species with larger population sizes should
have proportionally higher levels of neutral polymorphism. Indeed,
populations of animals, e.g. birds, on small islands have lower levels
of diversity than closely related species on the mainland with larger
ranges. More generally, we do see higher levels of heterozygosity in

We can use a very similar argu-
ment for a haploid population and
replace § = 4Np with § = 2Np.
Haploids can’t be heterozygous, but
we interpret ‘heterozygosity’ as the
probability that two alleles paired at
random in our population differ from
each other.

This result was derived by KIMURA
and CROW (1964) and MALECOT
(1948) (see MALEcOT, 1969, for an
English translation, the lack of earlier
translation meant this result was

missed). Technically we’re assuming
that every new mutation creates a
new allele, the so-called "infinitely
many alleles” model, otherwise our
pair of sequences could be identical
due to repeat or back mutation.

See this GENETICS blog post and
EWENS (2016) for a nice discussion of
the history.

3 See Math Appendix eqn(A.9) for
more background on conditional
probabilities.


http://genestogenomes.org/kimura-crow-infinite-alleles/

larger census population sizes across animals Figure 4.8. However,
while census population sizes vary over many orders of magnitude,
levels of diversity vary much less than that. So, if levels of diversity
in natural populations represent a balance between genetic drift and
mutation, levels of genetic drift in large populations must be a lot
faster than their census population size suggests. In the next section
we’ll talk about some possible reasons why.
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4.1.2  The effective population size

In practice, populations rarely conform to our assumptions of being
constant in size with low variance in reproductive success. Real popu-
lations experience dramatic fluctuations in size, and there is often high
variance in reproductive success. Thus rates of drift in natural pop-
ulations are often a lot higher than the census population size would
imply. See Figure 4.9 for a depiction of a repeatedly bottlenecked
population losing diversity at a fast rate.
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Figure 4.8: Average basepair heterozy-
gosity plotted against the log of range
size for endemic island and main-
land bird populations (LEROY et al.,
2020). Average allozyme heterozygos-
ity plotted against the log of census
population size (N) for animals. Data
from SOULE (1976); FRANKHAM
(1996) Code here.

The effective population size (Ne)

is the population size that would
result in the same rate of drift in

an idealized population of constant
size (following our modeling assump-
tions) as that observed in our true

?‘?gﬁl}gtiﬁ} TLoss of heterozygosity
over time in a bottlenecking popu-
lation. A diploid population of 10
individuals, that bottlenecks down to
three individuals repeatedly. In the
first generation, I colour every allele
a different colour so we can track
their descendants. There are no new
mutations. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/Allozyme_pop_size/allozyme_pop_size.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R
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To cope with this discrepancy, population geneticists often invoke
the concept of an effective population size (N.). In many situations
(but not all), departures from model assumptions can be captured by
substituting N, for V.

If population sizes vary rapidly in size, we can (if certain conditions
are met) replace our population size by the harmonic mean population
size. Consider a diploid population of variable size, whose size is N; ¢
generations into the past. The probability our pairs of alleles have not
coalesced by generation ¢ is given by

f[ <1 - 2]1\@) (4.15)

=1

T 2N
N; is constant. Under this model, the rate of loss of heterozygosity in

Note that this simply collapses to our original expression (1 — 3 )t if
this population is equivalent to a population of effective size
1

Ne=-o— . (4.16)
e T
P i

This is the harmonic mean of the varying population size.

4

Thus our effective population size, the size of an idealized constant
population which matches the rate of genetic drift, is the harmonic
mean true population size over time. The harmonic mean is very
strongly affected by small values, such that if our population size is
one million 99% of the time but drops to 1000 every hundred or so
generations, N, will be much closer to 1000 than a million.
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Variance in reproductive success will also affect our effective pop-
ulation size. Even if our population has a large constant size N indi-
viduals, if only small proportion of them get to reproduce, then the
rate of drift will reflect this much smaller number of reproducing indi-
viduals. See Figure 4.10 for a depiction of the higher rate of drift in a
population where there is high variance in reproductive success.

To see one example of this, consider the case where Ng of females
get to reproduce and Nj,; males get reproduce. While every individual

4 To see this, note that if 1/(V;) is
small, then we can approximate (4.15)
using the exponential approximation:

o (~3) =0 (-7
exp|——— ) =exp | — .
i=1 2N =1 2N
(4.17)
‘When we put the product inside
the exponent, it becomes a sum.
We can also write the probability of
not coalescing by generation ¢ in a
population of constant size (N¢) as an
exponential, so that it takes the same
form as the expression above on the
right. Comparing the exponent in the
two cases, we see

t

= 1 ; 4.1
N ;/(21\@) (4.18)

t

So that if we want a constant effective
population size (Ne) that has the
same rate of loss of heterozygosity as
our variable population, we need to
rearrange and solve this equation to
give (4.16).

Figure 4.10: High variance on repro-
ductive success increases the rate of
genetic drift. A diploid population

of 10 individuals, where the circled
individuals have much higher repro-
ductive success. In the first generation
I colour every allele a different colour
so we can track their descendants,
there are no new mutations. Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R

has a biological mother and father, not every individual gets to be a
parent. In practice, in many animal species far more females get to
reproduce than males, i.e. N); < Np, as a few males get many mating
opportunities and many males get no/few mating opportunities (see
JANICKE et al., 2016, for a broad analysis, and note that there a

certainly many exceptions to this general pattern). When our two
alleles pick an ancestor, 25% of the time our alleles were both in a
female ancestor, in which case they are IBD with probability 1/(2Np),
and 25% of the time they are both in a male ancestor, in which case
they coalesce with probability 1/(2Nys). The remaining 50% of the
time, our alleles trace back to two individuals of different sexes in the
prior generation and so cannot coalesce. Therefore, our probability of
coalescence in the preceding generation is

G e

i.e. the rate of coalescence is the harmonic mean of the two sexes’
population sizes, equating this to ﬁ we find

 ANpNys
" Np+ Ny

Thus if reproductive success is very skewed in one sex (e.g. Ny <

(4.20)

N /2), our autosomal effective population size will be much reduced as
a result. For more on how different evolutionary forces affect the rate
of genetic drift, and their impact on the effective population size, see
CHARLESWORTH (2009).

Question 4.

You are studying a population of 500 male and 500 female
Hamadryas baboons. Assume that all of the females but only
1/10 of the males get to mate. What is the effective population
size for the autosome?

Variance in male and female reproductive success can have very
different effects on chromosomes with differing modes of inheritance
such as the X chromosome, mitochondria, and Y chromosome. The
mitochondria (mtDNA) and Y chromosome are haploid and only
inherited through the females and males respectively, so they have a
haploid effective population sizes of N, and Ng. To see the impact of
differential variance in male and female reproductive success, let’s look
at how levels of genetic diversity over thousands of years in domestic
horses.
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Figure 4.11: Male Hamadryas ba-
boons. Up to ten females live in a

harem with a single male.

Brehm’s Tierleben (Brehm’s animal life).
Brehm, A.E. 1893. Image from the Biodiversity
Heritage Library. Contributed by University of
Tllinois Urbana-Champaign. Not in copyright.


https://archive.org/stream/brehmstierlebena001breh/#page/181/mode/1up
https://archive.org/stream/brehmstierlebena001breh/#page/181/mode/1up
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LIBRADO et al. (2017) sequenced ancient DNA from 13 sacrificed
stallions from an 2300 year old Scythian burial mound in Kazakhstan.

The Scythian were a nomadic people whose Russian Steppe empire
stretched from the Black Sea to the borders of China. They were
among the first people to master horseback warfare with both men
and women riding armed with short bows.

By comparing these data to modern horses, LIBRADO et al. (2017)

found that levels of diversity had been substantially reduced on the
autosomes and greatly reduced on the Y chromosome. This constrasts
with the mtDNA where levels of diversity have decreased only slightly.
This pattern likely reflects the fact that much of modern horse breed-
ing relies on a breeding a small number of stallions to a large number
of mares, and so the effective population size of the Y chromosome has
been much smaller than the mtDNA leading to a much higher rate of
loss of diversity on the Y than on other chromosomes.

Using the data on the reduction in horse genetic diversity in
Figure 4.12:

A) Estimate the effective number of stallions and mares con-
tributing to the horse population using the mtDNA and Y
chromosome data. B) Predict what the reduction in diversity
over the 2300 years should be on the autosomes using these
numbers?

Assume a horse generation time of 8 years. Assume no new
mutations during this time interval.

Figure 4.12: Levels of genome-wide
diversity in Scythian horses from 2300
year old Scythian horses and Modern
horses (Nordic). The numbers next

to each column given the fraction of
diversity remaining in the present day,
Data from LIBRADO et al. (2017).
Code here..

Figure 4.13: A gold plaque showing
Scythian rider found in a burial
mound in eastern Crimera (c400-350
BC).

Photograph: V Tercbenin/State Hermitage

Museum Image from wikimedia contributed
by Inritter. This is a faithful photographic
reproduction of a two-dimensional, public
domain work of art..


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/Scythian_horses/Scythian_horses.r
https://commons.wikimedia.org/wiki/File:Szk%C3%ADta.jpg

One of the highest levels of genetic diversity is seen in the
diploid split-gill fungus, Schizophyllum commune. Populations
in the USA have a sequence-level heterozygosity of 0.13 per
synonymous base (BARANOVA et al., 2015). BARANOVA

et _al. sequenced parents and multiple offspring to estimate that

= 2 x 1078bp~! per generation. What is your estimate of the
effective population size of S. commune?

4.2 The Coalescent and patterns of neutral diversity

“Life can only be understood backwards; but it must be lived for-
wards” — Kierkegaard

Pairwise Coalescent time distribution and the number of pairwise
differences. Thinking back to our calculations we made about the
loss of neutral heterozygosity and equilibrium levels of diversity (in
Sections 4.1 and 4.1.1), you'll note that we could first specify which
generation a pair of sequences coalesce in, and then calculate some
properties of heterozygosity based on that. That’s because neutral
mutations do not affect the probability that an individual transmits
an allele, and so don’t affect the way in which we can trace ancestral
lineages back through the generations.

As such, it will often be helpful to consider the time to the common

ancestor of a pair of sequences (T3), and then think of the impact of
that time to coalescence on patterns of diversity. See Figure 4.15 for

an example of this.
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POPULATION AND
QUANTITATIVE
GENETICS 73

BT—60 7 Schizophyllum comm-
une N - )

1 ¥4 2. WTF
- GER =104m)

Figure 4.14: Split-gill fungus (Schizo-
phyllum commune).
KL= R AT X THIY & (Spore Flora of

the Yangtze River Delta and Adjacent Areas)
1989. LiFHAMYH Image from the Biodiversity
Heritage Library. Contributed by Institute

of Botany, Chinese Academy of Sciences. No
known copyright restrictions.

In discussing the coalescent we’ll

be making use of random variables,
e.g. number of generations back to
the common ancestor of a pair of
sequences is a random variable. We’ll
also use the expectation of random
variables, e.g. the average number

of generations back to the common
ancestor of a pair of sequences. Have
a look at sections A.2.1 and A.2.3.

Figure 4.15: A simple demonstration
of the coalescent process. The simu-
lation consists of a diploid population
of 10 individuals (20 alleles). In each
generation, each individual is equally
likely to be the parent of an offspring
(and the allele transmitted is indi-
cated by a light grey line). We track
a pair of alleles, chosen in the present
day, back 14 generations until they
find a common ancestor. Deeper in
time than 14 generations those two
alleles have the same ancestral lineage
and completely share their history,
e.g. the mutations that occur on that
lineage. Code here.


https://www.biodiversitylibrary.org/item/112321#page/142/mode/1up
https://www.biodiversitylibrary.org/item/112321#page/142/mode/1up
https://github.com/cooplab/popgen-notes/blob/master/Rcode/track_alleles.R
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generations and then coalesce in the t 4+ 1 generation back is

P(Ty =t+1) = % (1 - 2;{) (4.21)

For example, the probability that a pair of sequences coalesce three
generations back is the probability that they fail to coalesce in gen-
eration 1 and 2, which is (1 — 1/2n) x (1 — 1/2n), multipled by the
probability that they find a common ancestor, i.e. coalesce, in the
third generation, which happens with probability 1/2n.

From the form of eqn (4.21) we can see that the coalescent time

of our pair of alleles is a Geometrically distributed random variable,? 5 See Appendix eqn (A.30) and sur-
rounding text for more on the Geo-

where the probability of success is p = 1/2n. The waiting time for g BExL 10
metric distribution.

a pair of lineages to coalesce is like the number of tails thrown while
waiting for a head on a coin with the probability of a head is 1/2n,

i.e. if the population is large we might be waiting for a long time

for our pair to coalesce. We’ll denote this geometric distribution by
Ty ~ Geo(1/(2N)). The expected (i.e. the mean over many replicates)
coalescent time of a pair of alleles is then

AGTTT
E(Ty) = 2N (4.22) A

generations. This form to the expectation follows from the fact that
the mean of an geometric random variable is 1/p.

Conditional on a pair of alleles coalescing ¢ generations ago, there AGTGT
are 2t generations in which a mutation could occur. See Figure 4.16 AGGTT t
for an example. If the per generation mutation rate is p, then the
expected number of mutations between a pair of alleles coalescing
t generations ago is 2ty (the alleles have gone through a total of 2¢ ACTCT

meioses since they last shared a common ancestor).

So we can write the expected number of mutations (S3) separating
. ACTGT  AGGTT
two alleles drawn at random from the population as

o0
E(S2) = ZE(S2|T2 =t)P(Ix =1t) Figure 4.16: The ancestral lineages
t=0 of a pair of sequences coalese t gen-
0 erations in the past. There are 2t
= Z 2 Mt P(T2 = t) generations where mutations could
i—0 arise that would lead to differences
between our pair of sequences. Three
= ZME(TQ) mutations have occured in this time.
=dp N ( 4.23) changing the ancestral sequence

(AGTTT) to the sequences at the

. . . bottom of the picture.
this makes use of the law of total expectation (see Appendix eqn

(A.27)) to average which generation our pair of sequences coalesce

in. We’ll assume that mutation is rare enough that it never happens
at the same basepair twice, i.e. no multiple hits, such that we get to
see all of the mutation events that separate our pair of sequences. This
is assumption that repeat mutation is vanishingly rare at a basepair



is called the infinitely-many-sites assumption, which should hold if
Nupp < 1, where pupp is the mutation rate per basepair. Thus the
number of mutations between a pair of sites is the observed number

of differences between a pair of sequences. In the previous chapter we
denote the observed number of pairwise differences at putatively neu-
tral sites separating a pair of sequences as 7 (we usually average this
over a number of pairs of sequences for a region). Therefore, under our
simple, neutral, constant population-size model we expect

E(r) = 4Ny = 0 (4.24)

So we can get an empirical estimate of € from 7, let’s call this @r, by
setting é\ﬁ = 7, i.e. our observed level of pairwise genetic diversity. If
we have an independent estimate of y, then from setting 7 = @T =
4Ny we can furthermore obtain an estimate of the population size
N that is consistent with our levels of neutral polymorphism. If we
estimate the population size this way, we should call it the effective
coalescent population size (N.). It’s best to think about N, estimated
from neutral diversity as a long-term effective population size for
the species, but there are many caveats that come along with that
assumption. For example, past bottlenecks and population expansions
are all subsumed into a single number and so this estimated N, may
not be very representative of the population size at any time. That
said, it’s not a bad place to start when thinking about the rate of
genetic drift for neutral diversity in our population over long time-
periods. ©

Let’s take a moment to distinguish our expected heterozygosity
(eqn. 4.13) from our expected number of pairwise differences (7). Our
expected heterozygosity is the probability that two alleles at a locus,
sampled from a population at random, are different from each other. If
one or more mutations have occurred since a pair of alleles last shared
a common ancestor, then our sequences will be different from each
other. On the other hand, our m measure keeps track of the average
total number of differences between our loci. As such, 7 is often a
more useful measure, as it records the number of differences between
the sequences, not just whether they are different from each other
(however, for certain types of loci, e.g. microsatellites, heterozygosity
is often used as we cannot usually count up the minimum number of
mutations in a sensible way). In the case where our locus is a single
basepair, the two measures will usually be close to one another, as
H = 6 for small values of §. For example, comparing two sequences
at random in humans, 7 &~ 1/1000 per basepair, and the probability
that a specific base pair differs between two sequences is ~ 1/1000.
However, these two quantities start to differ from each other when
we consider regions with higher mutation rates. For example, if we
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6 Up to this point we’ve been describ-
ing only neutral processes, however,
selection can also alter levels of poly-
morphism. For example, if some
synonymous sites directly experience
selection, then even if we use 7 cal-
culated for synonymous changes we
may underestimate the coalescent
effective population size. As we’ll see
later in the notes, selection at linked
sites can also impact neutral diver-
sity. As such, if we can, we may want
to use genomic sites subject to the
weakest selective constraints, and also
far from gene-dense or otherwise very
constrained regions of the genome, to
estimate N from 7. But even then
caution is warranted.
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consider a 10kb region, our mutation rate will 10,000 times larger than
a single base pair. For this length of sequence the probability that two
randomly chosen haplotypes differ is quite different from the number
of mutational differences between them. (Try a mutation rate of 1078
per base and a population size of 10,000 in our calculations of E[r]
and H to see this.)

ROBINSON et al. (2016) found that the endangered Califor-
nian Channel Island fox on San Nicolas had very low levels of

diversity (7 = 0.000014bp ') compared to its close relative the
California mainland gray fox (0.0012bp™').

A) Assuming a mutation rate of 2 x 10~® per bp, what effective
population sizes do you estimate for these two populations?

B) Why is the effective population size of the Channel Island
fox so low? [Hint: quickly google Channel island foxes to read
up on their history, also to see how ridiculously cute they are.]

In your own words describe why the coalescent time of a pair of

lineages scales linearly with the (effective) population size.

More details on the pairwise coalescent and the randomness of muta-
tion. We found that our pairwise coalescent times followed a Geo-
metric distribution, eqn (4.21). However, that assumes discrete genera-
tions, and we’ll often was to think about populations that lack discrete
generations (i.e. individuals reproducing at random times with some
mean generation time). Using our exponential approximation, we can

see that is

L e
~ — 4.2
oN© (4.25)

and so think of a continuous random variable, i.e. we could say that
the coalescent time of a pair of sequences (T3) is approximately ex-
ponentially distributed with a rate 1/(2N), i.e. Ty ~ Exp (1/(2N)).
Formally we can do this by taking the limit of the discrete process
more carefully. See Appendix eqn (A.34) for more on exponential
random variables.

We’ve derived the expected number of differences between a pair of
sequences and talked about the variability of the coalescent time for
a pair of sequences. The mutation process is also very variable; even
if two sequences coalesce in the very distant past by chance, they may
still be identical in the present if there was no mutation during that

time.

Figure 4.17: Gray Fox, Urocyon

cinereoargentests.

Diseases and enemies of poultry. Pearson and
Warren. (1897) Image from the Biodiversity
Heritage Library. Contributed by University of
California Libraries. Not in copyright.


https://archive.org/stream/diseasesenemieso00pearrich/diseasesenemieso00pearrich#page/n663/mode/1up
https://archive.org/stream/diseasesenemieso00pearrich/diseasesenemieso00pearrich#page/n663/mode/1up

POPULATION AND
QUANTITATIVE
GENETICS 77

Conditional on the coalescent time ¢, the probability that our pair
of alleles are separated by S, mutations since they last shared a com-
mon ancestor is bionomially distributed

P(sala =)= (% )1 - (4.26)

i.e. mutations happen in j generations and do not happen in 2t — j
generations (with (2;) ways this combination of events can possibly
happen). See Appendix eqn (A.28) for discussion of the binomial
distribution. Assuming that p < 1 and that 2t — j = 2t, then we can
approximate the probability that we have Sy mutations as a Poisson
distribution: _
(2ut)l e= 21t
4!
i.e. a Poisson with mean 2ut. This is an example of taking the bi-

P(So| T = t) = (4.27)

nomial distribution to its Poisson distribution limit, see Appendix
eqn (A.32) for more details. We’ll not make much use of this result,
but it is very useful in thinking about how to simulate the process of

mutation.

4.8  The coalescent process of a sample of alleles.

Usually we are not just interested in pairs of alleles, or the average
pairwise diversity. Generally we are interested in the properties of di-
versity in samples of a number of alleles drawn from the population.
Instead of just following a pair of lineages back until they coalesce, we
can follow the history of a sample of alleles back through the popula-
tion.

Consider first sampling three alleles at random from the population.
The probability that all three alleles choose exactly the same ancestral
allele one generation back is 1/(2wv)2. If N is reasonably large, then this
is a very small probability. As such, it is very unlikely that our three
alleles coalesce all at once, and in a moment we’ll see that it is safe to
ignore such unlikely events.

The probability that a specific pair of alleles find a common ances-
tor in the preceding generation is still 1/(2n). There are three possible
pairs of alleles, so the probability that no pair finds a common ances-
tor in the preceding generation is

<1 - 2;\]>3 ~ <1 - 2?\7) (4.28)

In making this approximation we are multiplying out the right hand-
side and ignoring terms of 1/N? and higher (a Taylor approximation,
see Appendix eqn (A.2)). See Figure 4.18 for a random realization of
this process.
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O
Turea(=11 gens) . .

T,(=8 gens)

Generations

More generally, when we sample ¢ alleles there are (;) pairs,” i.e.
i(i — 1)/2 pairs. Thus, the probability that no pair of alleles in a
sample of size i coalesces in the preceding generation is

(2) i
(1 - (2;[)> ~[1- % (4.29)

while the probability any pair coalesces is ~ (é)/zN, again using eqn
(A2).

We can ignore the possibility that more than pairs of alleles (e.g.
tripletons) simultaneously coalesce at once as terms of 1/n? and higher
can be ignored as they are vanishingly rare. Obviously in reasonable

%
3

binations than there are pairs ((;)), but if ¢ < N then we are safe to

sample sizes there are many more triples ((3)) and higher order com-

ignore these terms.
When there are 7 alleles, the probability that we wait until the ¢t + 1
generation before any pair of alleles coalesces is

(2)

2N

t

P(]}:t—%l)*@ 1

=% (4.30)

Thus the waiting time to the first coalescent event while there are 4
lineages is a geometrically distributed random variable® with probabil-
ity of success p = (é)/zN, which we denote by

T; ~ Geo ((3)/2N) . (4.31)

Figure 4.18: A simple simulation

of the coalescent process for three
lineages. We track the ancestry of
three modern-day alleles, the first
pair (red and purple) coalesce four
generations back, after which there
are only two independent lineages

we are tracking. This pair then
coalesces twelve generations in the
past. Note that different random
realizations of this process will differ
from each other a lot. The Thyrc A is
T3 + To. The total time in the tree is
Tiot = 313 + 21> = 25 generations.
Code here.

" said as “i choose 2”

8 see Appendix eqn (A.30).


https://github.com/cooplab/popgen-notes/blob/master/Rcode/track_alleles.R

The mean waiting time till any of pair within our sample coalesces is

E(T}) = ?]g

which again follows from the mean of a geometric random variable

(4.32)

being 1/p.

After a pair of alleles first finds a common ancestral allele some
number of generations back in the past, we only have to keep track
of that common ancestral allele for the pair when looking further into
the past. In our example coalescent genealogy for our 3 alleles, shown
in Figure 4.18, we start by tracking the 3 lineages, then by chance
the blue and purple coalesce in the four generations back. Then we're
tracking just two lineages, the red lineage and the ancestral lineage of
the blue and purple alleles; then those two coalesce and we’ve found
our most recent common ancestor of our sample. Another example
with four tips is shown in Figure 4.19; we’re track four lineages, then
a pair coalesce, then we tracking three lineages, then a pair coalesce,
then we'’re tracking two lineages, then this final pair coalesce and
we’ve found the most recent common ancestor of our sample (fin, end
scene).

More generally, when a pair of alleles in our sample of ¢ alleles
coalesces, we then switch to having to follow ¢ — 1 alleles back in time.
Then when a pair of these i — 1 alleles coalesce, we then only have to
follow i — 2 alleles back. This process continues until we coalesce back
to a sample of two, and from there to a single most recent common
ancestor (MRCA).

Simulating a coalescent genealogy To simulate a coalescent genealogy
at a locus for a sample of n alleles we therefore simply follow the
following algorithm:

1. Set i =n.

2. Simulate a random variable to be the time T; to the next coalescent
event from T; ~ Exp ((é)/zN)

3. Choose a pair of alleles to coalesce at random from all possible
pairs.

4. Seti=1i—1

5. Continue looping steps 2-4 until ¢ = 1, i.e. the most recent common
ancestor of the sample is found.

By following this algorithm we are generating realizations of the ge-
nealogy of our sample.
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To see the continuous time version of
this, note that (4.30) is

~ é?\)[ exp <— 2(?\)[t> (4.33)

The waiting time 7T to the first coa-
lescent event in a sample of ¢ alleles
is thus exponentially distributed with

rate G)/QN, i.e. T; ~ Exp ((;)/2N>
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4.3.1 Ezxpected properties of coalescent genealogies and mutations.

Figure 4.19: A simple coalescent tree
from a single coalescent simulation,

- s 83 . I tracing the genealogy of 4 alleles
e s s o 3 e o s o HE with mutational changes marked with
e 2 8 2 o e\s o/e al /e o HIH H dashes showing transitions away from
s s s sfsles g e ele o 3 HIE Y the MRCA sequence (AGTTT) . The
s\ /e s o) eN\e /s ejete o I Trre A is Ta+T3+T2. The total time
s 8/ 8 338 \e : s ois 3 sis\s Y o in the tree is Tiot = 4Ty 4 313 +2T2 =
S/ %S g\ el /eNT 9/ e A 7 oy - 54 generations. Code here.
[ 3 (3 [ d [ d o [ 3 (3 [ 4 Ll [ d
L [ ] [ ] [ ] L] [ ] [ ]
° o o ° ° °
. ° o . . .
° ° ° °
L ] [ ] [ ] [ ] [ ] [ ]
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5 6 —— @ AaceTC
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The expected time to the most recent common ancestor. We will first
consider the time to the most recent common ancestor of the entire

sample (Thsrca). This is

2
Trrca =Y T (4.34)
=n
generations back, where we are summing from ¢ = n alleles counting
backwards to i = 2 alleles (see Figure 4.19 for example). As our
coalescent times for different i are independent, the expected time to

the most recent common ancestor is

2 2 .
i
E(Tvrca) = _Eﬁ E(T;) = Eﬁ 2N/ <2> (4.35)
Using the fact that ﬁ = ﬁ — % and a bit of rearrangement, we
can rewrite this as
1
E(Tyroa) = AN (1 — n) (4.36)

So the average Thsrc 4 scales linearly with population size N. Inter-
estingly, as we move to larger and larger samples (i.e. n > 1), the
average time to the most recent common ancestor converges on 4NN.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/track_alleles.R
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What’s happening here is that in large samples our lineages typically
coalesce rapidly at the start and very soon coalesce down to a much
smaller number of lineages.

Assume an autosomal effective population of 10,000 individuals
(roughly the long-term human estimate) and a generation time
of 30 years. What is the expected time to the most recent com-
mon ancestor of a sample of 20 people? What is this time for a
sample of 500 people?

The expected total time in a genealogy and the number of segregating
sites.  Mutations fall on specific lineages of the coalescent genealogy
and are transmitted to all descendants of their lineage. Furthermore,
under the infinitely-many-sites assumption, each mutation creates a
new segregating site. The mutation process is a Poisson process, and
the longer a particular lineage, i.e. the more generations of meioses it
represents, the more mutations that can accumulate on it. The total
number of segregating sites in a sample is thus a function of the total
amount of time in the genealogy of the sample, or the sum of all the
branch lengths on the genealogical tree, T;,;. Our total amount of
time in the genealogy is

2
Tyor = »_iT} (4.37)

as when there are i lineages, each contributes a time T; to the total
time (see Figure 4.19 for an example). Taking the expectation of the
total time in the genealogy,

2 2

E(Tiot) = 212(5\)7 => % = > g (4.38)
i=n \2 —n—

1

i=n i

we see that our expected total amount of time in the genealogy scales
linearly with our population size N. Our expected total amount of
time is also increasing with sample size n, but is doing so very slowly.

This again follows from the fact that in large samples, the initial We can obtain the value of the sum
Sl _,1/iinR using the command

sum (1/(1:(n—1) ) ) . To get a

better sense of how Tiot grows with

coalescence usually happens very rapidly, so that extra samples add
little to the total amount of time in the genealogical tree.
We saw above that the number of mutational differences between the sample size, we can approximate

a pair of alleles that coalescence T, generations ago was Poisson with the sum 4.38 by an integral, which
will work for large n. The result is

a mean of 2uTy, where 275 is the total branch length in this simple ffkl % di = AN log(n — 1).

2-sample genealogical tree. A mutation that occurs on any branch of
our genealogy will cause a segregating polymorphism in the sample
(meeting our infinitely-many-sites assumption). Thus, if the total time



82 GRAHAM COOP

in the genealogy is Ty, there are Ty, generations for mutations. So
the total number of mutations segregating in our sample () is Poisson
with mean pT;,;. Thus the expected number of segregating sites in a
sample of size n is

L 4Np L1
E(S) = pE(Tior) = — =0 - 4.39
Note that this is growing with the sample size n, albeit very slowly
(roughly at the rate of the log of the sample size). We can use this
formula to derive another estimate of the population scaled mutation
rate 6, by setting our observed number of segregating sites in a sample
(S) equal to this expectation. We’ll call this estimator Oy :

~ S

Ow = —g—— (4.40)

Dicn Vi

This estimator of § was devised by WATTERSON (1975), hence the
w.

The neutral site-frequency spectrum. We can use our coalescent pro-

cess to find the expected number of derived alleles present ¢ times out

of a sample size n, e.g. how many singletons (i = 1) do we expect T,
to find in our sample? For example, in Figure 4.19 in our sample of

four sequences, there are 3 singletons and 2 doubletons. The number

of sites with these different allele frequencies depends on the lengths

of specific genealogical branches. A mutation that falls on a branch A
with ¢ descendants will create a derived allele with frequency ¢. For

example, in our example tree in Figure 4.19, the total number of gen- T3
erations where a mutation could arise and be a doubleton is T3 + 275,

the total length of the branch ancestral to just the orange and red

allele (T3 4 T3) plus the branch ancestral to just the blue and purple
allele (73).

To see how we could go about working this out, let’s start by con- Figure 4.20: A tree for three samples;
note that this is the only possible

tree shape (treating the tips as unla-
3 alleles drawn from a population. Mutations that fall on the branches beled, i.e. I don’t care which pair of
sequences carry a doubleton, just that

. . any two sequences carry a derived
fall along the orange branch will be doubletons in the sample. The allele).

sidering the simple coalescent tree, shown in Figure 4.20, for sample of
coloured in black will be derived singletons, while mutations that
total number of generations where a singleton mutation could arise
is 375 4+ T5. Note that we only count the time where there are two
lineages (T3) once. So our expected number of singletons, using eqn
(4.32), is
2N
E(S;) = u(BE(T3) + E(T3)) = u 3? +2N | =46 (4.41)

By similar logic, the time where doubletons could arise is 75 and our



expected number of doubletons is E(S;) = 6/2. Thus, there are on
average half as many doubletons as singletons.

Extending this logic to larger samples might be doable, but is te-
dious (I mean really tedious: for 10 alleles there are thousands of
possible tree shapes and the task quickly gets impossible even compu-
tationally). A nice, relatively simple proof of the neutral site frequency
spectrum is given by (HUDSON, 2015), but we won'’t give this here.
The general form is:

E(Si) = - (4.42)

i.e. there are twice as many singletons as doubletons, three times as
many singletons as tripletons, and so on. The other thing that will be
helpful for us to know is that neutral alleles at intermediate frequency
tend to be old, and those that are rare in the sample are on average
young. We expect to see a lot more rare alleles in our sample than

common alleles.
Question 10.

There are two possible tree shapes that could relate four sam-
ples. Draw both of them and separately colour (or otherwise
mark) the branches by where singletons, doubletons, and triple-
ton derived alleles could arise.

We can also ask the probability of observing a derived allele seg-
regating at frequency i/n given that the site is polymorphic in our
sample of size n (i.e. given that 0 < ¢ < n ). We can obtain this
probability by dividing the expected number of sites segregating for an
allele at frequency ¢ by the expected number segregating at all of the
possible allele frequencies for polymorphisms in our sample

i 1/i
= S~ S (443)
We can interpret this probability as the fraction of polymorphic sites

P(i|0 <i < n)

we expect to find at a frequency i/n.

Tests based on the site frequency spectrum Population geneticists
have proposed a variety of ways to test whether an observed site fre-
quency spectrum conforms to its neutral, constant-size expectations.
These tests are useful for detecting population size changes using data
across many loci, or for detecting the signal of selection at individual
loci. One of the first tests was proposed by (TAJIMA, 1989), and is
called Tajima’s D. Tajima’s D is

éﬂ' _éW
C

where the numerator is the difference between the estimate of 6 based

D= (4.44)

on pairwise differences and that based on segregating sites. As these
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two estimators both have expectation 6 under the neutral, constant-
size model, the expectation of D is zero. The denominator C' is a
positive constant; it’s the square-root of an estimator of the variance
of this difference under the constant population size, neutral model.
This constant was chosen for D to have mean zero and variance 1
under the null model, so we can test for departures from this simple
null model.

An excess of rare alleles compared to the constant-size, neutral
model will result in a negative Tajima’s D, because each additional
rare allele increases the number of segregating sites by 1, but only has
a small effect on the number of pairwise differences between samples.
In contrast, a positive Tajima’s D reflects an excess of intermediate
frequency alleles relative to the constant-size, neutral expectation.
Alleles at intermediate-frequency increase pairwise diversity more
per segregating site than typical, thus increasing 6, more than 6y, .
In the next section we’ll see how long-term changes in population
size systematically change the site frequency spectrum and so are
detectable by statistics such as Tajima’s D.

4.3.2  Demography and the coalescent

We’ve already seen how changes in population size can change the rate
at which heterozygosity is lost from the population (see the discussion
around eqn. (4.15)). If the population size in generation ¢ is N;, the
probability that a pair of lineages coalesce is 1/(27;); this conforms to
our intuition that if the population size is small, the rate at which
pairs of lineages find their common ancestor is faster. We can poten-
tially accommodate rapid random fluctuations in population size by
simply using the effective population size N, in place of N. However,
longer-term, more systematic changes in population size will distort
the coalescent genealogies, and hence patterns of diversity, in more
systematic ways.

We can see how demography potentially distorts the observed fre-
quency spectrum away from the neutral expectation in a very large
sample of humans shown in Figure 4.21. For comparison, the neu-
tral frequency spectrum, eqn (4.42), is shown as a red line. There are
vastly more rare alleles than expected under our neutral, constant-
size-size model, but the neutral prediction and reality agree somewhat
more for alleles that are more common.

Why is this? Well, these patterns are likely the result of the very
recent explosive growth in human populations. If the population has
grown rapidly, then the pairwise-coalescent rate in the past may be
much higher than the coalescent rate closer to the present. (see Figure
1.22).

2 \ —s— Synonymous
8 N —=— Non-Synonymous

SNP count per kb

r T T T
1 10 100 1000 10000

Minor allele count

Figure 4.21: Data from 202 genes
from 14002 people of European
ancestry (28004 alleles). Note the
double log-scale. The red line gives
the neutral, constant population size
estimate of the site frequency spec-
trum, our equation (4.42), using a 6
estimated from 7. Note how the non-
synonymous changes are even more
skewed towards rare alleles, likely due
to selection against non-synonymous
alleles preventing them from reaching
high frequency. Data from NELSON
et _al. (2012). Code here.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/human_pop_growth/Nelson_pop_growth.R

Generations

One consequence of a recent population expansion is that there
is much less genetic diversity in the population than you’d predict
using the census population size. Humans are one example of this
effect; there are 7 billion of us alive today, but this is due to very rapid
population growth over the past thousand to tens of thousands of
years. Our level of genetic diversity is very much lower than you’d
predict given our census size, reflecting our much smaller ancestral
population. A second consequence of recent population expansion is
that the deeper coalescent branches are much more squished together
in time compared to those in a constant-sized population. Mutations
on deeper branches are the source of alleles at more intermediate
frequencies, and so there are even fewer intermediate-frequency alleles
in growing populations. That’s why there are so many rare alleles,
especially singletons, in this large sample of Europeans.

Another common demographic scenario is a population bottleneck.
In a bottleneck, the population size crashes dramatically, and sub-
sequently recovers. For example, our population may have had size
Ngig and crashed down to Ngman. One example of a bottleneck is
shown in Figure 4.23. Looking at a sample of lineages drawn from the
population today, if the bottleneck was somewhat recent (< Ngig
generations in the past) many of our lineages will not have coalesced
before reaching the bottleneck, moving backward in time. But during
the bottleneck our lineages coalesce at a much higher rate, such that
many of our lineages will coalesce if the bottleneck lasts long enough
(~ Ngman generations). If the bottleneck is very strong, then all of
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Figure 4.22: A realization of the
coalescent process in a growing pop-
ulation. The population underwent a
period of doubling every generation.
The initial population size of just two
individuals, maintained for a number
of generations, is obviously highly
unrealistic but serves our purpose.
Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/track_alleles.R

86 GRAHAM COOP

L L] L ]
. . .
. . )
. . /o
L] L] L] L] L]
. o . . . .
. . . . . o g .
L] L] . L] [ L] L]
. . . . . .
. . . . . .
. . ® . . . . .
. ‘o, . . . . .
L] L] : L] L] . o
L] L] L] .o L] L]
. . . . . .
. . . ° .
. . . o .
L] L] L] L] L]
. . . . .
L] L] L] L L]
Generations

our lineages will coalesce during the bottleneck, and the resulting site
frequency spectrum may look very much like our population growth
model (i.e. an excess of rare alleles). However, if some pairs of lineages
escape coalescing during the bottleneck, they will coalesce much more
deeply in time (e.g. the blue and orange ancestral lineages in 4.23).
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An example of this is shown Figure 4.24, data from BRAND-
VAIN et al. (2014). Mimulus nasutus is a selfing species that arose

recently from an out-crossing progenitor M. guttatus, and experienced
a strong bottleneck. M. guttatus has very high levels of genetic diver-
sity (m = 4% at synonymous sites), but M. nasutus has lost much of
this diversity (7 = 1%). Looking along the genome, between a pair of
M. guttatus chromosomes, levels of diversity are fairly uniformly high.

But in comparing two M. nasutus chromosomes, diversity is low
because the pair of lineages generally coalesce recently. Yet in a few
places we see levels of diversity comparable to M. guttatus; these re-
gions correspond to genomic sites where our pair of lineages fail to
coalesce during the bottleneck and subsequently coalesce much more
deeply in the ancestral M. guttatus population.

Figure 4.23: A realization of the
coalescent process in a bottlenecked
population. Our population under
went a bottleneck eight generations in
the past. Code here.

Figure 4.24: Diversity along a re-
gion of the Mimulus genome. Black
dots give 7 in 1kb windows between
chromosomes sampled from two in-
dividuals, the red line is a moving
average (data from BRANDVAIN

et al. (2014)). Pairwise coalescent
times (t) estimated assuming ¢ = 7/2u
using upp = 1072, Code here.

Figure 4.25: Yellow Monkeyflower M.
guttatus.

Choix des plus belles fleurs et des plus
beaux fruits. Pierre-Joseph Redouté. (1833).
Contributed to Flickr by Swallowtail Garden
Seeds. Public Domain.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/track_alleles.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Mimulus_coalescent_times.R
https://www.flickr.com/photos/swallowtailgardenseeds/14479197839/in/photolist-o4tF54-od9My9-odbSn4-r7eVtm-qrR4xf-x4XVdi-owo7PM-r5mart-roPqqi-owrprg-qsfzJv-wMDeSy-oupCu9-oeSX38-odaeHf-ovbTTS-roEdyK-tCQBqn-odwyWa-otAUPX-oePwpE-odca2V-tBxNdi-roL99F-odbN4q-ot1HNN-ouhP5r-odcvRH-oveh86-rpAnnD-roE9j9-rowiBc-osDEHS-od7QxD-oeQ9yS-odatza-ox9fq8-oujGWa-osBqTm-ovoAKj-r5qRxT-oeRVxu-oux9q2-tMvxm3-x5pLez-owuL1t-oePFVJ-ov1yHY-oeWskU-tmeZzB
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Mutations that arise on deeper lineages will be at intermediate fre-
quency in our sample, and so mild bottlenecks can lead to an excess of
intermediate frequency alleles compared to the standard constant-size
model. This can skew Tajima’s D (see eqn 4.44) towards positive val-
ues and away from its expectation of zero. One example of this skew
is shown in Figure 4.26. Maize (Zea mays subsp. mays) was domesti-
cated from its wild progenitor teosinte (Zea mays subsp. parviglumis)
roughly ten thousand years ago. We can see how the bottleneck as-
sociated with domestication has resulted in a loss of genetic diversity
in maize compared to teosinte, and the polymorphism that remains is
somewhat skewed towards intermediate frequencies resulting in more
positive values of Tajima’s D.

Question 11.

VOIGHT et al. (2005) sequenced 40 autosomal regions from
15 diploid samples of Hausa people from Yaounde, Cameroon.

The average length of locus they sequenced for each region was
2365bp. They found that the average number of segregating
sites per locus was S = 11.1 and the average 7 = 0.0011 per
base over the loci. Is Tajima’s D positive or negative? Is a de-
mographic model with a bottleneck or growth more consistent
with this result?
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Figure 4.26: Data for polymorphism
from Maize and Teosinite: 774 loci
from WRIGHT et al. (2005). Left)
Genetic diversity levels in maize and
and teosinte samples at each of these

loci. Note how diversity levels are
lower in maize than teosinte, i.e. most
points are below the red x = y line.
Right) The distribution of Tajima’s
D in maize and teosinte, see how the
maize distribution is shifted towards
positive values. Code here.

Figure 4.27: Teosinite (Zea mays ssp.

mezicana)

American grasses (1897). Scribner, FL Image
from the Biodiversity Heritage Library.
Contributed by Smithsonian Libraries. Not in
copyright.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/Maize_bottleneck/Wright_Tajima_D.R
https://www.flickr.com/photos/internetarchivebookimages/17960129408/
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Chapter 4 summary.

¢ Genetic drift is the random change in allele frequencies due
to alleles by chance leaving more or fewer copies of them-
selves to the next generation. It is directionless, with alleles
equally likely to go up or down in frequency thanks to drift.
Genetic drift occurs at a slower rate in larger populations as
there is a greater degree of averaging in larger populations
that reduces the impact of the randomness in individuals’
reproduction.

e On average genetic drift acts to remove genetic diversity
(e.g. heterozygosity) from the population. The rate at which
neutral genetic diversity is lost from the population is in-
versely proportional the population size.

e A balance of mutation and genetic drift can maintain an
equilibrium level of neutral genetic diversity in a population.
This equilibrium level is determined by the population-scaled
mutation rate (Npu).

e In practice, genetic drift will rarely occur at the rate sug-
gested by the census population size, e.g. due to large vari-
ance in reproductive success and short-term population
size fluctuations. In many situations, we can address this
by using an effective population size in place of the census
population size. We can estimate this effective population
size by matching our observed rate of genetic drift to that
expected in an idealized population.

e A key insight in thinking about patterns of neutral diversity
is to realize that neutral mutations do not alter the shape of
the genetic tree (or genealogy) relating individuals, and so it
is often helpful to think about the tree first and then think
of neutral mutations scattered on top of this tree.

o Coalescent theory describes the properties of these trees,
and the mutational patterns generated, under a model of
neutral evolution.

e Long-term changes in population size alter the rate of co-
alescence in a predictable way that impacts patterns of
variation. These patterns can be used to detect violations of
a constant population model and to estimate more complex
demographic models.




Question 12.

Based on museum samples from ~ 1800, you estimate that the
average heterozygosity in Northern Elephant Seals was 0.0304
across many loci. Based on further samples, you estimate that
in 1960 this had dropped to 0.011. Elephant Seals have a gen-
eration time of 8 years.

What effective population size do you estimate is consistent
with this drop?

Question 13.

A) Why are large populations expected to harbor more neutral
variation?

B) What is the effective population size? Is it usually higher or
lower than the census population size?

C) Why does the effective population size differ across the
autosomes, Y chromosome, and mtDNA?

Question 14.

You sequence a genomic region of a species of Baboon. Out of
100 thousand basepairs, on average, 200 differ between each
pair of sequences. Assume a per base mutation rate of 1 x 1078
and a generation time of ten years.

A) What is the effective population size of these Baboons?

B) What is the average coalescent time (in years) of a pair of
sequences in this species?
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5
The Population Genetics of Divergence and Molecu-

lar Substitution.

“History is just one damn thing after another.” -sometimes attributed
to Arnold Toynbee

There are over 30 million base pair substitutions between human
and chimpanzees, sites where humans carry one allele and chimps an-
other at orthologous locations. These changes have occurred in the
seven million years or so since human and chimp last shared a com-
mon ancestor. Other subsitutions are shared between the sister species
human and chimp to the exclusion of gorilla, yet others are shared
between human, chimps and Gorilla but not Orangs. Long-term evo-
lution, from the molecular perspective, is just one damn substitu-
tion after another. These substitutions represent changes at just a
small percentage of sites genome-wide as we share the majority of our
genome, our evolutionary history, and our biology with the other great
apes. Each of the substitutions must have arisen as a mutation in the
population, spread through the population as a polymorphism before
eventually reaching fixation. What forces drove the spread of these
alleles through the population to become substitutions?

Human accacagcatttgttagttactgccaagaagcctgtatctgtagggtaaaatcctegetgaagtgggttg

Chimp ... - Gt

Gorilla .. CCivii it

Orangutan ......... Covivnvnnn Gt e Coete e

Gibbon ... ... ool Gt e e

Crab-eating macaque g............. e [T A
Many substitutions were driven by selection, as there has undoubt- Table 5.1: Variable positions in a

edly been plenty of adaptive phenotypic adaptive evolution in great :;;?jﬁiezlffn;nfgéb(;f fé;ic;l()ggﬁlss
apes. However, these adaptive changes may be a small minority of all region starts at position 5242147 of
chromosome 11, chosen pretty much
. . . . L at random from the UCSC browser.
in non-coding DNA with no known functional effect. Thus it is rea- Dots indicate positions where the

the subsitutions, for a start many of these substitutions have occurred

sonable initial position that the majority of substitutions genome-wide other sequences carry the same base
as the human reference sequence.


https://genome.ucsc.edu/cgi-bin/hgc?hgsid=751620175_qgtFpsA9hP8yVBVZ1ezZl3Iy3N1L&c=chr17&l=43084819&r=43084957&o=43084819&t=43084957&g=multiz30way&i=multiz30way
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may well be neutral. How can we hope to identify regions undergoing
adaptive divergence? How could we hope to address the claim that

many amino-acid changing substitutions are also neutral, as posited Many of the topics covered in this
chapter also fall within the field of

. ‘molecular evolution’, which shares
to understand what neutral theory predicts for the rate of molecular many of its questions and tools with

substition, and then develop ways to test these ideas. population genetics but often focuses
on longer time-scales of evolution

using phylogenetic approaches.
Figure 5.1: Illustration by Benjamin
Waterhouse Hawkins from Huxley’s
“Evidence as to Man’s Place in Na-
ture” (1863).

Image from the wikimedia, public domain.

by the Neutral theory of molecular evolution. One way forward is

Sheletons of the
GIBBON. Oraxa. CHIMPANZEE. GORILLA. Max.
Photographically reduced from Diagrams of the natural size (except that of the Gibbon, which was twice as large as nature),
dramn by Mr. Waterhouse Hawkins from specimens in the Musewm of the Royal College of Surgeons.

5.1 The Neutral Substitution process.

So how then do neutral substitutions occur? It is very unlikely that

a rare neutral allele accidentally drifts up to fixation; more likely,

such an allele will be eventually lost from the population. However,
populations experience a large and constant influx of rare alleles due
to mutation, so even if it is very unlikely that an individual allele fixes
within the population, some neutral alleles will fix by chance. So we’ll
need to understand the probability that a neutral mutation fixes, and
then how we can think about the rate of substitutions accumulate over

time.

5.1.1 probability of the eventual fixation of a neutral allele

An allele which reaches fixation within a population is an ancestor to
the entire population. In a particular generation there can only be a
single allele that all other alleles at the locus in a later generation can
claim as an ancestor (See Figure 5.2). At a neutral locus, the actual
allele does not affect the number of descendants that the allele has
(this follows from the definition of neutrality: neutral alleles don’t
leave more or less descendants on average than other neutral alleles).


https://en.wikipedia.org/wiki/Pithecometra_principle#/media/File:Huxley_-_Mans_Place_in_Nature.jpg
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i [ S Figure 5.2: Each allele initially
a present in a small diploid popula-
/ tion is given a different colour so
i { i we can track their descendants over
V time. By the 9th generation, all of
\’ the alleles present in the population
, can trace their ancestry back to the

orange allele. Code here.
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An equivalent way to state this is that the allele labels don’t affect
anything; thus the alleles are exchangeable. As a consequence of being
exchangeable, any allele is equally likely to be the ancestor of the
entire population. In a diploid population of size N, there are 2N
alleles, all of which are equally likely to be the ancestor of the entire
population at some later time point. So if our allele is present in a
single copy, the chance that it is the ancestor to the entire population
in some future generation is 1/(2n), i.e. the chance our neutral allele
is eventually fixed is 1/(2n). In Figure 5.2, our orange allele in the
first generation is one of 10 differently coloured alleles, and so has a
1/10 chance of being the ancestor of the entire population at some
later time point (and in this simulation it does become the common
ancestor, by the 9th generation).

More generally, if our neutral allele is present in ¢ copies in the
population, of 2V alleles, the probability that this allele becomes fixed
is i/(2N), i.e. the probability that a neutral allele is eventually fixed
is simply given by its frequency (p) in the population. (We can also
derive this result by letting Ns — 0 in eqn. (12.11), a result we’ll
encounter later.)

How long does it take on average for such an allele to fix within
our population? In developing equation (4.36) we’ve seen that it takes
on average 4N generations for a large sample of alleles to all trace
their ancestry back to a single most recent common ancestral allele.
Any single-base pair change which arose as a single mutation at a
locus, and fixed in the population, must have been present in the
sequence transmitted by the most recent common ancestor of the
population at that locus. Thus it must take roughly 4N generations
for a neutral allele present in a single copy within the population to
fix. This argument can be made more precise, but in general we would

still find that it takes ~ 4N generations for a neutral allele to go from


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R
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its introduction to fixation with the population.

5.1.2 Rate of substitution of neutral alleles

A substitution between populations that do not exchange gene flow is
simply a fixation event within one population. The rate of substitution
is therefore the rate at which new alleles fix in the population, so that
the long-term substitution rate is the rate at which mutations arise
that will eventually become fixed within our population.

Let’s assume, based on our discussion of the neutral theory of
molecular evolution, that there are only two classes of mutational
changes that can occur with a region, highly deleterious mutations and
neutral mutations. A fraction C of all mutational changes are highly
deleterious, and cannot possibly contribute to substitution nor poly-
morphism. The other 1 — C fraction of mutations are neutral. If our
total mutation rate is p per transmitted allele per generation, then
a total of 2Ny (1 — C) neutral mutations enter our population each
generation.

Each of these neutral mutations has a 1/(2n5) probability chance of
eventually becoming fixed in the population. Therefore, the rate at
which neutral mutations arise that eventually become fixed within our
population is

ONu(1 — C)% =u(1-0) (5.1)

Thus the rate of substitution, under a model where newly arising
alleles are either highly deleterious or neutral, is simply given by the
mutation rate of neutral alleles, i.e. pu(1 —C).

Consider a pair of species that have diverged for T generations,
i.e. orthologous sequences shared between the species last shared a
common ancestor T' generations ago. If these species have maintained
a constant p over that time, they will have accumulated an average of

2u(l — C)T (5.2)

neutral substitutions. This assumes that T is a lot longer than the
time it takes to fix a neutral allele, such that the total number of
alleles introduced into the population that will eventually fix is the
total number of substitutions.

This is a really pretty result as the population size has completely
canceled out of the neutral substitution rate. However, there is an-
other way to see this in a more straight forward way. If I look at a
sequence in me compared to, say, a particular chimp, I'm looking at
the mutations that have occurred in both of our germlines since they
parted ways T' generations ago. Since neutral alleles do not alter the
probability of their transmission to the next generation, we are simply
looking at the mutations that have occurred in 27" generations worth



of transmissions. Thus the average number of neutral mutational dif-
ferences separating our pair of species is simply 2u(1 — C)T.

5.1.8 Implications for the Molecular Clock.

A number of observations follow under this model, from equation
(5.2). The first is that a primary determinant of patterns of molecu-
lar evolution in a genomic region is the level of constraint (C'). This
pattern generally seems to hold empirically: non-coding regions often
evolve more rapidly than coding regions, synonymous substitutions
accumulate faster than nonsynonymous, and nonsynonymous sub-
stitutions accumulate faster in less vital proteins than ones that are
absolutely necessary for early development. For example, fibrinopep-
tides evolve in a less constrained manner than the cytochrome c gene,
see Figure 5.3. Note that this constraint prediction is not a unique
prediction of the neutral model, e.g. less constrained regions may
also be better able to evolve adaptively. However, it is a fantastically
useful general insight, e.g. it allows us to spot putatively functional
non-coding regions by looking for genomic regions that have very low
levels of divergence among distantly related species.
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The second important insight, and critical for the development of
the neutral theory, is that equation (5.2) is seemingly consistent with
ZUCKERKANDL and PAULING (1965)’s hypothesis of a surprisingly
constant, protein molecular clock. The protein molecular clock is the

observation that for some proteins there’s a linear relationship be-
tween the number of non-synonymous (NS) substitutions and the time
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”Functionally less impor-
tant molecules or parts of a
molecule evolve faster than
more important ones.”

— KiMURA and OHTA (1974)

Figure 5.3: The numbers of substitu-
tions in three proteins, corrected for
multiple hits, between various pairs of
groups plotted against the time these
groups shared a common ancestor in
the fossil record. Data from DICKER-
SON (1971). The lines give the linear
regression through the origin for each
protein. The slope of the regression is
given next to the protein name. Code
here. See (ROBINSON et al., 2016)
who revisited this classic study and
confirmed the conclusions.

Figure 5.4: Eastern diamondback

rattlesnake (Crotalus adamanteus).
North American herpetology. Holbrook, J.

E. Image from the Biodiversity Heritage
Library. Contributed by Smithsonian Libraries.
Licensed under CC BY-2.0.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/genetic_drift/Molecular_clock_Dickerson/Dickerson_1979_mole_clock_data.R
https://www.biodiversitylibrary.org/page/35765722#page/120/mode/1up
https://www.biodiversitylibrary.org/page/35765722#page/120/mode/1up
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species last shared a common ancestor in the fossil record. DICKER-
SON (1971) provided an for early example of this observation (Figure
5.3), by comparing various organisms whose molecular sequences were
available to him. For example, he found that humans and rattlesnakes,
who last share a common ancestor in the fossil record around 300 mil-
lion years, are separated by roughly 15 NS substitutions per 100 sites
in the cytochrome c protein. While, humans and dogfish, which di-
verged around 400 million years, are separated by 19 NS substitutions
per 100 sites in this gene.

In equation (5.2), if we double the amount of time separating a
pair of species T', we double the number of substitutions predicted.
Note that for this to be true T' must be measured in generations. To
explain a protein molecular clock between species that clearly differed
dramatically in generation time it was hypothesized that the mutation
rate actually scaled with generation time, i.e. short-lived organisms
introduced fewer mutations per generation, e.g. as they had fewer
rounds of mitosis. This generation-time assumption meant that the
mutation rate per year could be constant, such that uT would be a
constant for pairs of species that had diverged for similar geological
times, which are measured in years, even if the organisms differed in
generation time. This assumption would allow neutral theory to be
consistent with a protein molecular clock measured in years. We now
know that this critical generation time assumption is false: organisms
with shorter generation times have somewhat higher mutation rates
per year so a strict neutral model is inconsistent with the protein
molecular clock. We'll return to these ideas when we discuss the fate
of very weakly selected mutations in Chapter 12 and OHTA (1973)’s
Nearly Neutral theory. If you are still reading this send Graham a
picture of Tomoko Ohta receiving the Crafoord Prize, an analog of the
Nobel prize for biology, for her contributions to molecular evolution.

The contribution of ancestral polymorphism to divergence. If we are
considering T to represent the divergence between long-separated
species, then we can think of T as the time that the species split.
However, for more recently diverged populations and species, we need
to include the fact that the sorting of ancestral polymorphism con-
tributes to divergence among species. In Figure 5.6, we see our two
populations split T generations ago. However, the coalescence of our
A and B lineage is necessarily deeper in time than T5. The top muta-
tion was polymorphic in the ancestral population but now contributes
to the divergence between A and B. Assuming that our ancestral pop-
ulation had effective size V4 individuals, and that our populations

RIS

Figure 5.5: Spiny dogfish (Squalus

acanthias).

Rare Book Division, The New York Public
Library. “Squalus Acanthias, The Picked-
Dog” The New York Public Library Digital
Collections. 1785. Public domain.


http://digitalcollections.nypl.org/items/510d47da-6930-a3d9-e040-e00a18064a99
http://digitalcollections.nypl.org/items/510d47da-6930-a3d9-e040-e00a18064a99
http://digitalcollections.nypl.org/items/510d47da-6930-a3d9-e040-e00a18064a99
http://digitalcollections.nypl.org/items/510d47da-6930-a3d9-e040-e00a18064a99

split cleanly with no subsequent gene flow, then

T=Ts+2Nj4. (5.3)

If our species split time is very large compared to 2N then we can
think of T" as the split time.

Question 1.

For this, and the next question, assume that humans and
chimps split around 5.5x10% years ago, have a generation

time 20 years, that the speciation occurred instantaneously in
allopatry with no subsequent gene flow, and the ancestral effec-
tive population size of the human and chimp common ancestor
population was 10,000 individuals.

Nachman and Crowell sequenced 12 pseudogenes in humans
and chimps and found substitutions at 1.3% of sites.

A) What is the mutation rate per site per generation at these
genes?

B) All of the pseudogenes they sequenced are on the auto-
somes. What would your prediction be for pseudogenes on the
X and Y chromosomes, given that few mutations occur in the
female germline than in the male germline per generation.

5.2 Tests of molecular evolution.

One of the great appeals of neutral models is they offer a simple null
for us to test real data against.

5.2.1 Comparing the rates of non-synonymous to synonymous sub-

stitutions dn/ds

One common tool in molecular evolution is to compare the estimated

number (or rates) of substitutions in different classes of genomic sites,

for example the ratio of the rates of non-synonymous (dy) to synony-
mous substitutions (dg) in a given gene. The simplest way to think
about calculating dy is to count up the non-synonymous changes
and divide by the total number of positions in the gene where a non-
synonymous point mutation could occur and then divide by time. We
can do likewise for synonymous changes dg, and then take the ratio
dn/ag. 1

For the vast majority of protein-coding genes in the genome we
see that dn/ag < 1. This observation is consistent with the view that
non-synonymous sites are much more constrained than synonymous

sites, i.e. that most non-synonymous mutations are deleterious and
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A

Figure 5.6: The genealogy of two
alleles one sampled from population A
and B. Mutations on the lineages are
shown as dashes. The pair of alleles
coalesce in the ancestral population
of A and B. The two populations

split T's generations ago, with no
subsequent gene flow, but the two
lineages must coalesce deeper in time.

! This ignores the fact that some
changes are more likely to occur

by mutation than others and also
does not account for multiple hits
(multiple mutations at the same bp
position). Therefore, in practice the
ratio dn/dg is more typically calcu-
lated by model-based likelihood and
bayesian methods that can account
for these features.
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quickly removed from the population. If we are willing to make the
assumption that all synonymous changes are neutral, dg = pu, then we
can estimate the degree of constraint on non-synonymous sites. (Note
that synonymous changes can sometimes be subject to both positive
and negative selection, but this neutral assumption is a useful starting
place.)

Assume that a fraction C' of non-synonymous changes are too dele-
terious to contribute to divergence, and that there are no beneficial
mutations. Then, we expected rate of neutral non-synonymous substi-
tutions is

dy = (1= C)p (5.4)

Dividing by dg, we find
dnjas = (1—C) (5.5)

Therefore, if we assume that non-synonymous mutations can only be
strongly deleterious or neutral, we estimate the fraction of mutational
changes that are constrained by negative selection as C = 1 — dn/ds.
C has the interpretations of being the fraction of non-synonymous
mutations that are quickly weeded out of the population by selection,
and so do not contribute to divergence among species.

We can test whether our gene is evolving in a constrained way at
the protein level by estimating dv/ds and testing whether this is sig-
nificantly less that 1. A dn/ds test can provide evolutionary evidence
that a stretch of DNA proposed to be protein-coding is subject to se-
lective constraint, and so likely does encode for a functional protein.
We can also perform a dn/ds test on specific branches of a phylogeny
for a gene, to test on which branches the gene is subject to constraint,
or to test for changes in the level of constraint across the phylogeny.

“Rudimentary organs may be com-
Loss of constraint at pseudogenes. While most protein genes evolve pared with the letters in a word,
still retained in the spelling, but be-
come useless in the pronunciation,
much less constrained manner. The simplest example of this is where but which serve as a clue .. for its
derivation.” — DARWIN (1859) pg. 455

under constraint, we can find examples of genes that are evolving in a

the gene has lost function. Genes can lose function because of inac-
tivating mutations that stop them being transcribed or translated
into functional proteins. Such genes are called ‘pseudogenes’. When

a gene completely loses function there is no longer selection against
non-synonynous changes and so such mutations are just as free to ac-
cumulate as synonymous changes, and so dv/ds = 1. Pseudogenes
are a wonderful example of the extension of Darwin’s ideas about
vestigial traits (‘Rudimentary organs’) to the DNA level; we can still
recognize a once useful word (gene) whose spelling is slowly degrading.
Our genomes are filled with old pseudogenes whose original meanings
(functional protein coding sequences) are slowly being eroded through



the accumulation of neutral substitutions. One nice example of a
gene that has repeatedly lost function, i.e. become repeatedly psue-
dogenized, is the enamlin gene from the study of MEREDITH et al.
(2009).
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The protein enamlin is a key structural protein involved in the
outer cap of enamel on teeth. Various mammals have secondarily
evolved diets that do not require hard teeth, and so greatly reduced
the selection pressure for hard enamel, or even teeth at all. For ex-
ample, two-toed sloths (Choloepus), pygmy sperm whales (Kogia),
and aardvark (Orycteropus) all lack enamel on teeth. Other mammals
have lost their teeth entirely, e.g. giant anteaters (Myrmecophaga) and
baleen whales. Due to this relaxation of constraint on the phenotype,
the enamlin gene has accumulated pseudogenizing substitutions such
as premature stop codons and frameshift mutations (see Figure 5.7
for examples). MEREDITH et al. (2009) sequenced enamlin across

a range of species and found that none of the species with enamel
have frameshift mutations in enamlin, while 17/20 of species that lack
enamel or teeth have frameshifts in enamlin, and all of them carry
premature stop codons.

MEREDITH et al. (2009) found that the branches of the enamlin
phylogeny with a functional enamlin gene had an estimated dn/as =

0.51, consistent with the protein evolving in a constrained man-

ner. In contrast, the branches with a pseudogenized Enamlin had
dn/ds = 1.02, consistent with the gene evolving a completely uncon-
strained way. The branches where the gene was likely transitioning
from a functional to non-function state, i.e. pre-mutation and mixed,
had intermediate values of dv/ds = 0.83 — 0.98, consistent with a tran-
sition from a constrained to unconstrained mode of protein evolution
somewhere along these branches of the phylogeny.
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Figure 5.7: Examples of frameshift
mutations (insertions blue, deletions
red) and premature stop codons in
enamlin in Cetacea and Xenarthra.
Figure from MEREDITH et al. (2009),

licensed under CC BY 4.0.

Figure 5.8: Two-toed sloth (Choloepus

hoffmanni).

An introduction to the study of mammals,
living and extinct. 1891. Flower W. H. and
Lydekker R. Image from the Biodiversity
Heritage Library. Contributed by University of
Toronto. Not in copyright.


https://archive.org/stream/chordates00rand/#page/744/mode/1up
https://archive.org/stream/chordates00rand/#page/744/mode/1up
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The enamlin gene was pseudogenized somewhere along the

branch leading to Aardvarks (Orycteropus afer), see Figure

5.9. MEREDITH et al. (2009) estimated that this branch has a
dn/as = 0.75

A) Calculate the average constraint against amino-acid changes

on this branch.

B) Aardvarks last shared a common ancestor with Afrosoricida
(golden moles, tenrecs) and Macroscelidea (elephant shrews)
around ~ 75.1 million years ago in the Cretaceous. Assume
that for the portion of the branch while enamlin was func-
tional dv/ds = 0.51 and after it was pseudogenized there was
no constaint (i.e. dv/ds = 1). Based on the branch’s average
dn/ds = 0.75, can you estimate the time at which enamlin was

pseudogenized? (I.e. when is the star in Figure 5.97)

Adaptive evolution and dv/ds. Clearly genes are not only subject

to neutral and deleterious mutations; beneficial mutations must also
arise and fix from from time to time. Let’s assume that a fraction B of
non-synonymous mutations that arise are beneficial such that 2NuB
beneficial mutations arise per generation. Newly arisen beneficial
alleles are not destined to fix in the population, as they may be lost to
genetic drift when they are rare in the population (we’ll discuss how
to calculate the fixation probability for beneficial alleles in Chapter
12). A newly arisen beneficial allele reaches fixation in the population
with probability fp from its initial frequency of 1/2n. This fixation
probability may be much higher than that of neutral mutations, but

Figure 5.9: A synthetic interpretation
of the history of enamel degeneration
in Tubulidentata (the order of aard-
varks) based on fossils, phylogenetics,
molecular clocks, frameshift muta-
tions, and dn/dg ratios. The oldest
fossil aardvarks are O. minutus (19
mya) from the early Miocene of Kenya
and also lack enamel. Figure & cap-
tion modified from MEREDITH et al.
(2009), licensed under CC BY 4.0.

Figure 5.10: Aardvarks (Cape ant-

eater, Orycteropus afer)

Cassell’s natural history ( 1896 ). Duncan,

P. M. Image from the Biodiversity Heritage
Library. Contributed by NCSU Libraries. Not
in copyright.


https://www.flickr.com/photos/internetarchivebookimages/20514695666/in/photolist-xfPbiq-xUcng7-xCyGQA-xdRRQ3-wPMGZr-tFgYfN-wPMPkT-tDahHQ-xuc4KM-xKR4u3-xUkupQ-w88zeU-xMia2r-sp4Aq5-x1wNyZ-xMi46D-tDaCr7-sJE2X4-tFB8Lc-wHWiNj-tp8AUk-tFvh4R-xu3M7w-toUVwN-wYWgVi-w34vHn-x9xAfL-wWhnso-ovvmHE-tG5AgB-xdUzWD-y82dEG-xCA7kx-xV5xWg-wYc33H-wYbFdX-wYbBMP-xUcjpL-xKQjHw-xJmBQU-xKPwEQ-xLEzv4-xu3wHJ-xLEg9V-xnA6Lr-x684wQ-wZNgpq-wYcVbh-wZtb3F-wYbJLh
https://www.flickr.com/photos/internetarchivebookimages/20514695666/in/photolist-xfPbiq-xUcng7-xCyGQA-xdRRQ3-wPMGZr-tFgYfN-wPMPkT-tDahHQ-xuc4KM-xKR4u3-xUkupQ-w88zeU-xMia2r-sp4Aq5-x1wNyZ-xMi46D-tDaCr7-sJE2X4-tFB8Lc-wHWiNj-tp8AUk-tFvh4R-xu3M7w-toUVwN-wYWgVi-w34vHn-x9xAfL-wWhnso-ovvmHE-tG5AgB-xdUzWD-y82dEG-xCA7kx-xV5xWg-wYc33H-wYbFdX-wYbBMP-xUcjpL-xKQjHw-xJmBQU-xKPwEQ-xLEzv4-xu3wHJ-xLEg9V-xnA6Lr-x684wQ-wZNgpq-wYcVbh-wZtb3F-wYbJLh

still much less than 1. The expected total rate of non-synonymous
substitutions is

dN = (1—C — B)u+ (2NuB) x fs. (5.6)

Then
dn/is = (1—C — B)+2NBfp (5.7)

assuming again that all synonymous mutations are neutral. Note that
this means that our estimates of C using 1 — d~/ds will be a lower
bound on the true constraint if even a small fraction of mutations

are beneficial. Those cases where the gene is evolving more rapidly

at the protein level than at synonymous sites, i.e. dy/ds > 1, are
potentially strong candidates for positive selection rapidly driving
change at the protein level. We can identify genes that have dn/ds
significantly greater than one, either on the complete gene phylogeny,
or on particular branches. Note that is a very conservative test that
few genes in the genome meet, as many genes that are fixing adaptive
non-synonymous substitutions will have dv/ag < 1; even if adaptive
mutations are common, genes may still evolve in a constrained way
(i.e. dv/ds < 1) if the rapid fixation of beneficial mutations due to pos-
itive selection is outweighed by the loss of non-synonymous mutations
to negative selection.

(%]
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A classic example for looking at adaptive evolution using 4v/ds
is the evolution of the lysozyme gene in primates (MESSIER and
STEWART, 1997; YANG, 1998). The lysozyme protein is a key com-

ponent for the breakdown of bacterial walls. The lysozyme gene shows
very fast protein evolution (see the phylogeny in Figure 5.11), no-
tably on the lineages leading to apes (e.g. gibbons and humans) and
Colobines (e.g. colobus and langur monkeys). Colobines have leaf-
based diets. They digest these leaves by bacterial fermentation in their
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Figure 5.11: A phylogram for the
primate lysozyme gene, data from
YANG (1998). For each branch,

the numbers give the estimated
average number of non-synonymous to
synonymous changes in the lysozyme
protein.

Figure 5.12: Abyssinian black-and-
white colobus (Colobus guereza). A

member of the leaf-eating Colobines.
Brehm’s Tierleben, Brehm, A.E. 1893. Image
from the Biodiversity Heritage Library.
Contributed by University of Illinois Urbana-
Champaign. Not in copyright.


https://archive.org/stream/brehmstierlebena001breh/#page/125/mode/1up
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foregut, and then use lysozymes to break down the bacteria to extract
energy from the leaves. In Colobines, the lysozyme protein has evolved
to work well in the high-PH environment of the stomach. Remarkably,
the Colobine lysozyme protein has convergently evolved this activity
via very similar amino-acid changes at 5 key residuals in cows and
Hoatzins (a leaf eating bird, KORNEGAY et al., 1994)

The McDonald-Kreitman test As noted above, a big issue with using
dn/ds to detect adaptation is that it is very conservative. For a more
powerful test of rapid divergence, what we need to do is adjust for
the level of constraint a gene experiences at non-synonymous sites.
One way to do this is to use polymorphism data as an internal con-
trol. If we see little non-synonymous polymorphism at a gene, but a
lot of synonymous polymorphism, we now know that there is likely
strong constraint on the gene (i.e. high C'), thus we expect dn/ds to
be low. MCDONALD and KREITMAN (1991) devised a simple test

of the neutral theory of molecular evolution at a gene based on this
intuition (building on the conceptually similar HKA test HUDSON
et al., 1987). McDONALD and KREITMAN took the case where we

have polymorphism data at a gene for one species and divergence to
a closely related species. They partitioned polymorphism and fixed

differences in their sample into the number of non-synonymous and

synonymous changes:

Poly. Fixed
Non-Syn. Py Dy
Syn. Ps Dg
Ratio PN/PS DN/DS

Under neutral theory, we expect a smaller number of non-synonymous
to synonymous fixed differences (Dy/Dg < 1) and exactly the same
expectation holds for polymorphism (Py/Pgs). Let’s consider a gene
with Lg and Ly sites where synonymous and non-synonymous mu-
tations could arise respectively. We can think of the underlying gene
genealogy at our gene, see Figure 5.14, with the total time on the coa-
lescent genealogy within the species as T;,; and the total time for fixed
differences between our species as T}, , note that T, is the total time
where a an allele that would appear as a subsitution could arise. Then
under neutrality we expect uLy(1 — C)T}o¢ non-synonymous poly-
morphisms (i.e. our number of segregating sites), and pLn(1 — C)T,,
non-synonymous fixed differences. We can then fill out the rest of our
table as follows:

Figure 5.13: (Hoatzin (Opisthocomus

hoazin). A leaf-eating bird.

A history of birds (1910) Pycraft, W.P.

Image from the Biodiversity Heritage Library.
Contributed by American Museum of Natural
History Library. Not in copyright.

l_'_l

Within pop.

Figure 5.14: An example gene geneal-
ogy for a set of alleles sampled within
a population and a single allele sam-
pled from a distantly-related species.
Here T}, is the total length of the
dotted branch, we use a ’ on the T to
indicate that this is not simply double
the divergence time for the gene as
the Thyrca for the sample has been
subtracted off.


https://archive.org/stream/historyofbirds00pycr/historyofbirds00pycr#page/238/mode/1up

Poly. Fixed
Non-Syn. pLn(1—C)Tier puLn(1—C)TY,,
Syn. p1LsTot nLsTy,

Ratio  Ly(1—C)/(Ls) Ly(1—C)/(Ls)

Therefore, we expect the ratio of non-synonymous to synonymous
changes to be the same for polymorphism and divergence under a
strict neutral model. We can test this expectation of equal ratios via
the standard tests of a 2 x 2 table. If the ratio of N/S is significantly
higher for divergence than polymorphism we have evidence that non-
synonymous substitutions are accumulating more rapidly than we
would predict given levels of constraint alone.

As example of a Mcdonald-Kreitman (MK) table consider the work
of FRENTIU et al. (2007) on the molecular evolution of L photopig-

ment opsin in admiral (Limenitis) butterflies, responsible for colour
vision in the long-wavelength part of the visual spectrum. FRENTIU
et al. found that the sensitivity of this opsin had shifted towards blue
in its sensitivity in L. archippus archippus (viceroy) compared to L.
arthemis astyanaz. To test whether this molecular evolution reflected
positive selection they sequenced 24 L. arthemis astyanax individuals
and one L. archippus archippus sequence. They identified 11 poly-
morphic sites in L. arthemis astyanax and 16 fixed differences, which
break down as follows:

Poly. Fixed
Non-Syn. 2 12
Syn. 9 4

Ratio 2/9 3/1

Note the strong excess of non-synonymous to synonymous diver-
gence compared to polymorphism (p-value of 0.006, Fisher’s exact
test), which is consistent with the gene evolving in an adaptive man-
ner among the two species. We would expect roughly only 3 non-
synonymous substitutions out of 16 substitutions if the gene was
evolving neutrally (16 x 2/11).
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Figure 5.15: White admiral (Limenitis
arthemis) and viceroy (Limenitis
archippus) butterflies. Basilarchia is
the old genus that these two species
were originally placed in. Viceroy

and monarch butterflies are Miillerian

mimics.

Field book of insects (1918). Lutz, F.E. .
illustrations by Edna L. Beutenmiiller. Image
from the Biodiversity Heritage Library.
Contributed by MBLWHOI Library. Not in
copyright.


https://www.flickr.com/photos/biodivlibrary/6244367298/in/photolist-avN2o3-avN1Eo-avN2gy-avN39b-avN1R9-avN2Hf-avN2CJ-avN2Um-avN1VS-avN3hU-avN2us-avN21m
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Chapter 5 summary.

e In a diploid population of size N, any of a set of 2N selec-
tively equivalent (ie neutral) alleles are equally likely to be
the ancestor of the entire population at some future distant
time point. Therefore, the probability that a new mutation
eventually fixes in the population is 1/2n.

e Under a model where a fraction C' of new mutations are
neutral and 1 — C mutations are strongly deleterious, 2NC'u
mutations arise every generation that can possibly become
substitutions. Therefore, the per-generation rate of neutral
substitution is 2N (1 — C)u x Y/2anv = (1 — C)u. This is inde-
pendent of the population size and just depends on levels of
constraint and mutation rates.

e The constant rate of neutral substitution gives rise to a per-
generation molecular clock, which can potentially be used to
estimate constraint (C) and mutation rates.

e Many summaries and tests of molecular evolution, e.g.
dn/dg, are based on comparing rates of substitution between
functional classes of sites. These allow differing levels of con-
straint to be identified and signals of adaptive substitution
to be detected.

e Tests of molecular evolution for adaptation that also in-
corporate both divergence and polymorphism, e.g. the
Mcdonald-Kreitman test, are potentially powerful tools as
polymorphism levels allow a somewhat independent measure
of levels of constraint.

Question 3.

Assuming that the mutation rate is u/gamete/generation and
the population size is N diploid individuals, what is the number
of new mutations introduced into the population each genera-
tion?

Question 4.

What is the probability of fixation of a unique new, neutral
mutation in a population of N haploid individuals?




Question 5.

Why is dN/dS much less than one for the majority of genes in
our genome?

Question 6.

You sequence a gene in Drosophila melanogaster and D. simu-
lans. You observe 5 non-synonymous substitutions out of 500
bases where non-synonymous substitutions could occur, and 15
synonymous substitutions out of 500 bases where synonymous
substitutions could occur. What is the level of constraint at

nonsynonymous sites?

Question 7.

Analyzing polymorphism and divergence data for a gene,
you calculate the following McDonald-Kreitman table.
Polymorp. Fixed

Synonymous 40 80

Non-synonymous 20 80
A) Based on the ratio of non-synonymous to synonymous poly-
morphisms, and given the 80 synonymous substitutions, how
many nonsynymous substitutions would you expect if this gene
were evolving neutrally?
B) Is this table consistent with the gene evolving neutrally? If
not what could explain the results?
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6

Neutral Diversity and Population Structure.

How does genetic differentiation build up between closely related pop-
ulations? How does migration act to reduce differentiation? These
questions are key to understand the conditions under which popula-
tions (and species) can start to genetically diverge from each other.
To answer these questions, we’ll first consider this in the context of
neutral alleles, and then return to think about selection and differen-
tiation in later chapters. We've considered neutral alleles drawn from
a randomly-mating population, and divergence among alleles drawn
from two distantly-related populations. We’ll now turn to consider
divergence among more closely related populations. In thinking about
the coalescent within populations we made the assumption that any
pair of lineages is equally likely to coalesce with each other. However,
when there is population structure this assumption is violated, as the
parent for an allele is likely to be found in the same population as it’s
child and so lineages in different populations are less likely to coalesce.

To develop models of about population structure we’ll use the
statistic Fgr, which we introduced in Section 3.0.1 of discussion of
summarizing population structure in allele frequencies. We have previ-
ously written the measure of population structure Fgr as

Fgp = —L 28 (6.1)

where Hg is the probability that two alleles sampled at random from
a subpopulation differ, and Hy is the probability that two alleles
sampled at random from the total population differ.

6.1 A simple population split model

Imagine a population of constant size of N, diploid individuals that
T generations in the past split into two daughter populations (sub-
populations) each of size N, individuals, which do not subsequently
exchange migrants. In the current day we sample an equal number of
alleles from both subpopulations.
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Consider a pair of alleles sampled within one of our sub-populations
and think about their per site heterozygosity. These alleles have expe-
rienced a population of size N, and so the probability that they differ
is Hg ~ 4N (assuming that N.y < 1, using our equation 4.13 for
heterozygosity within a population ).

The heterozygosity in our total population is a little more tricky
to calculate. Assuming that we equally sample both sub-populations,
when we draw two alleles from our total sample, 50% of the time
they are drawn from the same subpopulation and 50% of the time
they are drawn from different subpopulations. Therefore, our total
heterozygosity is given by

Hy = %HS + %HB (62)

where Hp is the probability that a pair of alleles drawn from our two
different sub-populations differ from each other. A pair of alleles from
different sub-populations cannot find a common ancestor with each
other for at least T generations into the past as they are in distinct
populations (not connected by migration). Once our alleles find them-
selves back in the combined ancestral population it takes them on
average 2N generations to coalesce. So the total opportunity for mu-
tation between our pair of alleles sampled from different populations is
2(T + 2N) generations of meioses, such that the probability that our
pairs of alleles is different is

Hp ~2u(T + 2N) (6.3)

We can plug this into our expression for Hp, and then that in turn
into Fgr. Doing so we find that
- ur T
T T +4N.u T +4N,

Fsr (6.4)

Figure 6.1: Change in allele frequen-
cies following a population split. Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R

Note that p cancels out of this equation. In this simple toy model,
Fgr is increasing because the amount of between-population diversity
increases with the divergence time of the two populations (initially
linearly with T'). Fgr grows at a rate give by 7/(4n,) so that differenti-
ation will be higher between populations separated by long divergence
times or with small effective population sizes.

The genome-wide Fsp between Bornean and Sumatran

orangutan species samples (Pongo pygmaeus and Pongo abelii)
is ~ 0.37 (LOCKE et al., 2011), representing a deep population

split between the species (potentially with little subsequent
gene flow). Within the populations the genome-wide average
Watterson’s 6 is @y = 1.4kb~!, estimated from the number of
segregating sites. Assume a generation time of 20 years, and a
mutation rate of 2 x 1078 per base per generation. How far in
the past did the two populations diverge?
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Figure 6.2: Orangutan (Pongo).
Brehms thierleben, allgemeine kunde des
thierreichs. Brehm, A. E. Image from the
Biodiversity Heritage Library. Contributed by
MBLWHOI Library. Not in copyright.

6.2 A simple model of migration between an island and the main-

land.

We can also use the coalescent to think about patterns of differen-
tiation under a simple model of migration-drift equilibrium. Let’s
consider a small island population that is relatively isolated from a
large mainland population, where both of these populations are con-
stant in size. We'll assume that the expected heterozygosity for a pair
of alleles sampled on the mainland is H ;.

Our island has a population size N; that is very small compared
to our mainland population. Each generation some low fraction m of
our individuals on the island have migrant parents from the mainland
the generation before. Our island may also send migrants back to the
mainland, but these are a drop in the ocean compared to the large
population size on the mainland and their effect can be ignored.

If we sample an allele on the island and trace its ancestral lin-
eage backward in time, each generation our ancestral allele has a low
probability m of being descended from the mainland in the preced-
ing generation (if we go back far enough the allele eventually has to
be descended from an allele on the mainland). The probability that
a pair of alleles sampled on the island are descended from a shared
recent common ancestral allele on the island is the probability that
our pair of alleles coalesces before either lineage migrates. Well our
pair of lineages coalesce with probability 1/2n; in a given generation
and, assuming that the rate of migration is not too high (m < 1), the


https://www.biodiversitylibrary.org/page/1008013#page/114/mode/1up
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probability that one or other lineage migrates in a given generation is
2m. So the probability that our lineages coalesce before they migrate
is

1/(2Ny)

Ny +2m’ (6.5)

which follows as an exactly analogous argument to our probability
that a pair of lineages coalesce before a mutation, eqn4.12, that we
used in deriving the expected heterozygosity.

Conditional on one or other of our alleles migrating to the main-
land, both of our alleles represent independent draws from the main-
land and so differ from each other with probability Hp;. Therefore,
the level of heterozygosity on the island is given by

Hy = (1 _ WN”) Hy (6.6)

LN + 2m

So the reduction of heterozygosity on the island compared to the
mainland is

H; 1(2Ny) 1
Frop=1— — = = . 6.7
M Hy  Yenn+2m  1+4Nm (6.7)

The level of inbreeding on the island compared to the mainland will
be high if the migration rate is low and the effective population size
of the island is low, as allele frequencies on the island are drifting and
diversity on the island is not being replenished by migration. The key
parameter here is the number individuals on the island replaced by
immigrants from the mainland each generation (Nym), even a few
migrants arriving on the island a generation is enough to prevent
much allele frequency differentiation building up.

We have framed this problem as being about the reduction in ge-
netic diversity on the island compared to the mainland. However, if we
consider collecting individuals on the island and mainland in propor-
tion to their population sizes, the total level of heterozygosity would
be Hr = H);, as samples from our mainland would greatly outnum-
ber those from our island. Therefore, considering the island as our
sub-population, we have derived another simple model of Fgr.
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You are investigating a small river population of sticklebacks,
which receives infrequent migrants from a very large marine
population. At a set of putatively neutral biallelic markers the
freshwater population has frequencies:

0.2, 0.7, 0.8

at the same markers the marine population has frequencies:
0.4, 0.5 and 0.7.

From studying patterns of heterozygosity at a large collection
of markers, you have estimated the long term effective size of
your freshwater population is 2000 individuals.

What is your estimate of the migration rate from the marine
populations into the river?

Fig. 851.—T us aculeatus L. Woods Hole, Mass.

Figure 6.3: Three-spined stickleback
6.3 Incomplete Lineage Sorting (Gasterosteus aculeatus).

Jordan, David Starr (1907) Fishes, New York
City, NY: Henry Holt and Company. Image
from Wikimedia Commons Public domain.

Often when we’re studying multiple populations, e.g. species, we're
interested in the underlying order in which populations split off from
each other, and the timing of these events. In the case where popula-
tions split off from each other with no subsequent gene flow, we can
represent this pattern of splitting by a population tree. Because it

can take a long time for a polymorphism to drift up or down in fre-
quency, multiple population splits may occur during the time an allele
is still segregating. This can lead to incongruence between the overall
population tree and the information about relationships present at
individual loci. As we have seen in the previous chapters the relation-
ships between sampled alleles at a locus are represented by coalescent
tree, sometimes call gene trees in the context of incomplete lineage
and more generally in phylogenetics. In Figure 6.4 and 6.5 we show

a simulation of three populations where the bottom population splits
off from the other two first, followed by the subsequent splitting of the
the top and the middle populations. We start both simulations with a
newly introduced red allele being polymorphic in the combined ances-
tral population. The most likely fate of this allele is that it is quickly
lost from the population, but sometimes the allele can drift up in fre-
quency and be polymorphic when the populations split, as the allele
in our two figures has done. If the allele is lost/fixed in the descendant
populations before the next population split, our allele configuration
will agree with the population tree, as it does in Figure 6.4, and so too
the gene tree will agree with population tree (as shown in the left side
of Figure 6.6). However, if the allele persists as a polymorphism in the
ancestral population until the top and the middle populations split,


https://commons.wikimedia.org/wiki/File:FMIB_51889_Three-spined_Stickleback,_Gasterosteus_aculeatus_L_Woods_Hole,_Mass.jpeg
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then the allele could fix in one of these populations and not the other.
Such an event leads to a substitution pattern that disagrees with the
population tree, as in Figure 6.5. If we were to construct a phylogeny
using the variation at this site we would see a disagreement between
the gene tree and population tree. In Figure 6.5 an allele drawn from
the top and the bottom populations are necessarily more closely re-
lated to each other than either is to an allele drawn from population
2; tracing our allelic lineages from the top and bottom populations
back through time, they must coalesce with each other before we reach
the point where the red mutation arose; in contrast, a lineage from
the middle population cannot have coalesced with either other lineage
until past the time the red mutation arose. An example of this ‘incom-
plete lineage sorting’ in terms of the underlying tree is shown on the
right side of Figure 6.6.
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A natural pedigree analogy to incomplete lineage sorting is the fact
that while two biological siblings are more closely related to each other
genealogically than either is to their cousin, at any given locus one of
the siblings can share an allele IBD with their cousin that they do not

Figure 6.4: An example of alleles
assorting among three populations
such that there is no incomplete
lineage sorting. Code here.

Figure 6.5: An example of alleles
assorting among three populations
leading to incomplete lineage sorting.
Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Loss_of_heterozyg_varying_pop.R

share with their own sibling, due to the randomness of Mendelian seg-
regation down their pedigree. In these cases, the average relatedness of
the individuals/populations disagrees with the patterns of relatedness
at a particular locus.

As an empirical example of incomplete lineage sorting, let’s con-
sider the work of JENNINGS and EDWARDS (2005) who sequenced
a single allele from three different species of Australian grass finches

(Poephila): two sister species of long-tailed finches (Poephila acuti-
cauda and P. hecki) and the black-throated finch (Poephila cincta,
see Figure 6.7). They collected sequence data for 30 genes and con-
structed phylogenetic gene trees at each of these loci, resulting in 28
well-resolved gene trees. Sixteen of the gene trees showed P. acuti-
cauda and P. hecki as sisters with P. cincta) (the tree ((A,H),C) ),
while for twelve genes the gene tree was discordant with the popu-
lation tree: for seven of their genes P. hecki fell as an outgroup to
the other two and at five P. acuticauda fell as an outgroup (the trees
((A,C),H) and ((H,C),A) respectively).

Let’s use the coalescent to understand this discordance between
gene trees and species trees. Let’s assume that two sister populations
(A & B) split ¢ generations in the past, with a deeper split from a
third outgroup population (C) to generations in the past. We’ll as-
sume that there’s no gene flow among our populations after each split.
We can trace back the ancestral lineages of our three alleles. The first
opportunity for the A & B lineages to coalesce is t; generations ago.
If they coalesce with each other in their shared ancestral population
before t5 in the past (left side of Figure 6.6) their gene tree will def-
initely agree with the population tree. So the only way for the gene
tree to disagree with the population tree is for the A & B lineages to
fail to coalesce in their shared ancestral population between ¢; and to;
270 We'll get a discordant
gene tree if A & B make it back to the shared ancestral population

this happens with probability (1 — 1/2n)

with C without coalescing, and then one or the other of them coalesces
with the C lineage before they coalesce with each other. This happens
with probability 2/3, as at the first pairwise-coalescent event there are
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Figure 6.6: The population tree of
three populations ((A, B), C), as the
white space blocked out between the
black shapes. Two different coalescent
trees relating a single allele drawn
from A, B, and C are shown with
thinner lines.

POEPHILA CINCTA, Gl

Figure 6.7: Banded grass Finch (P.
cincta). Illustration by Elizabeth
Gould.

Birds of Australia Gould J. 1840. CC BY 4.0
uploaded to Flickr by rawpixel.com.


https://www.flickr.com/photos/vintage_illustration/41073432105/in/photolist-WpHYmR-WBF2Uc-Uoq2kW-QAW9bN-UL33uh-RmyMxt-PKmBjN-8xpKmQ-8xmHg2-H6mfAS-dVREvC-7Qepuh-222xkPQ-7QepzS-25zw6ak-W28Nyk-Qa6d32-ijh2uH-6V8Srd-25zw5ov-8xpKB7-nUQ33T-6V8TLy-nV88oH-25RuYmq-21TcFz1-R2Gdy4-GdWRgi-GdMmry-GdWAwD-9mjwfA-25oHWeJ-HMbQre-6CQWTH-7TjKu-e6SYV-25RuXU3-pdKtxc-9hYCzE-voj7Sj-zqSdQb-6SNmDE-a1datx-a1dasZ-PFfPXY-rR7QYw-GJ7rey-6SJmuB-7TjFh
rawpixel.com
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are three possible pairs of lineages that could coalesce, two of which
(A & Cand B & C) result in a discordant tree. So the probability
that we get a coalescent tree that is discordant with the population
tree is

2 (e, (65)

This equation allows us to relate the fraction of loci showing incom-
plete lineage sorting to the population genetics parameters of the
ancestral population.

Let’s return to JENNINGS and EDWARDS’s Australian grass
finches example. They estimated that the ancestral population

size of our two long-tailed finches was four hundred thousand.
What is your best estimate of the inter-speciation time, i.e.
to — 17

The fraction of loci showing ILS, eqn (6.8), depends on the times
between population splits (t2 — ¢t1) Thus we should expect gene-tree
population-tree discordance when populations split in rapid succession
and/or population sizes are large.

Testing for gene flow. We often want to test whether gene flow has
occurred between populations. For example, we might want to es-
tablish a case that interbreeding between humans and Neanderthals
occurred or demonstrate that gene flow occurred after two populations
began to speciate. A broad range of methods have been designed to
test for gene flow and to estimate gene flow rates based on neutral ex-
pectations. Here we’ll briefly just discuss one method based on some
simple coalescent ideas. Above we assumed that gene-tree population-
tree discordance was due to incomplete lineage sorting due to popu-
lations rapidly splitting. However, gene flow among populations can
also lead to gene-tree discordance. While both ILS and gene flow can
lead to discordance, under simplifying assumptions, ILS implies more
symmetry in how these discordances manifest themselves.

Figure 6.8: Incomplete lineage sorting

between our single lineages sampled
from populations 1, 2, and 3. Pop-
ulation 4 is a distant outgroup such
that the lineages from 1 through 3
always coalesce with each other before
any coalesce with 4. The small dash
A A on the branch indicates the mutation

A—B occurring, giving rise to the

1 2 3 4 1 2 3 4

A B B A B A B A

ABBA or BABA mutational pattern
shown at the bottom.

Species
Mut. Pattern:
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Take a look at Figure 6.8. In both cases the lineages from 1 and

2 fail to coalesce in their initial shared ancestral population, and one

or the other of them coalesces with the lineage from 3 before they

coalesce with each other. Each option is equally likely; therefore the

mutational patterns ABBA and BABA are equally likely to occur

under ILS, but differential gene flow will break the symmetry. 1 ! Here we have to assume no structure
To test for this effect of gene flow, we can sample a sequence from in the ancestral population.

each of our 4 populations and count up the number of sites that show

the two mutational patterns consistent with the gene-tree discordance

nappa and npapa and calculate

NABBA — MBABA
NABBA + NBABA

(6.9)

This statistic will have expectation zero if the gene-tree discordance
is due to ILS. If there is gene flow between between 2 and 3, that ex-
cludes 1, see Figure 6.9, there will be an excess ABBAs and so the
ABBA-BABA statistic will be skewed positively (and conversely it’ll
skew negatively if gene flow occurred between 3 into 1). In practice,
whether this is significantly different from zero is judged by construct-
ing a 7 statistic with a standard error found by recalculating the
statistic on computationally resampled dataset of large genomic win-

Figure 6.9: A similar scenerio to Fig-
ure 6.8 but now gene flow has occured
populations 2 and 3, as depicited
by the white gap having opened up
between 2 and 3. Under this model
there is an excess of ABBAs, as they
can arise both by incomplete lineage
A A sorting (left) and by the lineages mov-
! Y - A ) B Y -l 5 . ing between 2 and 3 by gene flow and
A B B A A B B A

coalescing before the ancestral 1-2-3

population (right). BABAs can still

occur but only by incomplete lineage
sorting as in the right side of Figure

6.8.

dows.

Species
Mut. Pattern:

The big cats (Panthera ) clade is a recent radiation, with a consid-
erable amount of shared genetic variation still segregating across the
group. FIGUEIRO et al. (2017) examined patterns of genomic diver-

gence, incomplete lineage sorting, and gene flow across this clade using
ABBA-BABA tests with a Domestic cat sequence as the outgroup.
One example, for snow leopard, tiger, and lion is shown below. Snow
leopards and tigers are known more closely related to each other than
either is to lions. FIGUEIRO et al. counted SNPs where snow leop-

ard and lion sequences shared a derived allele to the exclusion of tiger
(ABBA) and those where where the tiger and lion sequences shared a
derived allele to the exclusion of snow leopard (BABA) and found:
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Snow leopard Tiger Lion Domestic cat  Counts
A B B A 1,434,106
B A B A 1,250,134
The calculated ABBA-BABA statistic, eqn(6.9), is 0.07+0.0026 s.e.,

which is highly significantly different from zero. The direction of this
statistics with a strong excess of derived SNPs where the tiger se-
quence is closer to the lion sequence than snow leopard, is consis-
tent with gene flow between tigers and lions after tigers split off from
snow leopards (Figure 6.10). Historically, lions had a large geographic
range, and so this interbreeding deep in the past is plausible.

Chapter 6 summary.

e We developed simple models of neutral population structure
and developed expectations of allele frequency differentiation
as measured by Fgt under these models.

e Under a simple model of population isolation, allele fre-
quency differentiation builds up due to genetic drift in
proportion to the split time divided by the population size.

e Only a small number of migrants between populations per
generation is sufficient to prevent the build up of neutral
allele frequency differentiation.

e Incomplete lineage sorting of ancestral variation is one
source of disagreement between population/species-trees and
gene trees. It occurs when the split times between popu-
lations are in quick enough succession that lineages do not
have time coalese between more closely related populations.

¢ Gene flow can also lead to patterns similar to incomplete
lineage sorting. We can test between a model of incomplete
lineage sorting and gene flow using tests such as ABBA-
BABA.

Figure 6.10: A simple schematic of
the population history of snow leop-
ard (Panthera uncia), tiger (Panthera
tigris, and lion (Panthera leo) species.
The arrow shows gene flow.

Images cropped from: The game animals of
India, Burma, Malaya, and Tibet (1907).
Lydekker, R Image from the Biodiversity

Heritage Library. Contributed by Smithsonian
Libraries. Not in copyright.


https://www.biodiversitylibrary.org/ia/gameanimalsofind00lyde/#page/311/mode/1up
https://www.biodiversitylibrary.org/ia/gameanimalsofind00lyde/#page/311/mode/1up

You are studying a two species of fish (red fish & blue fish),
and sequencing a set of pseudogenes. Here are some facts
you’ve collected:

o A third species of fish (black fish) diverged from the com-
mon ancestor of red/blue fish 3 million years ago. Assume
1 fish generation per year. Between red fish and black fish
there is on average 1 substitution every 100 basepairs.

e In these pseudogenes, within red fish, you estimate that
heterozygosity within red fish is 10~ per basepair.

e Fgr between red fish and blue fish is 0.1.

e There has been no gene flow among any of these species
after they split.

A) What is the per base mutation rate?

B) What is the effective population size of red fish?

C) When did the red and blue fish populations split? Assume
they have equal population sizes.

With reference to the population tree shown in Figure 6.11: A)
On the population tree the dashed lines show an incomplete
gene phylogeny (for a single allele drawn from each popula-
tion). At a locus, the Chimp lineage has the A allele. Complete
a gene genealogy in a way that would be consistent with Nean-
derthal and European lineages sharing a derived B allele, to the
exclusion of the African lineage (ABBA). Mark the branch that
a mutation from A — B must occur on in order to generate
this pattern (assuming a single mutation).

B) What is the probability of observing a gene tree consistent
with the one you drew in part A under the coalescent model?
Hint: Remember that incomplete lineage sorting is due to
failing to coalesce within an ancestral population.

Assume a generation time of 30 years, and an effective popu-
lation size of 10,000 in all populations. Further, assume that
lineages sampled from the Neanderthal and modern human
populations will definitely coalesce with each other before the
common ancestral population with chimp.
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Neanderthal chimp

Figure 6.11: A simple population tree
diagram, not to scale, of human pop-
ulations and Neanderthals. Assume,
for the sake of the question, that there
is no gene flow between populations
after they split. Assume that the
African and European populations
split ~100 thousand years ago (tpa)-
Neanderthals split from the modern
human populations ~700 thousand
years ago (tn). The population ances-
tral to humans and chimps split 6.5
Million years ago (t¢).






7

Phenotypic Variation and the Resemblance Between

Relatives.

THE DISTINCTION BETWEEN GENOTYPE AND PHENOTYPE is
one of the most useful ideas in biology.! The genotype of an individual
(the genome), for most purposes, is decided when the gametes fuse to
form a zygote (individual). The phenotype of an individual represents
any measurable aspect of an organism.

Your height, the amount of RNA transcribed from a given gene,
what you ate last Tuesday: all of these are phenotypes. Nearly any
phenotype we can choose to measure about an organism represents
the outcome of the information encoded by their genome played out
through an incredibly complicated developmental, physiological and/or
behavioural processes that in turn interact with a myriad of envi-
ronmental and stochastic factors. Honestly it boggles the mind how
organisms work as well as they do, let alone that I managed to eat
lunch last Tuesday.

There are many different ways to think about studying the path
from genotype through to phenotype. The one we will take here is to
think about how phenotypic variation among individuals in a popu-
lation arises as a result of genetic variation in the population. One
simple way to measure this genotype-phenotype relationship is to
calculate the phenotypic mean for each genotype at a locus. For exam-
ple, WANG et al. (2018) explored the genetic basis of budset time in

European aspen (Populus tremula); the effect of one specific SNP on
that phenotype is shown in in Figure 7.2. Budset timing is a key trait
underlying local adaptation to varying growing season length. The
associated SNP falls in a gene (PtF'T2) that is known to play a strong
role in flowering time regulation in other plants.

One way for us to assess the relationship between genotype and
phenotype is to find the best fitting linear line through the data, i.e.
fit a linear regression of phenotypes for our individuals on their geno-

L JOHANNSEN, W., 1911 The Geno-
type Conception of Heredity. The
American Naturalist 45(531): 129-159

Figure 7.1: European aspen P. trem-

ula.

Der baum. H. Schacht. 1860. BHL Image from
the Biodiversity Heritage Library. Contributed
by The Library of Congress. Not in copyright.
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Figure 7.2: The effect of a flowering
time gene (PtF'T2) SNP on bud-

set time in European aspen. Each
dot gives the genotype-phenotype
combination for an individual. The
horizontal lines give the budset mean
for each genotype and the vertical
lines show the inter-quartile range.
The dotted line gives the linear re-
gression of phenotype on genotype.
Thanks to Par Ingvarsson for sharing
these data from WANG et al. (2018).



https://archive.org/stream/derbaum00scha/#page/n284/mode/1up
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types at a particular SNP (1):
X ~p+aGy (7.1)

In the equation above, X is a vector of the phenotypes of a set
of individuals and G| is our vector of genotypes at locus I, with G
taking the value 0, 1, or 2 depending on whether our individual i is
homozygote, heterozygote, or the alternate homozygote at our locus of
interest. Here pu is our phenotypic mean. The slope of this regression
line (a;) has the interpretation of being the average effect of substi-
tuting a copy of allele 2 for a copy of allele 1. In our aspen example
the slope is —13.6, i.e. swapping a single T for a G allele moves the
budset forward by 13.6 days, such that the GG homozygote is pre-
dicted to set buds 27.2 days earlier than the 7T homozygote.

As a measure of the significance of this genotype-phenotype re-
lationship, we can calculate the p-value of our regression. To try to
identify loci that are associated with our trait genome-wide, we can
conduct this regression at each SNP we genotype in the genome.

One common way to display the results of such an analysis (called

a genome-wide association study or GWAS for short) is to plot the
minus logarithm of the p-value for each SNP along genome (a so-called
Manhattan plot). Here’s one from WANG et al. (2018) for their aspen
budset phenotype

—log1o(p)

- 0 7 T+ T T 1T T T T T T T T T T 11
1 2 3 4 5 6 7 8 9 10 11 13 15 17 19
Chromosome

The SNP with the most significant p-value is SNP in PtFT2. Note
that other SNPs in the surrounding region also light up as showing
a significant association with budset timing. This is because loci
that are in linkage disequilibrium with a functional locus may in
turn show an association, not because they directly affect the pheno-
type, but simply because the genotypes at the two loci are themselves
non-randomly associated. Below is a zoomed in version (Figure 2 in
WANG et al. (2018)) with SNPs coloured by the strength of their LD
with the putatively functional SNP. Note how SNPs in strong LD with
the functional allele (redder points) have more significant p-values.

Variation in some traits seems to have a relatively simple genetic
basis. In our aspen example there is one clear large-effect locus, which
explains 62% of the variation in budset. Note that even in this case,
where we have an allele with a very strong effect on a phenotype, this

‘We’ll encounter linear regressions

at various points during the next

few chapters, see the math appendix
around eqn A.44 for more background
details.

Figure 7.3: Manhattan plot of the
p-value of the linear association be-
tween genotype and budset in aspen.
Each dot represents the test at a
single SNP, plotted at its physical
coordinate in the genome. Different
chromosomes are plotted in alternat-
ing colours. The SNPs surrounding
the PtFT2 gene are shown in red.
From WANG et al. (2018), licensed
under CC BY 4.0.
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is not an allele for budset, nor is PtFT2 a gene for budset. It is an
allele that is associated with budset in the sampled environments and
populations. In a different set of environments, this allele’s effects
may be far smaller, and a different set of alleles may contribute to
phenotype variation. PtFT2, the gene our focal SNP falls close to, is
just one of many genes and molecular pathways involved in budset.
A mutant screen for budset may uncover many genes with larger ef-
fects; this gene is just a locus that happens to be polymorphic in this
particular set of genotyped individuals.

While phenotypic variation for some phenotypes has a relatively
simple genetic basis, many phenotypes are likely much more geneti-
cally complex, involving the functional effect of many alleles at hun-
dreds or thousands of polymorphic loci. For example hundreds of
small effect loci affecting human height have been mapped in Euro-
pean populations to date. Such genetically complex traits are called
polygenic traits.

In this chapter, we will use our understanding of the sharing of
alleles between relatives to understand the phenotypic resemblance
between relatives in quantitative phenotypes. This will allow us to
understand the contribution of genetic variation to phenotypic varia-
tion. In the next chapter, we will then use these results to understand
the evolutionary change in quantitative phenotypes in response to
selection.

7.0.1 A simple additive model of a trait

Let’s imagine that the genetic component of the variation in our trait
is controlled by L autosomal loci that act in an additive manner. The
frequency of allele 1 at locus [ is p;, with each copy of allele 1 at this
locus increasing your trait value by a; above the population mean.
The phenotype of an individual, let’s call her 7, is X;. Her genotype

at SNP [ is G;;. Here G;; = 0, 1, or 2, representing the number of
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Figure 7.4: The Manhattan plot
zoomed in on the top-hit (red SNPs
from Figure 7.3). SNPs are now
coloured by their D’ value with the
most significant SNP. D’ is the LD
covariance between a pair of loci (D,
eqn (3.15)) normalized by the largest
value D can take given the allele
frequencies. Figure from WANG et al.
(2018), licensed under CC BY 4.0.

“All that we mean when we speak
of a gene [allele] for pink eyes is, a
gene which differentiates a pink eyed
fly from a normal one —not a gene
[allele] which produces pink eyes

per se, for the character pink eyes

is dependent on the action of many
other genes.” - STURTEVANT (1915)

Throughout this chapter we are
following ideas that were developed by
FIsHER (1918) and numerous other
researchers. See PROVINE (2001) for a
history.

FISHER, R. A., 1918 The cor-
relation between relatives on the
supposition of Mendelian inheritance.
Trans. R. Soc. 52: 399-433
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copies of allele 1 she has at this SNP. Her expected phenotype, given
her genotype at all L SNPs, is then

L

JGin) =p+Xai=p+ Z Gia (7.2)
=1

E(X;|Gip,e -

where 1 is the mean phenotype in our population, and X 4 ; is the
deviation away from the mean phenotype due to her genotype. Now
in reality the phenotype is a function of the expression of those alleles
in a particular environment. Therefore, we can think of this expected
phenotype as being an average across a set of environments that occur
in the population.

When we measure our individual’s observed phenotype we see

Xi=p+Xa;+Xg, (7.3)

where X is the deviation from the mean phenotype due to the envi-
ronment. This Xg includes the systematic effects of the environment
our individual finds herself in and all of the noise during development,
growth, and the various random insults that life throws at our indi-
vidual. If a reasonable number of loci contribute to variation in our
trait then we can approximate the distribution of X4 ; by a normal
distribution due to the central limit theorem (see Figure 7.5). 2 Thus
if we can approximate the distribution of the effect of environmental
variation on our trait (Xg ;) also by a normal distribution, which is
reasonable as there are many small environmental effects, then the
distribution of phenotypes within the population (X;) will be normally
distributed (see Figure 7.5).

L=1, VE=0.05, VA=1.

L=4, VE=0.05, VA=1. L=10, VE=0.05, VA=1.

40

30

Frequency
Froquency

Frequency

20

Note that as this is an additive model; we can decompose eqn. 7.3
into the effects of the two alleles at each locus and rewrite it as

Xi=p+ Xin + Xip + Xig (7.4)

where X;y; and X;p are the contribution to the phenotype of the alle-
les that our individual received from her mother (maternal alleles) and

2 The central limit theory is discussed
briefly in the math appendix section
A.2.5.

Figure 7.5: The convergence of the
phenotypic distribution to a normal
distribution. Each of the three his-
tograms shows the distribution of
the phenotype in a large sample, for
increasingly large numbers of loci

(L =1, 4, and 10, with the pro-
portion of variance explained held
at V4 = 1). I have simulated each
individual’s phenotype following
equations 7.2 and 7.3. Specifically,
we’ve simulated each individual’s
biallelic genotype at L loci, assuming
Hardy-Weinberg proportions and that
the allele is at 50% frequency. We
assume that all of the alleles have
equal effects and combine them ad-
ditively together. We then add an
environmental contribution, which is
normally distributed with mean zero
and variance 0.05. Note that in the
left two pictures you can see peaks
corresponding to different genotypes
due to our low environmental noise
(in practice we can rarely see such
peaks for real quantitative pheno-
types). Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT1.R
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father (paternal alleles) respectively. This will come in handy in just
a moment when we start thinking about the phenotypic covariance of
relatives.

Now obviously this model seems silly at first sight as alleles don’t
only act in an additive manner, as they interact with alleles at the
same loci (dominance) and at different loci (epistasis). Later we’ll
relax this assumption, however, we’ll find that if we are interested
in evolutionary change over short time-scales it is actually only the
“additive component” of genetic variation that will (usually) concern
us. We will define this more formally later on, but for the moment
we can offer the intuition that parents only get to pass on a single
allele at each locus on to the next generation. As such, it is the effect
of these transmitted alleles, averaged over possible matings, that is
an individual’s average contribution to the next generation (i.e. the
additive effect of the alleles that their genotype consists of).

7.0.2 Additive genetic variance and heritability

As we are talking about an additive genetic model, we’ll talk about
the additive genetic variance (Vy4), the phenotypic variance due to the
additive effects of segregating genetic variation. This is a subset of the
total genetic variance if we allow for non-additive effects.

The variance of our phenotype across individuals (Vp) we can write
as

Ve =Var(X)=Var(Xa)+Var(Xg) =Va+ Vg (7.5)

In writing the phenotypic variance as a sum of the additive and envi-
ronmental contributions, we are assuming that there is no covariance
between X ; and Xg ; i.e. there is no covariance between genotype

and environment. 3 3 In this section we’re making use of
the properties of the variance of a
random variable, see math appendix
ean (A.25)

Our additive genetic variance can be written as
L
Va=Var(Xa) = Z Var(G;ia) (7.6)
=1

where Var(G;,a;) is the contribution of locus [ to the additive vari-
ance among individuals. Assuming random mating, and that our loci
are in linkage equilibrium, we can write our additive genetic variance

as

L
VA = Za%?pl(l — pl) (7.7)
=1

where the 2p;(1 — p;) term follows from the binomial sampling of two

alleles per individual at each locus. 4

4 These results follow from the proper-
ties of variance in math appendix eqn

(A.25).
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You have two biallelic SNPs contributing to variance in human
height. At the first SNP you have an allele with an additive
effect of 5cm which is found at a frequency of 1/10,000. At

the second SNP you have an allele with an additive effect of
—0.5cm segregating at 50% frequency. Which SNP contributes
more to the additive genetic variance? Explain the intuition of

your answer.

Above in eqn(7.4) we decomposed the additive genetic component
of Xa,; as Xy + Xp,; the additive contributions of the maternal
and paternal derived alleles in the i*" individual. Similarly we can
decompose the additive genetic variance V4 as

Va=Var(X4) = VCLT‘(XMJ‘) + VCLT(XP,Z') (7.8)

Var(Xa:) = Var(Xar:) = Va/2

assuming that our individuals are mating at random and that mater-
nal and paternal alleles are equal in their effect in offspring. ®

An example of the additive basis of variation using polygenic scores.
Now we don’t usually get to see the individual loci contributing to
highly polygenic traits. Instead, we only get to see the distribution

of the trait in the population. However, with the advent of GWAS in
human genetics we can see some of the underlying genetics using the
many trait-associated loci identified to date. Using the estimated ef-
fect sizes at each locus, each one of which is tiny, we can calculate the
weighted sum over an individual’s genotype as in equation 7.2. This
weighted sum is called the individual’s polygenic score. To illustrate
how polygenic scores work, we can take a set of 1700 SNPsS. The ef-
fects of these SNPs are tiny; the median, absolute additive effect size
is 0.07cm. Figure 7.6 shows the distribution of a thousand individuals’
polygenic scores calculated using these 1700 SNPs (simulated geno-
types using the UKBB frequencies). The standard deviation of these
polygenic scores ~ 2cm. The individuals with higher polygenic scores
for height are predicted to be taller than the individuals with lower
polygenic scores.

The narrow sense heritability We would like a way to think about
what proportion of the variation in our phenotype across individuals
is due to genetic differences as opposed to environmental differences.
Such a quantity will be key in helping us think about the evolution of
phenotypes. For example, if variation in our phenotype had no genetic

5 Genetic imprinting violates this
assumption, but is relatively rare.

8 Each of these was chosen as the SNP
with the strongest signal of associ-
ation with height in 1700 roughly
independent bins spaced across the
genome.
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Figure 7.6: Left) The distribution
of the number of height-increasing
. alleles that individuals carry at 1700
Al SNPs associated with height in the
-~ AN UK Biobank, for a sample of 1000
7 M individuals. right) The distribution
M mn ?Z of the polygenic scores for these
g B 7’ 1000 individuals. Plotted on top is
a normal distribution with the same
mean and variance. The empirical
variance of these polygenic scores is
0.13, the additive genetic variance
calculated by equation (7.7) is 0.135,
so the two are in good agreement.
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basis, then no matter how much selection changes the mean phenotype
within a generation the trait will not change over generations.

We’ll call the proportion of the variance that is genetic the heri-
tability, and denote it by h?. We can then write heritability as
~ Var(Xa) Va

=4 (7.10)

h2
Vp Vp

Remember that we are thinking about a trait where all of the alleles
act in a perfectly additive manner. In this case our heritability h2

is referred to as the narrow sense heritability, the proportion of the
variance explained by the additive effect of our loci. When we allow
dominance and epistasis into our model, we’ll also have to define the
broad sense heritability (the total proportion of the phenotypic vari-
ance attributable to genetic variation).

The narrow sense heritability of a trait is a useful quantity; indeed
we’ll see shortly that it is exactly what we need to understand the
evolutionary response to selection on a quantitative phenotype. We
can calculate the narrow sense heritability by using the resemblance
between relatives. For example, if the phenotypic differences between
individuals in our population were solely determined by environmental
differences experienced by these different individuals, we should not
expect relatives to resemble each other any more than random individ-
uals drawn from the population. Now the obvious caveat here is that
relatives also share an environment, so they may resemble each other
due to shared environmental effects.

Note that the heritability is a property of a sample from the pop-
ulation in a particular set of environments at a particular time.
Changes in the environment may change the phenotypic variance.
Changes in the environment may also change how our genetic alleles


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Height/Biobank_height.R
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are expressed through development and so change V4. Thus estimates
of heritability are not transferable across environments or populations.

7.0.8 The covariance between relatives

People have long been fascinated by the resemblance between rela-
tives, particularly twins (see Figure 7.7). Families hold a special place
in quantitative genetics, as remarkably we can use the resemblance
between relatives to directly estimate the heritability and covariance
of traits. To see this we can calculate the covariance in phenotype be-
tween pairs of individuals (1 and 2) who have phenotypes X; and Xo
respectively.” To think about imagine plotting the phenotypes of, say,
sisters against each other. The x and y coordinates of each point will
be the, say, heights of the pair of siblings. Do tall women tend to have
tall sisters, do short women tend to have short sisters? How much do
their phenotypes covary? If some of the variation in our phenotype

is genetic we expect identical twins to resemble each other more than
full siblings, who in turn will resemble each other more than half-sibs
and so on out (see Figure 7.8). Under our simple additive model of
phenotypes we can write the covariance as

Cov(X1,X2) =Cov (X1 + Xip+ Xig, Xomr + Xop + Xop) (7.11)

We can expand this out in terms of the covariance between the various
components in these sums.

7We’ll be dealing with covariance a
lot this chapter, see math appendix
section A.2.5 for more background.

Figure 7.7: The Cholmondeley Ladies.
Unknown British Painter, circa 1600.
Inscription on bottom left of the
painting “Two Ladies of the Chol-
mondeley Family, Who were born the
same day, Married the same day, And
brought to Bed the same day.” The
ladies are thought to be twin sisters,
but there’s a clue that they’re not

identical twins. Can you spot it?
Image from Wikimedia, considered public do-
main in the United States, UK Tate OCreative
Commons CC-BY-NC-ND (3.0 Unported)


https://commons.wikimedia.org/wiki/File:British_School_17th_century_-_The_Cholmondeley_Ladies_-_Google_Art_Project.jpg
https://www.tate.org.uk/art/artworks/unknown-artist-britain-the-cholmondeley-ladies-t00069
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To make our task easier, we will make two commonly made assump-

tions:

1. We can ignore the covariance of the environments between individ-
uals (i.e. Cov(X1g, Xop) =0)

2. We can ignore the covariance between the environment of one
individual and the genetic variation in another individual (i.e.

COU(X1E7 (XQM + Xgp)) = 0). 8 8 We can actually incorporate these
effects into the definition of additive

genetic variance, but here we’ll choose

The failure of these assumptions to hold can undermine our esti-
not to for simplicity.

mates of heritability, but we’ll return to that later. Moving forward
with these assumptions, we can simplify our original expression above
and write our phenotypic covariance between our pair of individuals as

Cov(X1,X5) = Cov(X1ar, Xom)+Cov(Xiar, Xop)+Cov(X1p, Xops)+Cov(X1p, Xap)
(7.12)

This equation is saying that, under our simple additive model, we can

see the covariance in phenotypes between individuals as the covariance

between the maternal and paternal allelic effects in our individuals.

We can use our results about the sharing of alleles between relatives to

obtain these covariance terms. But before we write down the general

case, let’s quickly work through some examples.

Id. Twins Cov= 0.979 Full Sibs Cov= 0.443 1/2 Sibs Cov= 0.246 1st Cousins Cov=0.101
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Figure 7.8: Covariance of phenotypes
between pairs of individuals of a given
relatedness. Each point gives the
phenotypes of a different pair of indi-

The covariance between identical twins Let’s first consider the case of
viduals. The additive genetic variance

a pair of identical twins, monzygotic (MZ) twins, from two unrelated is held constant at V4 = 1, such that
parents. Our pair of twins share their maternal and paternal allele the expected covariances (2F1,2Va)
. . . should be 1, 0.5, 0.25, and 0.125 re-
identical by descent (X1p = Xop and X1p = Xop). As their maternal spectively in good agreement with the
and paternal alleles are not correlated draws from the population, empirical covariances reported in the
i.e. have no probability of being IBD as we’ve said the parents are title of each graph. The data were

. . . simulated as described in the caption
unrelated, the covariance between their effects on the phenotype is of Figure 7.5. The dashed red line

shows x = y and the solid blue line
shows the best fitting linear regression
line. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT4.R
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zero (i.e. Cov(X1p, Xopnr) = Cov(Xipr, Xop) = 0). In that case, eqn.
7.12 is

Cov(X1,X3) = Cov(X1p, Xoy)+Cov(Xap, Xop) = Var(Xim)+Var(Xip)
(7.13)

where the middle step follows from the fact the maternal (or sim-
ilarly the paternal) allele in a pair of twins is the same allele so
Cov(Xipr, Xon) = Cov(Xanr, Xim) = Var(Xia), as the covariance
of random variable with itself is just its variance, and then the addi-
tive variance of the maternal allele contribution is Var(Xiar) = Va/2
following from eqn(7.9).

To calculate the narrow sense heritability we could then in principal
divide the covariance of our pairs of MZ twins (MZ; and MZy) by the

trait variance to give

- CO’U(MZl, MZQ)

h 2
Vp

= PMZ (7.14)

where pyyz is the correlation of pairs of MZ twins (see Appendix eqn
(A.43) for more on correlations). For example, we could estimate the
heritability of a measure of body from the MZ correlation in Figure
7.9. In general, this simple estimator isn’t great as the correlation of
identical twins includes the effects of the shared family environment of
the twins (i.e. Cov(X1g, Xag)).

Moreover, it can be inflated by non-additive effects as identical
twins don’t just share alleles, they share their entire genotypes, and
thus resemble each other in phenotype also because of shared dom-
inance effects (we’ll discuss non-additive effects in Section 7.1.1).
Better twin-based estimates of heritability are commonly used based
on the comparison of MZ vs twins that bypass some of these issues.

The covariance in phenotype between parent and child Children re-
semble their biological parents because children inherit their genome
from their parents (putting aside shared environments for the mo-
ment). If a mother and father are unrelated individuals, i.e. they are
two random draws from the population, then this mother and her
child share one allele IBD at each locus (i.e. r1 = 1 and rg = 5 = 0).
Let’s assume that our mother (ind 1) transmits her paternal allele to
the child (ind 2), in which case Xp1 = X2, and so Cov(Xp1, Xpa) =
Var(Xp1) = %VA, and all the other covariances in eqn. 7.12 are zero.
We'd also arrive at this result if instead we had thought of the mother
1

= §VA, we

can leverage this form of the covariance to directly estimate h? by

transmitting her own maternal allele. Thus Cov(X1, X32)

regression.
We can estimate the narrow sense heritability through the regres-
sion of child’s phenotype on the parental mid-point phenotype. The

:VA

Twin 2 (PBF)

Twin 1 (PBF)

Figure 7.9: A measure of body fat
in pairs of monozygotic (MZ) and
dizygotic (DZ) twins. Our sample
correlations are pyiz = 0.72 and
ppz = 0.10. Data from FAITH et al.
(1999), Code here.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/twins_body_fat/twins_body_fat.R
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parental mid-point phenotype is simply the average of the mum and
dad’s phenotype. See Figure 7.10 for an example from song sparrows.

Figure 7.10: Parent-midpoint off-
spring regression for beak depth and
~ ~ . tarsus length in song sparrows. The
phenotypes have been standardized
., . ) to have mean 0 and variance 1. The
red line shows the best fitting slope,
whose slope is reported on the graph.
Note that SMITH and ZAcH (1979)
regressed the average offspring phe-
notype for each family on parental
. . . mid-point (Xavg.kid ~ Xmid), as they
had multiple offspring per family.
1 However, this doesn’t change the
slope of the regression from the form
given by eqn (7.15). The grey line is
M 4 o i 2 A W o : : the z = y line. Data from SMITH and
Mid-parent Beak Depth Mid-parent Tarsus Length 7, ACH (&79)7 Code here.

Slope=0.43 Slope=0.3

Offspring Mean Beak Depth
Offspring Mean Tarsus Length

We denote the child’s phenotype by Xg;q and mid-point phenotype
by Xmid, so that if we take the regression Xyijq ~ Xmiq this regres-
sion has slope 8 = Cov(Xyia, Xmia)/Var(Xmia). The covariance of
Cov(Xyid, Xmid) = %VA, and Var(Xmiq) = %Vp, as by taking the aver-
age of the parents we have halved the variance, such that the slope of
the regression is

Cov(Xyid, Xmia)  Va 2
midkid = — v — 1 =N 1
Brid kid Var(Xmid) Vp (7.15)

i.e. the regression of the child’s phenotype on the parental midpoint
phenotype is an estimate of the narrow sense heritability.? If much of
the phenotypic variation is due to the (additive) differences in geno-
types among individuals (h? ~ 1), then children will closely resemble

their parents. Conversely if much of the variation is environmental

SONG SPARROW

(h? = 0), and there is no shared environment between parent and

child, children will not resemble their parents. Figure 7.11: Song sparrow (Melospiza

. . . . . melodia). “He is the most incurable
Applying this heritability estimate to the Song sparrow sample optimist of my acquaintance”.

we find h? = 0.43 and h? = 0.3 for beak depth and tarsus length e I mB. Tk bt

trations by Horsfall R.B. Image from the
. . . Biodiversity Heritage Library. Contributed by
respectively from Figure 7.10. So in SMITH and ZACH (1979) anal- American Museum of Natural History Library.

Not in copyright.

ysis, for example, 30% of the variance in tarsus length is atttribu- 9 See math appendix eq (A.46) for
tal to the additive effect of genetic differences among individuals. more on regression slopes.
SMITH and ZAcH (1979) also regressed the average offspring phe-

notype agains their fathers or mothers against their offspring, giving

a slope of Bgad,ave.kid and Bmum,kid- For tarsus length, for example,
they found Sqad,ave.kia = 0.19 and Bmum,ave.kia = 0.17. Following a
similar argument to that in eqn (7.15) we find that these slopes are
Bdad,kid = Y4/2/vp = h?/2, and the same for mums. Thus the regression
of offspring’s phenotype on a particular parent is an estimate of half


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/song_sparrow_herit/song_sparrow_herit.R
https://www.biodiversitylibrary.org/page/7282967#page/163/mode/1up
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the narrow-sense heritability, in line with the reduced slopes found by
SMITH and ZAcCH (1979), this halfing of the slope is due to the fact
that a single parent’s phenotype is a noisier estimate of the parental

mid-point and so less informative about the child s phenotype. These
parent specific estimates of heritability are particularly useful as they
allow us to investigate sex-specific inheritance and sexual dimorphism
(we’ll explore this in a later section).

Estimating heritability by these various parent-offspring regres-
sion have the issue of not controlling for environmental correlations
between parent and offspring, which can inflate our estimates of heri-
tability (as we will mistake environmentally mediated resemblance for
genetics). Raising the organisms in the lab could remove much of the
potential for shared environment between parent and offspring, but it
also removes much of the environmental variation and we (as evolu-
tionary geneticists) are usually not primarily interested in knowing the
heritability in the lab bur rather in the field. In some organisms, no-
tably plants, we can begin to sidestep these issues by raising offspring
in a common set of randomized field conditions (a so called “common
garden”). Another option is cross-foster animals, for example SMITH
and DHONDT (1980) returned to the song sparrow population and

swapped eggs between parents nests. They found that the covariance
between biological parents and children was still high despite these
children being raised in a different nest, but that there was no sig-
nificant covariance between foster parents and their non-biological
children (see Figure 7.13 for beak depth). This suggests that family
environment is not confounding the estimate of heritability in this
song sparrow sample. However, such manipulations are often impos-
sible in many systems, and issues of shared environmental covariance
due to maternal resources from egg (or seed) are still present.
Despite its issues, this measure of heritability provides useful in-

Figure 7.12: Regression of child’s
phenotype of the parental mid-point
phenotype. The three panels show
decreasing levels of environmental
variance (V) holding the additive
genetic variance constant (V4 = 1).
In these figures, we simulate 100 loci,
as described in the caption of Figure
7.5.We simulate the genotypes and
phenotypes of the two parents, and
then simulate the child’s genotype
following mendelian transmission. The
red line shows = = y and the blue line
shows the best fitting linear regression
line. Code here.
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Figure 7.13: Foster Parent-midpoint
offspring regression for beak depth
and tarsus length in song sparrows.
The red line shows the best fitting
slope, whose slope is reported on the
graph. The slope is not significant.
The grey line is the x = y line. Data
from SMITH and DHONDT (1980),
Code here.



https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT2.R
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/song_sparrow_herit/song_sparrow_herit.R
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tuition and is directly relevant to our discussion of the response to
selection in the next chapter. That’s because our regression allows us
to attempt to predict the phenotype of the child given the phenotypes
of the parents; how well we can do this depends on the slope. See Fig-
ure 7.12 for examples. If the slope is close to zero then the parental
phenotypes hold little information about the phenotype of the child,
while if the slope is close to one then the parental mid-point is a good
predictor of the child’s phenotype. As we will see, natural selection
will only efficiently drive evolution if children resemble their parents.
Thinking abour our prediction of child’s phenotpye more formally,
the expected phenotype of the child given the parental phenotypes is

B(Xkia| Xmums Xdad) = t + Bmidkia(Xmia — 1) = po + h*(Xpmia — p)
(7.16)
which follows from the definition of linear regression. So to find the
child’s predicted phenotype, we simply take the mean phenotype and
add on the difference between our parental mid-point and the popula-
tion mean, multiplied by our narrow sense heritability.

The covariance between general pairs of relatives under an additive
model The above examples above make clear that to understand

the covariance between phenotypes of relatives, we simply need to
think about the alleles they share IBD. Consider a pair of relatives (1
and 2) with a probability rg, 71, and r9 of sharing zero, one, or two
alleles IBD respectively. When they share zero alleles Cov((X1as +
X1p), (Xonm + Xop)) = 0, when they share one allele Cov((X1p +
Xip), Xoym + Xop)) = Var(Xiym) = %VA, and when they share two
alleles Cov((X1p + X1p), (Xons + Xop)) = Va. Therefore, the general

covariance between two relatives is
1
CO'U(Xl,XQ) =79 X 0+ 1 §VA + T'QVA = QFLQVA (717)

where F} 2 is our coefficient of kinship, i.e. the probability that
two alleles sampled at random from our pair individuals 1 and 2 are
IBD (see eqn (2.5)). So under a simple additive model of the genetic
basis of a phenotype, to measure the narrow sense heritability we need
to measure the covariance between pairs of relatives (assuming that
we can remove the effect of shared environmental noise). From the
covariance between relatives we can calculate V4, and we can then
divide this by the total phenotypic variance to get hZ.
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A) In polygynous red-winged blackbird populations (i.e. males

mate with several females), paternal half-sibs can be identified.
Suppose that the covariance of tarsus lengths among half-sibs is
0.25 em? and that the total phenotypic variance is 4 em?. Use
these data to estimate h? for tarsus length in this population.
B) Why might paternal half-sibs be preferable for measuring
heritability than maternal half-sibs?

Estimating additive genetic variance across a variety of different rela-
tionships (The animal model). In many natural populations we may
have access to individuals with a range of different relationships to
each other (e.g. through monitoring of the paternity of individuals),
but relatively few pairs of individuals for a specific relationship (e.g.
sibs). We can try and use this information on various relatives as fully
as possible in a mixed model framework. Building from equation 7.3,
we can write an individual’s phenotype X; as

where Xg; ~ N(0,Vg) and X4, is normally distributed across indi-
viduals with covariance matrix V4 A, where the the entries for a pair
of individuals i and j are 4;; = 2F; ; and A;; = 1. Given the matrix
A we can estimate V4. We can also add fixed effects into this model
to account for generation effects, additional mixed effects could also
be included to account for shared environments between particular
individuals (e.g. a shared nest). This approach is sometimes called the
“animal model”; and is widely used to in modern quantitative gentics
to estimate genetic variances and heritabilities.

7.1 Multiple traits

Traits often covary with each other, both due to environmentally in-
duced effects (e.g. due to the effects of diet on multiple traits) and
due to the expression of underlying genetic covariance between traits.
Genetic covariance, in turn, can reflect pleiotropy, a mechanistic effect
of an allele on multiple traits (e.g. variants that affect skin pigmenta-
tion often affect hair color), the genetic linkage of loci independently
affecting multiple traits, or the effects of assortative mating.

Consider two traits X ; and Xo; in an individual i. These traits
could be, say, the individual’s leg length and nose length. As before,

Figure 7.14: Red-winged blackbird
and tricoloured blackbirds (it Agelaius

phoeniceus and Agelaius tricolor).
Bird-lore (1899). National Association of
Audubon Societies for the Protection of

Wild Birds and Animals. Image from the
Biodiversity Heritage Library. Contributed by
American Museum of Natural History Library.
Not in copyright.


https://archive.org/stream/birdlore24nati/birdlore24nati#page/n89/mode/1up

we can write these as

X1 =m+X14:+X1,B
Xoi =po+Xoa;+Xop;
(7.19)

As before we can talk about the total phenotypic variance (Vi, V),
environmental variance (V3 g and V3 g), and the additive genetic
variance for trait one and two (Va4,1, Va,2). But now we also have

to consider the total covariance between trait one and trait two,

V1,2 = Cov(X1, X2), as well as the environmentally induced covari-
ance (Vg 12 = Cov(X1 g, X2 g)) and the additive genetic covariance
(Va2 = Cou(X1 4,X2 4)). To better understand the covariance aris-
ing due to pleiotropy, let’s think about a set of L SNPs contributing
to our two traits. If the additive effect of an allele at the i** SNP is
a1 and o 2 on traits 1 and 2, then the additive covariance between

our traits is

L
Vaie = 22%,10@,2?2'(1 - pi) (7.20)
i=1
assuming our loci are not in linkage disequilibrium. Thus a genetic
correlation arises due to pleiotropy, because loci that tend to affect
trait 1 also systematically affect trait 2. For example, alleles associated
with later age at menarche (AAM), age at first menstrual cycle, in
European women also tend to be positively associated with height (see
Figure 7.15), thereby creating a genetic correlation between AAM and
height.
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of gathering these terms that will be useful when we discuss selection:

Vi Vig
Vp = ’ 7.21
Pl v, ® (7.21)
and
G| Var Vae (7.22)
Vaie Vap

Here we’ve shown the matrices for two traits, but we can generalize
this to an arbitrary number of traits.

We can estimate these quantities, in a similar way as before, by
studying the covariance in different traits between relatives:

CO’U(XLZ',XQ’]') = 2Fi,jVA,1,2 (723)

An example of phenotype and genetic covariance are shown on
the left and right of Figure 7.17 respectively. Gray treefrogs (Hyla
versicolor) chorus to attract mates. Their call is made up of a trill,

AAM effect size

Figure 7.15: The additive effect sizes
of loci associated with female age at
menarche (AAM) and their effect size
on height in a European population.
Data from PICKRELL et al. (2016).
Code here.

Figure 7.16: Grey treefrog (Hyla

versicolor)

Historia Natural, tomo V “Reptiles y peces”
(1874) Juan Vilanova y Piera, p. 156. Image
from wikimedia contributed by Dorico.
Cropped. Public Domain


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/pickrell_pleiotropy/AAM_height_pickrell.R
https://commons.wikimedia.org/wiki/Category:Hyla_arboricola#/media/File:Hyla_arboricola_and_Hyla_versicolor.jpg
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a note rapidly pulsed a number of times, that is then repeated after
some period. Female frogs prefer males who make a lot of calls and
where each of those calls have a large number of pulses. However,
doing both is be very energetic, and so there is potentially a tradeoff
between these two aspects of a male frog’s call. Indeed WELCH et al.
(2014) found in lab-reared male frogs that the pulse number and the
time period between calls were positively correlated, left side of Figure
7.17, i.e. individuals were investing their energy in making either few
highly pulsed calls or many calls with few pulses. This phenotypic
covariance reflects underlying a genetic covariance between theses two
frog call characteristics (right side Figure 7.17). Fathers whose sons
have calls with highly pulsed calls also have sons whose calls are more

spaced apart.
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One useful summary of a genetic covariance is the genetic correla-
tion between two phenotypes

Vanio
Tg VaiVis (7.24)
where V41 and V4 » are the additive genetic variance for trait 1 and
2 respectively. Here, 7, tells us to what extent the additive genetic
variance in two traits is correlated.

Another important application of genetic covariances is in the study
of sexually antagonistic selection and the evolution of sexual dimor-
phism; here we’ll calculate the genetic covariance between male and
female phenotypes. For example, below is the relationship between
the forehead patch size for pied fly-catcher fathers and their sons and
daughters. The phenotype has been standardized to have mean 0 and
variance 1 in each group. The phenotypic covariance of the sample
of fathers and sons is 0.35, while the phenotypic covariance of fathers
and daughter is 0.23.

Figure 7.17: Phenotypic and genetic
correlations in male grey treeforg
(Hyla versicolor) calls. On the left
each male is shown as a dot, recording
their inter-call period and the number
of pulses in each call. One the right
each dot corresponds to a father with
the mean of sons for both phenotypes.
Data from WELCH et al. (2014)
downloaded from dryad, Code here.



https://datadryad.org/stash/dataset/doi:10.5061/dryad.40sj6
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Frog_calls_Hyla_versicolor/Frog_calls_Hyla_versicolor.R
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Figure 7.18: Relationship of stan-
dardized forehead patch size between
fathers and sons and daughters in
pied fly-catchers. Data from POTTI
and CANAL. Code here.

Size of son's forehead patch
1

Size of Daughter's forehead patch

Size of Father's forehead patch Size of Father's forehead patch

Assume we can ignore the effect of the shared environment in
our pied fly-catcher example.

A) What is the additive genetic covariance between male and
female patch size?

B) What is the additive genetic correlation of male and female
patch size? You can assume that the additive genetic variance

is the same in males and females.

7.1.1 Non-additive variation.

Figure 7.19: Ficedula hypoleuca, pied
fly-catcher.
type in an additive fashion. However, that does not have to be the bty sacs (184328809, Landom i oo

Up to now we’ve assumed that our alleles contribute to our pheno-

case as there may be non-additivity among the alleles present at a g:k:j{oe-Lbh:lvge é?,i}fé‘.ifff;véifiEﬁmm
locus (dominance) or among alleles at different loci (epistasis). We pibreien et n commsht
can accommodate these complications into our models. We do this

by partitioning our total genetic variance into independent variance

components. We'll see that dominant and epistatically interacting loci

can contribute to the additive genetic variance. In constructing these

variance components models we’ll assume that we know the alleles

contributing to variation in our trait and their effects, but in reality

we rarely know these. However, as we’ll see we don’t need to know

these details and we can partition our variance and estimate additive

variance and other forms of non-additive variation using the resem-

blance between various types of relatives.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/pied_fly_catcher_sex_genetic_corr/Potti_Canal_2011_sex_cov.R
https://www.biodiversitylibrary.org/page/40246319#page/335/mode/1up
https://www.biodiversitylibrary.org/page/40246319#page/335/mode/1up
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Dominance. To understand the effect of dominance, let’s consider
how the allele that a parent transmits influences their offspring’s phe-
notype. A parent transmits one of their two alleles at a locus to their
offspring. Assuming that individuals mate at random, this allele is
paired with another allele drawn at random from the population. For
example, assume your mother transmitted an allele 1 to you: with
probability p it would be paired with another allele 1, and you would
be a homozygote; and with probability ¢ it’s paired with a 2 allele and
you’re a heterozygote.

Now consider an autosomal biallelic locus ¢, with frequency p for
allele 1, and genotypes 0, 1, and 2 corresponding to how many copies
of allele 1 individuals carry. We’ll denote the mean phenotype of an
individual with genotype 0, 1, and 2 as Y&O, Ym, X 2 respectively.
This mean is taking an average phenotype over all the environments
and genetic backgrounds the alleles are present on. We’ll mean center
(MC) these phenotypic values, setting Y;)O = X0 — i, and likewise
for the other genotypes.

We can think about the average (marginal) MC phenotype of an
individual who received an allele 1 from their parent as the average
of the MC phenotype for heterozgotes and 11 homozygotes, weighted
by the probability that the individual has these genotypes, i.e. the
probability they receive an additional allele 1 or an allele 2 from their
other parent:

g1 = PY;,Q + qY;,lv (7.25)

Similarly, if your parent transmitted an 2 allele to you, your average
MC phenotype would be

aro = p7;71 + qu,o (7.26)

Let’s now consider the average phenotype of an offspring by how
many copies of the allele 1 they carry

genotype: 0, 1, 2.
additive genetic value: ag2 + a2, ap1+ar2, ap1+ae

i.e. the mean phenotype of each genotypes’ offspring averaged over
all possible matings to other individuals in the population (assuming
individuals mate at random). These are the additive MC genetic val-
ues (breeding values) of our genotypes. Here we are simply adding up
the additive contributions of the alleles present in each genotype and
ignoring any non-additive effects of genotype.

To illustrate this, in Figure 7.20 we plot two different cases of dom-
inance relationships; in the top row an additive polymorphism and in
the second row a fully dominant allele. The additive genetic values of
the genotypes are shown as red dots. Note that the additive values of
the genotypes line up with the observed MC phenotypic means in the
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Figure 7.20: The average mean-

3 centered (MC) phenotypes plotted

T against the number of allele 1 carried
(from 0 for 22 to 2 for 11). Top
Row: Additive relationship between
genotype and phenotype. Bottom
Row: Allele 1 is dominant over allele
2, such that the heterozygote has the
same phenotype as the 11 genotype.
The area of each circle is proportion

f f ' f f ' to the fraction of the population in
each genotypic class (p2, 2pq, and
¢?). One the left column p = 0.1
and the right column is p = 0.9.

. The additive genetic values of the
genotypes are shown as red dots. The
regression between phenotype and

f additive genotype is shown as a red
line. The black vertical arrows show
the difference between the average

1 S ] MC phenotype and additive genetic
value for each genotype. Code here.
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top row, when our alleles interact in a completely additive manner.
Our additive genetic values always fall along a linear line (the red line
in our figure). The additive values are falling along the best fitting line
of linear regression for our population, when phenotype is regressed
against the additive genotype (0, 1, 2 copies of allele 1) across all in-
dividuals in our population. Note in the dominant case the additive
genetic values differ from the observed phenotypic means, and are
closer to the observed values for the genotypes that are most common
in the population.

The difference in the additive effect of the two alleles as o — a1
can be interpreted as an average effect of swapping an allele 1 for an
allele 2; we’ll call this difference ay = ag2 — ar,1. Our ay is also the
slope of the regression of phenotype against genotype (the red line
in Figure 7.20). Note that the slope of our regression of phenotype
on genotype (ay) does not depend on the population allele frequency
for our completely additive locus (top row of 7.20). In contrast, when
there is dominance, the slope between genotype and phenotype (ay)
is a function of allele frequency (bottom row of 7.20). When a domi-
nant allele (1) is rare there is a strong slope of phenotype on genotype,
bottom left Figure 7.20. This strong slope is because replacing a single
copy of the 2 allele with a 1 allele in an individual has a big effect on
average phenotype, as it will most likely move an individual from be-
ing a 22 homozygote to being a 12 heterozygote. In contrast, when the
dominant allele (1) is common in the population, replacing a 2 allele
by a 1 allele in an individual on average has little phenotypic effect,


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/additive_effect.R
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leading to a weak slope (bottom right Figure 7.20). This small effect is
because as we are mainly turning heterozygotes into homozygotes (11),

who have the same mean phenotype as each other.

As as an example of how dominance and population allele frequen-
cies can change the additive effect of an allele, let’s consider the ge-
netics of the age of sexual maturity in Atlantic Salmon. A single allele
of large effect segregates in Atlantic Salmon that influences the sexual
maturation rate in salmon (AYLLON et al., 2015; BARSON et al.,
2015), and hence the timing of their return from the sea to spawn
(sea age). The allele falls close to the autosomal gene VGLL3 (CoUs-
MINER et al., 2013, variation at this gene in humans also influences

the timing of puberty). The left side of Figure 7.22 shows the age at
sexual maturity in males. The L allele associated with slower sexual
maturity is recessive in males. While the LL homozygotes mature on
average a whole year later, the additive effect of the allele is weak
while the L allele is rare in the population. The right panel shows
the effect of the L allele in females. Note how the allele is much more
dominant in females, and has a much more pronounced additive ef-
fect. The dominance of an allele is not a fixed property of the allele
but rather a statement of the relationship of genotype to phenotype,
such that the dominance relationship between alleles may vary across
phenotypes and contexts (e.g. sexes).
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The variance in the population phenotype due to these additive
breeding values at locus ¢, assuming HW proportions, is

Ve =p*(2a0,2)* + 2pq(ae + as1)® + ¢°(2a0,0)*
= 2(1’“%,1 + qa?g)

= 2pgas (7.27)

The total additive variance for the whole genotype can be found by

Figure 7.21: Atlantic salmon (Salmo

salar).

Histoire naturelle des poissons. 1796. Bloch,
M. E. Image from the Biodiversity Heritage
Library. Contributed by Ernst Mayr Library
, Museum of Comparative Zoology. Not in
copyright.

Figure 7.22: The average age at
sexual maturity for each genotype,
broken down by sex. The area of each
circle is proportional to the fraction
of the population in each genotypic
class. The regression between pheno-
type and additive genotype is shown
as a red line. Data from BARSON

et al. (2015). Code here.


https://www.biodiversitylibrary.org/page/4786765#page/197/mode/1up
https://www.biodiversitylibrary.org/page/4786765#page/197/mode/1up
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/salmon_age/Salmon_age.R
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summing the individual additive genetic variances over loci

L L
VA = Z VA,Z = ZngQgOé?. (7.28)
(=1 =1

Having assigned the additive genetic variance to be the variance ex-
plained by the additive contribution of the alleles at a locus, we define
the dominance variance as the population variance among genotypes
at a locus due to their deviation from additivity. We can calculate
how much each genotypic mean deviates away from its additive predic-
tion at locus ¢ (the length of the arrows in Figure 7.20). For example,
the heterozygote deviates

de1 = Yé,l — (ag1 +agz2) (7.29)

away from its additive genetic value, with similar expressions for each
of the homozygotes (d¢o and dg2). We can then write the dominance
variance at our locus as the genotype-frequency weighted sum of our
squared dominance deviations

Vb, = p2d2o + 2pqd§,1 + 92d§,2- (7.30)

Writing our total dominance variance as the sum across loci
L
Vp=> Vb (7.31)
=1

Having now partitioned all of the genetic variance into additive and

dominant terms, we can write our total genetic variance as
Va=Va+Vp. (7.32)

We can do this because by construction the covariance between our
additive and dominant deviations for the genotypes is zero. We

can define the narrow sense heritability as before h2 = V4 /Vp =
Va/(Va + Vi), which is the proportion of phenotypic variance due to
additive genetic variance. We can also define the total proportion of
the phenotypic variance due to genetic differences among individuals,
as the broad-sense heritability H? = Vg / (Vg + V).

Relationship (i,j)* Cov(X;, X;) Table 7.1: Phenotypic covariance be-
N tween some pairs of relatives, include
- 1 ’
parent-child / 2Va the dominance variation. * Assuming
full siblings L/aVy + 1/4Vp this is the only relationship the pair of
identical (monzygotic) twins Va+Vp individuals share (above that expected

from randomly sampling individuals
from the population).

15t cousins 1/8V4

The additive and dominance variance can be estimated by the re-
semblance among relatives. When dominance is present in the loci
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influencing our trait (Vp > 0), we need to modify our phenotype
covariance among relatives to account for this non-additivity. Specifi-
cally, our equation for the covariance among a general pair of relatives
(eqn. 7.17 for additive variation) becomes

COU<X17X2> = 2F1’2VA +1roVp (733)

where 75 is the probability that the pair of individuals share 2 alle-

les identical by descent, making the same assumptions (other than
additivity) that we made in deriving eqn. 7.17. In table 7.1 we show
the phenotypic covariance for some common pairs of relatives. Im-
portantly, in the presence of dominance variance, the regression of
offspring phenotype on parental midpoint still has a slope V4 /Vp, as a
parent and offspring share precisely one of their autosomal alleles IBD
but never their genotype IBD (assuming no inbreeding).

Full sibs and parent-offspring have the same covariance if there
is no dominance variance (as they have the same kinship coefficient
F 5). However, when dominance effects are present (Vp > 0), full-sibs
resemble each other more than parent-offspring pairs. That’s because
full-sibs can share both alleles (i.e. the full genotype at a locus) identi-
cal by descent. We can attempt to estimate Vp by comparing different
sets of relationships. For example, non-identical twins (full sibs born
at same time) should have 1/2 the phenotypic covariance of identical
twins if Vp = 0. Therefore, we can attempt to estimate Vp by look-
ing at whether identical twins have more than twice the phenotypic
covariance than non-identical twins.

The most important aspect of this discussion for thinking about
evolutionary genetics is that the parent-offspring covariance is still
only a function of V4. This is because our parent (e.g. the mother)
transmits only a single allele, at each locus, to its offspring. The other
allele the offspring receives is random (assuming random mating), as
it comes from the other unrelated parent (the father). Therefore, the
average effect on the child’s phenotype of an allele the child receives
from their mother is averaged over all possible random alleles the child
could receive from their father (weighted by their frequency in the
population). Thus we only care about the additive effect of the allele,
as parents transmit only alleles (not genotypes) to their offspring.
This means that the short-term response to selection, as described by
the breeder’s equation, depends only on V4 and the additive effect of
alleles. Therefore, if we can estimate the narrow-sense heritability we
can predict the short-term response.

While our V4 predicts the short term response to selection, if alleles
display dominance, our value of V4 will change as alleles at our loci
change in frequency. For, example as dominant alleles become com-
mon in the population their contribution to V4 decreases, we can see
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this in Figure 7.20 our rare dominant allele (bottom left) contributes
to the additive variance far more than when it is at high frequency
(bottom right). So if selection favours higher values of our trait, the
response to selection will push the dominant allele to higher frequency
decreasing V4. Therefore, if there is dominance our value of V4 will
not be constant across generations.

Up to this point we have only considered dominance and not epis-
tasis. However, we can include epistasis in a similar manner (for ex-
ample among pairs of loci). This gets a little tricky to think about,
so we will only briefly explain it. We can first estimate the additive
effect of the alleles by considering the effect of the alleles averaging
over their possible genetic backgrounds (including the other interact-
ing alleles they are possibly paired with), just as before. We can then
calculate the additive genetic variance from this. We can estimate the
dominance variance, by calculating the residual variance among geno-
types at a locus unexplained by the additive effect of the loci. We can
then estimate the epistatic variance by estimating the residual vari-
ance left unexplained among the two locus genotypes after accounting
for the additive and dominant deviations calculated from each locus
separately. In practice these high variance components are hard to
estimate, and usually small as much of our variance is assigned to the
additive effect. Again we would find that we mostly care about V4 for
predicting short-term evolution, but that the contribution of loci to
the additive genetic variance will depend on the epistatic relationships

among loci.

Question 4.

How could you use 1/2 sibs vs. full-sibs to estimate Vp? Why
might this be difficult in practice? Why are identical vs. non-
identical twins better suited for this?
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Chapter 7 summary.

e A key concern of quantitative genetics is how phenotypic
variation within populations is partitioned into environmen-
tal and genetic components of the variance.

e The additive genetic variance is The proportion of pheno-
typic variance is the narrow sense heritability h? = Va/vp.
These quantities are both measurements of the contribu-
tion of the current standing genetic variation in a particular
set of environments and should not be thought of as fixed
quantities of the population or trait.

e We can estimate the additive genetic variance and the her-
itability by using the resemblance of relatives, if we can
experimentally remove or statistically partition out the effect
if the shared environment among relatives.

o The genetic basis of variation in traits can genetically co-
vary due to pleiotropy, assortative mating, and linkage. We
can estimate the genetic covariance between traits by using
the covariance in different traits among relatives.

Alleles with dominance and epistatic effects can and do
contribute to V4 to the extent to which transmitting an
additional copy of the allele to an offspring changes their ex-
pected phenotype. These alleles and combinations of alleles
also contribute to higher order genetic variance components,
the dominance and epistatic covariance.

e The magnitude of the additive, dominance, and epistatic
genetic variance can change as allele frequency change and
recombination changes the context in which alleles are ex-
pressed.

The additive genetic variance for leg length on mice is 10mm?.

What is the expected covariance of mice who are first cousins?

Can you construct a case where V4 = 0 and Vp > 07 You need

just describe it qualitatively; you don’t need to work out the
math. (tricker question).
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The Response to Phenotypic Selection.

Evolution by natural selection requires:
1. Variation in a phenotype

2. That survival and reproduction is non-random with respect to this
phenotypic variation.

3. That this variation is heritable.

Points 1 and 2 encapsulate our idea of Natural Selection, but evolu-
tion by natural selection will only occur if the 3rd condition is also
met.! Tt is the heritable nature of variation that couples change within
a generation due to natural selection to change across generations
(evolutionary change).

Let’s start by thinking about the change within a generation due
to directional selection, where selection acts to change the mean phe-
notype within a generation. For example, a decrease in mean height
within a generation, due to taller organisms having a lower chance of
surviving to reproduction than shorter organisms. Specifically, we’ll
denote our mean phenotype at reproduction by pg, i.e. after selection
has acted, and our mean phenotype before selection acts by ppg. This
second quantity may be hard to measure, as obviously selection acts
throughout the life-cycle, so it might be easier to think of this as the
mean phenotype if selection hadn’t acted. So the change in mean phe-
notype within a generation is us — ups = S, we’ll call S the selection
differential.

We are interested in predicting the distribution of phenotypes in
the next generation. In particular, we are interested in the mean phe-
notype in the next generation to understand how directional selection
has contributed to evolutionary change. We’ll denote the mean phe-
notype in offspring, i.e. the mean phenotype in the next generation
before selection acts, as puyg. The change across generations we’ll call
the response to selection R and put this equal to uyg — pps-

See LEWONTIN (1970b). Note that
these requirements are not specific to
DNA, i.e. the concept of evolution
by natural selection is substrate
independent.

! Some people consider natural se-
lection to only operate on heritable
phenotype varation and so require all
three conditions to say that natural
selection occurs. This is mostly a
semantic point, however, the defintion
here is useful as we can distinguish
the action of selection from a possible
response.

Phenotype distribution before selection

Frequency
0 300 600
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l
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Phenotype distribution after selection, parental mean= 2.48
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[
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Phenotype distribution in the children Mean in children = 1.2
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0 1500
[
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Figure 8.1: Top. Distribution of a
phenotype in the parental population
prior to selection, V4 = Vg = 1.
Middle. Only individuals in the top
10% of the phenotypic distribution are
selected to reproduce; the resulting
shift in the phenotypic mean is S.
Bottom. Phenotypic distribution

of children of the selected parents;
the shift in the mean phenotype is R.
Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT3.R
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The mean phenotype in the next generation is
pnG = E(E(Xkid| Xmum, Xdad)) (8.1)

where the inner expectation is giving us the expected phenotype of the
child given the parents, and the outer expectation is over possible pair-
ings of parents formed by randomly mating individuals who survive

to reproduce. We can use eqn. 7.16 to obtain an expression for this
expectation:

UNG = pBS + Bmidkid(E(Xmid) — pBs) (8.2)

So to obtain pyg we need to compute E(X,,;q4), the expected mid-
point phenotype of pairs of individuals who survive to reproduce. This
is just the expected phenotype in the individuals who survived to
reproduce (ug), so

uNG = pps + h* (s — pups) (8.3)

So we can write our response to selection as
R=png — pps = h*(us — pps) = h*S (8.4)

So our response to selection is proportional to our selection differen-
tial, and the constant of proportionality is the narrow sense heritabil-
ity. This equation is sometimes termed the Breeder’s equation. It is

a statement that the evolutionary change across generations (R) is
proportional to the change caused by directional selection within a
generation (5), and that the strength of this relationship is determined

by the narrow sense heritability (h?).

@©
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Offspring corolla flare

T T T T T T
8 10 12 14 16 18

Maternal corolla flare

VE=1, VA=1 (L =100)

Child's phenotype

Parental midpoint

Figure 8.2: A visual representation

of the Breeder’s equation. Regression
of child’s phenotype on parental mid-
point phenotype (V4 = Vg = 1). The
parents and children of all families are
shown as grey or red points, However,
under truncation selection, only
individuals with phenotypes > 1 (red)
are bred. The use of the red families
only results in a phenotypic shift S in
the parental generation, which drives
a shift R in the offspring generation.
Code here.

The earliest formulation of the
Breeder’s equation appears as a
footnote in Lusnu (1943).

Figure 8.3: The relationship between
maternal and offspring corolla flare
(flower width) in P. viscosum. From
GALEN’s data the covariance of
mother and child is 1.3, while the
variance of the mother is 2.8. Data
from GALEN (1996). Code here.

Figure 8.4: Sticky jacob’s ladder

(Polemonium viscosum).

Flowers of Mountain and Plain (1920).
Clements, E. Image from the Biodiversity
Heritage Library. Contributed by New York
Botanical Garden, Mertz Library. Not in
copyright. Cropped from original.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT2.R
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Galen_flower_herit/Gallen_analysis.R
https://www.biodiversitylibrary.org/page/40791993#page/49/mode/1up
https://www.biodiversitylibrary.org/page/40791993#page/49/mode/1up

Question 1.

GALEN (1996) explored selection on flower shape in Polemo-
nium viscosum. She found that plants with larger corolla flare
had more bumblebee visits, which resulted in higher seed set
and a 17% increase in corolla flare in the plants contributing to
the next generation. Based on the data in the caption of Figure
8.3 what is the expected response in the next generation?

If we know R and S we can estimate h?. Heritabilities estimated
like this are called ‘realized heritability’. Estimates of the ‘realized
heritability’ can readily be produced in artificial selection experiments:

Question 2.

From the experiment shown in Figure 8.5, the mean corn oil
content in 1897 was 4.78, among the 24 individuals chosen to
breed to for the next generation the mean was 5.2. The off-
spring of these individuals had a mean kernel oil content of 5.1.
What is the narrow sense realized heritability?

To understand the genetic basis of the response to selection take a
look at Figure 8.6. The setup is the same as in our previous simulation
figures. The individuals who are selected to form our next generation

Parental generation

All individuals

Selected parents D

| I
80 90 100 110 120 130

Frequency
0 0 150

Num. up alleles

Next generation

150

Children

Frequency

I T T T T 1
80 90 100 110 120 130

Num. up alleles

carry more alleles that increase the phenotype in the current range of
environments currently experienced by the population. The average
individual before selection carried 100 of these ‘up’ alleles, while the
average individual surviving selection carries 108 ‘up’ alleles.
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Figure 8.5: Top. Phenotypic distri-
bution of oil in corn in 1897, and the
individuals who were selected to breed
for the next generation are marked in
blue. Bottom. The distribution in
the next generation. Data from the
Illinois selection experiment available
here, Code here.

Figure 8.6: Top. Distribution of the
number of up alleles in the parental
population prior to selection (red),

for the selected individuals in the

top 10% phenotypic tail of the pop-
ulation (blue) Bottom. The same
distribution for the offspring of the se-
lected parents in the next generation
(green). Code here.


https://www.ideals.illinois.edu/handle/2142/3525
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Illinois_long_term_selection_corn/corn_LTS.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT3.R
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As individuals faithfully transmit their alleles to the next gener-
ation the average child of the selected parents carries 108 up alleles.
Note that the variance has changed little, the children have plenty of
variation in their genotype, such that selection can readily drive evo-
lution in future generations. The average frequency of an ‘up’ allele
has changed from 50% to 54%. Gains due to selection will be stably
inherited to future generations and can be compounded on generation

after generation if selection pressures were to remain constant.

8.0.1 The Long-Term Response to Selection

If our selection pressure is sustained over many generations, we can
use our breeder’s equation to predict the response. If we are willing to
assume that our heritability does not change and we maintain a con-
stant selection differential (5), then after n generations our phenotype
mean will have shifted

nh*S (8.5)

i.e. our population will keep up a linear response to selection. There-

lllinois long term selection experiment
2010

\

1980
1950 IHO
H ILo

1920

0 5 10 15 20 25
Qil content (%)

fore, long-term, consistent selection can drive impressive evolutionary
change. One example of this comes from a field experiment in Illinois,
where plant breeders have systematically selected for higher and lower
oil content in corn (see our previous Figure 8.5 for one generation of
up selection). For over a century, they have taking seeds from the
plants in the extremes of the distribution and using them to form the
next generation. They have achieved impressive long-term responses,
pushing the population distributions well beyond their initial range
(Figure 8.8. For example, the oil up-selection line went from a mean
oil content of 4.7% in 1896 to 22.1% in 2004. They’ve established two
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Figure 8.7: The mean oil content of
corn in the Illinois long term selection
experiment. Two populations were es-
tablished in 1896 from the same inital
population. Two secondary popula-
tions were established in 1948 where
the direction of selection was reversed.
Linear fit to the up experiment shown
as a red line. Data available here,
Code here.

Figure 8.8: Density plots showing the
phenotypic distributions of the up-
and down-selection populations of the
Illinois long term selection experiment
over time. Data available here, Code
here.


https://www.ideals.illinois.edu/handle/2142/3525
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Illinois_long_term_selection_corn/corn_LTS.R
https://www.ideals.illinois.edu/handle/2142/3525
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Illinois_long_term_selection_corn/corn_LTS.R

secondary populations where the selection differential was reversed.

In the up-selection population they have maintained an impressively
linear increase in oil content, shown by red line in Figure 8.7, but
while the response is linear at first in the down line but they quickly
reach very low oil content (limited by the physical boundary at 0% oil
content).

A population of red deer were trapped on Jersey (an island off
of England) during the last inter-glacial period. From the fossil
record we can see that the population rapidly adapted to their
new conditions, perhaps due to selection for shorter reproduc-
tive times in the absence of predation (LISTER, 1989). Within
6,000 years they evolved from an estimated mean weight of the
population of 200kg to an estimated mean weight of 36kg (a 6
fold reduction)! You estimate that the generation time of red
deer is 5 years and, from a current day population, that the
narrow sense heritability of the phenotype is 0.5.

A) Estimate the mean change per generation in the mean body
weight.

B) Estimate the change in mean body weight caused by selec-
tion within a generation. State your assumptions.

C) Assuming we only have fossils from the founding population
and the population after 6000 years, should we assume that the
calculations accurately reflect what actually occurred within
our population?
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In wild populations, selection pressures are likely rarely sustained
for large numbers of generations. For example, the Grants’ have mea-
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14, Oy,

Figure 8.9: Maize (Zea mays.)

Prof. Dr. Thomé’s Flora von Deutschland.
1886. Thomé, O. W. Tmage from the Biodi-
versity Heritage Library. Contributed by New
York Botanical Garden. Not in copyright.

Figure 8.10: It’s not just deer that
evolve to be small on islands, pygmy
mammoths and elephants have
evolved from large mainland species
on numerous islands. For example,
the California Channel Islands were
home to a dwarf mammoth until
about 13,000 years ago.

Santa Rosa Mammuthus ezilis. wikimedia, CC BY
3.0.

Figure 8.11: Top) Mean body size of
the medium ground-finch population
measured each year. The 1973 95%
confidence intervals are shown as
horizontal bars. Bottom) Standard-
ized selection differentials on body
size. The statistical significance of
the selection differentials is shown,
black points are p < 0.001 and grey
p < 0.05. Data from GRANT and
GRANT (2002) Code here.


https://www.biodiversitylibrary.org/page/12306602#page/669/mode/1up
https://www.biodiversitylibrary.org/page/12306602#page/669/mode/1up
https://en.wikipedia.org/wiki/Pygmy_mammoth#/media/File:M._exilis_skeletal.png
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Darwins_Finches_unpred/Darwins_Finches_unpred.R
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sured phenotypic selection in Darwin’s Finches over multiple decades
on the island of Daphne Major. They have seen that selection pres-
sures in the Medium ground-finch (Geospiza fortis) have reversed a
number of times over the years (Figure 8.11).

Patterns of long-term phenotypic change in the wild. Looking across
the diversity of plants and animals we see huge changes in size and
form, can the strengths of selection we can observe over short time
periods possibly explain these changes?

To compare phenotypic changes over various time periods we need
some measure of the rate of phenotypic change. HALDANE (1949)

proposed the rate of change from X; to X5 in time interval At, mea-
sured in millions of years, be quantified as

log (X2/x,) _ log (X3) —log (X1)
At B At

(8.6)

by expressing this the log of the ratio,? we are looking at the propor-
tional fold change, which makes sense as a evolutionary change of lcm
in length is more impressive if you’re a mouse than an elephant. By
putting this on a log-scale we are looking at the fold relative change.
HALDANE called the units of this measure the Darwin’, with a one
Darwin change corresponding to a e ~ 2.71 fold change in a million
years, a two Darwin change corresponding to a e? ~ 7.34 fold change

in a million years and so on.

Question 4.

Calculate the rate of change in body size in the Jersey red deer
from Question 8.0.1 in Darwins. Do the same for the total
change in corn oil content in the up lines in Figure 8.7.

GINGERICH (1983) examined the absolute rate of phenotypic
change in field study data and the fossil record, a dataset considerably
expanded by UYEDA et al. (2011). In Figure 8.13 each point is an

observation of phenotype evolution. The z-axis shows the time period
in years over which the evolutionary change was observed, the z-axis is
plotted on a log;, scale. The y-axis shows absolute rate of phenotypic
change, measured in Darwins, again on a log; scale.

Over short timescales we see incredibly rapid evolution, note the
high rates on the left of Figure 8.13. For example, the first black dot
from the left is a case of evolution over decades in dog whelks. The
invasion the green crab (Carcinus maenas) drove the evolution of more
robust shells in Atlantic dog whelk (Nucella lapillus) in response to
predation along the North American coast (VERMEILJ, 1982). The
shell lip thickness of dog whelks in the St. Andrews, New Brunswick

2 Note that here, as elsewhere, log
refers the natural logarithm, i.e. log
base e. We’ll make it clear if we using
log in a different base, e.g. we’ll use
log, for log in base 10.

Figure 8.12: Variation in Atlantic dog
whelks (Nucella lapillus, synonym
Purrpura lapukkus) along the coast of

Great Britain.

The Cambridge natural history, Molluscs
and Brachiopods (1895). Cooke AH, Shipley
AE, Reed FRC. Image from the Biodiversity
Heritage Library. Contributed by University
of Toronto - Earth Sciences Library. Not in
copyright.


https://archive.org/stream/cambridgenatural03har/cambridgenatural03har#page/89/mode/1up
https://archive.org/stream/cambridgenatural03har/cambridgenatural03har#page/89/mode/1up

population had changed from 0.94mm to 1.44mm in just 25 years.
That’s a 50% increase, and a rate of 17060 Darwins.
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However, when we observe phenotypic evolution over longer time
periods it is usually much slower. For example, the rightmost black
dot in Figure 8.13 shows the phenotypic evolution along the lineage
leading to Triceratops. Triceratops measured in an impressive 25.9—
29.5 ft in length. They evolved from a close relative of Protoceratops,
which was a bit bigger than a sheep at ~5.9 ft in about 7.5 million
years (COLBERT, 1948). However, that’s only a phenotypic change of

0.143 Darwins, its only a roughly four fold change in millions of years.
These rates of change in dinosaurs have nothing on our dog whelks,
or many other examples of evolution on short time scales. Thus evo-
lutionary changes we can observe over short timescales readily explain
long term changes in quantitative phenotypes.

8.1 Fitness and the Breeder’s Equation.

So directional evolution occurs as selection drives a change in the
mean phenotype within a generation. But precisely how does this
relate to the natural-selection requirement that organisms vary in their
fitness? Some different ways of formulating the Breeder’s equation
give us insight into the conditions for directional selection and the
relationship to fitness landscapes.
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Figure 8.13: The absolute rate of
phenotypic evolution, measured in
Darwins, plotted against the time
interval over which the evolution was
observed. The green points show
direct observations of phenotypic
change in historical and contemporary
populations. The orange dots give
changes observed in the fossil record.
The three black dots left to right give
examples from dog whelks, our red
deer example, and Triceratops. Based
on an original plot by GINGERICH
(1983) using an expanded dataset
from UYEDA et al. (2011). Code
here.

ADAPTATIONS IN THE HEAD OF THE
HORNED DINOSAURS

Figure 8.14: The evolution of Tricer-
atops from Protoceratops; see here
for a fun updated view of the Coro-
nosauria phylogeny. See these figures
from Holtz for an updated & fuller
phylogeny.

The dinosaur book : the ruling reptiles and
their relatives. (1951) Colbert, E.H. Image
from the Internet Archive. Contributed by
American Museum of Natural History Library.
No known copyright restrictions.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Uyeda_evol_rates/Uyeda_evol_rates.R
https://www.geol.umd.edu/~tholtz/G104/lectures/104margino.html
https://www.geol.umd.edu/~tholtz/G104/lectures/104margino.html
https://www.biodiversitylibrary.org/ia/bookruli00colb#page/86/mode/1up
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8.1.1 Directional selection as the covariance between fitness and
phenotype.

To think more carefully about this change within a generation, let’s
think about a simple fitness model where our phenotype affects the
viability of our organisms (i.e. the probability they survive to repro-
duce). The probability that an individual has a phenotype X before
selection is p(X = x), so that the mean phenotype before selection is

pps = E[X] = /OO xp(z)dz (8.7)

— 00
The probability that an organism with a phenotype X survives to
reproduce is w(X), and we’ll think about this as the fitness of our
organism. The probability distribution of phenotypes in those who do
survive to reproduce is

P(X |survive) = M (8.8)

S p(@)w(z)de
where the denominator is a normalization constant which ensures that
our phenotypic distribution integrates to one. The denominator also
has the interpretation of being the mean fitness of the population,
which we’ll call w, i.e.

w = /OO p(x)w(x)d. (8.9)

Therefore, we can write the mean phenotype in those who survive to
reproduce as

s = %/_00 xp(z)w(z)dx (8.10)

If we mean center the distribution of phenotypes in our population,
i.e. set the phenotype before selection to zero, then

S=ps= %/_00 zp(x)w(z)dx = %E (Xw(X)) (8.11)

where the final part follows from the fact that the integral is taking
the mean of Xw(X) over the population.

As our phenotype is mean centered (E(X) = 0), we can see that
S has the form of a covariance® between our phenotype X and our
relative fitness w(X)/w.

S = E (Xw(X)/z) = Cov (X, »(X)/x) (8.12)

Thus our change in mean phenotype is directly a measure of the
covariance of our phenotype and our fitness. Rewriting our breeder’s
equation using this observation we see
Va

R =
Vp

Cov (X, w(X)/w) (8.13)

Figure 8.15: Red deer (Cervus ela-

phus).
British mammals. Thorburn, A. (1920) Image

from the Biodiversity Heritage Library.
Contributed by Field Museum of Natural
History Library. Licensed under CC BY-2.0.

3 See our math appendix Equation
A.40 for the definition of covariance.


https://www.flickr.com/photos/biodivlibrary/21269550204

we see that the response to selection is due to the fact that our fitness
(viability) of our organisms/parents covaries with our phenotype, and
that our child’s phenotype covaries with our parent’s phenotype.

Fitness Gradients and linear regressions To understand this in more
detail let imagine that we calculate the linear regression of an individ-
ual i’s mean-centered phenotype (X;) on fitness (W;), i.e.

the best fitting slope of this regression (3), we’ll call it the ‘fitness
gradient’, is given by

B = Cov(X,w(X)/z)/Vp (8.15)

i.e. the fitness gradient is the phenotype-fitness covariance divided
by the phenotypic variance. * Using this result we can rewrite the
breeder’s equation as

R=V4p (8.16)

i.e. we’ll see a directional response to selection if there is a linear
relationship of phenotype on fitness, and if there is additive genetic
variance for the phenotype. As one example of a fitness gradient, in
Figure 8.16 the lifetime reproductive success (LRS) of male Red Deer
is plotted against the weight of their antlers. The red line gives the
linear regression of fitness (LRS) on antler mass and the slope of this
line is the fitness gradient (5).

Fisher’s fundamental theorem of natural selection Finally how does
the mean fitness of our population evolve? If we choose relative fitness
to be our phenotype (X = w(X)/w), then the response in fitness is

VA VA
R=—=—Cov (w(X)/w,w(X)/w) = =V,
Vo ov (w(X)/w, »(X) /%) v P
=Vy (8.17)

i.e. the response to selection is equal to the additive genetic variance
for relative fitness. Or as Fisher put it

“The rate of increase in fitness of any organism at any time is equal to
its genetic variance in fitness at that time.” -FISHER (1930) (pg 37)

Fisher called this ‘the fundamental theorem of natural selection’. Our
proof here is just a sketch, and more formal approaches are needed
to show it in generality. There has been much gnashing of teeth over
exactly how broadly this result holds, and exactly what Fisher meant
(see EWENS, 2010, for a recent overview).
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4 see math appendix around eqnA.44
for more on linear regression

40

30
I

Lifetime Reproductive Success
10
L

o I

T T T T T T T T
300 400 500 600 700 800 900 1000
Antler mass

Figure 8.16: Lifetime reproductive
success (LRS) of male Red Deer as

a function of their antler mass. Data
from KRUUK et al. (2002); see the
paper for discussion of the complexi-
ties of equating this selection gradient
with the evolutionary response. Code
here..



https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/red_deer_selection_gradient/selection_grad_deer.R
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8.1.2 Directional Selection on Fitness Landscapes.

One common metaphor when we talk about evolution is that of a
population exploring an adaptive landscape with natural selection
pushing a population towards higher fitness states corresponding to
peaks in this landscape (see e.g. Figure 8.17). LANDE (1976) found
an evocative formulation of the Breeder’s equation which aids our
intuition of phenotypic fitness landscapes. LANDE showed that, if the
phenotype is normally distributed, the response to selection (R) could
be written in terms of the gradient (derivative) of the mean fitness (w)
of the population® as a function of the mean phenotype:

VA ow

R= w 0F

(8.19)

What does this mean? Well Va/w is always positive, so the direction
our population responds to selection is predicted by the sign of the
derivative (see Appendix Section A.l for more on derivatives). If in-
creasing the mean phenotype of the population slightly would increase
mean fitness (@/sz > 0) our population will respond that generation
by evolving toward higher values of the trait (R > 0), left panel of
Figure 8.18. Conversely, if decreasing the population mean phenotype
slightly would increase the mean fitness (9@/az < 0) the population
will that generation evolve towards lower values of the phenotype
(middle panel of Figure 8.18). Thus, if selection pressures remain
constant, we can think of the population as evolving on an adaptive
landscape where the elevation is given by the population mean fit-
ness. Natural selection operates on the basis of individual-level fitness,
but as a result of this our population is increasing in its average fit-
ness, i.e. our population is becoming better adapted. We’ll discuss the
caveats of this hill-climbing interpretation below.

What happens when it reaches the top of a peak? Well at the top

Figure 8.17: An example of a fitness
landscape, showing the mean fitness
of the population (W) as a function
of the mean phenotype of the pop-
ulation (Z. The arrows show the
expected direction of movement of
our population on the fitness land-
scape, with natural selection moving
our population toward local fitness
optima. The coloured bar shows the
derivative (slope) of the mean fit-
ness with respect to mean phenotype
(eqn. (8.19)). Red values are positive
slopes corresponding to the popula-
tion evolving towards the right of the
page, blue is a negative slope with the
population moving to the left.

5 This follows from the fact that we
can move the derivative inside the
integral of w, eqn (8_9), to write the
new term in eqn (8.19) a;

Bp(x
o= */ e
< w(z) (z - 06)

= — ———"dx
oo W Vp

_ cov(w(zx), ) (8.18)
var(zx)

which is 3, so that eqns (8.16) and
(8.19) are equivalent. For this equiv-
alence to hold, in the first line we
assume that w(z) is not a function of
Z, while the middle line is true when
p(x) is the normal distribution.
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Fitness (w)

—— Fitness
— = Mean Fitness
— Selection differential

Phenotype (x)

Phenotype (x)

of a peak 9W/sz = 0, as it is a local maximum, and so R = 0. As-
suming that the relationship between fitness and phenotype stays
constant, our population will stay at the top of the fitness peak. This
view of natural selection does not imply that the population is evolv-
ing to the best possible state. Our population is just marching up the
hill of mean fitness (end panel Figure 8.18). However, this peak isn’t
necessarily the highest fitness peak but simply whichever peak was
closest. So our population can become trapped on a local, but not
global peak of fitness (see, for example Figure 8.17).

One dramatic example documenting adaptive evolution to a new
fitness optimum is offered by a remarkable time-series of stickleback
evolution from a fossil lake-bed in Nevada (BELL et al., 2006). In
this lake the layers of sediment are laid down each year allowing a

very detailed time series with over five thousand fossils measured. The
time-series documents the evolution towards a new set of optimum
phenotypes in the fifteen thousand years after the initial invasion of
the lake by a heavily armoured stickleback species. In Figure 8.19
the population mean number of touching pterygiophores, the bones
supporting the dorsal spines, through the fossil record (Figure 8.20).
Note how quickly the species evolves toward its new value, presumably
a fitness optimum in their new environment, and the long subsequent
time interval over which the population mean phenotype fluctuates
about its new value.

HUNT et al. (2008) fitted a model of a population adapting to a

fitness landscape, with a single peak, to these time-series data. Their
fitted fitness surface is shown in the lower panel of Figure 8.19 . The
arrows show the moves that the population mean phenotype is making
on this inferred fitness surface. The population initially takes large
steps up toward the peak of this surface and subsequently fluctuates
around the peak. Under the interpretation that there is a single sta-

Fitness (w)

Phenotype (x)

Figure 8.18: A population evolving
on a (guassian) fitness surface. The
bottom panel shows the expected
individual fitness (w()) and mean
fitess as a function of phenotype. The
red line shows the best fitting linear
approximation to the relationship
between phenotype and individual
fitness, eqn (8.14), whose slope is 8.
The top panel shows the distribution
of the phenotype before and after
selection. Code here.
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Figure 8.19: Top) A time series of
stickleback phenotypic evolution
from the fossil record. After a heavily
armoured stickleback invades the
lake it quickly evolves towards fewer
touching pterygiophores (the bones
supporting the dorsal spines). Fossil
measurements means are calculated
in 250 year bins. Bottom) How our
population moves on the Inferred
fitness landscape. The arrows show
each move made by the population
in the 250 intervals. Data from BELL
et _al. (2006) and HUNT et al. (2008)
Code here.



https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/fitness_landscape_1D_animated.R
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Stickleback_fossil_traj/Stickleback_traj.R

154 GRAHAM COOP

tionary peak these fluctuations represent genetic drift randomly knock-
ing the population off its optimum, with selection acting to restore the
population towards this local optimum.

Issues with the interpretation of fitness landscapes. In practice, fit-
ness landscapes may not be constant. The environment may be con-
stantly changing so our population is constantly forced to change to
keep up with the fitness peak. Indeed our environment may change
so quickly that our population cannot keep up with the peak. Our
population is still trying to increase its mean fitness, to ‘adapt’, but
the landscape itself is evolving.In the case of very rapid environmental
change our population may slide further and further away the peak,
and as a consequence its mean fitness decreases which may drive the
population to extinction if our population drops below w < 1 for long
enough. The conditions for extinction are an active area of research
in the field of ‘Evolutionary rescue’. More generally, for our fitness
landscape result (eqn (8.19)) to hold, and for us to be able to talk of
our population attempting to evolve to higher mean fitness states, we
need the fitness of our phenotypes to be independent of the frequency
of other phenotypes in the population. (This independence allows us
to assume that the fitness of individuals is not a function of the mean
phenotype, as needed in eqn (8.18)). The assumption of frequency
independence may not hold when there is competition between indi-
viduals, e.g. for resources or mates, as then the fitness of an individual
depends on the strategies pursued by other individuals in the popula-

tions.

8.1.83 Stabilizing and Disruptive selection

Up to now we have just looked at directional selection, where selection
acts to change the mean phenotype. However, we can also use quanti-
tative genetic models to describe other modes of selection, extending
from effects on the population mean the next natural step is to think
about selection which acts on the population variance. Selection might
act more strongly against individuals in the tails of the distribution,
with those closer to the mean phenotype having higher fitness, which
lowers the variance. Selection could also disfavour individuals close
to the population mean, with individuals with extreme phenotypes
having higher fitness, which acts to increase the variance of the popu-
lation.

Directional selection occurs because of the covariance between our
phenotype and fitness, eqn (8.12). Just as expressing directional selec-
tion as a covariance allowed us to characterize directional selection as

the linear relationship between fitness and phenotype, 3, we can sum-

Figure 8.20: Fossil stickleback. Photo
by Peter J. Park from LOS0s et al.
(2013), licensed under CC BY 4.0.



marize the variance reducing selection by including a quadratic term
in the regression of fitness on phenotype

w; ~ Br; +Y2yx? +W (8.20)

This ~, the coefficient of the quadratic term in our model, is the
quadratic selection gradient: the covariance of fitness and the squared
deviation from the phenotypic mean (upg), i.e.

_ Cov (w(X), (X — uBS)Q)
fy - V2

Our 7 describes the curvature of the fitness surface around the mean.

(8.21)

Values of v < 0 are consistent with stabilizing selection, reducing
the variance. While values of v > 0 are consistent with disruptive
selection, increasing the variance.
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Under stabilizing selection the individuals with extreme phenotypes
in either tail have lower fitness, the result of which is to reduce the
phenotypic variance within a generation. A classic case of stabilizing
selection is birth weight in humans (KARN and PENROSE, 1951).
Mary Karn collected data for nearly fourteen thousand pregnancies
from 1935-46 for birth weight and mortality. These data are replotted
in Figure 8.21. The variance of all births is 1.5751b?, while in live
births this was reduced to 1.261b?, a 20% reduction in variance due to

stabilizing selection. It is worth noting that this selection pressure has
been greatly reduced over the decades in societies with access to good
prenatal care (ULIZZI and TERRENATO, 1992).

In Central Africa, Black-bellied seedcrackers (Pyrenestes ostrinus)

show disruptive selection on a remarkable beak-size polymorphism
(Figure 8.23). The small-beaked individuals feed on soft seeds from
one species of marsh sedge while the big-beaked individuals feed on
hard seeds from another sedge, which requires ten times the force
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Just like how (8 could be interpreted
as the mean gradient of the fitness
surface, our = is the mean curvature
of the fitness surface

vy=E [azw(z)/axﬂ = /32w(z)/8:c2p(m)dx

(8.22)
see Appendix Section A.1 for more on
2nd derivatives.

Figure 8.21: Bars show the total
number of births with different birth
weights (left axis) Dots show the
mortality probability for different
birth-weight bins (right axis), the red
line shows a fitted quadratic model
to mortality. Data from KARN and
PENROSE (1951) Table 2, collapsing
male and female births, Code here.

Figure 8.22: Lesser seedcracker Pyren-
estes minor a close relative of the
black-bellied seedcracker, whose beak
is about the same size as the smallest
black-bellied individuals.

The birds of Africa, comprising all the species
which occur in the Ethiopian region. (1986)
Sclater, W. L Plate by H. Grénvold Image from
the Biodiversity Heritage Library. Contributed
by Smithsonian Libraries. Not in copyright.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/birth_weight/birth_weight_selection.R
https://archive.org/stream/birdsofafricacom41shel/birdsofafricacom41shel#page/n306/mode/1up
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to crack. SMITH (1993) recorded the fates of hundreds of juveniles,
and found that individuals with intermediate beak sizes survived at
much lower rates (Figure 8.23) because they were not well adapted to
either seed resource. Break length is subject to disruptive selection,
as can also be seen by the significant negative quadratic term in the
regression of survival probability on break length. The variance of
mandible length in the total sample of individuals was 0.5mm? in the
survivors this variance increased by a factor of 2.5 to 1.3mm?.
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To illustrate how directional selection and quadratic terms play
off during adaptation, let’s consider the goldenrod gall fly (Furosta
solidaginis), aka the goldenrod ball gallmaker. See Figure 8.25. As it’s
wonderful name implies this insect lays its eggs in goldenrod plants,
and the larvae release chemicals forcing the plant to form a gall that
forms a home for the larvae as they develop. While this seems like a
pretty sweet deal for the larvae, it is not without its perils.

When the small, ball galls fall prey to parasitism from parasitoid
wasps. When all the ball galls are small in the population selection
drives strong positive directional selection on gall size, with little sta-
bilizing selection. Notice in the left panel of Figure 8.25 the good
agreement between the linear selection gradient and the fit including a
linear and quadratic term. However, bigger galls fall under the pall of
predation from downy woodpeckers and black-capped chickadees, who
seek out the tasty larvae. Thus intermediate size galls are favoured, a
fitness peak that the population quickly reaches. Once on this peak,
as shown in the right panel of Figure 8.25 there is no directional selec-
tion, i.e. no linear slope, but there is strong stabilizing selection, i.e. a
quadratic term. Thus the population will be maintained at this fitness
peak indefinitely if the environment remains unchanged.

Figure 8.23: Left An illustration of
the the remarkable variation in beak
size within Black-bellied seedcrackers
(P. ostrinus). Right A histogram of
a beak size measurement in Black-
bellied seedcrackers. All juveniles
are shown in grey, while the black
bars show the survivors. The red
curve shows the best fitting linear and
quadratic model to the probability
of survival, fitted using a binomial
generalized linear model with a logit
link function.

Left illustration from: Size variation in
Pyrenestes by Chapin J.P. in the Bulletin of
the American Museum of Natural History
(Vol. XLIX 1923) Image from the Biodiversity
Heritage Library. Contributed by Toronto
Library. Not in copyright.

Figure 8.24: The gall formed by the
goldenrod ball gallmaker (Eurosta
solidaginis) in a goldenrod plant.

The one on the right is cut to show a
partial cross-section.

Annual report of the New York State Museum
(1917) Image from the Biodiversity Heritage
Library. Contributed by The LuEsther T Mertz

Library, the New York Botanical Garden. Not
in copyright.


https://archive.org/stream/bulletinofameric49alleuoft/#page/417/mode/1up
https://archive.org/stream/bulletinofameric49alleuoft/#page/417/mode/1up
https://archive.org/stream/annualreport71newy/#page/196/mode/1upp
https://archive.org/stream/annualreport71newy/#page/196/mode/1upp
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Chapter 8 summary.

e Phenotypic natural selection requires variation in pheno-

types impacts fitness in a non-random way. For evolution by
natural selection to occur we need this phenotypic variation
to be heritable.

A simple model for the response to directional selection on a
phenotype is given by the breeder’s equation. The expected
response to selection between adjacent generations (R) is
proportional to the response to selection within a generation,
the selection differential (5), where the constant of propor-
tionality is the narrow-sense heritability (h?) of the trait.
Thus we expect to see, and indeed do see, strong responses
to selection when selection causes large changes within a
generation in heritable phenotypes.

If selection pressures and heritability remain constant we ex-
pect a linear response to selection across many generations.
We can often see this in selection experiments, but in the
wild selection pressures often fluctuate from generation to
generation. The large changes in phenotype we see in the
fossil record are easily explained by the strengths of selection
we see acting over short time-scales.

There are two other common ways to write the breeder’s
equation. The first uses the selection gradient (), the re-
gression of fitness on phenotype. The second, the fitness
landscape interpretation relies on writing this selection gra-
dient as the derivative of mean fitness by phenotype. The
fitness landscape form to the breeder’s equation helps us to
understand how and when we can expect selection to act to
increase the mean fitness of the population.

We can understand other forms of selection on our pheno-
type that are expected to act on the phenotypic variance
rather than the mean, such as disruptive and stabilizing se-
lection, by extensions of the breeder’ s equation to include
terms for quadratic selection gradients.
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Figure 8.25: Fitness surface for gall
diameter in goldenrod ball gallmakers.
The dots are the measured survival
probabilities of bins of different

sized galls.The solid line is a fitted
individual fitness surface (w( )).
Dotted line is w plotted as a function
of the population mean assuming a
normal distribution with a standard
deviation of 2mm. Data from WEIS
and GORMAN (1990), Code here.



https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Weis_Gorman_gall_size_stablizing_sel/gall_size_fitness_landscape.R
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You are studying the rapid evolution of light organ size in
fireflies (Photinus pyralis) in response to light pollution on a
prairie in Ohio. In January of 1985, a highway was constructed
through the prairie with bright streetlights. Since fireflies use
light signals to locate mates, individuals with smaller, and
thus less visible, light organs were less successful at mating in
these new light conditions. You know the light organ was, on
average, 4mm long prior to the construction of the highway.
In 2005, the average light organ size in this population before
mating was 6mm. If this firefly has 1 generation per year and
the narrow sense heritability is 0.1, what was the mean light
organ length of successfully reproducing individuals in 1985
(the first year of selection)?

You are a rabbit breeder, and you decide that you want rabbits

with long fur. The phenotypic variance is 4cm?. The covariance
of fur length between between full sibs is 1cm?. The mean fur
length in the initial population is 3cm. You choose to breed the
top 1/3 of the population with the longest fur, and their mean
fur length is 5cm.

Assuming that the covariance between sibs is due to only ad-
ditive genetic variance, how many generations of this selection
regime will it take for the fur length to be 10cm in the popula-
tion?




9
The Response of Multiple Traits to Selection.

The fitness of an organism depends on the outcome of many different
organismal processes and phenotypes. Thus natural selection is often
acting on many phenotypes in concert. In some cases the various
directions that selection tries to pull the population phenotypes may
not all be possible to satisfy all at once. Such fitness tradeoffs occur
when selection acts on genetic correlated phenotypes in contradictory
ways.
To understand the short-term consequence of selection on multi-
ple phenotypes we can generalize the Breeder’s equation to multiple
traits!. Considering two traits we can write our responses in both LLANDE, R., 1979 Quantitative
genetic analysis of multivariate evo-

traits as - - ! )
lution, applied to brain: body size

allometry. Evolution 38(1Part2):
Ry =Vai1B1+Vaa2B2 402-416

Ry =Vapofo+ Va1 (9.1)

where the 1 and 2 index our two different traits. Here V41 and V4o
are the additive genetic variance for trait 1 and 2 respectively, while
V41,2 is our additive covariance between our traits. Our selection gra-
dient for trait 1, 8y, represents the change in fitness as you change
trait 1 alone holding other traits constant constant. These 8 can be
estimated by multivariate regression, see below. The multivariate
breeders equation is a statement that our response in any one pheno-
type is modified by selection on other traits that genetically covary
with that trait.

We can also write this equivalently in matrix form, for an arbitrary
number of traits. Writing our change in the mean of our multiple
phenotypes within a generation as the vector S and our response
across multiple generations as the vector R. These two quantities are
related by

R=GVp 'S=Gg (9.2)

where Vp and G are our matrices of the variance-covariance of pheno-
types and additive genetic values (eqn. (7.22) (7.21)) and 3 is a vector
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of selection gradients (i.e. the change within a generation as a fraction
of the total phenotypic variance). Note that 8 = Vp 1S, such that
each [ represents the selection gradient on a trait accounting for its
phenotypic covariances with other traits.

An example of the outcome of selection on multiple phenotypes
consider the bout of selection measured by GRANT and GRANT

(1995) in medium ground Darwin’s finch (Geospiza fortis). They mea-
sured 634 birds in ’76, of which only 15% survived to 1977. The birds
who survived were heavier and had longer, deeper bills than average.

Figure 9.1: Medium ground-finch
(Geospiza fortis).

Journal of researches into the geology and
natural history of the various countries visited
by H.M.S. Beagle (1845). Darwin, C. Image
from the Biodiversity Heritage Library.
Contributed by MBLWHOI Library. Not in
copyright.

Trait Mean before Selection (1976) S B8 Mean next gen. (1978)
Weight 16.06 0.74 0.477 17.13
Bill Length 10.63 0.54 -0.144 10.95
Bill Depth 9.21 0.36  0.528 9.70

Accounting for the phenotypic covariances among the traits (Vp_l),
they found that both weight and bill depth showed direct directional
selection towards larger values (positive 8s). However, bill length
showed weak selection towards shorter beaks (negative ), reflecting
the fact that bill length shows positive phenotypic correlation with bill
depth and weight, and most of the direct selection was on weight and
bill depth dragging bill length along. Looking at the next generation
all three traits have all significantly increased due to the strong posi-
tive genetic correlations amongst the traits (Table 9.2). Thus despite
selection posssibly favouring shorter bill lengths, and certainly not
favouring long bills, bill length increased in the next generation due to
its positive genetic covariance with two traits that selection was acting
to increase.

As an example of correlated responses to selection, consider the
WILKINSON (1993) selection experiment on Stalk-eyed flies (Cyr-

todiopsis dalmanni). stalk-eyed flies have evolved amazingly long
eye-stalks. In the lab, WILKINSON established six populations of
wild-caught flies and selected up and down on males eye-stalk to body
size ratio for 10 generations (left plot in Figure 9.2). Despite the fact
that he did not select on females, he saw a correlated response in the
females from each of the lines (right plot), because of the genetic cor-
relation between male and female body proportions.

Table 9.1: Trait means and selection
differentials and gradients from an
episode of selection in Geospiza fortis.
Numbers from table 2 & 3 of GRANT
and GRANT (1995).

Wt BL BD
Wt 0.85
BL +0.95 0.67
BD 4087 +0.9 0.81

Table 9.2: Geospiza fortis Heritabil-
ities (diagonal) and genetic correla-
tions (off-diagonals) for weight (Wt),
bill length (BL), and bill depth (BD)
(numbers from BoAg, 1983)


https://www.biodiversitylibrary.org/page/2010582#page/393/mode/1up
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Figure 9.2: WILKINSON selected
two populations of flies for increased

eye-stalk to body length ratio in
Males Females R
males (mean shown as up triangles),

° A § 4 and two for a decreased ratio (down

® 4 A . .
s - /A\A/ \A/ \A s triangles), by taking the top 10 males
g A qé')’ A, P with the highest (lowest) ratio out
I} A o — .
> . N / > 84 s ~at \A of 50 measures. He also established
B I L0 8 ° « . t trol lations (circles). H
8 R N R . 8 A . wo control populations (circles). He
S N o/ ~, S M S S~ constructed each generation of females
g \ ~. g v AN .
o I o o g v\ by sampling 10 at random from each
L% S . L% © v—y—Y—, population. Data from WILKINSON

TV—v—y N, (1993). Code here.
v
9 \v/ \ g 1
- v
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
generations generations

At the end of ten generations in WILKINSON’s experiment
(Figure 9.2), the males from the up- and down-selected lines

had mean eye-stalk to body ratios of 1.29 and 1.14 respectively, b e o f &
while the females from the up- and down-selected lines had : ,T i
means of 0.9 and 0.82. 1@

A) WILKINSON estimated that when he selected the top/bot-
tom 10 males, he shifted the mean body ratio by 0.024 on
average within each generation (this is the difference between
the population mean and the mean of the parents in the next
generation). What is the male heritability of eye-stalk to body-
length ratio?

B) Assume that the additive genetic variance of male and fe-

male phenotypes are equal and that there is no direct selection

on female body-proportion in this experiment, i.e. that all of
the response in females is due to correlated selection. Can you
estimate the male-female genetic correlation of the eye-stalk

ratio? . . S
| Figure 9.3: Stalk-eyed flies (Diopsi-
dae).
Diptera. van der Wulp. 1898. Image from the

Biodiversity Heritage Library. Contributed by
Smithsonian Libraries. Not in copyright.

Estimating multivariate selection gradients We can estimate multi-
variate directional (8) and quadratic selection gradients () just as we
did for a single traits (; and x2), using linear and quadratic models
(in eqn (8.14) and (8.20)). For example, for two traits we can write

w; ~ Py + Yol + Bata + Y2v0u3  + Y1271, + W (9.3)


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/stalk_eyed_flies/Wilkinson_93_response_to_sel.R
https://www.biodiversitylibrary.org/item/39414#page/631/mode/1up
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where 81 and 7; are the directional and quadratic selection gradients
for trait one, and similarly for trait two (LANDE and ARNOLD,

1983). The covariance selection gradient between traits is given by
v1,2. This technique for measuring multivariate selection is sometimes
called ‘Lande-Arnold regression’.

BRODIE (1992)’s work provides a nice example of selection on
multiple predation-avoidance traits in northwestern garter snakes
(Thamnophis ordinoides). BRODIE released hundreds of snakes born
in the lab into the wild, and then performed mark-recapture observa-
tions to monitor their fate. Before releasing them he measured how
stripy they were, and their behavioural tendency to reversals of di-
rection during simulated flight from a predator. His quadratic fitness
surface is shown in Figure 9.4, based on fitting the regression given
by eqn (9.3) to juvenile survival. He found that neither single trait
directional or quadratic gradients were significant, i.e. there was no
apparent selection on one trait ignoring the other. However, there was
a significant negative covariance selection (y; 2 < 0). The individuals
with the highest chance of survival are either highly striped and per-
form few reversals (top left corner), or have little striping but reverse
course frequently (bottom right corner).

Multivariate fitness landscapes. In the last chapter we saw that we
can often think of our population moving across a mean fitness land-
scape. Selection on a single trait corresponding to our population
taking steps that climb the nearest fitness peak. Similarly our multi-
trait response to selection (often) can be thought of as our population
climbing a mean fitness landscape (see Figure 9.6). However, the path
our population takes now depends crucially on genetic correlations.

Previously we saw that our single trait selection gradient can be

Stripes

Reversals

Figure 9.4: Left) The garter snake
individual fitness surface estimated by
BRODIE (1992) lighter colours indi-
cate higher relative fitness. Middle)
The phenotypes of all of the snakes
released by Brodie, each dot is an
individual. Right) The phenotypes of
surviving snakes. Note how snakes in
the top left and bottom right corner
are over represented in the survivors.
Data from BRODIE (1992) Code here..

Figure 9.5: Northwestern garter snake
(Eutaenia cooperi, now Thamnophis

ordinoides)

The natural history of Washington territory,
with much relating to Minnesota, Nebraska,
Kansas, Oregon, and California (1859).
Cooper J.G. and Suckley, G. Image from the
Biodiversity Heritage Library. Contributed by
Smithsonian Libraries. Not in copyright.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/Garter_snakes_Brodie/Garter_snakes_Brodie.R
https://commons.wikimedia.org/wiki/File:The_natural_history_of_Washington_territory,_with_much_relating_to_Minnesota,_Nebraska,_Kansas,_Oregon,_and_California,_between_the_thirty-sixth_and_forty-ninth_parallels_of_latitude,_being_those_(14574590600).jpg

writen as f = /w9W/oz (if fitness is frequency independent, eqn(8.18)).
This holds for each of our traits and so we can rewrite our two-trait
breeders’ equation (eqn (9.1)) as

_ Va1 ow Vaa2 ow
Ro= o5, T " om
_ Va2 ow Va2 0w
Ry =% 551t % oa (9.4)

Phenotype 2
Phenotype 2

Phenotype 1

If there is no additive genetic correlation between the traits (V412 =
0, left panel of Figure 9.6 ), then our population is just evolving to-
wards its local fitness peak. It does so like an overly enthusiastic hill
climber walking up the nearest hill it finds, barely moving at all on the
flat parts, but sprinting quickly up the steeper parts till it comes to a
stop at the top of the hill. If our population is unlucky enough to find
itself on the slopes of a hill that is not the highest peak our population
will adapt and climb that hill but it will not reach the global optimum
(e.g. path A). With V412 = 0 our per-generation step size for each
trait being independent of each other.

The story can be quite different if there’s strong genetic correlation
between the two phenotypes (Right side Figure 9.6), now the path
taken by our population is biased towards being strong along the axes
of the genetic correlation. Sometimes the genetic correlation can aid
the progression up the hill when the genetic correlation aligns with
the slope (e.g. paths A and B) as selection on one phenotype boosts
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Phenotype 1

Figure 9.6: Paths taken on a two
dimensional mean fitness landscape
with no genetic correlation between
our two traits (Left) and a strong
positive correlation (right). Our pop-
ulation begins at one of four different
starting positions (A-D), with each
arrow marks a single generation’s step
(calculated deterministically using
eqn (9.4)). The scatter plot in the
lower left corner illustrates the genetic
correlation between the two traits.
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selection on the other phenotype. However, genetic correlations can
force the population to take strange paths up towards fitness peaks
and the going can be slow when the path up to the peak lies along an
axis perpendicular to the covariance in our traits (latter parts of path
C & D) In some cases the population can even evolve to an entirely
different peak due to genetic correlations (compare path D in left and
right panels).

More generally, we can extend this to an arbitrary number of phe-
notype writin the fitness landscape Breeder’s equation, in matrix
notation, as

R = %GV@(E) (9.5)

where V is the vector gradient operator, taking the derivative by the
vector of mean phenotypes, such that Vo = (99/oz,, 990/oz,, ---).
Thus the short-term evolutionary response of population to selection is
to shift its mean phenotypes (R) in a direct that locally increases the
mean fitness of the population (Vzw) but this fitness hill climbing of
our population is moderated by the genetic covariances amongst our
traits (G).

Ideas about adaptive fitness landscapes are key to understanding
the role of ecology in speciation. Species can be kept distinct in the
face of interbreeding if hybrids between the species are poorly adapted
to either niche of the parental species (a so called extrinsic postzygotic
barrier to successful hybridization). From a fitness landscape perspec-
tive this corresponds to species occupying different fitness peaks, such
that the hybrids between the two populations, who will be intermedi-
ate in phenotype, so fall in the valley between the peaks, i.e. have low
fitness.

9.1 Some applications of the multivariate trait breeder’s equa-
tion

The multivariate breeders equation has a lot of different uses in un-
derstanding the response of multiple traits to selection. It also offers
strong insights into the mechanistic underpinnings of kin selection and
sexual selection. We’ll discuss these next.

9.1.1 Sexual selection and the evolution of mate preference by in-
direct benefits.

Organisms often put an enormous effort into finding and attracting
mates, sometimes at a considerable cost to their chances of survival.
Why are individuals so choosy about who they mate with, particu-
larly when their choice seems to be based on elaborate characters and

arbitrary displays that surely lower the viability of their mates?

Figure 9.7: Male (left) and female
(right) common glow worm (Lampyris

noctiluca).

The animal kingdom : arranged after its
organization; forming a natural history of
animals, and an introduction to comparative
anatomy. (1863) Cuvier, G. Image from the
Biodiversity Heritage Library. Contributed
by University of Toronto - Gerstein Science
Information Centre. Not in copyright.


https://www.flickr.com/photos/internetarchivebookimages/18011950889/in/photolist-Uqr16w-UqqZZu-4VxYcU-ZiyCTu-8DEFyz-6pxZpd-ZiyCXC-yFyBF-GEoD6s-u3DKnd-6pxZrd-4q7euj-5KsWen-yqphkW-xvGrfw-ytA3rP-ybfeBA-yqi7oo-tFL3h3-xvJnrz-BPm4Jd-wLVg9F-trDXtp-wVbxw2-y6MpEq-BWCQVA-vb793E-tHGekh-u4av2t-oewQcC-ow671H-t6ZJg7-u4Ap1m-xntXw9-ovPEMu-u3DFws-vbeMw2-tHMJiY-u1FJpo-tLqTCw-fFFAEG-y1Pfmz-u1FHaE
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One major reason why individuals evolve to be choosy about who
they mate with is that it can directly impact their fitness. By choos-
ing a mate with particular characteristics, individuals can gain more
parental care for their offspring, avoid parasites, or be choosing a mate
with higher fertility. For example, female glow-worms flash at night

200

to attract males flying by. Females with larger, brighter lanterns have
higher fecundity, so males with a preference for brighter flashes will

150
L

gain a direct benefit to their own fitness. (Note that males will bene-

Number of Eggs
100
.

fit even if these differences in female fecundity are entirely driven by
differences in environment, and thus non-heritable.) Indeed male glow

worms have evolved to be attracted to brighter flashing lures.

T T T T T
6 8 10 12 14 16 18

However, even in the absence of direct benefits of choice, selection Lantern ize (mim’)
can still indirectly favour the evolution of choosiness. These indirect
Figure 9.8: Female glow worms who
have the largest, and therefore bright-
by choosing a mate whose phenotype indicates high viability (the est, lanterns have the highest fecun-
dity. Data from HOPKINS et al.
(2015). Code here.

benefits occur because individuals can have higher fitness offspring

so-called ‘good genes’ hypothesis), or by choosing a mate whose phe-
notype is simply attractive, and likely to produce similarly attractive
offspring (the ‘runaway’ or ‘sexy sons’ hypothesis).

Figure 9.9: Left) Assortative mat-

ing between males and females.
o Males vary in a display trait (e.g. tail
i ® S length), females vary in their prefer-
S 00 ence for this trait. We see evidence of
assortative mating as females with a
preference for a particular value of the
male trait tend to mate with those
males. Right) As both male trait
and female preference are genetic this
establishes a genetic correlation in the
next generation. This is simulated
data. Code here.

Father's display trait
0
1
-1

Mean sons' display trait

-2

-3

Mother's pref. trait Mean daughters' pref. trait

We'll denote a display trait, e.g. tail length, in males by & and
a preference trait in females by Q. Our display trait is under direct
selection in males, such that its response to selection can be written as

Let’s assume that the female preference trait, the degree to which
females are attracted to long tails, is not under direct selection 8¢ = 0.
Then the response to selection of the preference trait can be written as

Ro = 0BoVao+B3Vags =BaVags (9.7)


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/glow_worm_flashes/glow_worm_flashes.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/QT_cross_assortative_mating_2_kids.R
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So the female preference will respond to selection if it is genetically
correlated with the male trait, i.e. if V, o, is not zero. There’s a
number of different ways this genetic correlation could arise; the sim-
plest is that the loci underlying the male trait may have a pleiotropic
effect on female preference. However, female preference may often
have quite a distinct genetic basis from male display traits.

A more general way in which trait-preference genetic correlations
may arise is through assortative mating. As females vary in their tail-
length preference, the ones with a preference for longer tails will mate
with long-tailed males and the opposite for females with a preference
for shorter-tails. Therefore, a genetic correlation between display and
preference traits will become established (see Figure 9.9).

The males with the longer tails will also carry the alleles associated
with the preference for longer tails, as their long-tailed dads tended to
mate with females with a genetic preference for long tails. Similarly,
the males with shorter tails will carry alleles associated with the pref-
erence for shorter tails. Thus if there is direct selection for males with
longer tails, then the female preference for longer tails will increase
too, as it is genetically correlated via assortative mating.
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As an example of how direct selection on display traits can drive
the evolution of preference traits, let’s consider some data from gup-
pies. Guppies (Poecilia reticulata) are a classic system for studying
the interplay of natural and sexual selection. In some populations
of guppies, females show a preference for males with more orange
colouration.

HOUDE (1994) established four replicate population pairs of gup-
pies and selected one of each pair for an increased or decreased orange
coloration in males, selecting the top/bottom 20 out of 50 males. She
randomly chose females from each population to form the next gener-
ation, and so did not exert direct selection on females. She measured

Figure 9.10: Mean phenotypes for
the two up- and two down-selected
populations of Guppies. Left panel:
A response to selection was seen

due to the direct selection on male
colouration. Right panel: An indirect,
correlated response was also seen in
female preference. Data from HOUDE
(1994). Code here.

LEBISTES RETICULATUS . 1962 4 Of_

MAGYAR POSTA

Figure 9.11: Guppy (Poecilia reticu-

lata).

From a set of 1962 stamps of Hungary.
Contributed to wikimedia by Darjac, not
covered by copyright


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/Quant_gen/guppies_female_choice/guppies_female_choice.R
https://commons.wikimedia.org/wiki/File:1439_fish_40.png

the response to selection on male colouration and on female prefer-
ence for orange (left and right panels of Figure 9.10 respectively). In
the lines that were selected for more orange males, females showed
an increased preference for orange. While in those lines selected for
less orange in male displays, females showed a decreased preference
for orange. This is consistent with indirect selection on female orange
preference as a response to selection on male colouration, due to a
genetic correlation between female preference and male trait. It is a
priori unlikely that pleiotropy is the source of the genetic correlation
between these traits, rather it is likely caused by females assortatively
mating with males that match their colour preference.

Returning to our bird tail example, what could drive the direct
selection on male tail length? The selection for longer tails in males
could come about because longer tails are genetic correlated with
higher male viability, for example perhaps only males who gather an
excess of food have the resources to invest in growing long tail, i.e.

a long tail is an honest signal of fitness. This would correspond to a
‘good genes’ explanation of female mate choice evolution.

There’s another subtler way that selection could favour our male
trait. Imagine that the variation in female preference trait is because
some females have no strong preference for male tail length, but some
females have a strong preference for males with longer tails.

Males with longer tails would then have higher fecundity than the
short-tailed males as there’s a subset of females who are strongly
attracted to long tails, and these males also get to mate with the other
females. Thus selection favours long-tailed males, and so indirectly
favours female preference for longer tails; females with a preference for
longer-tails have sons who in turn are more attractive. This model is
sometimes called the sexy-son model. It is also called the Fisherian
runaway model (FISHER, 1915), as female preference and male trait
can coevolve in an escalating fashion driving more and more extreme
preferences for arbitrary traits. Thus many extravagant display traits
in males and females may exist purely because individuals find them
beautiful and are attracted to them.

9.1.2 Hamilton’s Rule and the evolution of altruistic and selfish be-

haviours

“ ‘The only reason for making a buzzing-noise that I know of is be-
cause you're a bee! Then [Pooh| thought another long time, and
said: ‘The only reason for being a bee that I know of is to make
honey...And the only reason for making honey is so as I can eat it ”
~Winnie-the-Pooh, MILNE and SHEPARD (1926).

One of the seismic shifts caused by Darwin’s work was the realisa-
tion that organisms don’t exist for the benefit of other individuals or
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“The case of the male Ar-
gus Pheasant is eminently
interesting, because it affords
good evidence that the most
refined beauty may serve as
a sexual charm, and for no
other purpose.” — DARWIN
(1888)

MALAY ARGUS PHEASANT.

Figure 9.12: Argus Pheasant.

A monograph of the pheasants. (1918). Beebe,
‘W Image from the Biodiversity Heritage Li-
brary. Contributed by Smithsonian Institution
Libraries. Licensed under CC BY-2.0.


https://www.flickr.com/photos/biodivlibrary/10053909294/
https://www.flickr.com/photos/biodivlibrary/10053909294/
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other species. Bees didn’t evolve to pollinate flowers, any more than
they evolved to make honey for bears. If we can say that there is a
‘reason’ why an organism exist it is only to leave offspring to the next
generation. Pooh can be forgiven for straying from Darwinian thought,
as he exists for the benefit of Christopher Robin and other childrens’
bedtime stories.

However, there’s a wrinkle to this Darwinian view. Worker bees
don’t make honey to benefit their offspring, they are sterile and are

working for the benefit of the Queen bee and her offspring. Individ- MAYNARD SMITH (1964) coined the
name kin selection to describe Hamil-

uals frequently behave in ways that sacrifice their own fitness for the X
ton’s approach to this problem. It’s

benefit of others. That selection favours such apparent acts of altru- also sometimes called the inclusive fit-

ism is puzzling at first sight. HAMILTON (1964a,b) supplied the first ness approach, as we need to include
- not just one individual’s fitness but

the weighted sum of all the fitness of
that while an individual is losing out of some reproductive output, all their relatives.

general evolutionary explanation of such altruism. His intuition was

the alleles underlying an altruistic behaviour can still spread in the
population if this cost is outweighed by benefits gained through the
transmission of these alleles through a related individual. Note that
this means that the allele is not acting in an self-sacrificing manner,
even though individuals may as a result.

Altruism reflects social interactions. So as a simple model let’s
imagine that individuals interact in pairs, with our focal individual ¢
being paired with an individual j. Imagine that individuals have two
possible phenotypes X = 1 or 0, corresponding to providing or with-
holding some small act of ‘altruism’ (we could just as easily flip these
labels and call them an unselfish act and a selfish act respectively).
Our pairs of individuals interacting could, for example, be siblings
sharing a nest. The altruistic trait could be as simple as growing at
a slightly slower rate so as to reducing sibling-competition for food
from parents, or more complicated acts of altruism such as children
foregoing their own reproduction so as to help their parents raise their
siblings.

Providing the altruistic act has a cost C to the fitness of our in-
dividual and failing to provide this act has no cost. Receiving this
altruistic act confers a fitness benefit B over individuals who did not
receive this act. HAMILTON’s rule states that such a trait will spread
through the population if

2FB>C (9.8)

where F is the average kinship coefficient between the interacting
individuals (¢ and 7). In the usual formulation of Hamilton’s Rule

our 2F is replaced by the ‘Coefficient of relationship’, which is the
proportion of alleles shared between the individuals. Here we use two
times the kinship coefficient to keep things inline with our notation for
these chapters. Note that if our individuals are themselves inbred we
need to do a little more careful to reconcile these two measures. So the



altruistic behaviour will spread even if it is costly to the individual if

its cost is paid off by the benefit to sufficiently related individuals.
As one example of kin-selection consider KRAKAUER (2005)’s

work on co-operative courtship in wild turkeys (Meleagris gallopavo).

Male turkeys often form display partnerships, with a subordinate male
helping a dominant male with displaying to females and defending the
females from other groups of males.

These pairs are often full brothers (F = 0.25), with the subordinate
male often being the younger of the two. The subordinate male often
loses out on mating opportunities over their entire lifetime by acting
as a wingman for their older brothers. KRAKAUER (2005) estimated
that dominant males gained an extra 6.1 offspring when they display

with a partner than males who display alone. Rhe subordinate males
lose out on fathering 0.9 offspring compared to solitary males. Thus
the costs of helping by subordinate males is more than compensated
by the fitness gains of their brothers ((2x 0.25) x 6.1 > 0.9), and so the
evolution of this altruistic helping in co-operative courtship is poten-
tially well explained by kin-selection (see AKGAY and VAN CLEVE,

2016, for more analysis).

Question 2.

How would this answer be changed if the male Turkey partner-

ships were only 1/2 sibs, or first cousins?

Where does this result come from? Well, we can use our quantita-
tive genetics framework to gain some intuition by deriving a simple
version of Hamilton’s Rule by thinking about the phenotypes of an
individual’s kin as genetically correlated phenotypes. To sketch a proof
of this result, let’s assume that our focal ¢ individual’s fitness can be
written as

W (i, j) = Wo + W; + W, (9.9)

where W; is the contribution of the fitness of the individual 7 due to
their own phenotype, and W is the contribution to our individual ¢’s
fitness due to the interacting individual j’s behaviour (i.e. j’s phe-
notype). With the benefit B and cost C, our W (4, j) are depicted in
Figure 9.14.

Following our multivariate breeder’s equation, we can write the

expected change of our behavioural phenotype as
R=3Va+ BjVau;, (9.10)

Our altruistic phenotype is increasing in the population if R > 0, i.e. if

BiVa+ BiVa; >0 (9.11)
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Figure 9.13: Turkey (Meleagris gal-

lopavo).

Bilder-atlas zur Wissenschaftlich-populéren
Naturgeschichte der Vogel in ihren simmtlichen
Hauptformen (1864). Wien,K.K. Hof Image
from the Biodiversity Heritage Library.
Contributed by Smithsonian Libraries. Not in
copyright.

Fitness of ind. i

Altruistic pheno. of ind. i

Fitness of ind. i

Altruistic pheno. of ind. j

Figure 9.14: Top) The fitness of
individual 7 as a function of their
behavioural phenotype, where
altruistic/non-altruistic behavioural
phenotypes are encoded as 1 and 0
respectively. The direct fitness cost of
behaving altruistically is C. Bottom)
The fitness of our focal individual i as
a function of the behavioural pheno-
type of their interacting partner (j).
Our focal individual gets an increase
B in fitness if their partner behaves
altruistically. Code here.


https://www.biodiversitylibrary.org/page/33050564#page/199/mode/1up
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/Hamilton_rule_B_C.R
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The slope B; of the regression of our focal individual’s behavioural
phenotype on fitness is proportional to —C. The slope 3; of the re-
gression of our interacting partner’s phenotype on our focal individ-
ual’s fitness is proportional to B (with the same constant of propor-
tionality). Therefore, our altruistic phenotype is increasing in the
population if

BiVa+BiVas; >0

pYaii
Va

So what’s the average genetic covariance between individual ¢ and j’s
altruistic phenotype? It’s the same behavioural phenotype in both

individuals, so the phenotypes are genetically correlated if our individ-

uals are related to each other. The covariance of the same phenotype
between two individuals is just 2F; ;V4 (see (7.17)). So our altruistic
phenotype is increasing in the population if

2F; ;Va

B
Va

>C

Seen from this perspective, HAMILTON’s rule is simply a statement
that altruistic behaviours can spread via kin-selection, if the average
cost to an individual of displaying an altruistic phenotype, i.e. car-
rying altruistic alleles, is paid back through the average benefit of
interacting with altruistic relatives (kin).

Under the kin-selection, relatedness and the breeding structure of
the populations are hypothesized to be a key factor in determining
the evolution of altruistic behaviours. One most impressive example
of the evolution of altruism is the repeated evolution of eusociality,
where sterile castes have evolved to help to rear their siblings rather
than their own offspring. Eusociality has evolved at least eight in-
dependent times in Hymenoptera (bees, wasps, and ants). There’s
huge variation in mating systems in Hymenoptera from high levels of
multiple mating to monandry. HUGHES et al. (2008) conducted a

comparative phylogenetic analysis of mating system across hundreds
of Hymenoptera species. They found that each of the eight of eusocial
clades had monandry, females mating with a single male, as an an-
cestral state. Thus, eusociality initially evolved in populations where
relatedness was maximized among siblings.

Other forms of altruism Kin-selection can favour altruism because
individuals carrying altruistic alleles interact with other related in-
dividuals who tend to display altruistic phenotypes and so gain an
advantage. However, there are other ways that altruistic behaviours
can spread than just through the interactions with kin.

>C (9.12)

Here we’ve following a simplified
version of QUELLER (1992)’s treat-
ment, to re-derive Hamilton’s rule

in a quantitative genetics framework
(Hamilton’s original papers did this in
a population genetics framework).

Figure 9.15: Australian honey-pot
Ant (Camponotus inflatus). Honey-
pot ants are gorged with honeydew
collected by their nest mates, till they
swell to the size of grapes, and are

used as a food storage device.

Ants, bees, and wasps; a record of observations
on the habits of the social Hymenoptera (1897)
Lubbock, J. Image from the Biodiversity
Heritage Library. Contributed by Smithsonian
Libraries. Not in copyright.


https://www.biodiversitylibrary.org/page/9657360#page/485/mode/1up
https://www.biodiversitylibrary.org/page/9657360#page/485/mode/1up
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Figure 9.16: A selection of the huge
diversity of Hymenoptera.

Naturgeschichte, Klassification und Nomen-
clatur der Insekten vom Bienen, Wespen und
Ameisen. Christ, JL Image from the Bio-
diversity Heritage Library. Contributed by
University of Illinois Urbana Champaign. Not
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There’s an inherent problem with co-operation among non-relatives.
Cheaters often win. To see the quandary of co-operation lets consider
the classic prisoner’s dilemma. Imagine that two criminals are caught
by the police, there’s not enough evidence to get them on the main
charge but they will be convicted of a lesser charge. The prisoners
don’t know each other well, they’ve never worked together before.
They face a year in prison each on the lesser charge. The police of-
fer each prisoner a deal, testify against your codefendant and we’ll
drop all charges against you, your codefendant will get three years.

If they both choose to sell out they’ll each get two years. The best-
combined outcome for the defendants is to co-operate with each other
and keep silent, they’ll each serve a year. However, the defendants
can not confer, and each has no way to know if the other has squealed
and ratted him out. The rational choice in this one-off interaction is
to sell out your fellow prisoner. There are many situations like this
where an interaction between individuals has the best outcome if they
work together. However, as individuals could cheat on the interaction,
the rational outcome may be to not co-operate. To place this in an
evolutionary setting, we could imagine that the fitness of organisms
in a population depended on their strategies in a one-off prisoner’s
dilemma game, e.g. pairing individuals at random. In such settings,

a cheating individual would have higher fitness than an altruist, and
so the population would evolve to all cheat. Yet cooperation between
non-relatives has evolved many times.

Silent (Co-operates) Confesses (Cheats) Table 9.3: The prisoner’s dilemma.
. R i 1’s choi 1
Silent (Co-operates) 1,1 3,0 WS prisoner - 5 choies, co imns
? ’ prisoner 2’s choice. each cell gives
Confesses (Cheats) 0,3 2,2 time served by prisoner 1 and 2.

The key factor leading to non-cooperative behaviour in this pris-
oner’s dilemma was the one-off nature of the interaction. The opti-


https://www.biodiversitylibrary.org/item/165219?#page/6/mode/1up
https://www.biodiversitylibrary.org/item/165219?#page/6/mode/1up
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mum strategy changes when our partners face this situation together
multiple times, e.g. if our gang members being hauled in regularly
over the years in their lives in crime. Intuitively, if one of our pris-
oners knows that her fellow gang member didn’t betray her last time
then you might expect that she would be more inclined to trust them
and not betray them this time. This setup is called the iterative pris-
oner dilemma, with our prisoners facing the ‘game’ with the costs and
benefits repeatedly with knowledge of how the other player behaved
on previous rounds of the game. in this iterated setting, a simple
‘tit-for-tat’ strategy is possible (AXELROD and HAMILTON, 1981).

Players following this strategy starts the game by cooperating, and
then copy the other prisoner’s strategy from the last move (if the
other prisoner cooperated last time they cooperate this time, and sim-
ilarly for cheating). Imagine again our population of organisms that
are now randomly paired to play iterated games for their fitness. If
many individuals in the population play a tit-for-tat strategy, a cheat-
ing individual in this population has lower fitness than a tit-for-tat
individual. Individuals playing a tit-for-tat strategy do not cooper-
ate with cheaters, and so pay little relative cost for interacting with
these individuals, but they gain the benefits of cooperation with other
altruistic individuals. Thus ‘reciprocal altruism’, where individuals
provide costly aid to individuals they expect will reciprocate at some
future date, can evolve (TRIVERS, 1971). Note that there’s nothing
truly altruistic about reciprocal altruism, the interacting individuals
are simply acting to increase their direct fitness across their lifetimes
and as such the interaction is mutually beneficial. Thus some prefer
the name ‘reciprocity’ rather than ‘reciprocal altruism’

We can use our Hamilton’s rule framework to understand the evolu-
tion of reciprocal altruism in more detail (QUELLER, 2011). The only

requirements for Hamilton’s rule to predict the spread of an altruistic
behaviour is that
B CO’U(X is X J)
Va

this is the same as eqn. (9.12) where now we’ve written out V4, ; as a

>C (9.14)

covariance between the behavioural phenotype of our focal individual ¢
and the interacting individuals j.

So we need a sufficiently positive level of covariance between the
altruistic behaviour of individual ¢ and that of the interacting indi-
viduals to outweigh the costs, i.e. altruists interact sufficiently often
with altruists to allow altruistic individuals who are paying costs to
on average receive the fitness benefits from other individuals. Under
kin-selection models, this positive covariance comes from the positive
genetic covariance interacting with family members. However, this

positive covariance can also arise if altruists display context-dependent

Mansmadia Fi £

Figure 9.17: common vampire bat
(Desmodus rotundus). This one was
caught on Darwin’s horse during his

travels in Chile.

The zoology of the voyage of H.M.S. Beagle ...
during the years 1832-1836 (1838). Owen R,
Darwin,C Image from the Biodiversity Heritage
Library. Contributed by Natural History
Museum Library, London. Not in copyright.


https://www.biodiversitylibrary.org/page/40299740#page/274/mode/1up
https://www.biodiversitylibrary.org/page/40299839#page/372/mode/1up
https://www.biodiversitylibrary.org/page/40299839#page/372/mode/1up

strategies, such as tit-for-tat, where they are only altruistic towards
individuals who haven’t cheated them recently in the past (QUELLER,
2011). Note that we're really stretching our use of the multivariate
breeder’s equation here, these covariances now aren’t really genetic
covariances. These covariances aren’t between traits in the same in-
dividual, or between related individuals, they are trait covariances by
individuals interacting with similarly co-operative individuals. These
interacting individuals don’t even have to be same species here, as
these models can be used to understand the evolution of inter-species
mutualisms.

We find altruism in some seemingly strange places. Vampire bats
(Desmodontinae), as their name suggests, feed only on the blood of
other animals. However, blood is not quite the superfood that Dracula
would have you believe. Blood is mostly water. Flying is incredibly
energetic, and so the bats have to consume half their body weight
in blood a night and will quickly die if they go without a meal. It is
often hard to find enough blood in a night, and so who miss out on
feeding only survive by other bats sharing their blood meals. Vampire
bats do share their meals with their kin, but also with unrelated indi-
viduals. As predicted by reciprocal altruism they tend to share with
individuals who have previously shared foods with them, thus the food
sharing can be seen as an adaptive behaviour (WILKINSON, 1984;
CARTER and WILKINSON, 2013).
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Chapter 9 summary.

e Natural selection rarely acts on one trait in isolation, rather
selection often acts on many traits at once. Thus the short-
term response of selection on a trait also reflects selection
on other partially genetically correlated traits. Many evolu-
tionary tradeoffs, among different aspects of fitness, can be
thought of in these terms.

e The between generation response of multiple traits to selec-
tion can be understood and predicted by the multi-variate
(multiple traits) breeder’s equation. The response of a trait
(R1) depends on the additive genetic variance for that trait
and direct selection gradient on the trait (V4 1/51), this di-
rect response is modified by indirect selection on the trait(s)
(2) that genetically covary (Va4 12/532).

e We can estimate the linear, directional selection gradients
(Bs) by the multivariate linear regression of fitness on phe-
notypes. We can incorporate stabilizing-, disprutive-, and
covarying-selection among traits by including quadratic
terms for the phenotypes into this regression.

e We can interpret the multivariate breeder’s equation in
terms of a fitness landscape approach, and see that natural
selection can drive our population towards local peaks of
mean fitness. However, the path it takes is biased to line
up better with the genetic correlations among traits, which
can in some cases slow the response of our population to

selection.

e The multivariate breeder’s equation is applied in many
places in evolutionary theory. For example, the evolution
of indirect selection for mate preference is an application,
as the genetic correlation established by assortative mating
between preference traits and display traits is key to un-
derstanding why mate preference can respond to indirect
selection. We also saw how kin selection models can be de-
veloped to understand altruism and Hamilton’ s rule using
the multivariate breeder’s equation by seeing relatives as
having genetically covarying fitnesses.




You collect observations of red deer within a generation,
recording an individual’s number of offspring and phenotypes
for a number of traits which are known to have additive genetic
variation. Using your data, you construct the plots shown in
Figure 9.18 (standardizing the phenotypes). Answer the fol-
lowing questions by choosing one of the bold options. Briefly
justify each of your answers with reference to the breeder’s
equation and multi-trait breeder’s equation.

A) Looking just at figure 9.18 A, in what direction do you
expect male antler size to evolve?

Insufficient information, increase, decrease.

B) Looking just at figures 9.18 B and C, in what direction do
you expect male antler size to evolve?

Insufficient information, increase, decrease.

C) Looking at figures 9.18 A, B, and C, in what direction do
you expect male antler size to evolve?

Insufficient information, increase, decrease.
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Figure 9.18: Observations of red deer
within a generation; recording an
individual’s number of offspring and
phenotypes (simulated data), which
are known to have additive genetic
variation. The figures left to right
are A-C. (Data are simulated. Code
here.)


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Red_deer_MV_selection.R




10
One-Locus Models of Selection.

“Socrates consisted of the genes his parents gave him, the experiences
they and his environment later provided, and a growth and develop-
ment mediated by numerous meals. For all I know, he may have been
very successful in the evolutionary sense of leaving numerous offspring.
His phenotype, nevertheless, was utterly destroyed by the hemlock
and has never since been duplicated. The same argument holds also
for genotypes. With Socrates’ death, not only did his phenotype dis-
appear, but also his genotype.[...] The loss of Socrates’ genotype is
not assuaged by any consideration of how prolifically he may have
reproduced. Socrates’ genes may be with us yet, but not his genotype,
because meiosis and recombination destroy genotypes as surely as
death.” ~-WI1LLIAMS (1966)

Individuals are temporary, their phenotypes are temporary, and
their genotypes are temporary. However, the alleles that individuals
transmit across generations have permanence. Sustained phenotypic
evolutionary change due to natural selection occurs because of changes
in the allelic composition of the population. To understand these
changes, we need to understand how the frequency of alleles (genes)
changes over time due to natural selection. We’ll also see that the
because an individual’s genotype is just a ephemeral collection of
alleles that genetic conflicts can arise that actually lower the fitness of
individuals.

As we have seen, natural selection occurs when there are differences
between individuals in fitness. We may define fitness in various ways.
Most commonly, it is defined with respect to the contribution of a
phenotype or genotype to the next generation. Differences in fitness
can arise at any point during the life cycle. For instance, different
genotypes or phenotypes may have different survival probabilities from
one stage in their life to the stage of reproduction (viability), or they
may differ in the number of offspring produced (fertility), or both.
Here, we define the absolute fitness of a genotype as the expected
number of offspring of an individual of that genotype. Differences in
fitness among genotypes drive allele frequency change. In this chapter
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we’ll study the dynamics of alleles at a single locus. In this chapter

we’ll ignore the effects of genetic drift, and just study the determin-
istic dynamics of selection. We’ll return to discuss the interaction of
selection and drift in a couple of chapters.

10.0.1 Haploid selection model

“The dream of every cell is to become two cells.” — Francois Jacob.

We start out by modeling selection in a haploid model, as this
is mathematically relatively simple. Let the number of individuals
carrying alleles A; and As in generation t be P, and Q. Then, the
relative frequencies at time ¢ of alleles A; and Ay are py = P;/(P:+Q4)
and ¢ = Q¢/(P: + Q¢) = 1 — p;. Further, assume that individuals of
type A; and As on average produce Wy and Wy offspring individuals,
respectively. We call W; the absolute fitness.

Therefore, in the next generation, the absolute number of carriers
of A; and A are Piy1 = Wi P, and Q1 = WaQy, respectively. The
mean absolute fitness of the population at time ¢ is

b Q1
+ W-
P+ Qy 2Pt+Qt

i.e. the sum of the fitness of the two types weighted by their relative

W, =W, = Wips + Wagq, (10.1)

frequencies. Note that the mean fitness depends on time, as it is a
function of the allele frequencies, which are themselves time depen-
dent.

As an example of a rapid response to selection on an allele in a
haploid population, we can consider some data on the evolution of
drug resistant viruses. FEDER et al. (2017) studied viral dynamics

in a macaque infected with a strain of simian immunodeficiency virus

(SHIV) that carries the HIV-1 reverse transcriptase coding region. The main focus of FEDER et al.’s
work was modeling the complicated
. . . . spatial dynamics of drug-resistant
in Figure 10.1. Twelve weeks after infection, the macaque was treated SHIV adaptation in different organ

The viral load of the macaque’s blood plasma is shown as a black line

with an anti-retroviral drug that targeted the the virus’ reverse tran- systems.
scriptase protein. Note how the viral load initially starts to drop once
the drug is administered, suggesting that the absolute fitness of the
original strain is less than one (W2 < 1) in the presence of the drug (as
their numbers are decreasing). However, the viral population rebounds
as a mutation that confers drug resistance to the anti-retroviral drug
arises in the SHIV and starts to spread. Viruses carrying this mu-
tation (let’s call them allele 1) likely have absolute fitness W7 > 1.
The frequency of the drug-resistant allele is shown in red; it quickly
spreads from being undetectable in week 13, to being fixed in the
SHIV population in week 20.

The rapid spread of this drug-resistant allele through the popula-
tion is driven by the much greater relative fitness of the drug-resistant
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allele over the original strain in the presence of the anti-retroviral
drug.
The frequency of allele A; in the next generation is given by

Dot = Py _ Wi P, _ Wips _ Wi
" Pii+ Qi1 WP +WoQy Wipe +Woqe W,

(10.2)
Importantly, eqn. (10.2) tells us that the change in p only depends
on a ratio of fitnesses. Therefore, we need to specify fitness only up
to an arbitrary constant. As long as we multiply all fitnesses by the
same value, that constant will cancel out and eqn. (10.2) will hold.
Based on this argument, it is very common to scale absolute fitnesses
by the absolute fitness of one of the genotypes, e.g. the most or the
least fit genotype, to obtain relative fitnesses. Here, we will use w; for
the relative fitness of genotype i. If we choose to scale by the absolute
fitness of genotype Aj, we obtain the relative fitnesses w; = Wy /W =
1 and wy = Wy /Wj.
Without loss of generality, we can therefore rewrite eqn. (10.2) as
Dit1 = %pt, (10.3)

dropping the subscript ¢ for the dependence of the mean fitness on
time in our notation, but remembering it. The change in frequency
from one generation to the next is then given by
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Figure 10.1: The rapid evolution of
drug-resistant SHIV. The viral load
of SHIV in the blood of a macaque
(black line), the frequency of a drug
resistance mutation (red line). Data
from FEDER et al. (2017). Code here.

w
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https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Feder_HIV/Feder_HIV.R
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recalling that ¢; = 1 — p;.

Assuming that the fitnesses of the two alleles are constant over
time, the number of the two allelic types 7 generations after time 0 are
P, = (W1)"Py and Q, = (W2)"Qo, respectively. Therefore, the relative
frequency of allele A; after 7 generations past ¢ is

_ (W)™ Py (w1)" Py Do

br (W) P+ (W2)" Qo (w1)"Po+ (w2)"Qo  po + (wa/w1)"qo’
(10.5)

where the last step includes dividing the whole term by (w;)” and
switching from absolute to relative allele frequencies. Rearrange this

Pr _Po (w) (10.6)

qr do \ W2

to obtain

Solving this for 7 yields

7 =log (qu()) / log (w1> . (10.7)
drPo w2

In practice, it is often helpful to parametrize the relative fitnesses

w; in a specific way. For example, we may set w; = 1 and ws = 1 — s,
where s is called the selection coefficient. Using this parametrization,
s is simply the difference in relative fitnesses between the two alleles.
Equation (10.5) becomes

Do

=P 10.8
Po+qo(1—s)7 (10.8)

as wa/wy =1 —s. Then, if s < 1, we can approximate (1 — s)” in the
denominator by exp(—s7) to obtain

~ Po
Dr

~ 10.9
Po + qoe™°" ( )

This equation takes the form of a logistic function. That is because we
are looking at the relative frequencies of two ‘populations’ (of alleles
Ay and Ay) that are growing (or declining) exponentially, under the
constraint that p and ¢ always sum to 1.

Moreover, eqn. (10.6) for the number of generations 7 it takes for a
certain change in frequency to occur becomes

= —log (272 /10g (1 - 5). .
T= lg<qp)/1g(1 ) (10.10)

TH0

Assuming again that s < 1, this simplifies to

1 (p,
7~ - log (p qo) . (10.11)

B} 4rPo

One particular case of interest is the time it takes to go from an
absolute frequency of 1 to near fixation in a population of size N. In
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this case, we have pg = 1/N, and we may set p, = 1 — 1/N, which
is very close to fixation. Then, plugging these values into eqn. (10.11),
we obtain

1. [1—2%n+1/n?
r= s ()

~ %(log(]\f) +log(N — 2)

~ glog(N) (10.12)

where we make the approximations N2 — 2N + 1 ~ N2 — 2N and later
N -2~ N.

Question 1. I

n our example of the evolution of drug resistance, the drug-
resistant SHIV virus spread from undetectable frequencies to

~ 65% frequency by 16 weeks post infection. An estimated
effective population size of SHIV is 1.5 x 10°, and its generation
time is ~ 1 day. Assuming that the mutation arose as a single
copy allele very shortly the start of drug treatment at 12 weeks,
what is the selection coefficient favouring the drug resistance
allele?

10.0.2 Diploid model

We will now move on to a diploid model of a single locus with two

segregating alleles. As an example of the change in the frequency of
an allele driven by selection, let’s consider the evolution of lactase Figure 10.2: Auroch (Bos primige-

persistence. A number of different human populations that histor- nius). Aurochs are an extinct species
of large wild cattle that cows were

ically have raised cattle have convergently evolved to maintain the domesticated from.

expression of the protein lactase into adulthood (in most mammals P e e et Avehive.
N . . . . . Contributed by NCSU Libraries. No known
the protein is switched off after childhood), with different lactase- copyright restrictions.

persistence mutations having arisen and spread in different pastoral
human populations. This continued expression of lactase allows adults
to break down lactose, the main carbohydrate in milk, and so benefit
nutritionally from milk-drinking. This seems to have offered a strong
fitness benefit to individuals in pastoral populations.

With the advent of techniques to sequence ancient human DNA,
researchers can now potentially track the frequency of selected muta-
tions over thousands of years. The frequency of a lactase persistence
allele in ancient Central European populations is shown in Figure
10.3. The allele is absent more than 5,000 years ago, but now found at
frequency of upward of 70% in many European populations.


https://www.flickr.com/photos/internetarchivebookimages/20713828960/in/photolist-owtfpr-owkoQN-obMTQg-owc9mc-rgpdRz-otq59G-oeZFD1-ottAnF-otuXhK-odKHJY-oqYxSb-oviGuD-ytox4c-owa3cJ-yc73Ji-wtrahu-ouf1fo-wXHoQ6-t97h27-owfa8h-xisfNf-waBt8s-x8859A-xwY4eG-wpCm8P-oev6vL-oy1AhH-tNJj8g-xGgALJ-x2kj8g-xDphGC-oxvRgt-x8eFQp-xypMG5-wKqr2k-xnCp1u-xpC2zS-wt5Lpp-xUjHhG-wGJBAQ-wv5dnr-xqLVc3-wPhru1
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We will assume that the difference in fitness between the three
genotypes comes from differences in viability, i.e. differential survival
of individuals from the formation of zygotes to reproduction. We
denote the absolute fitnesses of genotypes A1 A1, A1 Ao, and AsAs
by W11, Wiz, and Wag. Specifically, W;; is the probability that a
zygote of genotype A;A; survives to reproduction. Assuming that
individuals mate at random, the number of zygotes that are of the
three genotypes in generation ¢ are

Npi, N2pq, Ngi. (10.13)
The mean fitness of the population of zygotes is then
Wi = Wiip; + Wia2piqr + Waag; . (10.14)

Again, this is simply the weighted mean of the genotypic fitnesses.
How many zygotes of each of the three genotypes survive to re-
produce? An individual of genotype A; A; has a probability of Wy,
of surviving to reproduce, and similarly for other genotypes. There-
fore, the expected number of A; A1, A1 Ay, and Ay A individuals who

survive to reproduce is

NWup;, NWis2piqi, NWaagi. (10.15)

It then follows that the total number of individuals who survive to
reproduce is

N (Whi1p} + Wia2piqr + Waaqy) - (10.16)

Figure 10.3: Frequency of the lactase
persistence allele in ancient and
modern samples form Central Europe.
Data compiled by MARCINIAK and
PERRY (2017) from various sources.
Thanks to Stephanie Marciniak for
sharing these data. Code here.

These diploid models of selection were
first laid out in FISHER (1923), HAL-
DANE (1924), and WRIGHT (1931).
HALDANE (1924) marked the start of
a series of ten papers, over ten years,
where Haldane worked through the
implications and applications of these
models.



https://github.com/cooplab/popgen-notes/blob/master/Rcode/Lactase_example/Lactase_plots.R
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This is simply the mean fitness of the population multiplied by the
population size (i.e. Nw).

The relative frequency of A;A; individuals at reproduction is
simply the number of A;A; genotype individuals at reproduction
(NW11p?) divided by the total number of individuals who survive to
reproduce (NW), and likewise for the other two genotypes. Therefore,
the relative frequency of individuals with the three different genotypes
at reproduction is

NWiip?  NWia2pge  NWasg? (10.17)
NW NW ' NW '
(see Table 10.1).
A1A1 A1 A2 A2A2
Absolute no. at birth Np? N2p:qs Ng?
Fitnesses Wit Wi Waa
Absolute no. at reproduction  NW7qy pf NWia2piqe N ngqt2
Relative freq. at reproduction %p? %2 2p1q V%? q?

Table 10.1: Relative genotype fre-
quencies after one episode of viability
selection.

As there is no difference in the fecundity of the three genotypes, the
allele frequencies in the zygotes forming the next generation are simply
the allele frequency among the reproducing individuals of the previous
generation. Hence, the frequency of A; in generation t + 1 is

Wiip; + Wiapia

- (10.18)

Pt+1 =
Note that, again, the absolute value of the fitnesses is irrelevant to the
frequency of the allele. Therefore, we can just as easily replace the
absolute fitnesses with the relative fitnesses. That is, we may replace
Wij; by w;j = W;; /Wi, for instance.

Each of our genotype frequencies is responding to selection in a
manner that depends just on its fitness compared to the mean fitness
of the population. For example, the frequency of the A; A; homozy-
gotes increases from birth to adulthood in proportion to Wi1/w. In
fact, we can estimate this fitness ratio for each genotype by compar-
ing the frequency at birth compared to adults. As an example of this
calculation, we’ll look at some data from sticklebacks.

Marine threespine stickleback (Gasterosteus aculeatus) indepen-
dently colonized and adapted to many freshwater lakes as glaciers

receded following the last ice age, making sticklebacks a wonderful sys- . .
Figure 10.4: Freshwater threespine

tem for studying the genetics of adaptation. In marine habitats, most stickleback (G. aculeatus).
. British fresh-water fishes. H ht ‘W 1879.
of the stickleback have armour plates to protect them from preda- Image from the Biodiversity Heritage Library.
. . Contributed by Ernst Mayr Library, Harvard..
tion, but freshwater populations repeatedly evolve the loss of armour Not in copyright.

plates due to selection on an allele at the Ectodysplasin gene (EDA).


https://commons.wikimedia.org/wiki/File:Gasterosteus_aculeatus_1879.jpg
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This allele is found as a standing variant at very low frequency ma-
rine populations; BARRETT et al. (2008) took advantage of this fact
and collected and bred a population of marine individuals carrying
both the low- (L) and completely- plated (C) alleles. They introduced

the offspring of this cross into four freshwater ponds and monitored
1

over their life courses: ! The actual dynamics observed by
BARRETT et al. are more com-
CcC LC LL plicated, as in the very young fish

Juveniles 0.55 0.23 0.22 selection reverses direction.
Adults 0.21 0.53 0.26
Adults/Juv. (We/W) 04 23 1.2
rel. fitness (W, /Wi) 0.17 1.0  0.54

genotype frequencies

The heterozygotes have increased in frequency dramatically in the
population as their fitness is more than double the mean fitness of the
population. We can also calculate the relative fitness of each geno-
type by dividing through by the fitness of the fittest genotype, the
heterozygote in this case (doing this cancels through W). The relative
fitness of the CC' is ~ 1/5 of the heterozygote. Note that this calcula-
tion does not rely on the genotype frequencies being at their HWE in
the juveniles.

A) What is the frequency of the low-plated EDA allele (L) at
the start of the stickleback experiment?

B) What is the frequency in the adults?

C) Calculate the frequency in adults, this time by using the
relative fitnesses.

The change in frequency from generation ¢ to t + 1 is

w11p; + Wi2PeG B
w

Apy = piy1 —pr = (10.19)

To simplify this equation, we will first define two variables w; and ws

as

Wy = wi1Ps + W12, (10.20)
W2 = Wi2Pt + W224q;. (1021)

These are called the marginal fitnesses of allele A; and As, respec-
tively. They are so called as w; is the average fitness of an allele Ay,
i.e. the fitness of A; in a homozygote weighted by the probability it is
in a homozygote (p;) plus the fitness of A; in a heterozygote weighted

by the probability it is in a heterozygote (g¢). 2, 2 The marginal fitnesses are also the
phenotypic additive effects of our two
. alleles on fitness, defined in eqn(7.25)
terms of the marginal fitnesses as and (7.25)

We further note that the mean relative fitness can be expressed in

W = Wi1Ps + Wagy, (1022)



where, for notational simplicity, we have omitted subscript t for the
dependence of mean and marginal fitnesses on time.
We can then rewrite eqn. (10.19) using w; and ws as

(w1, —wa)

Apy = — Peqz- (10~23)
w

The sign of Ap,, i.e. whether allele A; increases of decreases in fre-
quency, depends only on the sign of (W, — @s). 2 The frequency of
A, will keep increasing over the generations so long as its marginal
fitness is higher than that of Ay, i.e. w; > wo, while if w; < ws, the
frequency of A; will decrease. Note the similarity between eqn. (10.23)
and the respective expression for the haploid model in eqn. (10.4).
(We will return to the special case where w; = Wy shortly).

We can also rewrite (10.19) as

1 prq dw
= 10.24
2 w clp7 ( )

This form shows that the frequency of A; will increase (Ap; > 0)
if the mean fitness is an increasing function of the frequency of A,
(i.e. if ‘fl—f > 0). On the other hand, the frequency of A; will decrease
(Ap; < 0) if the mean fitness is a decreasing function of the frequency
of Ay (i.e. if ‘% < 0). Thus, although selection acts on individuals,
under this simple model, selection is acting to increase the mean fit-
ness of the population. The rate of this increase is proportional to the
variance in allele frequencies within the population (p:q:). This for-
mulation suggested to WRIGHT (1932) the view of natural selection
as moving populations up local fitness peaks, as we encountered in
Section 8.1.2 in discussing phenotypic fitness peaks. Again this view of
selection as maximizing mean fitness only holds true if the genotypic
fitnesses are frequency independent; later in this chapter we’ll discuss
some important cases where that doesn’t hold.
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3 This difference between our marginal
fitnesses is the difference between the
additive effects of the two alleles, thus
it is also the regression slope (ay) of
the fitness (phenotype) on additive
genotype (0, 1, 2) see discussion
around eqn(7.27).

To see this we can write
dw d

— = Wi1p? + 2W-
dp dp( 11p~ + 12p

—2W12p? + Was — 2Waop + Waop?)

=2 (w11p + w12 — 2pw12 — w2z — w22 + W22p)

On expansion of w1 — w2, we see
that it matched the terms in the
parentheses in the expression above.
Thus, we see that we can replace
w1 — we with 1/2‘3—1;;.
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For many generations you have been studying an annual wild-
flower that has two color morphs, orange and white. You have
discovered that a single bi-allelic locus controls flower color,
with the white allele being recessive. The pollinator of these
plants is an almost blind bat, so individuals are pollinated at
random with respect to flower color. Your population census
of 200 individuals showed that the population consisted of 168
orange-flowered individuals, and 32 white-flowered individuals.
Heavy February rainfall creates optimal growing conditions

for an exotic herbivorous beetle with a preference for orange-
flowered individuals. This year it arrives at your study site
with a ravenous appetite. Only 50% of orange-flowered individ-
uals survive its wrath, while 90% of white-flowered individuals
survive until the end of the growing season.

A) What is the initial frequency of the white allele, and what
do you have to assume to obtain this?

B) What is the frequency of the white allele in the seeds form-
ing the next generation?

10.0.8 Diploid directional selection

So far, our treatment of the diploid model of selection has been in
terms of generic fitnesses w;;. In the following, we will use particular
parameterizations to gain insight about two specific modes of selec-
tion: directional selection and heterozygote advantage.

Directional selection means that one of the two alleles always has
higher marginal fitness than the other one. Let us assume that A; is
the fitter allele, so that wy; > wis > wsg, and hence Wy > wWo. As
we are interested in changes in allele frequencies, we may use relative
fitnesses. We parameterize the reduction in relative fitness in terms
of a selection coefficient, similar to the one we met in the haploid
selection section, as follows:

genotype A1 A A1 A, Ag Ay
absolute fitness Wi > Wi > Wag
relative fitness (generic) wi; = Wi /Wi1  wia = Win /Wiy wag = Wao /Wiy
relative fitness (specific) 1 1—sh 1—s.

Here, the selection coefficient s is the difference in relative fitness
between the two homozygotes, and h is the dominance coefficient. For
selection to be directional, we require that 0 < h < 1 holds. The
dominance coefficient allows us to move between two extremes. One



is when h = 0, such that allele A; is fully dominant and Az fully
recessive. In this case, the heterozygote A1 A, is as fit as the A1 A,
homozgyote genotype. The inverse holds when h = 1, such that allele
Aq is fully recessive and As fully dominant.

We can then rewrite eqn. (10.23) as
_ pihs +qs(1 —h)

T P4+, (1025)

Apy

where
W=1—2piqesh — ¢’s. (10.26)

Throughout the Californian foothills are old copper and gold-
mines, which have dumped out soils that are polluted with
heavy metals. While these toxic mine tailings are often depau-
perate of plants, Mimulus guttatus and a number of other plant
species have managed to adapt to these harsh soils. WRIGHT
et al. (2015) have mapped one of the major loci contributing
to the adaptation to soils at two mines near Copperopolis, CA.
WRIGHT et al. planted homozygote seedlings out in the mine
tailings and found that only 10% of the homozygotes for the
non-copper-tolerant allele survived to flower, while 40% of the
copper-tolerant seedlings survived to flower.

A) What is the selection coefficient acting against the non-
copper-tolerant allele on the mine tailing?

B) The copper-tolerant allele is fairly dominant in its action
on fitness. If we assume that h = 0.1, what percentage of
heterozygotes should survive to flower?

Comparing the red (h = 0) and black (h = 0.5) trajectories in
Figure 10.5, provide an explanation for why A; increases faster

initially if A = 0, but then approaches fixation more slowly
compared to the case of h = 0.5.

To see how dominance affects the trajectory of a real polymor-
phism, we’ll consider an example from a colour polymorphism in red
foxes (Vulpes vulpes).
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Figure 10.5: The trajectory of the
frequency of allele A1, starting from
po = 0.01, for a selection coefficient

s = 0.01 and three different dom-
inance coefficients. The recessive
beneficial allele (h = 1) will eventually
fix in the population, but it takes a
long time. Code here.

Figure 10.6: Keystone Copper Mine
1866, Copperopolis, Calaveras County.

Image from picryl. Source Library of
Congress, Public Domain.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/diploid_sel.R
https://picryl.com/media/keystone-copper-mine-copperopolis-calaveras-county
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There are three colour morphs of red foxes: silver, cross, and red
(see Figure 10.8), with this difference primarily controlled by a sin-
gle polymorphism with genotypes RR, Rr, and rr respectively. The
fur pelts of the silver morph fetched three times the price for hunters
compared to cross (a smoky red) and red pelts, the latter two being
seen as roughly equivalent in worth. Thus the desirability of the pelts
acts as a recessive trait, with much stronger selection against the sil-
ver homozygotes. As a result of this price difference, silver foxes were
hunted more intensely and declined as a proportion of the population
in Eastern Canada, see Figure 10.7, as documented by ELTON, from
16% to 5% from 1834 to 1937. HALDANE (1942) reanalyzed these
data and showed that they were consistent with recessive selection act-

ing against the silver morph alone. Note how the heterozygotes (cross)
decline somewhat as a result of selection on the silver homozygotes,
but overall the R allele is slow to respond to selection as it is ‘hidden’
from selection in the heterozygote state.

Directional selection on an additive allele. A special case is when

h = 0.5. This case is the case of no dominance, as the interaction

among alleles with respect to fitness is strictly additive. Then, eqn.
(10.25) simplifies to

1s
Apt = ——DPtq¢- (1027)

2w

Figure 10.7: The frequency of red,
cross, and silver fox morphs over the
decades in Eastern Canada. These
data are well described by recessive
selection acting against the silver fox
morph. Data from ELTON (1942),
compiled by ALLENDORF and HARD

(2009). Code here.

Figure 10.8: Three colour morphs
in red fox V. wvulpes, cross, red, and
silver foxes from left to right.

The larger North American mammals” Nelson,
E.W., Fuertes, L.A. 1916. Image from the
Biodiversity Heritage Library. Contributed
by Cornell University Library. No known
copyright restrictions.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/silver_fox/fox_morphs.R
https://www.flickr.com/photos/internetarchivebookimages/20578302420/in/photolist-wZ1CDZ-x4aTMj-tCTNnY-sFEbZG-xphfQ3-xmrbnA-xiXcDj-xejHVF-xtiB5G-xbxj1h-xsQdrP-wvPad5-xsFHvi-xqbZ1n-wsJA56-wrzbGj-xhvUJC-xgyia4-wYQ2pR-wXZf6j-wiuZ1t-wWKbS1-whsqaP-whio1h-xeiFTH-wWNQYe-xeiq1a-xdwa1s-wQExt6-x8BrsK-wPgGBE-w9DN9W-x75ojD-wP27dM-w9D6Ye-x6tXdt-wNRKTC-w9AXfX-x5rdVc-x25Puc-vvxmtP-tJ16gt-tAVz57-tmv9Zh-tCXVo2-owo4PL-oum6R1-oeCRWg-oeg5dH-ot9SVz

If selection is very weak, i.e. s < 1, the denominator (w) is close to 1
and we have

1
Apy = 5 5Pt (10.28)

It is useful to compare eqn(10.28) to our haploid model for Apy,
eqn(10.4), setting w; = 1 and we = 1 — s. Again, assume that s

is small, so that our haploid eqn(10.4) becomes Ap; = sp.q;, which
differs from our diploid model only by a factor of two. Under our ad-
ditive diploid model, for weak selection, the selection against each
allele is equal to s/2 so this is equivalent to the haploid case where we
replace s by s/2.

From this analogy, we can borrow some insight we gained from the
haploid model. Specifically, the trajectory of the frequency of allele Ay
in the diploid model without dominance follows a logistic growth curve
similar to eqn. (10.9). From this similarity, we can extrapolate from
Equation (10.11) to find the time it takes for our diploid, beneficial,
additive allele (A7) to move from frequency py to p.:

2 r
7~ Zlog <p qo) (10.29)
S qrPo

generations; this just differs by a factor of 2 from our haploid model.
Using this result we can find the time it takes for our favourable,
additive allele (A;) to transit from its entry into the population (pg =
1/(2N)) to close to fixation (p, =1 —1/(2N)):

4
T &~ —log(2N) (10.30)
s

generations. Note the similarity to eqn. 10.12 for the haploid model,
with a difference by a factor of 2 due to the choice of parametrization
(and that the number of alleles is 2N in the diploid model, rather than
N). Doubling our selection coefficient halves the time it takes for our
allele to move through the population.

Gulf killifish (Fundulus grandis) have rapidly adapted to the
very high pollution levels in the Houston shipping canal since
the 1950s. One of the ways that they’ve adapted is through
the deletion of their aryl hydrocarbon receptor (AHR) gene.
OZIOLOR et al. (2019) estimated that individuals who were

homozygous for the intact AHR gene had a relative fitness of
20% of that of homozygotes for the deletion. Assuming an ad-
ditive selection model, and an effective population size of 200
thousand individuals, how long would it take for the deletion to
reach fixation, starting as a single copy in this population?
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Figure 10.9: Gulf killifish (Fundulus
grandis).

Distribution and abundance of fishes and

invertebrates in Gulf of Mexico estuaries.
Nelson D M and Pattillo M E Image from the
Biodiversity Heritage Library. Contributed
by MBLWHOI Library. No known copyright
restrictions.


https://www.flickr.com/photos/internetarchivebookimages/20974603315/in/photolist-xXsjPD-xXtgv2-xXtH6R-xXqWDP-wLTvyb-vNtwuV-w5YUE8-x3LoqL-w6oGAu-v8XTGY-xeLtHH-x55G1H-x3LEab-xqMKAg-wjksEw-x2brmo-w5hbhG-x2xSUG-wLUKE7-wLTSzb-yiwYWH-vNn18J-w5m7Hh-wLFFPg-w5Zyip-x547wa-wxjgKE-owf2BN-tryPJL-xERrRA-xfpKrJ-x4sNs6-x1sk9W-xec1S6-xEP4rE-x36kBN-waaBtg-wLf5jY-x29N9E-xB1126-tFDcgi-xjju3s-w6Fm6M-w3D8Ej-xzFCbj-xEZcSX-wLkVzJ-xrV46d-xJwuXV-x4tZjV
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10.1  Balancing selection and the selective maintenance of poly-
morphism.

Directional selection on genotypes is expected to remove variation
from populations, yet we see plentiful phenotypic and genetic variation
in every natural population. Why is this? Three broad explanations
for the maintenance of polymorphisms are

1. Variation is maintained by a balance of genetic drift and mutation
(we discussed this explanation in Chapter 4).

2. Selection can sometimes act to maintain variation in populations

1.0

(balancing selection).

08

3. Deleterious variation can be maintained in the population as a bal-

0.6

ance between selection removing variation and mutation constantly

0.4

introducing new variation into the population.

We’ll turn to these latter two explanations through this chapter and

0.0
I

the next. Note that these explanations are not mutually exclusive. ° 50 100 150
Generations

Each explanation will explain some proportion of the variation, and

these proportions will differ over species and classes of polymorphism. Figure 10.10: Two allele frequency

A central challenge in population genomics is how we can do this in a trajectories of the A; allele subject to

heterzygote advantage (w11 = 0.9,
wiz2 = 1, and w22 = 0.85). In one sim-
ulation the allele is started from being
rare in the population (p = 1/1000,
solid line) and increases in frequency/

. . In the other simulation the allele is al-
One form of balancing selection occurs when the heterozygotes are most fixed (p = 999/1000, dashed line).

fitter than either of the homozygotes. In this case, it is useful to pa- In both cases the frequency moves
toward the equilibrium frequency.

The red line shows the equilibrium
frequency (pe). Code here.

systematic way.

10.1.1 Heterozygote advantage

rameterize the relative fitnesses as follows:

genotype A A A A, As Ay
absolute fitness w11 < wig > Wao
relative fitness (generic) w11 = Wi /Wia  wia = Wia/Wia  way = Way /Wis
relative fitness (specific) 1—s9 1 1— 359

Here, s; and sy are the differences between the relative fitnesses
of the two homozygotes and the heterozygote. Note that to obtain
relative fitnesses we have divided absolute fitness by the heterozygote
fitness. We could use the same parameterization as in the model of
directional selection, but the reparameterization we have chosen here
makes the math easier.

In this case, when allele A; is rare, it is often found in a heterozy-
gous state, while the Ao allele is usually in the homozygous state, and
so A1 is more fit and increases in frequency. However, when the allele
Aj is common, it is often found in a less fit homozygous state, while


https://github.com/cooplab/popgen-notes/blob/master/Rcode/diploid_sel_het_advantage.R

the allele As is often found in a heterozygous state; thus it is now al-
lele As that increases in frequency at the expense of allele A;. Thus,
at least in the deterministic model, neither allele can reach fixation
and both alleles will be maintained at an equilibrium frequency as a
balanced polymorphism in the population.

We can solve for this equilibrium frequency by setting Ap; = 0
in eqn. (10.23), i.e. pyg: (w1 — W2) = 0. Doing so, we find that there
are three equilibria. Two of them are not very interesting (p = 0 or
g = 0), but the third one is a stable polymorphic equilibrium, where
wy — wz = 0 holds. Using our s; and s, parametrization above, we see
that the marginal fitnesses of the two alleles are equal when

52
Pe = P, (10.31)

for the equilibrium frequency of interest. This is also the frequency
of A; at which the mean fitness of the population is maximized. The
highest possible fitness of the population would be achieved if every
individual was a heterozygote. However, Mendelian segregation of al-
leles in the gametes of heterozygotes means that a sexual population
can never achieve a completely heterozygote population. This equi-
librium frequency represents an evolutionary compromise between the
advantages of the heterozygote and the comparative costs of the two
homozygotes.
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One example of a polymorphism maintained by heterozygote advan-
tage is a horn-size polymorphism found in Soay sheep, a population of
feral sheep on the island of Soay (about 40 miles off the coast of Scot-
land). The horns of the soay sheep resemble those of the wild Mouflon
sheep, and the male Soay sheep use their horns to defend females dur-
ing the rut. JOHNSTON et al. (2013) found a large-effect locus, at the

RXFP2 gene, that controls much of the genetic variation for horn size.
Two alleles Ho? and Ho™t segregate at this locus. The Ho™ allele is
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Figure 10.11: Top) The change in fre-
quency of an allele with heterozygote
advantage within a generation (Ap)
as a function of the allele frequency.
Fitnesses as in Figure 10.10. Note
how the frequency change is positive
below the equilibrium frequency (pe)
and negative above. Bottom) Mean
fitness (@) as a function of the allele
frequency. The red line shows the
equilibrium frequency (pe). Code
here.

Figure 10.12: For the three Soay
sheep genotypes: the offspring per
year (left), the probability of surviv-
ing a year (middle), and the product
of the two (right). Thanks to Susan
Johnston for supplying these simpli-
fied numbers from JOHNSTON et al.
(2013). Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/diploid_sel_het_advantage.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/Soay_Sheep/Soay_Sheep_fitness.R
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associated with growing larger horns, while the HoP allele is associated
with smaller horns, with a reasonable proportion of HoP? homozygotes
developing no horns at all. JOHNSTON et al. (2013) found that the
Ho locus had substantial effects on male, but not female, fitness (see
Figure 10.12).

The HoP allele has a mostly recessive effect on male fecundity, with

the HoP? homozygotes having lower yearly reproductive success pre-
sumably due to the fact that they perform poorly in male-male com-
petition (left plot Figure 10.12). Conversely, the Ho™ has a mostly re-
cessive effect on viability, with Hot homozygotes having lower yearly
survival (middle plot Figure 10.12), likely because they spend little
time feeding during the rut and so lose substantial body weight. Thus
both of the homozygotes suffer from trade-offs between viability and
fecundity. As a result, the Ho? Ho™ heterozygotes have the highest
fitness (right plot Figure 10.12). The allele is thus balanced at in-
termediate frequency ( 50%) in the population due to this trade off
between fitness at different life history stages.

Assume that the frequency of the Ho” allele is 10%, that there
are 1000 males at birth, and that individual adults mate at
random.

A) What is the expected number of males with each of the
three genotypes in the population at birth?

B) Assume that a typical male individual of each genotypes
has the following probability of surviving to adulthood:
Ho* Ho™ Ho™ Ho? HoP HoP
0.5 0.8 0.8
from above, how many males of each genotype survive to repro-

Making the assumptions

duce?

C) Of the males who survive to reproduce, let’s say that males
with the Ho+Ho+ and Ho+HoP genotype have on average 2.5
offspring, while HoP? Ho? males have on average 1 offspring.
Taking into account both survival and reproduction, how many
offspring do you expect each of the three genotypes to con-
tribute to the total population in the next generation?

D) What is the frequency of the Ho+ allele in the sperm that
will form this next generation?

E ) How would your answers to B-D change if the HoP allele
was at 90% frequency?

To push our understanding of heterozygote advantage a little fur-
ther, note that the marginal fitnesses of our alleles are equivalent to
the additive effects of our alleles on fitness. Recall from our discus-

Figure 10.13: Mouflon (Ovis orientalis

orientalis).

Animate creation. (1898). Wood, J. G. Image
from the Biodiversity Heritage Library.
Contributed by Smithsonian Libraries. Not in
copyright.

The fitnesses here are chosen to
roughly match those of the real Soay
sheep example, as a full model would
require us to more carefully model the
life-histories of the sheep.


https://www.flickr.com/photos/internetarchivebookimages/18195657882/in/photolist-oeVkzm-oeVyZM-owqffV-otpyr4-abvEzA-osMSNY-vdEfRm-odZgfB-ot1epP-xvDeKd-yb3aL3-xRUfo4-owdr4T-wJhfme-xj57bn-xAzfXc-xiEcGn-sMnpMH-xP6U3J-w6Wm26-xuMUdr-tHTvam-w6aexB-oubB13-wYKiWR-xnrRBv-xptbR9-wYeGR2-xBHTk1-xvoaiK-xdb5i7-xst4MC-w3QTNe-x9SM4R-xnwGwR-xGd6Qk-xyfL9Q-w3QtPx-wYeJqe
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sion of non-additive variation (Section 7.1.1) that the difference in the
additive effects of the two alleles gives the slope of the regression of
additive genotypes on fitness, and that there is additive variance in
fitness when this slope is non-zero. So what’s happening here in our
heterozygote advantage model is that the marginal fitness of the A;
allele, the additive effect of allele A; on fitness, is greater than the
marginal fitness of the Ao allele (w; > w2) when A; is at low fre-
quency in the population. In this case, the regression of fitness on the
number of A; alleles in a genotype has a positive slope. This is true
when the frequency of the Ay allele is below the equilibrium frequency.
If the frequency of A; is above the equilibrium frequency, then the
marginal fitness of allele A5 is higher than the marginal fitness of allele
A; (07 < w9) and the regression of fitness on the number of copies

of allele A; that individuals carry is negative. In both cases there is
additive genetic variance for fitness (V4 > 0) and the population has
a directional response. Only when the population is at its equilibrium
frequency, i.e. when w; = s, is there no additive genetic variance
(Va4 = 0), as the linear regression of fitness on genotype is zero.

Underdominance. Another case that is of potential interest is the
case of fitness underdominance, where the heterozygote is less fit than
either of the two homozygotes. Underdominance can be parametrized

as follows:
genotype A1A1 A1A2 A2A2
absolute fitness w11 > wig <
relative fitness (generic) wip = Wi /Wia  wia = Wi /Wi
relative fitness (specific) 145 1
Underdominance also permits three equilibria: p = 0,p = 1,

and a polymorphic equilibrium p = py. However, now only the first
two equilibria are stable, while the polymorphic equilibrium (p,x) is

1+ 59
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Figure 10.14: The deviations of the
fitness of each genotype away from
the mean population fitness (0)

are shown as black dots. The area

of each circle is proportion to the
fraction of the population in each
genotypic class (p?, 2pq, and ¢?).
The additive genetic fitness of each
genotype is shown as a red dot. The
linear regression between fitness and
additive genotype is shown as a red
line. The black vertical arrows show
the difference between the average
mean-centered phenotype and additive
genetic value for each genotype. The
left panel shows p = 0.1 and the
right panel shows p = 0.9; in the
middle panel the frequency is set to
the equilibrium frequency. Code here.

Figure 10.15: In Pseudacraea eurytus
there are two homozygotes morphs
that mimic a different blue and
orange butterfly; the heterozygote
fails to mimic either successfully and
so suffers a high rate of predation
(OWEN_and CHANTER, 1972).

TiTustrations of new species of exotic butterflies
(1868) Hewitson. Image from the Biodiversity

Heritage Library. Contributed by Smithsonian
Libraries. Not in copyright.

Wag = Waa /Wi


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Quant_gen/additive_effect.R
https://commons.wikimedia.org/wiki/File:Pseudacraea_eurytus.JPG
https://commons.wikimedia.org/wiki/File:Pseudacraea_eurytus.JPG
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unstable. If p < py, then Ap, is negative and allele A; will be lost,
while if p > py, allele A; will become fixed.

While strongly-selected, underdominant alleles might not spread
within populations (if py > 0), they are of special interest in the
study of speciation and hybrid zones. That is because alleles A; and

Ay may have arisen in a stepwise fashion, i.e. not by a single mutation,

but in separate subpopulations. In this case, heterozygote disadvan-
tage will play a potential role in species maintenance.
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Negative frequency-dependent selection. In the models and examples
above, heterozygote advantage maintains multiple alleles in the pop-
ulation because the common allele has a disadvantage compared to
the other rarer allele. In the case of heterozygote advantage, the rel-
ative fitnesses of our three genotypes are not a function of the other
genotypes present in the population. However, there’s a broader set of
models where the relative fitness of a genotype depends on the geno-
typic composition of the population; this broad family of models is
called frequency-dependent selection. Negative frequency-dependent
selection, where the fitness of an allele (or phenotype) decreases as it
becomes more common in the population, can act to maintain genetic
and phenotypic diversity within populations. While cases of long-term
heterozygote advantage may be somewhat rare in nature, negative
frequency-dependent selection is likely a common form of balancing
selection.

One common mechanism that may create negative frequency-
dependent selection is the interaction between individuals within or
among species. For example, negative frequency-dependent dynamics
can arise in predator-prey or pathogen-host dynamics, where alleles
conferring common phenotypes are at a disadvantage because preda-
tors or pathogens learn or evolve to counter the phenotypic effects of
common alleles.

As one example of negative frequency-dependent selection, con-
sider the two flower colour morphs in the deceptive elderflower orchid

0.2 0.4 0.6 0.8 1.0

p

Figure 10.16: Left) Two allele fre-
quency trajectories of an A; allele
subject to heterzygote disadvantage
(w11 = 1.1, wi2 = 1, and w22 = 1.2).
The allele is started from just above
and below the equilibrium frequency,
in both cases the frequency move
away the equilibrium frequency. The
red line shows the unstable equilib-
rium frequency (pe). Middle) The
change in frequency of an allele with
heterozygote disadvantage within

a generation (Ap) as a function of
the allele frequency. Fitnesses as in
Figure 10.10. Note how the frequency
change is negative below the equi-
librium frequency (pe) and positive
above. Right) Mean fitness (w) as a
function of the allele frequency. Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/diploid_sel_het_advantage.R

(Dactylorhiza sambucina). Throughout Europe, there are populations
of these orchids polymorphic for yellow- and purple-flowered individu-
als, with the yellow flower corresponding to a recessive allele. Neither
of these morphs provide any nectar or pollen reward to their bumble-
bee pollinators.

Thus these plants are typically pollinated by newly emerged bum-
blebees who are learning about which plants offer food rewards, with
the bees alternating to try a different coloured flower if they find no
food associated with a particular flower-colour morph (SMITHSON
and MACNAIR, 1997). GIGORD et al. (2001) explored whether this
behaviour by bees could result in negative frequency-dependent selec-

tion; out in the field, the researchers set up experimental orchid plots
in which they varied the frequency of the two colour morphs. Figure
10.18 shows their measurements of the relative male and female repro-
ductive success of the yellow morph across these experimental plots.
When the yellow morph is rare, it has higher reproductive success
than the purple morph, as it receives a disproportionate number of
visits from bumblebees that are dissatisfied with the purple flowers.
This situation is reversed when the yellow morph becomes common in
the population; now the purple morph outperforms the yellow morph.
Therefore, both colour morphs are maintained in this population, and
presumably Europe-wide, due to this negative frequency-dependent

selection.
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Negative frequency-dependent selection can also maintain differ-
ent breeding strategies due to interactions amongst individuals within
a population. One dramatic example of this occurs in ruffs (Philo-
machus pugnaz), a marsh-wading sandpiper that summers in Northern
FEurasia. The males of this species lek, with the males gathering on
open ground to display and attract females. There are three different
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Orchis Sambucina, L.

Holl

Figure 10.17: Elderflower orchid

(Dactylorhiza sambucina).
Abbildungen der in Deutschland und den
angrenzenden gebicten vorkommenden grund-
formen der orchideenarten (1904). Miller, W.
Image from the Biodiversity Heritage Library.
Contributed by New York Botanical Garden.
Not in copyright.

Figure 10.18: Left) Measures of the
relative male- and female- reproduc-
tive success of the yellow elderflower
orchid morph as a function of the
yellow morph in experimental plots.
Right) Two allele frequency trajec-
tories of the Yellow allele subject to
negative frequency scheme given in
the left plot (for an initial frequency
of 0.01 and 0.99, solid and dotted line
respectively). Male reproductive suc-
cess is measured in terms of the % of
pollinia removed from a plant, and fe-
male reproductive success is measured
in terms of the % of stigmas receiving
pollinia on a plant. These measures
are made relative by dividing the
reproductive success of the yellow
morph by the mean of the yellow and
purple morphs. Pollinia are the pollen
masses of orchids, and other plants,
where individual pollinium are trans-
ferred as a single unit by pollinators.
Data from GIGORD et al. (2001).
Code here.



https://www.biodiversitylibrary.org/page/15349868#page/126/mode/1up
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Elderflower_orchid/Elderflower_orchids.R
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male morphs differing in their breeding strategy. The large majority of
males are ‘Independent’, with black or chestnut ruff plumage, and try
to defend and display on small territories. ‘Satellite’ males, with white
ruff plumage, make up ~ 16% of males and do not defend territories,
but rather join in displays with Independent males and opportunis-
tically mate with females visiting the lek. Finally, the rare ‘Faeder’
morph was only discovered in 2006 (JUKEMA and PIERSMA, 2006)

and makes up less than 1% of males. These Faeder males are female
mimics who hang around the territories of Independents and try to
’sneak’ in matings with females. Faedar males have plumage closely
resembling that of females and a smaller body size than other males,
but with larger testicles (presumably to take advantage of rare mating
opportunities).

Figure 10.19: Lekking ruffs (Philo-
machus pugnaz). Three Independent
males, one Satellite male, and one
female (or Faeder male?).

Painting by Johann Friedrich Naumann (1780

1857). Public Domain, wikimedia.

All three of the ruff morphs, with their complex behavioural and
morpological differences, are controlled by three alleles at a single au-
tosomal locus, with the Satellite and Faeder alleles being genetically
dominant over the high frequency Independent allele. The genetic
variation for these three morphs is potentially maintained by negative
frequency-dependent selection, as all three male strategies are likely
at an advantage when they are rare in the population. For example,
while the Satellites mostly lose out on mating opportunities to In-
dependents, they may have longer life-spans and so may have equal
life-time reproductive success (WIDEMO, 1998). However, Satellite
and Faeder males are totally reliant on the lekking Independent males,
and so both of these alternative strategies cannot become overly com-
mon in the population. The locus controlling these differences has
been mapped, and the underlying alleles have persisted for roughly
four million years (KUPPER et al., 2016; LAMICHHANEY et al.,

2016). While this mating system is bizarre, the frequency dependent
dynamics mean that it has been around longer than we’ve been using


https://en.wikipedia.org/wiki/Ruff#/media/File:Philomachus_pugnax_naumann.jpg
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stone tools.

While these examples may seem somewhat involved, they must be
simple compared to the complex dynamics that maintain the hundreds
of alleles present at the genes in the major histocompatibility complex
(MHC). MHC genes are key to the coordination of the vertebrate
immune system in response to pathogens, and are likely caught in an
endless arms race with pathogens adapting to common MHC alleles,
allowing rare MHC alleles to be favoured. Balancing selection at the
MHC locus has maintained some polymorphisms for tens of millions
of years, such that some of your MHC alleles may be genetically more
closely related to MHC alleles in other primates than they are to
alleles in your close human friends.

10.2  Fluctuating selection pressures

Selection pressures are rarely constant through time due to environ-

mental change. As selection pressures on a polymorphism change the
frequency of the allele can fluctuate along with them. This can have

important implications for which alleles can survive and spread. We’ll
see that when selection fluctuates that the success of alleles and geno-
types can often be summarized by their “geometric mean fitness’ and
so alleles and genotypes that bet-hedge in their strategies can win out
in long-term competitions between individuals in fluctuating environ-

ments.

Haploid model with fluctuating selection We can use our haploid
model to consider this case where the fitnesses depend on time (DEMP-
STER, 1955), and say that wi ; and ws; are the fitnesses of the two
types in generation t. The frequency of allele A; in generation t + 1 is

YL, (10.32)

t+1 = —
Pi+ w,

which simply follows from eqn. (10.3). The ratio of the frequency of
allele A; to that of allele A in generation ¢ 4 1 is

Deg1 _ WLt Pt (10.33)
qi+1 w2t qt
Therefore, if we think of the two alleles starting in generation 1 at

frequencies p; and ¢;, then 7 generations later,
p Twi \ P
r 1,6 | P1
7o ) 2 (10.34)
dr <}:[1 w2,1> q1

The question of which allele is increasing or decreasing in frequency
comes down to whether ([]]_; wii/ws;) is > 1 or < 1. As it is a little
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hard to think about this ratio, we can instead take the 7" root of it
and consider

T T
H w15 YL wie

= Y i T (10.35)
=1 W2 Vo w2,

The term

(10.36)

i=1

is the geometric mean fitness of allele A; over the 7 generations
past generation t. Therefore, allele A; will only increase in frequency
if it has a higher geometric mean fitness than allele As (at least in our
simple deterministic model). This implies that an allele with higher
geometric mean fitness can even invade and spread to fixation if its
(arithmetic) mean fitness is lower than the dominant type. To see this
consider two alleles that experience the fitnesses given in Table 10.2.
The allele A; does much better in dry years, but suffers in wet years;
while the A, is generalist and is not affected by the variable environ-
ment. If there is an equal chance of a year being wet or dry, the A,
allele has higher (arithmetic) mean fitness, but it will be replaced by
the Ay allele as the As allele has higher geometric mean fitness (See
Figure 10.20).

Frequency
010 0.15 020 025 0.30
| | | | |

0.05
\

0.00

\ \ \ \ \ \
0 20 40 60 80 100

Generations

Evolution of bet hedging Don’t put your eggs in one basket, it makes
a lot of sense to spread your bets. Financial advisors often advise you

Ay Asg
Dry 2 1.57
Wet 1.16 1.57

Arithmetic Mean  1.58  1.57

Geometric Mean 1.52  1.57
Table 10.2: Fitnesses of two alleles in
wet and dry years. Means calculated
assuming equal chances of wet and
dry years. The geometric mean is
calculated as /WwetWdry - Example
numbers taken from SEGER and
BROCKMANN (1987).

Figure 10.20: An example frequency
trajectory of the A; allele under
variable environments (using the
fitnesses from Table 10.2). Wet years
(generations) are shown in red, dry
years in white. The environment flips
at random each year. Note how the
A; allele increases in frequency in the
dry years as it has higher fitness, and
yet the Az allele still wins out. Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Geometric_mean_fitness.R
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to diversify your portfolio, rather than placing all your investments

in one stock. Even if that stock looks very strong, you can come a
cropper that 1/20 times some particular part of the market crashes.
Likewise, evolution can result in risk averse strategies. Some species of
bird lay multiple nests of eggs; some plants don’t put all of their en-
ergy into seeds that will germinate next year. It can even make sense
to hedge your bets even if that comes at an average cost (SEGER and
BROCKMANN, 1987).

To see this let’s think more about geometric fitness. We can write

the relative fitness of an allele in a given generation i as w; = 1 + s;,
such that we can write your geometric fitness as

(10.37)

when we think about products it’s often natural to take the log to
turn it into a sum

—]E{log (1+ si)] (10.38)

equating the mean and the expectation. Assuming that s; is small
log(1 + s;) &~ s; — 5i/2, ignoring terms s? and higher? then this is

log (5) ~E [s _ sf/z}
_E H —var(si) /2

(10.39)

where var(s;) is the variance of the selection coefficient over genera-
tions. So genotypes with high arithmetic mean fitness can be selected
against, i.e. have low geometric mean fitness against, if their fitness
has too high a variance across generations (GILLESPIE, 1973, 1977).

See our example above, Table 10.2 and Figure 10.20).

A classic example of bet-hedging is in delayed seed germination
in plants (COHEN, 1966). In variable environments, such as deserts,
it may make sense to spread your bets over years by having only a
proportion of your seeds germinate in the first year. However, delay-
ing germination can come at a cost due to seed mortality. GREMER
and VENABLE (2014), using data from a long-term study various

species of Sonoran Desert winter showed that annual plants were in-
deed pursuing adaptive bet-hedging strategies. The plant species with
the highest variation in among-year yield had the lowest germination

4 Here we’re using a 2nd order Taylor
approximation, see math appendix
eqn (A.7).

Figure 10.21: Woolly plantain (Plan-
tago patagonica). One of the desert
annuals shown to have a bet-hedging
germination strategy by GREMER
and VENABLE (2014).

An illustrated flora of the northern United
States, Canada and the British possessions,
from Newfoundland to the parallel of the
southern boundary of Virginia, and from

the Atlantic Ocean westward to the 102d
meridian (1913) Britton, N.L. Image from the
Biodiversity Heritage Library. Contributed by
Cornell University Library. Not in copyright.


https://www.flickr.com/photos/internetarchivebookimages/20771670485/
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fraction per year. Further, GREMER and VENABLE showed through
modeling life that by having per-year germination proportions < 1 all

of the species were achieving higher geometric fitness at the expense of
arithmetic fitness in the variable desert environment. See Figure 10.22
for an example of bet hedging in woolly plantain.
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Delayed reproduction is also a common example of bet-hedging
in micro-organisms. For example, the Chicken Pox virus, varicella
zoster virus, has a very long latent phase. After it causes chicken
pox it enters a latent phase, residing inactive in neurons in the spinal
cord, only to emerge 5-40 years later to cause the disease shingles. It
is hypothesized that the virus actively suppresses itself as a strategy
to allow it to emerge at a later time point as insurance against there
being no further susceptible hosts at the time of its first infection
(STUMPF et al., 2002).

Diploid fluctuating fitness Selection pressures fluctuate over time
and can potentially maintain polymorphisms in the population. Two
examples of polymorphisms fluctuating in frequency in response to
temporally-varying selection are shown in Figure 10.23; thanks to the
short lifespan of Drosophila we can see seasonally-varying selection.
The first example is an inversion allele in Drosophila pseudoobscura
populations. Throughout western North America, two orientations
of the chromosome, two 'inversion alleles’, exist: the Chiricahua

and Standard alleles. DOBZHANSKY (1943) and WRIGHT and
DOBZHANSKY (1946) investigated the frequency of these inversion

alleles over four years at a number of locations and found that their
frequency fluctuated systematically over the seasons in response to
selection (left side of 10.23). If you're still reading these notes send
Prof. Coop a picture of Dobzhansky; Dobzhansky was one of the most
important evolutionary geneticists of the past century and spent a
bunch of time at UC Davis in his later years. Our second example is
an insertion-deletion polymorphism in the Insulin-like Receptor gene

Figure 10.22: Plantago patagonica’s
arithmetic fitness is an increasing
function of the proportion of seeds
germinating, due to seeds not surviv-
ing a germination delay. However,
the standard deviation of fitness also
increases with this proportion as
they are more likely to have all of
their seeds germinate in a bad year.
Thus Plantago patagonica can achieve
higher geometric fitness by only
having a proportion of their seeds
germinate. Thanks to Jenny Gremer
for sharing these data from GREMER
and VENABLE (2014), Code here.



https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Gremer_hedging_example/Gremer_bet_hedging.R

in Drosophila melanogaster. PAABY et al. (2014) tracked the fre-
quency of this allele over time and found it oscillated with the seasons
(right side of 10.23). She and her coauthors also determined that these
alleles had large effects on traits such as developmental time and fe-

cundity, which could mediate the maintenance of this polymorphism
through life-history trade-offs.
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0.7

Andreas Canyon
0\ ® °
< | / * o 8
S Te—* \ o \ S .
) * ¢ 3 3
& |
g 31 Pinon Flats g °© ®
=] *— o * =]
o ® / o
9] . o 8§
P, = 3
[ [
*
Keen Cam ° < .
@ ] A (— /A\A ° °
o
0
|
e ° T T T T T 1
J FM A M J J A S O N D Spr 09 Fall 09 Spr 10 Fall 10 Spr1l Fall 11
Month Month

To explore temporal fluctuations in fitness, we’ll need to think
about the diploid absolute fitnesses being time-dependent, where the
three genotypes have fitnesses w11 ¢, w12+, and was ¢ in generation ¢.
Modeling the diploid case with time-dependent fitness is much less
tractable than the haploid case, as segregation makes it tricky to
keep track of the genotype frequencies. However, we can make some
progress and gain some intuition by thinking about how the frequency
of allele A; changes when it is rare (following the work of HALDANE
and JAYAKAR, 1963).

When A is rare, i.e. p; < 1, the frequency of A; in the next gener-

ation (10.18) can be approximated as

wi2

Pi+1 = — Dt (10.40)
w

To obtain this equation, we have ignored the p? term (because it is
very small when p; is small) and we have assumed that ¢; ~ 1 in the
numerator. Following a similar argument to approximate g;11, we can

write
Peir _ MazePe (10.41)
qt+1 W22t qt
Starting from out from py and qp in generation 0, then ¢+ lgenerations
later we have .
Pi+1 Wi2,i | Po
g+l H 2124 20

. (10.42)
qi+1 i—o W22,i ) do

From this we can see, following our haploid argument from above, that
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Figure 10.23: Left) Seasonal variation
in the mean frequency of the ‘Stan-
dard’ inversion allele in Drosophila
pseudoobscura for three populations
from Mount San Jacinto, CA. These
frequencies are an average over four
years. Data from WRIGHT and
DoBZHANSKY (1946). Right) The
frequency of an allele at the Insulin-
ltke Receptor gene over three years in
Drosophila melanogaster samples from
an orchard in Pennsylvania. Data
from PAABY et al. (2014). Note the
difference in z axes here. Code here.



https://github.com/cooplab/popgen-notes/tree/master/Journal_figs/single_locus_selection/temporal_Droso_freq
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the frequency of allele A; will increase when rare only if

Y HE:O W12,:

1, (10.43)
\ HE:O w22’i

i.e. if the heterozygote has higher geometric mean fitness than the
Ay As homozygote.

The question now is whether allele A; will approach fixation in
the population, or whether there are cases in which we can obtain a
balanced polymorphism. To investigate that, we can simply repeat our
analysis for ¢ < 1, and see that in that case

t
Pt+1 _ (H wll,z) Po (10_44)

W12 4 '
qt+1 i—o W12, qo

Now, for allele Ajto carry on increasing in frequency and to approach
fixation, the A1 A; genotype has to be out-competing the heterozy-
gotes. For allele A, to approach fixation, we need the geometric mean
of wy1,; to be greater than the geometric mean fitness of heterozy-
gotes (wi2,). If instead heterozygotes have higher geometric mean
fitness than the A; A; homozygotes, then the As allele will increase in
frequency when it is rare.

Intriguingly, we can thus have a balanced polymorphism even if the
heterozygote is never the fittest genotype in any generation, as long
as the heterozygote has a higher geometric mean fitness than either of
the homozygotes. In this case, the heterozygote comes out ahead when
we think about long-term fitness across heterogeneous environmental
conditions, despite never being the fittest genotype in any particular
environment.

As a toy example of this type of balanced polymorphism, consider a
plant population found in one of two different environments each gen-
eration. These occur randomly; 1/2 of time the population experiences
the dry environment and with probability 1/2 it experiences the wet
environment. The absolute fitnesses of the genotypes in the different
environments are as follows:

Environment AA  Aa aa This example is loosely based on the
work of SCHEMSKE and BIERZY-
Wet 6.25 5.0 3.75 CHUDEK (2001) on Linanthus par-
Dry 3.85 5.0 6.15 ryae, a desert annual, endemic to
arithmetic mean 5.05 5.0 4.95 California. There are blue- and a

white-flowered colour morphs poly-
morphic many populations, with this

, .
Let’s write waa, dry and w44 wet for the fitnesses of the AA ho polymorphism being controlled by

mozygote in the two environments. Then, if the two environments are a single dominant allele. The blue-
t t t
equally common, [[,_jwaa; =~ w ,ﬁ\ dryW 1& wet Tor large values of ¢. flowered plants produce more seeds

in dry years, i.e. they have higher
fitness in these years, while the white-
root to obtain the geometric mean fitness. flowered plants have higher seed
production in wet years. Thus both
morphs can potentially be maintained
in the population. See TURELLI

et al. (2001) for a more detailed
analysis.

To obtain an estimate of this product normalized over the t genera-

tions, we can take the t*
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Taking the t*" root, we find the geometric mean fitness of the AA al-
lele is wZZ,drwaZ,wet‘ Doing this for each of our genotypes, we find
the geometric mean fitnesses of our alleles to be:

AA Aa aa
Geometric mean 4.91 5.0 4.80

i.e. the heterozygote has higher geometric mean fitnesses than either
of the homozygotes, despite not being the fittest genotype in either
environment (nor having the highest arithmetic mean fitness). So the
A, allele can invade the population when it is rare as it spread thanks
to the higher fitness of the heterozygotes. Similarly the A5 allele can
invade the population when it is rare. Thus both alleles will persist in
the population due to the environmental fluctuations, and the higher
geometric mean fitness of the heterozygotes.

10.3 Sex ratios, sex ratio distorters, and other selfish elements.

We have seen that when selection acts on phenotypes and genotypes
in a frequency-independent manner it can act to increase the mean
fitness of the population, consist with our notation of selection driving
our population to become better adapted to the environment (eqn.
(8.19) and (10.24)). However, when the absolute fitnesses of individ-
uals are frequency dependent, e.g. depend on the strategies deployed
by others in the population, natural selection is not guaranteed to in-
crease mean fitness. Nothing about the strategies pursued by the Ruffs
discussed above seems well suited to maximizing the future growth
rate of the population. One place where it is particularly apparent
that frequency dependence drives non-optimal solutions from the per-
spective of the population is in the evolution of a 50/50 sex ratio. In
fact as we’ll see, selection can drive the evolution of traits that are ac-
tively harmful to the fitness of an individual when selection acts below
the level of an individual.
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In many species, regardless of the mechanism of sex determination,
the sex ratio is close to 50/50. Yet this is far from the optimum sex
ratio from the perspective of the population viability. In many species
females are the limiting sex, investing more in gametes and (some-
times) more in parental care. Thus a population having many females
and few males would offer the fastest rate of population growth (i.e.
the highest mean fitness). Why then is the sex ratio so often close
to 50/507 Imagine if the population sex ratio was strongly skewed
towards females. A rare autosomal allele that caused a mother to pro-
duced sons would have high fitness, as the mother’s sons would have
high reproductive success in this population of most females. Thus our
initially rare allele would increase in frequency. Conversely if the sex
ratio was strongly skewed towards males, a rare autosomal allele that
causes a mother to produce daughters would spread. So selection on
autosomal alleles favours the production of the rare sex, a form of neg-
ative frequency dependence, and this pushes the sex ratio away from
being too skewed (see Figure 10.24 for an empirical example). Only
the 50/50 sex ratio is evolutionarily stable as there is no rarer sex, and
so no (autosomal) sex-ratio-altering mutation can invade a population
with a 50/50. The 50/50 sex ratio is an example of an Evolutionary
Stable Strategy (ESS), described in more detail in Section 10.3.2.

Adaptive adjustments to sex ratio in response to local mate competi-
tion. There are, however, situations where we see strong deviations
away from a 50/50 sex ratio. This can represent an adaptive strategy
to situations where individuals compete against relatives for access

Figure 10.24: BASOLO (1994) ex-
plored sex ratio dynamics in platyfish
(Xiphophorus maculatus), which

has manipulable sex ratio due to its
three factor sex determination. She
started two replicates with a strong
female bias (black) and two replicates
with strong male bias (white). In all
four cases the sex ratio quickly oscil-
lated to a 50/50 sex ratio. Data from
BAsoLo (1994), Code here.

Figure 10.25: Poecilid Hybrid,
Xiphophorus helleri x Platypoecilus

maculatus.

Aquatic life, chapter by Curtis F.S. (1915)
Image from the Biodiversity Heritage Library.
Contributed by Harvard University, Museum of
Comparative Zoology, Ernst Mayr Library. Not
in copyright.

“An ESS is a strategy such that, if all
the members of a population adopt it,
then no mutant strategy could invade
the population under the influence of
natural selection” MAYNARD SMITH
(w)v pg 10.

A version of this sex ratio argument
was first put forward by Diising in
1884 and popularized by FISHER
(1930), see EDWARDS (1998).



https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Sex_ratio_basolo/Sex_ratio_basolo.R
https://archive.org/stream/aquaticlife51920baus/#page/113/mode/1up

to resources or mating opportunities. To see this consider fig wasps.
There are many species of fig wasp, which form a tight pollination
symbiosis with many species of fig. Wasp females enter the inverted
fig flower structure (top right Figure 10.27) pollinating the flowers.

They lay their eggs in some of the flowers, which form galls in re-
sponse. The young, wingless, male wasps emerge from their galls first
(Figure 10.26f) but they never leave the fig. Their only role in this is
to fertilize the female wasps (Figure 10.26d) in the fig and then die.
The female offspring (Figure 10.26a & e) emerge in the fig just as the
male fig flowers are emerging. The female wasps burrow out and and
take the fig pollen with them as they fly off.

Female wasps have control over the sex of their offspring but what
is their optimal strategy? Females have this degree of control as sex
determination in wasps is haplo-diploid, with fertilized eggs developing
as diploid females and unfertilized as males; by choosing to lay fertil-
ized eggs they can control their number of daughters. If a female wasp
lays her eggs into a fig with no other eggs, her sons will mate with her
daughters and then die. Thus a lone female can maximize her con-
tribution to the next generation by having many daughters, and just
enough sons to fertilize them. And that’s exactly what female wasps
do, in many species of fig wasp 95% of individuals born are female.

10.3.1 Selfish genetic elements and selection below the level of the
individual.

These ideas about individuals pursuing selfish strategies, which can
lower the populations fitness, extends below the level of the individual.
The alleles within an individual can sometimes pursue selfish strate-
gies that actively harm the individuals that carry them. Here we’ll
take a tour of the rogues gallery of some the various genetic conflicts
that occur and selfish genetic elements that exploit them. They’re
included in this chapter in part because much of their biology can be
understood from the perspective of the ideas developed here. But the
main reason for talking about them is that they’re an amazing slice of
biology.

Selfish sex chromosomes and sex ratio distortion From the perspec-
tive of the autosomes a 50/50 sex ratio normally represents a stable
strategy, but all is not always harmonious in the genome. In systems
with XY sex determination, male fertilization by Y-bearing sperm
leads to sons, while male fertilization by X-bearing sperm leads to
daughters. From the viewpoint of the X chromosome the Y-bearing
sperm, and a male’s sons, are an evolutionary deadend. We can imag-
ine a mutation arising on the X chromosome that causes a poison to
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Figure 10.26: Life stages of fig wasp
(Blastophaga psenes, synonym
Blastophaga grossorum); the pri-
mary pollinator of the common fig
Ficus carica.

A descriptive catalogue of fruit and forest
trees, vines and shrubs, choice palms and roses
(1903) by Fancher Creek Nurseries Image from
the Biodiversity Heritage Library. Contributed
by National Agricultural Library, USDA. Not
in copyright.

Figure 10.27: Common fig ( Ficus
carica). Despite urban legends the
crunch in figs isn’t dead wasps, edible
figs are dioecious and female wasps
can’t lay in the female flowers that

form the fruit we eat.

Plantae selectae quarum imagines ad exem-
plaria naturalia Londini, in hortis curiosorum
nutrita (1750) Trew, C.J. Image from the
Biodiversity Heritage Library. Contributed by
Missouri Botanical Garden. Not in copyright.


https://www.biodiversitylibrary.org/item/164893#page/33/mode/1up
https://www.flickr.com/photos/biodivlibrary/8050635507
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be released during gametogenesis that kills Y-bearing sperm. This
would cause much of the ejaculate of the males carrying this mutation
to be X-bearing sperm, and so these males would have mostly daugh-
ters. Such an allele would potentially spread in the population as it

is over transmitted through males, even if it somewhat reduces the
fitness of the individuals who carry it (HAMILTON, 1967). The spread
of this allele would strongly bias the population sex ratio towards fe-

males. Such ‘selfish’ X alleles turn out to be relatively common, and
they can often substantially low the fitness of the bearer. They do not
spread because they are good for the individual but rather because
they are favoured due to selection below the level of the individual.

One example of a selfish X chromosome allele is the Winters sez-
ratio system found in Drosophila simulans, so named as it was found
in flies collected around Winters, California (just a few miles down the
road from Davis). In crosses males carrying the selfish X chromosome
have > 80% daughters. The gene responsible, Dox (Distorter on the
X), is a gene duplicated by transposition and produces a transcript
which targets a region on the Y chromosome preventing the Y-bearing
sperm from developing TAO et al. (see Figure 10.29 from 2007).

The spread of such selfish sex chromosomes, distorting the sex ratio
strongly away from 50/50, can have profound effects for population
growth rates.” However, the other sex chromosome and autosomes are

Figure 10.28: The increase in fre-
quency of a sex-ratio distorting X
allele in the population of X chromo-
somes (solid line) and the frequency
of males in the population. Males
carrying the selfish X allele have 99%
daughters, and the selfish X allele
reduces the viability of the carries
by 20% in a dominant manner. The
model set up as in EDWARDSs (1961),
Code here.

Figure 10.29: Top) Normally de-
veloping spermatids in D. simulans.
Bottom) Abnormally developing
spermatids in a male expressing doz.
The spermatids that look like rice
crispies carry the Y chromosome,
the normal, slender spermatids are
X-bearing spermatids. Figure from
TAO et al. (2007), cropped, licensed
under CC BY 4.0.

5 Indeed people have long discussed
using selfish Y chromosomes, driving
an overproduction of sons, for pop-
ulation control of malaria-spreading
mosquitos. Natural selfish systems on
the Y appear rare, likely because of
its low gene content.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/sex_ratio_distortor.R
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In the case of a selfish X chromosome that has achieved appreciable
frequency in the population, there will be a strong excess of females
in the population such that suppressors of drive can arise on the au-
tosomes and spread due to the fact that they cause the male bearer
to produces some sons and so spread due to Fisherian sex-ratio ad-
vantage. This has happened in the case of the Winters sex chromo-
some system. An autosomal allele has spread through the population
that suppresses the selfish X chromosome, restoring the 50/50 sex
ratio. Now the sex ratio distorter can only be found by crosses to
naive populations, where the supressor has not spread yet. The au-
tosomal supressor gene turns out to be a duplicate of the selfish dox
gene, NMY (Not Much Yang), that moved to the autosome through
retrotransposition and now blocks the action of dox through RNA-
interference degradation of the dox transcript (TAO et al., 2007, see
Figure 10.30).

Conflict due to maternally transmitted elements. Chromosomes
transmitted maternally, i.e. only through mothers, also have diver-
gent interests from the individual. Many plants are hermaphrodites
producing both pollen and seeds. But from the perspective of the
mitochondria in an individual, pollen is a waste of energy as the mi-
tochondria won’t be transmitted through it. Thus a mutation that
arises on the mitochondria abolishing male sexual function (pollen)
and shunting energy into other processes can spread. The self spread
of a Cytoplasmic Male Sterility (CMS) allele creates a population of
females and hermaphrodite plants (a gynodioecious population). This
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Figure 10.30: Mechanistic and evolu-
tionary model for sex-ratio distortion
Left) The X-linked Doz gene evolved
to target the Y chromosome, blocking
Y-bearing sperm from developing and
so favouring its own transmission.
Right) Subsequently Doz was retro-
transposed to an autosome forming
the Nmy gene. Nmy was subsequently
rearranged by a a small duplication,
and now blocks the action of dox by
the formation of a hairpin small in-
terfering RNA. Figure from FERREE
and BARBASH (2007), licensed under
CC BY 4.0. See LIN et al. (2018) for
an update on the fascinating biology
and further loci uncovered in this
system.




208 GRAHAM COOP

strong excess of female plants in turn can select for the spread of au-
tosomal suppressors of CMS that are favoured by producing the rarer
gamete (pollen), and so restore the population to hermaphroditism.

The spread of such CMS alleles, and subsequent autosomal suppres-
sion, is thought to be common in hermaphrodite species and often un-
covered in crosses between diverged hermaphrodite populations. The
discovery or deliberate creation of CMS alleles in agricultural plants
is prized because it gives breeders more control over hybridization as
they can more carefully control the pollen donor to the plants.

The maternal transmission of mtDNA also causes genetic conflicts
in organisms with separate sexes. Males are an evolutionary dead end
as far as mitochondria are concerned, and so mitochondrial mutations
that lower a male’s fitness are not removed from the population of
mitochondria. Thus the mitochondria genome may be a hotspot of

alleles that are deleterious in males (an effect termed the “Mother’s
curse” CosMIDES and TOOBY, 1981; FRANK and HURST, 1996).

One example of a male-deleterious mitochondrial mutations underlying
Leber’ s ‘hereditary optic neuropathy’ (LHON) in humans. LHON
causes degeneration of the optic nerve and loss of vision in teenage
males (with much lower penetrance in women). One such LHON mu-
tation is present at low frequency in the Quebec population. The
Québécois population grew rapidly from a relatively small number of
founders, leading to the prevalence of some disease mutations due to
the founder effect. Thanks to the detailed genealogical records kept by
French Canadians since the founding of Quebec, we know that nearly
all the Québécois LHON alleles are descended from the mitochondria
of a single woman, one of the fille du roi (Figure 10.32), who arrived

Figure 10.31: Bladder campion (Si-
lene vulgaris), on left, has both
hermaphrodite and female plants due
to CMS and nuclear restorer poly-
morphisms (CHARLESWORTH and

LAPORTE, 1998). (S. nutans on right)
Billeder af nordens flora (1917). Mentz, A
Image from the Biodiversity Heritage Library.
Contributed by The LuEsther T Mertz Library,
the New York Botanical Garden. Not in
copyright.

Figure 10.32: Arrival of the fille

du roi, the ‘king’s daughters’ to
Quebec city in 1667. Painting by
Eleanor Fortescue-Brickdale. The
fille du roi were some 800 women
whose emigration to New France
(Quebec) was paid for by an program
established by King Louis XIV of
France to address the strong gender
imbalance of the new colony. You can
read more in this Atlantic article by
Sarah Zhang.

Painting from the Library and Archives
Canada collection, Wikimedia, Public Domain.


https://archive.org/stream/billederafnorden02ment/#page/n160/mode/1up
https://www.theatlantic.com/science/archive/2017/09/how-a-fille-du-roy-brought-the-mothers-curse-to-canada/540153/
https://commons.wikimedia.org/wiki/File:Arrival_of_the_Brides_-_Eleanor_Fortescue-Brickdale.png

in Quebec City in 1669 (LABERGE et al., 2005). Using the genealogy,
MILOT et al. (2017) tracked all of her mitochondrial descendents, in-
dividuals whose mothers were in her matrilineal line, and so identified

all the individuals in the Québécois who carried this allele. There was
no significant difference in the fitness of females who carried or didn’t
carry the mutation. In contrast, the fitness of male carriers of the mu-
tation was only 65.3% that of male non-carriers. This mitochondria
mutation has increased in frequency slightly over the past 290 years,
despite its strong effects in males, due to the fact that its effects have
no consequence for female fitness.

Question 8.

The frequency of the LHON allele was roughly !/2000 in 1669.
If females suffered the same ill consequences as males what
would be the frequency today? (Assume there are ~29 years a
generation. )

It’s not just chromosomes that get in on the act of the battle of
the sexes. Numerous arthropods, including a high proportion of in-
sects, are infected with the intracellular bacteria Wolbachia, which
are passed to offspring through the maternal cytoplasm. As they are
only transmitted by females, Wolbachia increase their transmission in
a variety of selfish ways including feminization of males and killing
male embryos. In one dramatic case, a male-killing Wolbachia strain
forced a sex ratio of 100 females to every 1 male in Hypolimnas bolina
(eggspot butterflies) throughout Southeast Asia. This extreme sex
ratio persisted for many decades, according to the analysis of museum
collections from the late 19C, before the sex ratio was rapidly restored
to 50/50 by the spread of an autosomal suppressing allele. The autoso-
mal supressor allele spread very rapidly within populations taking just
5 years to spread through the population from 2001 to 2006.

Selfish Autosomal Systems Self genetic systems can also arise and
cause genetic conflicts on the autosomes. The interests of autosomal
alleles are usually relatively well aligned with promoting the fitness of
the individual who carries them. However, these interests can diverge
during meiosis and gametogenesis. After all, there are two alleles at
each autosomal locus but only one of them will get passed to a child,
therefore there can be competition to be in gamete transmitted to the
next generation.

The four products of meiosis in the fungus Podospora anserina are
arrayed in the ascus® of the spores for the next generation. There is
a polymorphism S/T at the Spok gene in this species. In spores from
S x Sand T x T individuals all four products are present. However,
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Figure 10.33: Male eggspot butterfly

(Hypolimnas bolina).

P. Cramer’s Uitlandsche kapellen (1780)
Image from the Biodiversity Heritage Library.
Contributed by Smithsonian Libraries. Not in
copyright.

6 from the Greek word askos meaning
wineskin.


https://www.biodiversitylibrary.org/title/43777#page/292/mode/1up
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only two out of four spores are present in the ~ 90% of asci from S
x T individuals (GROGNET et al., 2014). The T allele is releasing a
toxin that poisons off the S carrying spores. The jury is still out on

whether the T allele spread due to the advantage created by sabotag-
ing its rival product of meiosis (SWEIGART et al., 2019). However,

in other systems it is clear that alleles have spread due to their selfish
actions.
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A number of well-established genetics systems illustrate in ani-
mals and plants how male and female gametogenesis offer different
opportunities for selfish alleles (Figure 10.35). Just as how selfish X
chromosome systems can spread by targeting sperm that carry the Y
chromosome, selfish autosomal alleles can spread by targeting sperm
carrying the other chromosome in heterozygotes. Both the Drosophila
Segregation Distortion allele and the mouse T-allele are selfish auto-
somal systems that game transmission in heterozygotes by killing off

Figure 10.34: Pictures of P. anserina
asci from various crosses. The arrow

in the SzT picture shows a rare ascus
carrying all four products of meiosis.

Figure from GROGNET et al. (2014),
licensed under CC BY 4.0.

Figure 10.35: The two copies of a
chromosome are shown in red and
blue through the process of female
and male meiosis and gametogenesis.
Crossovers are omitted to keep things
simpler. Modified from original to

include chromosomes transmitted.
Biology; the story of living things (1937).
Hunter, G.W., Walter H.E. Image from the
Biodiversity Heritage Library. Contributed
by MBLWHOI Library. No known copyright
restrictions.


https://archive.org/stream/biologystoryofli00hunt/#page/429/mode/1up

sperm that don’t carry the allele in heterozygotes.

In females meiosis there is a unique opportunity for cheating. In
male meiosis all four products of meiosis become gametes. However,
only one of the four products of female meiosis becomes the egg, the
other three products are fated to become the polar bodies. Thus al-
leles can cheat in female meiosis by preferentially getting transmitted
into the egg rather than the polar body. If an allele on a red chromo-
some (in top panel of Figure 10.35) can manipulate any asymmetry of
meioses so that it can be present in the egg > 50% of the time it will
have a transmission advantage in female heterozygotes.

To see how such drivers can spread through the population, let’s
consider the case of a population where an allele drives in both male
and female gametogenesis. (Many known selfish alleles are sex-specific
in their action, but that makes the math a little more tricky.) Imagine
a randomly-mating population of hermaphrodites. In this popula-
tion, a derived allele (D) segregates that distorts transmission in its
favour over the ancestral allele (d) in the production of all the gametes
of heterozygotes. The drive leads to a fraction « of the gametes of
heterozygotes (D/d) to carry the D allele (¢ > 0.5). The D allele
causes viability problems such that the relative fitnesses are wgq = 1,
1 > wpg > wpp. If the D allele is currently at frequency p in the
population at birth, its frequency at birth in the next generation will
be

r_ wppp? + wpaa2pq
w

(10.45)

when o = 1/2; i.e. fair Mendelian transmission this is exactly the same
as our directional selection, which results in our D allele being selected
out of the population (blue line, Figure 10.36). However, if a > 1/2, i.e.
our deleterious allele cheats, it can potentially increase in the popula-
tion when it is rare (red and black lines, Figure 10.36)). However, the
allele can become trapped in the population at a polymorphic equilib-
rium if its cost is sufficient in homozygotes. This is akin to the case

of heterozygote advantage, but now our allele offers no advantage to
heterozygote but has a self advantage in heterozygotes.

Many of the known autosomal drive systems are polymorphic in
populations, unable to reach fixation in the population due to their
costs in homozygotes. It seems likely that this represents an ascer-
tainment bias, and that many other selfish systems that had lower
selective costs have swept to fixation.
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Figure 10.36: The fate of an unfit
transmission distorter allele. If trans-
mission is fair (o = 1/2, blue curve)
the allele is lost, but the stronger

its drive in heterozygotes the faster
its spread and the higher its final
frequency in the population (black
and red curves, a = 0.7 & 0.9 re-
spectively). With fitnesses wqq = 1,
wpg = 0.95, and wpp = 0.1. The
dotted lines show the predicted equi-
librium. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/autosomal_driver.R
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Question 9. (Trickier question)

With reference to of our autosomal driver from equation 10.45.
A) Imagine the cost of the driver were additive, i.e. wgq = 1,
wpg = 1 — e, wpp = 1 — 2e. Under what conditions can the
driver invade the population? Can a polymorphic equilibrium
be maintained?

B) Imagine the allele is completely recessive, i.e. wgq = wpg =
1. What conditions do you need for a polymorphic equilibrium
to be maintained? What is the equilibrium frequency of this
balanced polymorphism?

10.3.2  Appendiz: ESS for the sex ratio

Let R be the resources available to an individuals and C'; and Co
be the cost of producing a son and daughter respectively. If our focal
mother directs s of her effort towards sons and (1 — s) of her effort to-

wards daughters, she’ll produce CRS sons and w daughters. Let’s

assume that the mean reproductive value of daughters is 1. Given
this, the average reproductive value of sons is the average number of
matings that a male will have, i.e. the ratio # females/x males. So if the
population has a sex ratio s,, the fitness of our focal female is

— s S R(1-sp)
W(s,s,) = (RUCQ) y 1) + (g@ﬂ x RS#C{?) (10.46)

expressing fitness in terms the number of grandkids our focal female is
expected to have.

To find the ESS we want a sex ratio s* for the population such that
no mutant has higher fitness. We can write this as as the population
having strategy s, = s*, and then seeing what choice of s* leads to
W(s*,s*) > W(s,s*) for s # s*, i.e. that no new strategy (s) has
higher fitness than the ESS strategy sx. We can find this ESS s* by

W =0 (10.47)
taking the derivative of Eqn 10.46 we obtain
W(s,s,) _ R R (R0 (10.5)
s Co Cgy Rsp/cCf

. . .
setting s* = s = s, and rearranging

R(1-s")/c
R _R Ri/‘? (10.49)
CQ COZ &4 /Cd.
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which is satisfied when s* = 1/2, i.e. devoting equal resources to male
and female offspring is the ESS, which corresponds to a 50/50 sex
ratio if male and female offspring are equally costly.
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Chapter 10 summary.

¢ Genotypes rise or fall in frequency across a generation in
proportion to their fitness divided by the mean fitness of
the population. We can then calculate the allele frequency
change that this change in genotype frequencies implies.

e The marginal fitness of an allele is the weighted average of
its fitness across the genotypes it occurs in. The allele with
the highest marginal fitness increases in frequency due to
selection.

e Under models of frequency-independent selection, selection
acting a single locus is expected to act to locally maximize
the mean fitness of the population.

o Under diploid directional selection, dominance is a key
parameter in understanding the rate of spread of alleles.
Beneficial dominant alleles are quick to spread but slow to
fix, while beneficial recessive alleles are slow to spread but
fix faster if they manage to spread.

¢ Under haploid models of selection, with a constant envi-
ronment, a beneficial allele sweeps logistically through the
population and we can calculate the time it takes to transi-
tion from one frequency to another. These results also hold
approximately for diploid models of additive selection.

e Sustained, directional selection will remove variation from a
population. However, selection can in some cases maintain
polymorphism, for example under models of heterozygote
advantage and negative-frequency- dependent selection.

e When selection pressures fluctuate over time, the geomet-
ric mean fitness of alleles and genotypes can give a better
indication of their long term fitness than their arithmetic
mean fitness. This means that selection can favour alleles
and genotypes that bet-hedge, i.e. reduce the variance in
their fitness at the expense of their arithmetic mean fitness.

e When fitnesses are frequency-dependent, e.g. because the
fitness of a strategy depends on the frequency of other
strategies pursued by others in the population, selection
can drive the mean fitness of the population down. One ex-
ample of this is the Fisherian selection argument for a 50/50

sex ratio.

e Selection can operate below the level of the individual, with
alleles that favour their own selfish transmission at the ex-
pense of individual-level fitness. This can lead to bouts of
genetic conflict, where modifiers are selected to suppress
these selfish alleles.




Question 10.

You are studying the polymorphism that affects flight speed

in butterflies. The polymorphism does not appear to affect fe-
cundity. Homozygotes for the B allele are slow in flight and so
only 40% of them survive to have offspring. Heterozygotes for
the polymorphism (Bb) fly quickly and have a 70% probability
of surviving to reproduce. The homozygotes for the alternative
allele (bb) fly very quickly indeed, but often die of exhaustion,
with only 10% of them making it to reproduction.

A) What is the equilibrium frequency of the B allele?

B) Calculate the marginal absolute fitnesses of the B and the b
allele at the equilibrium frequency.

Question 11.

An autosomal pesticide resistance allele is at 50% frequency in
a species of flies. We stop using the pesticide, and within 20
years the frequency of the allele is 5% in the new-born flies.
There are two fly generations per year. Assuming that the al-
lele affects fitness in an additive fashion, estimate the selection
coeflicient acting against homozygotes for the resistance allele.

Question 12.

Kin selection has been proposed as a way that the male dele-
terious mitochondrial mutations could be removed from the

population, solving the mother’s curse. Can you explain this
idea?
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11
The Interaction of Selection, Mutation, and Migra-

tion.

Genetic variation is the raw fuel of evolution. Without variation,
natural selection would have nothing to act on to shape adaptive
traits. However, variation can be deleterious.

Mutation, broadly defined, is the ultimate source of all genetic vari-
ation and is constantly introducing new variation into all populations.
However, mutation is random and so mutations that affect function
are often damaging. Thus mutation will, in the absence of sufficiently
strong selection, degrade pre-existing adaptations and undo the work
of selection that has built up functional regions of DNA over time.

Migration, the movement of individuals into a population, can
also increase variation to the population as the individuals bring new
alleles in from surrounding populations. Thus migration can be an
important source of adaptive alleles, aiding their spread amongst
populations within a species. Adaptive alleles can even spread be-
tween species if low levels of interbreeding occur. However, again,
just like mutation, migration can disrupt adaptations. When popula-
tions are locally adapted migration amongst populations can introduce
maladaptive alleles into well adapted populations. If this migration
pressure is sufficiently strong, it can lead to the collapse of local adap-
tations, or even the collapse of species.

In this chapter we’ll study some of the interplay between selection,

migration, and mutation.

11.0.1 Mutation—Selection Balance

Mutation is constantly introducing new alleles into the population.
Therefore, variation can be maintained within a population not only if
selection is balancing (e.g. through heterozygote advantage or fluctu-
ating selection over time, as we have seen in the previous section), but
also due to a balance between mutation introducing deleterious alleles
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and selection acting to purge these alleles from the population (HAL-
DANE, 1927, 1937). To study mutation-selection balance, we return to
the model of directional selection, where allele A; is advantageous, i.e.

genotype A1 A A1 A, As Ay
absolute fitness Wiy > Wig > Wao
relative fitness wij1 =1 wie=1—8h 1wy =1-—s.

We'll begin by considering the case where allele As is not completely
recessive (b > 0), so that the heterozygotes suffer at least some dis-
advantage. We denote by p = pq-,2 the mutation rate per generation
from A; to the deleterious allele Ao, and assume that there is no re-
verse mutation (pe—,; = 0). Let us assume that selection against A is
relatively strong compared to the mutation rate, so that it is justified
to assume that As is always rare, i.e. ¢ = 1 — p; < 1. Compared to
previous sections, for mathematical clarity, we also switch from fol-
lowing the frequency p; of A; to following the frequency ¢; of A,. Of
course, this is without loss of generality. The change in frequency of
A due to selection can be written as

Agqr = %pt(]t ~ —hsg. (11.1)
This approximation can be found by assuming that ¢ ~ 0, p ~ 1,
and that w =~ w;. All of these assumptions make sense if ¢ < 1.
From eqn. (11.1) we see that selection acts to reduce the frequency of
A, (as both h and s are positive), and it does so geometrically across
the generations. That is, if the initial frequency of As is qq, then its
frequency at time t is approximately

q = qo(1 — hs)’. (11.2)

We will now consider the change in frequency induced by mutation.
Recalling that p is the mutation rate from A; to As per generation,
the frequency of A, after mutation is

q =ppe +q = p(l —q) + - (11.3)

Assuming that 1 < 1 and that ¢ < 1, the change in the frequency of
allele A5 due to mutation (Ajpsq:) can be approximated by

Apg = q' —qt = K. (11-4)

Hence, when A, is rare and the mutation rate is low, mutation acts to
linearly increase the frequency of the deleterious allele As.

If selection is to balance deleterious mutation, their combined effect
over one generation has to be zero. Therefore, to find the mutation—
selection equilibrium, we set

Ange + Asq =0, (11.5)
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insert eqns. (11.1) and (11.4), and solve for ¢ to obtain

I

=+ (11.6)

e = qt

We see that the frequency of the deleterious allele A5 is balanced at a
frequency equal to the mutation rate (u) divided by the reduction in
relative fitness in the heterozygote (hs).

It is worth pointing out that the fitness of the A; A; homozygote
has not entered this calculation, as A, is so rare that it is hardly ever
found in the homozygous state. Therefore, if Ay has any deleteri-
ous effect in a heterozygous state (i.e. if h > 0), it is this effect that
determines the frequency at which A, is maintained in the popula-
tion. Also, note that by writing the total change in allele frequency as
Anrqe + Agg we have implicitly assumed that we can ignore terms
of order u x s. That is, we have assumed that mutation and selection
are both relatively weak. This assumption is valid under our prior
assumption that both p and s are small.

If an allele is truly recessive (although few likely are), we have
h = 0, and so eqn. (11.6) is not valid. However, we can make an
argument similar to the one above to show that, for truly recessive o

1 hiz ’ sf _'3:_\‘/—/-.—~. --\ \~ i
e = \/Z (11.7) ../,-‘r r_" 5 i éi:._z/k\‘h?\}{_

_J Amblycorypha oblongifolia

v

Figure 11.1: Oblong-winged katydid.

Field book of insects (1918). Lutz, F.E.
g 2 8718 B . Illustrations by Edna L. Beutenmiiller.
Oblong-winged katydids (Amblycorypha oblongifolia) are usu A A T
. . Contributed by MBLWHOI Libra . Not i
ally green. However, some are bright pink, thanks to an ery- comyright. Porany. Totn

thrism mutation . This pink condition is thought to be due to The analysis of these pink katydids
is a nice example of early Mendelian
reasoning in a wonderfully titled

alleles,

a dominant mutation (Crew, 2013). Assume that roughly one

in ten thousand katydids is bright pink and that the mutation paper.

rate at the gene underlying this condition is 10~°. What is the WHEELER, W. M., 1907 Pink
. . o Insect Mutants. The American

relative fitness of heterozygotes for the pink mutation? Naturalist 41(492): 773-780

The genetic load of deleterious alleles What effect do such deleterious
mutations at mutation—selection balance have on the population? It

is common to quantify the effect of deleterious alleles in terms of a
reduction of the mean relative fitness of the population. For a single
site at which a deleterious mutation is segregating at frequency g. =
1/ (hs), the population mean relative fitness is reduced to

W=1—2p.q.hs — ¢>s =~ 1 — 2. (11.8)

Somewhat remarkably, the drop in mean fitness due to a site segre-
gating at mutation—selection balance is independent of the selection


https://www.flickr.com/photos/biodivlibrary/6244366674/in/album-72157627768739853/
https://blogs.scientificamerican.com/running-ponies/in-north-american-katydids-green-isne28099t-the-dominant-colour-pink-is/
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coeflicient against the heterozygote; it depends only on the mutation
rate (HALDANE, 1937). Intuitively this is because, given a fixed mu-
tation rate, less deleterious alleles can rise to a higher equilibrium

frequency, and thus contribute the same total load as more deleterious
(rarer) alleles, but this load is spread across more individuals in the
population. Note that this result applies only if the mutation is not
totally recessive, i.e. if h > 0.

50

40

Number of Individuals
20

10

T T T T 1
130 140 150 160 170

# LOF alleles

A fitness reduction of 2u is very small, given that the mutation rate
of a gene is usually on the order of 10~°. However, if there are many
loci segregating at mutation—selection balance, small fitness reductions
can accumulate to a substantial so-called genetic load, a major cause
of variation in fitness-related traits among individuals. To see how all
of these loci contribute to variation in fitness consider the fact that the
human genome contains over twenty thousand protein-coding genes,
and many other functional regions, the vast majority of which will
be subject to purifying selection against mutations that disrupt their
function. In humans, most loss of function (LOF) variants, which
severely disrupt a protein-coding gene, are found at low frequencies
but each human genome typically carries over a hundred LOF variants
(MACARTHUR et al., 2012; LEK et al., 2016). Not every LOF allele
will be deleterious; some could even be advantageous. However, the

combined load of these LOF alleles must on average lower our fitness,
otherwise selection wouldn’t be removing them from the population.
Each one of us carries a unique set of these LOF alleles, usually in a

Figure 11.2: Left) The distribution
of LOF alleles in 769 individuals

from the Genome of the Netherlands
project. Data from FRANCIOLI et al..
The average individual (red line)
carries 144 LOF alleles. Code here.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/LOF_variants/Neatherlands_LOF_variants.R
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heterozygous state. We differ slightly in how many of these alleles we
carry. For example, the left side of Figure 11.2 shows the distribution
of the number of LOF alleles carried by 769 individuals of Dutch
ancestry. The individuals who carry fewer of these LOF alleles will on
average likely have higher fitness than those individuals with more.
We don’t yet know how much fitness variation this explains across
individuals, nor do we know how most of these LOF alleles manifest
their fitness consequences through disease and other mechanisms.
However, it’s a reasonable guess that this variation in LOF alleles,
presumably maintained by mutation-selection balance, is a major
source of variation in fitness.

11.0.2 Inbreeding depression

All else being equal, eqn. (11.6) suggests that mutations that have a
smaller effect in the heterozygote can segregate at higher frequency
under mutation—selection balance. As a consequence, alleles that have
strongly deleterious effects in the homozygous state can still segregate
at low frequencies in the population, as long as they do not have too
strong a deleterious effect in heterozygotes. Thus, outbred populations
may have many alleles with recessive deleterious effects segregating
within them.

Assume that a deleterious allele has a relative fitness 0.99 in
heterozygotes and a relative fitness 0.2 when present in the
homozygote state. Assume that the deleterious allele is at a
frequency 1073 at birth and the genotype frequencies follow
from HWE. Only considering the fitness effects of this locus,
and measuring fitness relative to the most fit genotype, answer
the following questions:

A) What is the average fitness of an individual in the popula-
tion?

B) What is the average fitness of the child of a full-sib mating?
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Inbreeding coeff

One consequence of segregating for low-frequency recessive delete-
rious alleles is that inbreeding can reduce fitness. In typically outbred
populations, the mean fitness of individuals decreases with the in-
breeding coeflicient, i.e. so-called ’'inbreeding depression’ is a common
observation. This wide-spread observation dates back to systematic
surveys of inbreeding depression by DARWIN (1876). Inbreeding de-
pression is likely primarily a consequence of being homozygous at
many loci for alleles with recessive deleterious effects.

One example of inbreeding depression is shown in Figure 11.3.
White campion (Silene latifolia) is a dioecious flowering plant; dioe-
cious means that the males and females are separate individuals.
RICHARDS (2000) performed crosses to create offspring who were

outbred, the offspring of half-sibs, full-sibs, and of two generations of
full-sib mating. He measured their germination success, which is plot-
ted in Figure 11.3. Note how the fitness of individuals declines with
increased inbreeding.

We also see evidence for inbreeding depression in various human
populations. For example, HELGASON et al. (2008) used the remark-
able genealogical records in Iceland to look at the effects of inbreeding

on various fitness components in humans. They saw that parents who
were closer than 2nd cousins had children with reduced lifespans.
However, these patterns were more complex for other fitness compo-
nents with parents with immediate levels of relatedness having more
descendants overall. More generally, studying inbreeding depression is
challenging in humans because it can be difficult to differentiate the
cultural and socio-economic effects frombiological effects on reproduc-

Figure 11.3: Data showing inbreeding
depression over different degrees of
inbreeding in S. latifolia. Each point
is the mean seed germination rates
for different family crosses. Data from
RicHARDS. Code here.

Tafel 18.

Weisses Liedweich, Silene alba.

Figure 11.4: White campion (S.
latifolia).

Deutschlands Flora in Abbildungen (1796).
Johann Georg Sturm (Painter: Jacob Sturm).
Public Domain, wikimedia.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Silene_inbreeding_Richards/Silene_inbreeding_depression.R
https://zh.wikipedia.org/wiki/File:Silene_latifolia_Sturm18.jpg
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Figure 11.5: Inbreeding depression
for offspring lifespan in humans in
Iceland. Data from (HELGASON
et al., 2008). Code here.
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tion. Finally, it is important to note that societal views of inbreeding
risks can be overblown compared to the actual risks and that these
fears have often been used to stigmatize immigrant and rural poor
communities (PAUL and SPENCER, 2008).

Purging the inbreeding load. Populations that regularly inbreed over
sustained periods of time are expected to partially purge this load
of deleterious alleles. This is because such populations have exposed
many of these alleles in a homozygous state, and so selection can more
readily remove these alleles from the population.

If the population has sustained inbreeding, such that individuals
in the population have an inbreeding coefficient F', deleterious alle-
les at each locus will find a new equilibrium frequency. Assuming
the mutation-selection model, now with inbreeding, the equilibrium

frequency is

I
=P +F)s (1L9)
The frequency of the deleterious allele is decreased due to the allele
now being expressed in homozygotes, and therefore exposed to selec-
tion, more often due to inbreeding. Thus, all else being equal, popula-
tions that have had a long-term history of close inbreeding will purge
their load.

11.0.8 Migration—selection balance

The influx of alleles carried by migrants from other populations can
be an important source of genetic and phenotypic variation. Thus,
one reason for the persistence of deleterious alleles in a population is


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Decode_human_inbreeding/decode_inbreeding.R
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that there is a constant influx of maladaptive alleles from other pop-
ulations where these alleles are locally adaptive. Migration—selection
balance seems unlikely to be as broad an explanation for the persis-
tence of deleterious alleles genome-wide as mutation-selection balance.
However, a brief discussion of such alleles is worthwhile, as it helps to
inform our ideas about local adaptation, hybrid zones, and speciation.
Local adaptation can occur over a range of geographic scales. Lo-
cal adaptation is relatively unimpeded by migration at broad geo-
graphically scales, where selection pressures change more slowly than
distances over which individuals typically migrate over a number of
generations. Adaptation can, however, potentially occur on much finer
geographic scales, from kilometers down to meters in some species. On
such small scales, dispersal is surely rapidly moving alleles between
environments, but local adaptation is maintained by the continued
action of selection. An example of adaptation at fine-scales is shown in
Figure 11.7 . JAIN and BRADSHAW (1966) studied the patterns of
heavy-metal resistance in plants on mine tailings and in nearby mead-

ows, a set of classic studies of population differences maintained by
local adaptation to different soils. Even at these very short geograph-
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ically scales, over which seed and pollen will definitely move, we see
strong local adaptation. Zinc-intolerant alleles are nearly absent from
the mine tailings because they prevent plants from growing on these
zinc-heavy soils; conversely, zinc-tolerant alleles do not spread into
the meadow populations, likely due to some trade-off or fitness cost of
zinc-tolerance.

As a first pass at developing a model of local adaptation, let’s con-
sider a haploid two-allele model with two different populations, see
Figure 11.8, where the relative fitnesses of our alleles are as follows

Figure 11.6: Sweet vernal grass

(Anthozanthum odoratum).

Billeder af nordens flora (1917). Mentz, A &
Ostenfeld, C H. Image from the Biodiversity
Heritage Library. Contributed by New York
Botanical Garden. Not in copyright.

Figure 11.7: Data showing the zinc
tolerance of Anthozanthum odora-
tum on and off of the Trelogan Mine,
Flintshire, North Wales. The numbers
along the top give the soil contamina-
tion of zinc in parts per million. Data
from JAIN and BRADSHAW (1966).
Code here.



https://www.flickr.com/photos/internetarchivebookimages/19750531053/in/photolist-wNFPcF-oeKFoD-oeqVrq-xjVkoi-xi5Y8c-whqJ7q-wEuf4k-wJ17N5-tomD7h-wJMXfh-xjM43c-u5erAM-xz2zWL-wH6Dsj-xhwUay-tB85tk-owe1TX-xzu6yj-x4Z1QU-xKkAg9-wR4LKK-xuCehm-xrBNQo-wHELGB-xmTvij-xkqKLC-xzu78f-wCuhJH-x4qfEM-x4p98v-x4n2fg-x3ZDt3-xkAEUP-womZdZ-woh4Wg-x3eR9U-wnUSax-xj2vfv-xf1qFH-x5g4HL-x6c1k4-x4pCYH-w6hCMt-wYM1uh-wZSoKj-w4AuK3-tn7aso-tyRsGC-tiuGr3-ow8wYz
https://www.flickr.com/photos/internetarchivebookimages/19750531053/in/photolist-wNFPcF-oeKFoD-oeqVrq-xjVkoi-xi5Y8c-whqJ7q-wEuf4k-wJ17N5-tomD7h-wJMXfh-xjM43c-u5erAM-xz2zWL-wH6Dsj-xhwUay-tB85tk-owe1TX-xzu6yj-x4Z1QU-xKkAg9-wR4LKK-xuCehm-xrBNQo-wHELGB-xmTvij-xkqKLC-xzu78f-wCuhJH-x4qfEM-x4p98v-x4n2fg-x3ZDt3-xkAEUP-womZdZ-woh4Wg-x3eR9U-wnUSax-xj2vfv-xf1qFH-x5g4HL-x6c1k4-x4pCYH-w6hCMt-wYM1uh-wZSoKj-w4AuK3-tn7aso-tyRsGC-tiuGr3-ow8wYz
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Anthoxanthum_mines_Jain_Bradshaw/Anthoxanthum_zinc_Jain_Bradshaw.R
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allele ‘ 1 2
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population 2 | 1-s 1

Population 1
A A

As a simple model of migration, let’s suppose within a population a o

fraction of m individuals are migrants from the other population, and
1 — m individuals are from the same population.

To quickly sketch an equilibrium solution to this scenario, we’ll take
an approach analogous to our mutation-selection balance model. To do
this, let’s assume that selection is strong compared to migration (s >
m), such that allele 1 will be almost fixed in population 1 and allele

Population 2

2 will be almost fixed in population 2. If that is the case, migration
changes the frequency of allele 2 in population 1 (q1) by

A ~m 11.10
Mig.q1 ( ) Figure 11.8: Setup of a two-

. . . . population haploid model of local
while as noted above Agq; = —sq1, so that migration and selection adaptation.

are at an equilibrium when 0 = Agqi + Anrig.q1, i-e. an equilibrium
frequency of allele 2 in population 1 of

o = = (11.11)
S

Here, migration is playing the role of mutation and so migration—
selection balance (at least under strong selection) is analogous to
mutation—selection balance.

We can use this same model by analogy for the case of migration—
selection balance in a diploid model. For the diploid case, we replace
our haploid s by the cost to heterozygotes hs from our directional
selection model, resulting in a diploid migration—selection balance
equilibrium frequency of

Gor = % (11.12)
If selection is weaker and only of the order of migration s ~ m our
migration-selection polymorphism collapses, as selection can not main-
tain the difference in the face of gene flow. Under this situation, both
populations are expected to have roughly the same frequency of the
alleles. Migration has swamped out local adaptation.
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HOEKSTRA et al. (2004) found that the dark D allele was at
3% frequency at the Tule Mountains study site. Using Fgr-

based approaches, for unlinked markers, they estimated that

the per individual migration rate was m = 7.0 x 10~* per gener-
ation between this site and the Pinacate lava flow. What is the
selection coeflicient acting against the dark D allele at the Tule

Mountains site?

As an example of fine-scale local adaptation due to a single lo-
cus, consider the case of the rock pocket mice adapting to lava flows.
Throughout the deserts of the American Southwest there are old lava
flows, where the rocks and soils are much dark than the surrounding
desert. Many populations of small animals that live on these flows
have evolved darker pigmentation to be cryptic against this dark
substrate and better avoid visual predators. One example of such a
locally adapted population are the rock pocket mice (Chaetodipus in-
termedius) who live on the Pinacate lava flow on the Arizona-Mexico
border, studied by HOEKSTRA et al. (2004). These mice have much
darker, more melanic pelts than the mice who live on nearby rocky
outcrops (see Figure 11.9). NACHMAN et al. (2003) determined that
a dominant allele (D) at MCIR is the primary determinant of this

melanic phenotype. The frequency of this allele across study sites is

Figure 11.9: Frequency of melanic
mice on the lava flow, and at nearby
locations (diamonds). Frequency

of MC1R melanic allele at same
locations. Data from HOEKSTRA

et al. (2004). Code here.

Figure 11.10: Two species from the
genus Chaetodipus, pocket mice,

formally known as Perognathus.

Wild animals of North America, intimate
studies of big and little creatures of the
mammal kingdom (1918), Nelson, E. W.
Image from the Biodiversity Heritage Library.
Contributed by American Museum of Natural
History Library. Not in copyright.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Rock_Pocket_mice/Rock_pocket_mice.R
https://www.flickr.com/photos/biodivlibrary/6217227436/in/photolist-x1RbyL-atoV7u-wLxcK5-otRwPb-ovD312-otT7XT-xo6AL1-xXACVH-xWJdrj-x4aerR-w7hgf4-wLxwW3-x5GDbx-x1RehS-w79qy1-x6XU6C-tAuQHM-w7hbgB-wLxXg3-x49K8g-w7hf9g-x71usx-wrkzJ9-oddZ1D-xXADKt-xYfW4F-w8hLZD

shown in Figure 11.9. HOEKSTRA et al. (2004) found that other,
unlinked markers showed little differentiation over these populations,

suggesting that the migration rate is high.

The width of a genetic cline. We can also extend these ideas beyond
our discrete model to a model of a population spread out on a land-
scape where individuals migrate in a more continuous fashion. For
simplicity, let’s assume a one dimensional habitat, where the habitat
makes a sharp transition in the middle of our region. You could imag-
ine this to be a set of populations sampled along a transect through
some environmental transition. Our individuals disperse to live on
average o miles away from where they were born (we can think of this
as our individuals migrating a random displacement drawn from a
normal distribution, with mean zero, and o being the standard devia-
tion of this distribution). We’ll think of a bi-allelic model where the
homozygotes for allele 1 have an additive selective advantage s over al-
lele 2 homozygotes to the east of our habitat transition (left of zero in
Figure 11.11). This flips to allele 2 having the same advantage s west
of the transition (right of zero). If you’ve read this send Prof Coop a
picture of the East and West Beast.
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With this setup, we get an equilibrium distribution of our two alle-
les, where to the left of zero our allele 2 is at higher frequency, while
to the right of zero allele 1 predominates. As we cross from the left to
the right side of our range, the frequency of our allele 2 decreases in a
smooth cline. The frequency of allele 2, ¢(x), is shown as a function of
location, x, along the cline for a variety of selection coefficients (s) in
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“Upon an island hard to reach, the
East Beast sits upon his beach. Upon
the west beach sits the West Beast.
Each beach beast thinks he’s the best
beast.” — Theodor Seuss Geisel

Figure 11.11: An equilibrium cline

in allele frequency (the frequency of
allele 2, g( ) is shown). Our individ-
uals dispersal an average distance

of 0 = 1miles per generation, and
our allele 2 has a relative fitness of
1+ s and 1 — s on either side of the
environmental change at © = 0. Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/cline.R

228 GRAHAM COOP

Figure 11.11. The width of this cline, i.e. the geographic distance over
which the allele frequency changes, depends on the relative strengths
of dispersal and selection. If selection is strong compared to dispersal,
then selection acts to remove maladaptive alleles much faster than
migration acts to move alleles across the environmental transition.
Thus the allele frequency transition would be very rapid, and the cline
narrow, as we move across the environmental transition. In contrast,
if individuals disperse long distances and selection is weak, many alle-
les are being moved back and forth over the environmental transition
much faster than selection can act against these alleles and so the cline
would be very wide.

The width of our cline, i.e. the distance over which we make this
shift from allele 2 to allele 1 predominating, can be defined in a num-
ber of different ways. One way to define the cline width, which is
simple to define but perhaps hard to measure accurately, is via the
slope (i.e. the tangent) of ¢(x) at z = 0. See Figure 11.12. Under this
definition, the cline width is approximately

0.60/+/s miles, (11.13)

note that the units are miles here just because we defined the average
dispersal distance (o) in miles above. Thus the cline will be wider

if individuals dispersal further, higher o, and if selection is weaker,
smaller s. The appendix at the end of this chapter, talks through the
math underlying these ideas in more detail.
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LENORMAND et al. (1999) collected mosquitoes (Culex pipiens)

in a north—south transect moving away from the Southern French
coast. Areas near the coast were are treated with pesticides, and the
mosquitos have evolved resistance, but areas just a few tens of kilo-
meters from the coast were untreated. LENORMAND et al. estimated

the frequency of two unlinked, pesticide-resistance alleles, and found
them at high frequency near the coast but found that their frequencies

Frequency of allele 2, q(x)

Position x, km

Figure 11.12: An equilibrium cline in
allele frequency from Figure 11.11,

s = 0.01. Vertical lines show the cline
width. The diagonal line show the
tangent to the cline at its midpoint.
Code here.

Figure 11.13: Allele frequency clines
of two pesticide resistance alleles,

at the Ace 1 and Ester genes, in

the mosquito Culex pipiens. The
dotted line shows where we move
from pesticide-treated to untreated
areas as we move away from the
French coast. The dots show observed
allele frequencies, the solid lines
clines fit under a migration-selection
balance model of a cline. These allele
frequencies represent collections over
two summers, the frequencies of the
alleles are substantially reduced in
the winter due to the reduced use of
pesticides. Data from LENORMAND
et al. (1999). Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/cline.R
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/Culex_resistance/culex_resistance.R
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declined rapidly moving inland. LENORMAND et al. fit migration-

selection cline models to their data, similar to those in Figure 11.11,
with the pesticide-resistance alleles having an selection advantage (s)
in treated areas an a cost (¢) in untreated areas (they didn’t force the
selective advantage and cost to be symmetric).

They estimated that a higher selective advantage for the Ace 1
allele thanEster allele (s = 0.33 and s = 0.19 respectively) and a
higher cost to the Ace I allele than Ester allele in untreated areas

(¢ = 0.11 and ¢ = 07 respectively) potentially explaining the less

extreme cline for Fster allele than the Ace 1 allele. Despite these Figure 11.14: Mosquito (Culex pipi-

strong selection pressures, we still see a cline over tens of kilometers ens).
Domestic mosquitoes (1939). Bishopp, F.
3 3 3 3 — 3 C. Image from the Biodi sity Heritag
because dispersal is relatively high (o = 6.6km per generation). D L e o Sverelt Heritage

Agriculture, National Agricultural Library. Not
in copyright.

Hybrid zones Local adaptation isn’t the only way that selection can
generate strong spatial patterns. We can also see strong selection-
driven clines when partially-reproductively isolated species spread
back in to secondary contact they can hybridize bringing alleles to-
gether that may not work well with each other. One simple model of
is to think about an under-dominant polymorphism, i.e. where the
heterozygote has lower fitness. The two ancestral populations are al-
ternatively fixed for the two fitter homozygote states, e.g. ancestral
population 1 fixed Ay A; and ancestral population two the A As. The
hybrid population forming at the mating edge between the two an-
cestral populations has a high frequency of the less fit heterozygotes.
Thus hybrids are at a disadvantage, potentially acting to keep the two
populations from collapsing into each other.

Figure 11.15: The frequency of the
southern neo-X chromosome mov-

s ing along a valley transect (more
southern locations to the right of the
graph). This represents data from

2 four different valleys in the French
Alps over less then a kilometer, each

> .

g point represents a sample of 20 males.
% S The red curve is the fitted cline under
&’ a model of heterozygote disadvan-

X < tage (BAZYKIN, 1969). Data from

g ° BARTON and HEWITT (1981), Code
< here.
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Two previously isolated populations of the short-horned grasshop-


https://archive.org/stream/domesticmosquito186bish/#page/3/mode/1up
https://archive.org/stream/domesticmosquito186bish/#page/3/mode/1up
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/single_locus_selection/grasshopper_cline_barton_hewitt/grasshopper_cline_barton_hewitt.R
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per Podisma pedestris have spread into secondary contact in the
French Alps, probably after the last ice age. The population that

has spread into the Alps from the south has a large section of novel

X chromosome, due to a chromosomal fusion. This ‘neo-X’ is absent
in the populations that spread from the North into the Alps. The two
populations meet in many valleys running through the Alps, and re-
peatedly form a narrow hybrid zone, with the frequency of the neo-X
chromosome forming a very steep cline transitioning in frequency over
a few hundred meters (BARTON and HEWITT, 1981). One potential

reason for this steep cline is that females who are heterozygous for
the neo-X (neo-X/old-X) may have reduced fitness, consistent with an
underdominant polymorphism. The neo-X allele cannot spread into
the northern population as it cannot increase in frequency when rare.
Conversely the northern population cannot displace the neo-X, as the
old-X is at a disadvantage. This spatial distribution at this locus is

a tension zone between the two populations, where neither allele can
push the other out due to the low fitness of the hybrid.

We can use our same continuous model of migration and selection
to study this setup. Assuming that the homozygotes are equally fit,
and that the heterozygotes relative fitness is reduced by a selection
coefficent sy, the width of the cline is

N (11.14)

The stronger the selection the more abrupt the transition between
the populations. These wingless grasshoppers move o ~ 20 meters
a generation. Thus a reduction in the relative fitness of the hybrid
would be needed to explain this hybrid zone with a width of ~ 800m.

More generally we can see tension zones arise when hybrids have re-
duced fitness compared to either species. For example, this can occur
due to be due to bad epistatic interactions between alleles from each
species. If selection is strong enough on hybrids, often because many
loci are involved in incompatibilities between the species, the entire
genome can be tied up in a tension zone between the two species.

Appendizx: Some theory of the spatial distribution of allele frequen-

cies under deterministic models of selection

Imagine a continuous haploid population spread out along a line. Each
individual disperses a random displacement Az from its birthplace to
the location where it reproduces, where Az is drawn from the proba-
bility density g(Az). To make life simple, we will assume that g(Ax)
is normally distributed with mean zero and standard deviation o, i.e.
migration is unbiased and individuals migrate an average displacement

of 0.

CAPAHYA.

A
CAPAHYA W CAPAHYEBBIA.

1, 2—Tlopesernas capawsa. 3. 4—Hrazvsncras capassa (apy-
Ton

Figure 11.16: 7. Podisma pedestris, a
species of short-horned grasshoppers;

from a page illustrating Orthoptera.
Tlustration from Brockhaus and Efron Ency-
clopedic Dictionary (1890) Image wikimedia,
public domain.


https://commons.wikimedia.org/wiki/File:Brockhaus_and_Efron_Encyclopedic_Dictionary_b56_402-0.jpg
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The frequency of allele 2 at time ¢ in the population at spatial lo-
cation z is g(x,t). Assuming that only dispersal occurs, how does our
allele frequency change in the next generation? Our allele frequency in
the next generation at location x reflects the migration from different
locations in the proceeding generation. Our population at location x
receives a contribution g(Az)g(x + Az, t) of allele 2 from the popula-
tion at location & + Ax, such that the frequency of our allele at = in
the next generation is

gz, t+1) = /OO g(Ax)q(x + Az, t)dAx. (11.15)

— 00

To obtain q(z + Az, t), let’s take a Taylor series expansion of ¢(z,t):

dq(z,t)
dx

2 d2q(x, t)

Az, t) = t)+ A
qla+ A t) = qla.t) + Ac s

+ 3(Az) + -+ (11.16)

then

oo t40) = o)+ ([ seganane) 0Dt (™ anpganise) TAE0
(11.17)

Because g( ) has a mean of zero, ffooo Azg(Az)dAxz = 0, and has
because g( ) has variance o2, f_oooo(Ax)zg(Ax)dAx = o2. All higher
order terms in our Taylor series expansion cancel out (as all higher
central moments of the normal distribution are zero). Looking at the
change in allele frequency, Ag(x,t) = q(z,t + 1) — g(x,t), so

o? d?q(z,1)
2 da?
This is a diffusion equation, so that migration is acting to smooth out

Ag(z,t) = (11.18)

allele frequency differences with a diffusion constant of %2 This is
exactly analogous to the equation describing how a gas diffuses out to
equal density, as both particles in a gas and our individuals of type 2
are performing Brownian motion (blurring our eyes and seeing time as
continuous).

We will now introduce fitness differences into our model and set the
relative fitnesses of allele 1 and 2 at location x to be 1 and 1 + sy(z).
To make progress in this model, we’ll have to assume that selection
isn’t too strong, i.e. sy(x) < 1 for all 2. The change in frequency of
allele 2 obtained within a generation due to selection is

q/(x,t) —q(z,t) = 57(%‘)q(l‘,t)(1 - Q(x,t)) (11.19)

i.e. logistic growth of our favoured allele at location x. Putting our
selection and migration terms together, we find the total change in
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allele frequency at location x in one generation is

% d?*q(z,1)

qg(z,t +1) — q(z,t) = sv(m)q(nt)(l — q(:mt)) + o A (11.20)

In deriving this result we have ignored terms of the order of os.

Figure 11.17: An equilibrium cline
in allele frequency. Our individuals

1.0

s= g'$1 dispersal an average distance of o =
— s=0. .
© — s= 0.001 1km per generation, and our allele 2
@

has a relative fitness of 1 +s and 1 — s
on either side of the environmental
change at x = 0.

0.6
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The cline in allele frequency associated with a sharp environmental
transition. To make progress, let’s consider a simple model of local
adaptation where the environment abruptly changes. Specifically, we
assume that y(z) = 1 for x < 0 and y(z) = —1 for > 0, i.e. our allele
2 has a selective advantage at locations to the left of zero, while this
allele is at a disadvantage to the right of zero. In this case we can get
an equilibrium distribution of our two alleles, where to the left of zero
our allele 2 is at higher frequency, while to the right of zero allele 1
predominates. As we cross from the left to the right side of our range,
the frequency of our allele 2 decreases in a smooth cline.

Our equilibrium spatial distribution of allele frequencies can be
found by setting the left-hand side of eqn. (11.20) to zero to arrive at

(@)a(x) (1 - g(a)) = - - LI (11.21)

We then could solve this differential equation with appropriate bound-
ary conditions (g(—oo) = 1 and ¢(c0) = 0) to arrive at the appropriate
functional form for our cline. While we won’t go into the solution of
this equation here, we can note that by dividing our distance x by

¢ = o/y/s, we can remove the effect of our parameters from the above
equation. This compound parameter ¢ is the characteristic length of
our cline, and it is this parameter which determines over what geo-
graphic scale we change from allele 2 predominating to allele 1 pre-
dominating as we move across our environmental shift.



Chapter 11 summary.

Deleterious variation can be maintained in the population
by a balance of selection and mutation. If the mutations

are not completely recessive, the equilibrium frequency of
deleterious alleles is given by the ratio of mutation to the
selection coefficient against heterozygotes (¢eq = #/hs). The
more recessive an allele the higher frequency it segregates
under mutation-selection balance, all else being equal, as
they better avoid selection in the heterozygote state.

While the equilibrium frequency of alleles under mutation-
selection balance at any one locus is low, there are many
such loci in the genome such that every individual carries
many deleterious alleles.

As more recessive deleterious alleles segregate at higher fre-
quency, inbred individuals are expected to have lower fitness
than typical outbred individuals in the population as they
are on average homozygous for recessive deleterious alleles.

Divergent selection between populations can maintain al-
lele frequency differences between populations in the face of
migration. The constant influx of alleles by migration can
maintain maladaptive alleles at low frequency in the face of
selection leading to a migration selection balance, an analog
to mutation selection balance.

When strong selection pressures change over short geograph-
ical scales, we expect abrupt allele frequency clines at the
selected loci. We also expect strong allele frequency clines in
hybrid zones at loci underpinning hybrid fitness disadvan-
tage.
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You are studying a gene causing partial infertility, due to errors
during meiosis, in an outcrossing plant population. You esti-
mate that 5% of heterozygotes for knockout mutation in this
gene are completely sterile, but 95% of heterozygote individuals
have normal fertility. Homozygotes for the knockout are often
embryonic lethal due to errors in mitosis. The frequency at
birth of knockouts for the gene is 1/5000.

A) What is the knockout mutation rate at this gene?

B) You find a sister species which has had a high degree of in-
breeding for many generations due to selfing. Do you expect to
find the knockout allele at higher or lower frequency? Explain

your answer.

There’s an outbred population of mice living in a farmer’ s

field. Mutations occur at a gene called nurseryrhyme that cause
a totally recessive form of blindness. These blind mice do not
survive to reproduce as the farmer’ s wife cuts off their tail
(and other bits) with a carving knife. Surveying the field for
baby mice you find that 3 in ten thousand mice are blind.

A Assuming that the population mates at random, what is the
mutation rate of blindness causing alleles?

B Following more careful study you now find that there is
actually a 20% reduction in the viability of heterozygotes for
these mutations. What would you now estimate as the muta-
tion rate for this gene? C) Explain how and why your answers
differ?




12
The Impact of Genetic Drift on Selected Alleles.

“Natural selection is a mechanism for generating an exceedingly high
degree of improbability.” —R.A. Fisher

In the previous chapter we assumed that the selection acting on our
alleles was strong enough that we could ignore the action of genetic
drift in shaping allele frequencies. However, genetic drift affects all al-
leles, and so in this chapter we explore the interaction of selection and
drift. Strongly selected alleles can be lost from the population via drift
when they are rare in the population, while both weakly beneficial and
weakly deleterious alleles are subject to the random whims of genetic
drift throughout their entire time in the population. Understanding
the interaction of selection and genetic drift is key to understand-
ing the extent to which small populations may be mutation-limited
in their rates of adaptation, and how rates of molecular and genome
evolution may differ across taxa.

12.1 Stochastic loss of strongly selected alleles

Even strongly beneficial alleles can be lost from the population when
they are sufficiently rare. This is because the number of offspring left
by individuals to the next generation is fundamentally stochastic. A
selection coefficient of s=1% is a strong selection coeflicient, which can
drive an allele through the population in a few hundred generations
once the allele is established. However, if individuals have on average a
small number of offspring per generation, the first individual to carry
our beneficial allele, who has on average 1% more children than their
peers, could easily have zero offspring, leading to the loss of our allele
before it ever gets a chance to spread.

To take a first stab at this problem, let’s think of a very large hap-
loid population in which a single individual starts with the selected
allele, and ask about the probability of eventual loss of our selected
allele starting from this single copy. To derive this probability of loss
(pr), we'll make use of a simple argument (derived using branching
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processes by FISHER, 1923; HALDANE, 1927). Our selected allele
will be eventually lost from the population if every individual with

the allele fails to leave descendants. Well we can think about different

A

[ ]

[ )

L]
Gen. 1 2
Prob. Py
Prob. loss 1

cases:

1. In our first generation, with probability Py our individual allele
leaves no copies of itself to the next generation, in which case our
allele is lost (Figure 12.1A).

2. Alternatively, our allele could leave one copy of itself to the next
generation (with probability P;), in which case with probability py,
this copy eventually goes extinct (Figure 12.1B).

3. Our allele could leave two copies of itself to the next generation
(with probability P,), in which case with probability p? both of
these copies eventually go extinct (Figure 12.1C).

4. More generally, our allele could leave could leave k copies (k > 0)

of itself to the next generation (with probability Py), in which case

with probability p% all of these copies eventually go extinct (e.g.
Figure 12.1D).

Summing over these probabilities, we see that

pr =Y Pl (12.1)
k=0

We’ll now need to specify Py, the probability that an individual car-
rying our selected allele has k offspring. In order for this population
to stay constant in size, we’ll assume that individuals without the se-
lected mutation have on average one offspring per generation, while

Figure 12.1: Four different outcomes
of a selected allele present as a single
copy in the population, leaving zero,
one, two, three offspring in the next

generation.



individuals with our selected allele have on average 1 + s offspring

per generation. We’ll assume that the number of offspring an individ-
ual has is Poisson distributed with mean given by 1 or 1 + s, i.e. the
probability that an individual with the selected allele has ¢ children is

(1 + S)ie*(lJrS)

P, = A (12.2)
Substituting Pj into the equation above, we see
(14 s)ke=(ts)
p=y U
k=0 ’
oo k
e (& L1+ 9)
=e (Z o (12.3)
k=0

The term in the brackets is itself an exponential expansion, so we can

rewrite this equation as
pL = e(1+s)(pr—1) (12.4)

Solving for p;, would give us our probability of loss for any selection
coefficient. Let’s rewrite our result in terms of the the probability of
escaping loss, pr = 1 — pr,. We can rewrite eqn. (12.4) as

1 —pp = e Pr+s) (12.5)

To gain an approximate solution for this result, let’s consider a small
selection coefficient s < 1 such that pr < 1 and then use a Taylor
series to expand out the exponential on the right hand side (ignoring
terms of higher order than s? and p%):

L= pr~ 1= pr(l+5) +po(l+5)°/2 (12.6)

Solving this we find that
pr = 2s. (12.7)

Thus even an allele with a 1% selection coefficient has a 98% proba-
bility of being lost when it is first introduced into the population by
mutation.

If the mutation rate towards our advantageous allele is u, and there
are N individuals in our haploid population, then Ny advantageous
mutations arise per generation. Each of these new beneficial mutations
has a probability pr of fixing. Thus the number of advantageous mu-
tations arising per generation that will eventually fix in the population
is Nupp, and the waiting time for a mutation that will fix to arise is
the reciprocal of this: !/Nupr. Thus, in adapting to a novel selection
pressure via new mutations, the population size, the mutational target
size, and the selective advantage of new mutations all matter. One
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reason why combinations of drugs are used against viruses like HIV
and malaria is that, even if the viruses adapt to one of the drugs, the
viral load (V) of the patient is greatly reduced, making it very un-
likely that the population will manage to fix a second drug-resistant
allele.

Diploid model of stochastic loss of strongly selected alleles. We can
also adapt this result to a diploid setting. Assuming that heterozy-
gotes for the 1 allele have on average 1 + hs children, the probability
allele 1 is not lost, starting from a single copy in the population, is

pr = 2hs (12.8)

for h > 0. Note this is a slightly different parameterization from our
diploid model in the previous chapter; here h is the dominance of our
positively selected allele, with h = 1 corresponding to the full se-
lective advantage expressed in an individual with only a single copy.
Thus the probability that a beneficial allele is not lost depends just

on the relative fitness advantage of the heterozygote; this is because
when the allele is rare it is usually present in heterozygotes and so its
probability of escaping loss just depends on the fitness of these indi-
viduals compared to homozygotes for the ancestral allele (assuming an
outbred population).

Figure 12.2: Map of G6PD-
deficiency allele frequencies
across Asia. The pie chart shows the
frequency of G6PD-deficiency alleles.
The size of the pie chart indicates the
number of G6PD-deficient individuals
sampled. Countries with endemic
malaria are colored yellow. Figure
from HOWES et al. (2013), licensed
under CC BY 4.0.

‘maprsm

Over roughly the past ten thousand years, adaptive alleles con-
ferring resistance to malaria have arisen in a number of genes and
spread through human populations in areas where malaria is en-
demic (KWIATKOWSKI, 2005). One particularly impressive case of

convergent evolution in response to selection pressures imposed by
malaria are the numerous changes throughout the G6PD gene, which
include at least 15 common variants in Central and Eastern Asia
alone that lower the activity of the enzyme (HOWES et al., 2013).
These alleles are now found at a combined frequency of around 8%

frequency in malaria endemic areas, rarely exceeding 20% (HOWES



et al., 2012). Whether these variants all confer resistance to malaria
is unknown, but a number of these alleles have demonstrated effects
against malaria and are thought to have a selective advantage to het-
erozygotes sh > 5% where malaria is endemic (RUWENDE et al.,
1995; TISHKOFF et al., 2001; LOUICHAROEN et al., 2009).

With a 5% advantage in heterozygotes, a G6PD allele present

as a single copy would only have a 10% probability of fixing in the
population. If that’s so, how come malaria adaptation has repeat-
edly occurred via changes at G6PD? Well, maybe adaptation didn’t
start from a single copy of the selected allele. How many copies of the
G6PD-deficiency alleles do we expect were segregating in the popula-
tion before selection pressures changed?

In the absence of malaria, these G6PD alleles are deleterious with
carriers suffering from G6PD deficiency, leading to hemolytic anemia
when individuals are exposed to a variety of different compounds,
notably those present in fava beans. There’s upward of one hundred
bases where G6PD-deficiency alleles can arise, so assuming a mutation
rate of =~ 10™® per base pair per generation, we can roughly estimate
the rate of mutations arising that affect the G6PD gene as p ~ 1076
per generation. In the absence of malaria, the selective cost of being
a heterozygotes carrier of a G6PD-deficient allele must have been on
the order of 5% or more, and thus the frequency of the allele under
mutation-selection balance would have been ~ 107°/0.05 = 2 x 107°.

Assuming an effective population size of 2 — 20 million individu-
als, roughly five to ten thousand years ago that means that there
would have been forty to four hundred copies of the G6PD-deficiency
allele present in the population when selection pressures shifted at
the introduction of malaria. The chance that one of these newly
adaptive alleles is lost is 90% but the chance that they’re all lost is
< (0.9)%° 2 0.02, i.e. there would have been a greater than 98% chance
that adaptation would occur via one or more alleles at G6PD. How
many alleles would escape drift? Well with 40 — 400 copies of the allele
pre-malaria, and each of them having a 10% probability of escaping
drift, we expect between 4 and 40 G6PD alleles to escape drift and
contribute to adaptation. We see 15 common G6PD alleles in Eurasia,
so our simple model of adaptation from mutation-selection balance
seems reasonable.
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Figure 12.3: Pythagoras’s “just say no
to fava beans” campaign. Pythagoras
prohibited the consumption of fava
beans by his followers; perhaps be-
cause favaism, the anemia induced in
G6PD-deficient individuals by fava
beans, is relatively common in the
Mediterranean due to adaptation to
endemic malaria. French early 16th
Century. Woodner Collection, Na-
tional Gallery of Art. Public Domain,
wikimedia.

A full analysis of this case requires
modeling of G6PD’s X chromosome
inheritance, and the randomness in
the number of copies of the allele
present at mutation-selection balance
(RaLpu and Coop, 2015).

Figure 12.4: Haldane’s sieve. To
our knowledge Haldane never wore
a sieve, but we assume he owned
one. Sieve, Flickr licensed under CC
BY 2.0. Haldane, Public Domain
wikimedia.


https://en.wikipedia.org/wiki/Pythagoras#/media/File:Do_Not_Eat_Beans.jpg
https://www.flickr.com/photos/fdctsevilla/4306301234/in/photostream/
https://en.wikipedia.org/wiki/J._B._S._Haldane#/media/File:J._B._S._Haldane.jpg
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‘Haldane’s sieve’ is the name for the idea that the mutations
that contribute to adaptation are likely to be dominant or at
least co-dominant.

A) Briefly explain this argument with a verbal model relating
to the results we’ve developed in the last two chapters.

B) Haldane’s sieve is thought to be less important for adap-
tation from previously deleterious standing variation, than
adaptation from new mutation. Can you explain the intuition
behind of this idea?

C) Haldane’s sieve is likely to be less important in inbred, e.g.
selfing, populations. Why is this?

12.2  The interaction between genetic drift and weak selection.

For strongly selected alleles, once the allele has escaped initial loss at
low frequencies, its path will be determined deterministically by its
selection coeflicients. However, if selection is weak compared to genetic
drift, the stochasticity of reproduction can play a role in the trajectory
an allele takes even when it is common in the population. If selection
is sufficiently weak compared to genetic drift, then genetic drift will
dominate the dynamics of alleles and they will behave like they’re
effectively neutral. Thus, the extent to which selection can shape
patterns of molecular evolution will depend on the relative strengths
of selection and genetic drift. But how weak must selection on an
allele be for drift to overpower selection? And do these interactions
between selection and drift have longterm consequences for genome-
wide patterns evolution?

To model selection and drift each generation, we can first calculate
the deterministic change in our allele frequency due to selection using
our deterministic formula. Then, using our newly calculated expected
allele frequency, we can binomially sample two alleles for each of our
offspring to construct the next generation. This approach to jointly
modeling genetic drift and selection is called the Wright-Fisher model.

Under the Wright-Fisher model, we will calculate the expected
change in allele frequency due to selection and the variance around
this expectation due to drift. To make our calculations simpler, let’s
assume an additive model, i.e. h = 1/2, and that s < 1 so that w =~ 1.
Using our directional selection deterministic model, from Chapter 10,
and these approximations gives us our deterministic change due to
selection

Asp=E(Ap) = 7p(1 - p) (12.9)

Figure 12.5: cress bug (Asellus aquati-
cus) in the isopod family Asellidae.

Brehms Tierleben. Allgemeine kunde des
Tierreichs (1911). Brehm A.E. Image from the
Biodiversity Heritage Library. Contributed by
Smithsonian Libraries. Not in copyright.
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Figure 12.6: Asellid isopods have
repeatedly invaded subterranean,
ground-water habitats from surface-
water habitats, and leading to a
genome-wide increase in dn/dg

and larger genomes (Data from
LEFEBURE et al., 2017, compar-

ing independent isopod species pairs).
One possible explanation of this is
that the longterm effective population
sizes of the subterranean species are
lower and so these species are less
able to prevent mildly deleterious
alleles fixing, and also less able to
prevent genome expansion from the
accumulation of weakly deleterious,
extraneous genomic DNA. Code here.


https://www.flickr.com/photos/internetarchivebookimages/20406697312/
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/drift_selection/asellid_isopods_Nes/asellid_isopods_Nes.R
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To obtain our new frequency in the next generation, p;, we binomially
sample from our new deterministic frequency p’ = p + Agp, so the
variance in our allele frequency change from one generation to the
next is given by

ra-p)  pl-p)

Var(Ap) = Var(py —p) = Var = ~ 12.10
(Ap) (p1 —p) (p1) SN o (12:10)

where the previous allele frequency p drops out because it is a con- To see this denote our new count of
stant and the variance in our new allele frequency follows from the allele 1 by 4, then

fact that we are binomially sampling 2N new alleles from a frequency Var(p1 —p) = Var(zy —p) = Var(5%)
p’ to form the next generation. = ?’2&1;(;2

To get our first look at the relative effects of selection vs. drift and from binomial sampling Var(i) —

we can simply look at when our change in allele frequency caused 2Np'(1 — p') and so we arrive at our
answer. Assuming that s < 1, p’ & p,

by selection within a generation is reasonably faithfully passed down - X
then in practice we can use

through the generations. In particular, if our expected change in al-

lele frequency is much greater than the variance around this change, Var(Ap) = Var(p' = p) ~ /2N,
genetic drift will play little role in the fate of our selected allele
(once the allele is not at low copy number within the population).
When does selection dominant genetic drift? This will happen if
E(Ap) > Var(Ap), i.e. when |[Ns| > 1. Conversely, any hope of
our selected allele following its deterministic path will be quickly un-
done if our change in allele frequencies due to selection is much less
than the variance induced by drift. So if the absolute value of our
population-size-scaled selection coefficient |[Ns| < 1, then drift will
dominate the fate of our allele.

Figure 12.7: The probability of the
fixation of a new mutation with
selection coefficient s (h = 1/2) in

$ a diploid population of effective size
2 Ne. The dashed line gives the infinite
- population solution. The dots give the
? solution for s — 0, i.e. the neutral
> & case, where the probability of fixation
% is 1/2N.. Code here.
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https://github.com/cooplab/popgen-notes/blob/master/Rcode/prob_fix_diffusion.R
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To make further progress on understanding the fate of alleles with
selection coefficients of the order /N requires more careful modeling,.
However, under our diploid model, with an additive selection coef-
ficient s, we can obtain the probability that allele 1 fixes within the
population, starting from a frequency p :

1— €—2N5p
pr(p) = T ans (12.11)

The proof of this result is sketched out below (see Section 12.2.1). A
new allele that arrives in the population at frequency p = 1/(2N) has
a probability of reaching fixation of

1—e"°
pr (12N) = =55 (12.12)

If s < 1 but Ns > 1 then pp(1/2N) & s, which nicely gives us back
the result that we obtained above for an allele under strong selection
(eqn. (12.8)). Our probability of fixation (eqn. (12.12)) is plotted as
a function of s and N in Figure 12.7. To recover our neutral result,
we can take the limit s — 0 to obtain our neutral fixation probability,
L/an.

In the case where Ns is close to 1, then

s
pr (Y/2N) ~ PR (12.13)

This is greater than our earlier result pp = s from the branching pro-
cess argument (using our additive model of h = 1/2), increasingly so
for smaller N. Why is this? Well in a smaller population a new mu-
tation starts at a higher frequency (1/2n) than in a larger population,
this gives an initial boost to the selected allele in smaller populations.
If, for selection to operate on an allele, we need the selection coeffi-
cient to satisfy |Ns| > 1, then that holds if |s| > 1/N. Well, effective
population sizes are often reasonably large, on the order of hundreds
of thousands or millions of individuals, thus selection coefficients on
the order of 107> to 1076 can be effectively selected upon, these rep-
resent incredibly slight (dis)advantages in terms of the number of
offspring they leave to the next generation (see Figure 12.8). While
we are incapable of detecting measuring all but the large fitness ef-
fect sizes, except in some elegant experiments (e.g. in microbes), such
small effects are visible to selection in large populations. Thus, if con-
sistent selection pressures are exerted over long time periods, natural
selection can potentially finely tune various aspects of an organism.



2N logso(pe)
[N
|

logo(N)

As one example of this fine-tuning, consider how carefully crafted
and optimized the sequence of codons is for translation. Due to the
degeneracy of the protein code, multiple codons code for the same
aminoacid. For example, there are six different codons that can code
leucine. While these synonymous codons are equivalent at the protein
level, cells do differ in the number of tRNA molecules that bind these
codons and so the efficacy and accuracy with which proteins can be
formed through translation and folding. These slight differences in
translation rates likely often correspond to tiny differences in fitness,
but do they matter?

In many organisms there is a strong bias in the codons to encode
particular aminoacids, see Figure 12.9, with the most abundant codon
matching the most abundant tRNA in cells. This ’codon bias’ likely
reflects the combined action of weak selection and mutational pressure,
pushing the codon composition of the genome and tRNA abundances
towards an adaptive compromise. These selection pressures have acted
over long time periods, as codon usage patterns are often very simi-
lar for species that diverged over many tens of millions of years ago.
Compared to other genes, highly expressed genes show a strong bias
towards using codons matching abundant tRNAs, consistent with the
idea that the synonymous codon content of highly expressed genes is
evolving to optimize their translation (see Figure 12.10 for an early
example). These patterns likely represent the action of selection pres-
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Figure 12.8: The probability of the
fixation of a new mutation with
selection coefficient s relative to the
neutral fixation probability (1/2N)

as a function of the effective size N.
The selection coefficient is shown next
to eacj line, deleterious alleles have
negative selection coefficients. Note
how quickly the probabilities move
away from the neutral expectation as
Ns moves past 1. Code here.
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Figure 12.9: Data from Drosophila
melanogaster on the frequency of
different codons for Leucine. Data
from Genscript. Code here.
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Figure 12.10: A measure of unequal
codon frequencies plotted in bins of
gene expression for genes across the
Drosophila melanogaster genome.
Data from HEY and KLIMAN (2002).
Code here.



https://github.com/cooplab/popgen-notes/blob/master/Rcode/prob_fix_diffusion.R
https://www.genscript.com/tools/codon-frequency-table
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/drift_selection/Codon_bias_Drosophila/codon_bias.R
https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/drift_selection/Codon_bias_Drosophila/codon_bias.R
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sures that are incredibly weak on average, but that have played out
over vast time-periods.

The fization of slightly deleterious alleles. From Figure 12.7 we can
see that weakly deleterious alleles can also fix, especially in small
populations. To understand how likely it is that deleterious alleles by
chance reach fixation by genetic drift, let’s assume a diploid model
with additive selection (with a selection coefficient of —s against our
allele 2).

If Ns > 1 then our deleterious allele (allele 2) cannot possibly reach
fixation. However, if Ns is not large, then the probability of fixation

1 S
— = 12.14
br <2N) e2Ns — 1 (12.14)

for our single-copy deleterious allele. So deleterious alleles can fix
within populations (albeit at a low rate) if Ns is not too large. As
above, this is because while deleterious mutations will never escape
loss in infinite populations, they can become fixed in finite population
by reaching 2N copies.

An additive mutation arises that lowers the relative fitness of
heterozygotes by 10~°. What is the probability that this mu-
tation fixes in a diploid population with effective size of 10%?
What is the probability it fixes in a population of effective size
10?7 By comparing both to their neutral probability describe
the intuition behind this result.

OHTA proposed the ‘nearly-neutral’ theory of molecular evolution
in a series of papersOHTA (1972, 1973, 1987). She suggested that a
reasonable fraction of newly arising functional mutations may have

very weak selection coefficients, such that species with smaller effective
population sizes may have higher rates of fixation of these very weakly
deleterious alleles. In effect, her suggestion is that the constraint pa-
rameter C' of a functional region is not a fixed property, but rather
depends on the ability of the population to resist the influx of very
weakly deleterious mutations.
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Across species, genome-wide averages of dn/ds do seem to be corre-
lated with measures of the effective population size (such as synony-
mous diversity), see Figure 12.11. This evidence supports the idea that
in species with smaller effective population sizes (lower mg), proteins
may be subject to lower degrees of constraint, as very weakly delete-
rious mutations are able to fix. Thus, some reasonable proportion of
functional substitutions in populations with small effective population
sizes, such as humans, may be mildly deleterious.

12.2.1 Appendiz: The fixation probability of weakly selected alle-

les

What is the probability a weakly beneficial or deleterious additive
allele fixes in our population? We’ll let P(Ap) be the probability that
our allele frequency shifts by Ap in the next generation. Using this,
and following the diffusion argument of KIMURA (1962), we can write
our fixation probability pr(p) in terms of the probability of achieving
fixation averaged over the frequency in the next generation

pe(v) = [ peo-+ Ap)P(Ap)AD) (12.15)
This is very similar to the technique that we used when deriving our
probability of escaping loss in a very large population above.

So we need an expression for pr(p + Ap). To obtain this, we’ll do a
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Figure 12.11: Data from 44 metazoan
species from cuttlefish to sifakas.

Each dot represents the average over
many genes plotting dn/dg against
synonymous diversity (rg). Data from
GALTIER (2016). Code here.

Figure 12.12: Common cuttlefish
(Sepia officinalis).

Cefalopodi viventi nel Golfo di Napoli (1896).
Jatta G. Image from the Biodiversity Heritage
Library. Contributed by Smithsonian Libraries.
Licensed under CC BY-2.0.

PLATE XI

COQUEREL'S SIFAKA

Figure 12.13: Coquerel’s sifaka (Prop-

ithecus coquerels).

A hand-book to the primates (1894). Forbes,
H. O. Image from the Biodiversity Heritage
Library. Contributed by Smithsonian Libraries.
Licensed under CC BY-2.0.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/drift_selection/Galtier_dNdS/Galtier_dNdS.R
https://www.flickr.com/photos/biodivlibrary/6105705787
https://www.flickr.com/photos/biodivlibrary/6105705787
https://www.flickr.com/photos/biodivlibrary/6029124104
https://www.flickr.com/photos/biodivlibrary/6029124104
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Taylor series expansion of pp(p), assuming that Ap is small:

pr(p+ Ap) ~ pr(p) + Apdpgép) +(ap)2Y Z;Z.(p) () (12.16)

ignoring higher order terms.
Taking the expectation over Ap on both sides, as in eqn. 12.15, we
obtain

d’pr(p)
dp?

dpr(p)

pr(p) = pr(p) + E(Ap) +E((Ap)?) (12.17)

Well, E(Ap) = £p(1 — p) and Var(Ap) = E((Ap)?) — E*(Ap), so if
s < 1 then E2(Ap) ~ 0, and E(Ap)? = %. Substituting in these
values and subtracting p from both sides of our equation, this leaves

us with
s dpr(p) | p(1—p) dpr(p)
=-p(1— 12.1
R (1218)
and we can specify the boundary conditions to be pp(1) = 1 and

pr(0) = 0. Solving this differential equation is a somewhat involved
process, but in doing so we find that

1— 672N5p
pr(P) = T ons (12.19)

This proof can be extended to alleles with arbitrary dominance, how-
ever, this does not lead to a analytically tractable expression so we do
not pursue this here.



Chapter 12 summary.

e Even strongly advantagous alleles can be lost when they are
rare in the population. In a haploid population the proba-
bility that a strongly advantagous allele escapes loss starting
from a single copy is pp = 2s. In a diploid population this
probability is pz = 2hs, where hs is the relative fitness ad-
vantage to heterozygotes. Strongly deleterious alleles can not
fix in large populations.

o Alleles are strongly selected when their absolute population-
scaled selection coefficient is |[N's| > 1. Alleles are effectively
neutral when |[Ns| <« 1. Alleles that are weakly selected
when their |Ns| is on order 1.

e The dynamics of weakly selected alleles are subject to selec-
tion and genetic drift throughout their time in the popula-
tion, and their fixation probabillity (pr) depends on N and
s.

o Very weakly selected alleles can be efficiently selected on
in large populations. Thus levels of evolutionary constraint
may be stronger in species with large long-term population

sizes.

Melanic squirrels suffer a higher rate of predation (due to

hawks) than the normally grey pigmented squirrels. Melanism
is due to a dominant, autosomal mutation. The frequency of
melanic squirrels at birth is 4 x 1075,

A) If the mutation rate to new melanic alleles is 107%, assum-
ing the melanic allele is at mutation-selection equilibrium, what
is the reduction in fitness of the heterozygote?

Suddenly levels of pollution increase dramatically in our pop-
ulation, and predation by hawks now offers an equal (and
opposite) advantage to the dark individuals as it once offered
to the normally pigmented individuals.

B) What is the probability that a single copy of this allele
(present just once in the population) is lost?

C) If the population size of our squirrels is a million individu-
als, and is at mutation-selection balance, what is the probabil-
ity that the population adapts from one or more allele(s) from
the standing pool of melanic alleles?
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You find that pairwise genetic diversity in humans is 0.0005/bp
and in cockroaches it is 0.01/bp. Assume that in both species
the mutation rates is about g = 2 x 10~% /bp/generation in
both species. Suppose you introduce a deleterious mutation

in each population with a selective coefficient of s = 1076.
Calculate the probability of this allele fixing in humans and
cockroaches, given the allele starts off in one copy (at frequency
1/2n). Compare your answer to the neutral probability of the
mutant allele eaching fixation in both cases.




13
The Effects of Linked Selection.

GENETIC DRIFT IS NOT THE ONLY SOURCE OF RANDOMNESS
in the dynamics of alleles. Alleles also experience random fluctuations
in frequency due to the fact that they are present on a set of random
genetic backgrounds with different fitnesses. For example, when a ben-
eficial allele arises via a single mutation, it arises on a particular ge-
netic background, i.e. a particular haplotype (Figure 13.1A). Imagine
this mutation arising in a region with no recombination, or in an or-
ganism where genetic exchange is rare. If our beneficial allele becomes
established in the population, i.e. escapes loss by genetic drift in those
first few generations, it will start to increase in frequency rapidly. As
it rises in frequency, so will the alleles that happened to be present
on the haplotype that the mutation arose on (if those other alleles are
neutral or at least not too deleterious). These other alleles are get-
ting to "hitchhike’ along (). The alleles that are not on that particular
background are swept out of the population, so the net effect of this
selective sweep is to remove genetic diversity from the population. Di-
versity will eventually recover, as new mutations arise and some slowly
drift up in frequency. But in the short-term, selective sweeps remove
genetic variation from populations.

WirriaMs and PENNINGS (2019) have visualized selective
sweeps in HIV. In Figure 13.1B) we see a set of HIV haplotypes sam-

pled from a patient before and after of a selective sweep of a drug-
resistant mutation. The patient is taking a retrotransposase inhibitor
(Efavirenz), but sadly within 161 days a drug-resistant mutation that
changes the HIV retrotransposase protein has arisen and spread. Note
how a particular haplotype is now fixed in the sample, and little ge-
netic diversity remains, due to the hitchhiking effect of the strong
selective sweep of this allele.
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To better understand hitchhiking, first let’s imagine examining vari-
ation at a locus fully linked to our selected locus, just after our sweep
reached fixation. Neutral alleles sampled at this locus must trace their
ancestral lineages back to the neutral allele on whose background the
selected allele initially arose (Figure 13.2). This is because that back-
ground neutral allele, which existed 7 generations ago, is the ancestor
of the entire population at this fully linked locus. Our individuals
who carry the beneficial allele are, from the perspective of these al-
leles, experiencing a rapidly expanding population. Therefore, a pair
of neutral alleles sampled at our linked neutral locus will be forced to
coalesce =~ 7 generations ago. A newly derived allele with an additive
selection coefficient s will take a time 7 = 41og(2N)/s generations to
reach to fixation within our population (see eqn. (10.30)). This is a
very short-time scale compared to the average neutral coalescent time
of 2N generations for a pair of alleles. Thus we expect little variation,
as few mutations will have arisen on these very short branches, and
those that have done will likely be singletons in our sample.

Now let’s think about a sweep in a recombining region. Again the
selected mutation arises on a particular haplotype, and it and its hap-
lotype starts to increase in frequency in the population (Figure 13.3).
However, now recombination events can occur between haplotypes
carrying and not carrying the selected allele, in individuals who are
heterozygote for the selected allele. These recombination events al-
low alleles that were not present on the original selected haplotype
to avoid being swept out of the population, and also decouple the se-
lected allele somewhat from hitchhiking alleles, preventing many of
them from hitchhiking all the way to fixation. Far out from the se-
lected site, the recombination rate is high enough that alleles that
were present on the original background barely get to hitchhike along
at all, as recombination breaks up their association with the selected

Figure 13.1: A) In the top panel, a
selected mutation (red dot) arises

on a particular haplotype in the
population. It sweeps to fixation,
carrying with it the haplotype on
which it arose, middle panel, erasing
the standing genetic diversity in the
region. The bottom panel is some
time after the selective sweep when
some new neutral alleles (green dots)
have started to drift up in frequency.
B) Top panel: HIV sequences from a
patient at the start of drug treatment
in the protease and retrotransposase
coding regions. Bottom panel: A
sample 161 days later, after a drug
resistant mutation has spread, the A
— T in the 103"% codon of retrotrans-
posase. Each row is a haplotype, with
the alleles present shown as coloured
blocks. Figure B from WILLIAMS and
PENNINGS (2019), licensed under CC
BY 4.0.

T X(t)

Figure 13.2: The coalescent of 4
lineages, marked in blue, at a locus
completed linked to our selected
allele. The frequency trajectory of the
selected allele X (¢) is shown in red.
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Figure 13.3: A cartoon depiction of

a sweep of a red beneficial allele over
three time points with recombination.
The haplotype that the beneficial
arose on by mutation is shown in
black. The three vertical orange lines
mark the loci shown in Figure 13.4.
Neutral alleles segregating prior to
the sweep appear as white circles, new
mutations after the sweep as green
circles.
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allele very rapidly.

Figure 13.4: Coalescent genealogies

2 3 at three loci different distances along
the genome from a selective sweep.
The locations of these three loci
along the genome are marked in
Figure 13.3. The selected mutation
is shown in red. Lineages descended
from recombination events during the
sweep are marked in stars. Neutral
mutations close to each of the loci are
shown on the genealogy.

What do the coalesecent genealogies look like at loci various dis-
tances away from the selected site? Well, close to the selected site
all our alleles in the present day trace back to a most recent com-
mon ancestral allele present on that selected haplotype, and so are all
forced to coalesce around T generations ago (locus 1, see Figure 13.4).
Slightly further out from the selected site (locus 2), we have lineages
that don’t trace their ancestry back to the original selected haplotype,
but instead are descended from recombinant haplotypes that recom-
bined onto the sweep (the haplotype second from the bottom in Figure
13.4). These lineages can coalesce neutrally with the other ancestral
lineages over far deeper time scales and mutations on these deeper
lineages correspond to the standing diversity present in our population
prior to the sweep. As we move even further out from the selected site
(locus 3), we encounter more and more lineages descended from recom-
binant haplotypes that coalesce neutrally much deeper in time than
7, allowing diversity to recover to background levels as we move away
from the selected site (see Figure 13.5).

Figure 13.5: The expected reduction
in diversity compared to its neutral

o
- expectation as a function of the
distance away from a site where
e a selected allele has just gone to
fixation. The sweeps associated with
& two different strengths of selection
& are shown, corresponding to a short
3 timescale (1) for the sweep and
long one. The recombination rate is
o cgp =1 x 1078, Code here.
— s=0.01
o | - s=0.001
e T T T T T T T
-150000 -100000 -50000 0 50000 100000 150000

Physical Position

To model the expected pattern of diversity surrounding a selected
site, we can think about a pair of alleles sampled at a neutral locus


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Hitchhiking.R
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a recombination distance ¢ away from our selected site. Our pair of
alleles will be forced to coalesce ~ 7 generations if neither of them of
are descended from recombinant haplotypes (Left side of Figure 13.6).

The probability that our alleles at our neutral locus is descended
from the ancestral haplotype on which the selected allele occurs, i.e.
that the alele does not descend from a recombinant haplotype is

pNR = e /2, (13.1)

What’s the intuition for this werll there are 7 generations in which a
recombination can occur, so roughly the probability that absolutely no
recombination occurs is (1 — ¢)”™ =~ e~ °". Where does the factor of 1/2
in eqn(13.1) come from? Well in order to recombine an allele off the
selected background the recombination must occur in a heterozygote
for the selected allele, under an additive model a neutral allele linked
to a fully sweeping allele spends on average 1/2 its time in heterozyotes
so reducing our effective recombination rate by a factor of two (see
Appendix 13.2 at the end of the chapter for more details).

The probability that neither of our lineages is descended from a
recombinant haplotype, and hence are forced to coalesce, is p3; R (as-
suming that they coalesce at a time close to 7 so that they recombine
independently of each other for times < 7). If one or other of our lin-
eages is descended from a recombinant haplotype, it will take them on
average ~ 2N generations to find a common ancestor, as we are back
to our neutral coalescent probabilities (Right side of Figure 13.10).
Thus, the expected time till our pair of lineages find a common ances-

tor is
E(Ty) =7 x pyr+ (1 —pAp)(T + 2N) = (1 — pyg) 2N (13.2)

where this last approximation assumes that 7 < 2N. So the expected
pairwise diversity for neutral alleles at a recombination distance r
away from the selected sweep (7.) is

E(re) = 2uE(T3) = (1 — e_CT) (13.3)

So diversity increases as we move away from the selected site, slowly
and exponentially plateauing to its neutral expectation 7.

The malaria pathogen (Plasmodium falciparum) has evolved drug
resistance to anti-malaria drugs, often by changes at the dhfr gene.
Figure 13.8 shows levels of genetic diversity (heterozygosity) at a set
of markers moving out from the dhfr gene in a set of drug resistant
malaria sequences collected in Thailand (NASH et al., 2005). We see

the characteristic dip in diversity around the gene, with zero diversity
at a number of the loci very close to the gene, suggesting a strong
selective sweep. Fitting our simple model of a sweep to this data, we

T ‘ M ‘ §

No recombination Recombination

Figure 13.6: Left) two lineages
coalesce roughly 7 generations ago
as they are both descended from the
selected haplotypes. Right) One of
our two lineages is descended from
the selected haplotype but the other
is descended from a recombinant on
to the sweep. The pair on the right
coalesce much deeper back in time.
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Figure 13.7: |

-0.5cm]Laveran’s 1880 drawing of
various stages of Plasmodium falci-
parum as seen in fresh blood. The
bottom row shows an exflagellating
male gametocyte. Laveran identi-
fied P. falciparum as the protozoan
pathogen that caused malaria.
Image from wikimedia contributed by TimVick-

ers. United States public domain


Centers for Disease Control and Prevention (caption modified).
https://commons.wikimedia.org/wiki/File:Laveran_Malaria_drawings.jpg
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estimate that 7 &~ 40 generations, corresponding to the drug-resistance
allele fixing in very short time period.

To get a sense of the physical scale over which diversity is reduced,
consider a region where recombination occurs at a rate cgp per base
pair per generation, and a locus £ base pairs away from the selected
site, such that ¢ = cgpl (where cppl < 1 so we don’t need to worry
about more than one recombination event occurring per generation).
Typical recombination rates are on the order of cgp = 1078, In Figure
13.5 we show the reduction in diversity, given by eqn. (13.3), for two
different selection coefficients.

For our expected diversity level to recover to 50% of its neutral
expectation E(7.)/6 = 0.5, requires a physical distance £* such that

log(0.5) = —zppl*T, and by re-arrangement,
—log(0.5
¢ = —108(05) (13.4)
CBpT

As 7 depends inversely on the selection s (eqn. (10.30)), the width
of our trough of reduced diversity depends on s/cgp. All else being
equal, we expect stronger sweeps or sweeps in regions of low recombi-
nation to have a larger hitchhiking effect. For example, in a genomic

1 a4 selection coeffi-

region with a recombination rate cgp = 10 8bp~
cient of s = 0.1% would reduce diversity over 10’s of kb, while a sweep

of s = 1% would affect ~100kb.
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Figure 13.8: Levels of heterozygos-

ity at a set of microsatellite markers
surounding the dhfr gene in samples
of drug-resistant malaria (Plasmodium
falciparum) from Thailand. The dot-
ted horizontal line gives the average
level of heterozygosity found at these
markers in a set of drug-resistant
malaria; we take this background as
our mg. The dashed line shows our fit-
ted hitchhiking model from equation
13.3 with 7 = 40, fitted by non-linear
least squares. The recombination rate
in P. falciparum is cgp ~ 10~ Sbp~—1.
Data from NASH et al. (2005). Code
here.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/recom_selection/malaria_sweep/dhfr_sweep.R
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VAN'T HOF et al. (2011) identified the genetic basis of
melanism in the peppered moth (Biston betularia). This al-

lele swept to fixation in northern parts of the UK; a classic
case of adaptation to industrial pollution (made famous by
the work of KETTLEWELL, see MAJERUS (2009) and COOK

et al. (2012)). The genetic basis of melanism is a transpos-
able element (TE) inserted into a pigmentation gene. VAN’T
HOF et al. found that diversity is suppressed in a broad region
around the TE. Specifically, on the background of the TE, it
takes roughly 200 kb in either direction for diversity levels to
recover to 50% of genome-wide levels.

Random facts: In all moths and butterflies only males recom-
bine; chromosomes are transmitted without recombination

in females. The recombination rate in males is 2.9 ¢cM/Mb.
Peppered moths have an effective population size of roughly

a hundred thousand individuals. Kettlewell used to eat moths
when out collecting them in the field (personal communication,
Art. Shapiro).

A) Briefly explain how this pattern offers further evidence that
the melanic allele was favoured by selection.

B) Using this information, and assuming the allele’s effects

on fitness are additive, what is your estimate of the age of the
allele?

C) What is your estimate of the selection coefficient favouring
this melanic allele?

Other signals of selective sweeps The primary signal of a recently
completed selective sweep is the characteristic reduction in diversity
surrounding the selected site. However, sweeps do leave other signals,
and these have also often been used to identify loci undergoing selec-
tion. For example, neutral alleles further away from the selected site
may hitchhiw only part of the way to fixation if recombination occurs
during the sweep, which can lead to an excess of high-frequency de-
rived alleles at intermediate distances away from the selected site, a
pattern lasting for a short time after a sweep (FAY and Wu, 2000;
PRZEWORSKI, 2002; KiM, 2006). Also, as neutral diversity levels
slowly recover through an influx of new mutations after a sweep, there

is a strong skew towards low frequency derived alleles, a pattern that
persists for many generations (BRAVERMAN et al., 1995; PRZE-
WORSKI, 2002; KiM, 2006). The excess of rare alleles, compared to
a neutral model, can be captured by statistics such as Tajima’s D

59. LA PHALENE DU BOULEAU

Figure 13.9: Peppered moth (Biston

betularia), non-melanic morph

Les papillons dans la nature (1934).Robert,
P.-A. Image from the Biodiversity Heritage
Library. Contributed by University of Illinois
Urbana-Champaign. Not in copyright.


https://www.biodiversitylibrary.org/page/33080243#page/367/mode/1up
https://www.biodiversitylibrary.org/page/33080243#page/367/mode/1up
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(which we encountered back in our discussion of the neutral site fre-
quency eqn 4.44). Thus one way to look for loci that have undergone
selective sweeps is to calculate Tajima’s D from data in windows along
the genome and look for strong departures from the null distribution.

e —— Figure 13.10: Two populations de-
H scended from a common ancestral
% population. A beneficial mutation has
=OmOm===—0=C- occurred in population and swept to
E —— fixation.
i
e — e
—— e —
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We can also use comparisons among multiple populations to look

for evidence of sweeps occurring in one of the populations, for example
to identify alleles involved in local adaptation (see 13.10). A selective
sweep will decrease the within-population diversity (Hg) surrounding
the selected site, without affecting the diversity between different
populations. Thus local sweeps create peaks of Fst between weakly
differentiated populations.

HOHENLOHE et al. (2010) studied genome-wide patterns of Fgr

between marine and freshwater populations of threespine stickleback
(Gasterosteus aculeatus), plotted in Figure 13.11. Between different
marine populations, they found no strong peaks of Fgr; however, be-
tween the marine and freshwater comparisons they found a number
of high Fst peaks that were replicated over a number of freshwater-
marine comparisons. They identified a number of novel regions re-
sponsible for the adaptation of sticklebacks to freshwater environments
and also a number of loci previously identified in crosses between
marine and freshwater populations. For example, the first peak of
Linkage Group IV includes Ectodysplasin A (Eda), a gene involved in
the adaptive loss of armour plating in freshwater environments.

Soft Sweeps from multiple mutations and standing variation. In our
sweep model above, we assumed that selection favoured a beneficial
allele from the moment it entered the population as a single copy
mutation (left panel, Figure 13.12). However, when a novel selection
pressure switches on, multiple mutations at the same gene may start
to sweep, such that no one of these alleles sweeps to fixation (middle
panel, Figure 13.12). These sweeps involving multiple mutations sig-
nificantly soften the impact of selection on genomic diversity, and so
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0.8

A .. I IV UVID VI X XI XV XV XVIIE XX Figure 13.11: Fgr across the stick-
leback genome, with colored bars
04 indicating significantly elevated

(p < 1072, blue; p < 1077, red) and
reduced (p < 1072, green) values.
The alternating white and grey panels
indicate different linkage groups. A)
Fst between two oceanic populations
B) Average FsT between a freshwater
population and the two marine popu-
lations. Figure and caption text from
% 00! 150 200 250 300 350 400 HOHENLOHE et al. (2010), licensed
under CC BY 4.0.

are called ’soft sweeps’.
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() S——————————— () ———
O
O
S © S
O O

—— s—w—

O=O O=0O

¥

Another way that the impact of a sweep can be softened is if our
allele was segregating in the population for some time before it became
beneficial. That additional time means that our allele can have recom-
bined onto various haplotype backgrounds, such that when selection
pressures switch, the selected allele sweeps up in frequency on multiple
different haplotypes (right panel, Figure 13.12). Detecting and differ-
entiating these different types of sweeps is an active area of empirical
research and theory in population genomics (see HERMISSON and

PENNINGS (2017) for an overview of developments in this area).

13.1 The genome-wide effects of linked selection.

To what extent are patterns of variation along the genome and among
species shaped by linked selection, such as selective sweeps? We can
hope to identify individual cases of strong selective sweeps along the
genome, but how do they contribute to broader patterns of variation?

Two observations have puzzled population geneticists since the in-
ception of molecular population genetics. The first is the relatively
high level of genetic variation observed in most obligately sexual
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species. The neutral theory of molecular evolution was developed in
part to explain these high levels of diversity. As we saw in Chapter

4, under a simple neutral model, with constant population size, we
should expect the amount of neutral genetic diversity to scale with the
product of the population size and mutation rate. The second obser-
vation, however, is the relatively narrow range of polymorphism across
species with vastly different census sizes (see Figure 2.3 and LEFFLER
et al. (2012) for a recent review). As highlighted by LEWONTIN
(1974) in his discussion of the paradox of variation, this observation
seemingly contradicts the prediction of the neutral theory that genetic
diversity should scale with the census population size. There are a
number of explanations for the discrepancy between genetic diversity
levels and census population sizes. The first is that the effective size
of the population (N,.) is often much lower than the census size, due
to high variance in reproductive success and frequent bottlenecks (as
discussed in Chapter 4). The second major explanation, put forward
by MAYNARD SMITH and HAIGH (1974), is that neutral levels

of diversity are also systematically reduced by the effects of linked

selection. In large populations, selective sweeps and other forms of
linked selection may come to dominate over genetic drift as a source
of stochasticity in allele frequencies, potentially establishing an upper
limit to levels of diversity (KAPLAN et al., 1989; GILLESPIE, 2000).

Figure 13.13: The relationship be-
tween (sex-averaged) recombination
° ° rate and synonymous site pair-

wise diversity (7) in Drosophila
melanogaster. The curve is the pre-
dicted relationship between 7 and re-
combination rate, obtained by fitting
the recurrent hitchhiking equation
(13.10) to this data using non-linear
least squares via the nls() function in
R. Data from (SHAPIRO et al., 2007),
kindly provided by Peter Andolfatto,
see SELLA et al. (2009) for details.
Code here.
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One strong line of evidence for the action of linked selection in
reducing levels of polymorphism is the positive correlation between
putatively neutral diversity and recombination seen in a number of
species, as, all else being equal, linked selection should remove diver-
sity more quickly in regions of low recombination (AGUADE et al.,
1989; BEGUN and AQUADRO, 1992; WIEHE and STEPHAN,
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1993b; CUTTER and CHoOI, 2010; CAI et al., 2009). For example,
Drosophila melanogaster diversity levels are much lower in genomic

regions of low recombination (see Figure 13.13). This pattern can not
be explained by differences in mutation rate between low and high re-
combination regions as this pattern is not seen strongly in divergence
data among species.

These patterns could reflect the action of selective sweeps happen-
ing recurrently along the genome. In the next section we’ll present a
model for how levels of genetic diversity should depend on recombi-
nation and the density of functional sites under a model of recurrent
selective sweeps. However, other forms of linked selection can impact
genetic diversity in similar ways. For example, linked genetic diversity
is continuously lost from natural populations due to the removal of
haplotypes that carry deleterious alleles (CHARLESWORTH et al.,
1995; HubsoN and KAPLAN, 1995b); this is called the "background
selection” model. Below we’ll discuss the background selection model

and its basic predictions.

More generally, a wide range of models of selection predict the
removal of neutral diversity linked to selected sites. This is because
the diversity-reducing effects of high variance in reproductive success
are compounded over the generations when there is heritable variance
in fitness (ROBERTSON, 1961; SANTIAGO and CABALLERO, 1995,
1998; BARTON, 2000). Many different modes of linked selection likely
contribute to these genome-wide patterns of diversity; the present

challenge is how to differentiate among these different modes.

18.1.1 A simple recurrent model of selective sweeps

To explain how a constant influx of sweeps could impact levels of
diversity, here we will develop a model of recurrent selective sweeps.

Imagine we sample a a pair of neutral alleles at a locus a genetic
distance ¢ away from a locus where sweeps are initiated within the
population at some very low rate v per generation. The waiting time
between sweeps at our locus is exponentially distributed ~ Exp(v)
(see math Appendix eqn(A.34)). Each sweep rapidly transits through
the population in 7 generations, such that each sweep is finished long
before the next sweep (7 < 1/v).

As before, the chance that our neutral lineage fails to recombine off
the sweep is py g, such that the probability that our pair of lineages

—CT

are forced to coalesce by a sweep is e 7. Our lineages therefore have a
very low probability

ve T (13.5)

of being forced to coalesce by a sweep per generation. If our lineages
do not coalesce due to a sweep, they coalesce at a neutral rate of 1/2n5
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per generation. Thus the average waiting time till a coalescent event
between our neutral pair of lineages due to either a sweep or a neutral

coalescent event is I

B = S i

(13.6)

Now imagine that the sweeps don’t occur at a fixed location with
respect to our locus of interest, but now occur uniformly at random
across our genome. The sweeps are initiated at a very low rate of vgp
per basepair per generation. The rate of coalescence due to sweeps at

—eBPIT where

a locus ¢ basepairs away from our neutral loci is 2vgpe
the factor of two comes from the fact that bases can be ¢ basepairs
away on the left or right. If our neutral locus is in the middle of a
chromosome that stretches L basepairs in either direction, the total
rate of sweeps per generation that could force our pair of lineages to

coalesce is

L ) QI/BP
2/ vppe PPl = === (1 — e~ 5r7l) (13.7)
0 CBpPT

so that if L is very large (¢cgp7L > 1), the rate of coalescence per
generation due to sweeps is 2v8r/cppr. The total rate of coalescence
for a pair of lineages per generation is then

2VBP 1

— 13.8

CBpT 2N ( )
So our average time untill a pair of lineages coalesce is
1 2N

E(Ty) = S (13.9)

2vBPfeppr + /2N 4Nver/r 4 cpp

such that our expected pairwise diversity (7 = 2uE(7?)) in a region
with recombination rate rgp that experiences sweeps at rate vgp is
c

E(r) = 7T04NVBP/B+CBP (13.10)
where 7 is our expected diversity without any selective sweeps,
(piop = 0 = 4Np). The expected diversity increases with cgp, as
higher recombination rates decrease the likelihood a neutral allele
hitchhikes along with a sweep and is thus forced to coalesce by the
sweep. Expected diversity decreases with vgp, as a greater density
of functional sites experiencing sweeps increases the chance of being
linked to a nearby sweep. As we move to high cgp, assuming that vgp
doesn’t increase with cgp, our level of diversity should plateau to 6,
the level of genetic diversity of a neutral site completely unlinked to
any selected loci. If we assume that our genome experiences a constant
rate of sweeps of a given strength, i.e. that 4Nvsr/r is a constant, we
can fit the variation in 7 across regions that vary in their recombi-

nation rate (cgp) to estimate a population’s rate of recurrent sweeps
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per basepair. An example of fitting this curve to data from Drosophila
melanogaster is shown in Figure 13.13; see WIEHE and STEPHAN
(1993a) for an early example of fitting a similar recurrent hitchhiking

model to such data. The parameter giving us this best-fitting curve
is 4Nvpr/r ~ 7 x 1072, With an effective population size of a mil-
lion and assuming that the sweeps take a thousand generations to
reach fixation, we find this implies vgp ~ 107!2. Thus, a really low
rate of moderately strong sweeps, roughly one every megabase ev-
ery million generations, is all we need to explain the profound dip in
diversity seen in regions of the genome with low recombination. How-
ever, sweeps from positively selected alleles are not the only cause of
genome-wide signals of linked selection. Selection against deleterious
alleles can also drive these patterns.

13.1.2 Background selection

Populations experience a constant influx of deleterious mutations at
functional loci while selection acts to purge them from the population,
thus preventing deleterious substitutions and maintaining function at
these loci. As we discussed in Chapter 10, this balance between muta-
tion and selection results in a constant level of deleterious variation in
the population. The constant selection against this deleterious varia-
tion has effects on diversity at linked sites. Each deleterious mutation
arises at random on a haplotype in the population, and as selection
purges this mutation, it removes with it any neutral alleles that were
also on this haplotype. This constant removal of linked alleles from the
population acts to reduce diversity in regions surrounding functional
loci (HuDsoN and KAPLAN, 1995a; NORDBORG et al., 1996), an
effect known as background selection (BGS).

What proportion of our haplotypes are free of deleterious mutations
in any given generation, and so free to contribute to future genera-
tions? Well, under mutation-selection balance, a constrained locus
with a mutation rate u towards deleterious alleles that experience a
selection coefficient sh against them in heterozygotes, will result in
#/sh chromosomes carrying the deleterious allele. Some of these hap-
lotypes may be passed on to the next generation, but if they are fully
linked to the deleterious locus they will all eventually be lost because
they carry a deleterious mutation at a site under constraint. Thus, for
a neutral polymorphism completed linked to a constrained locus, only
2N (1 — #/sn) alleles get to contribute to future generations. Therefore,
the level of pairwise diversity in a constant population due to BGS at
such a locus will be

E[n] = 2u x 2N(1 — #/sh) = mo(1 — 1/sh) (13.11)

where mg = 4N, the level of neutral pairwise diversity in the absence



of linked selection.

e
F==1 b
' ' i

The effects of background selection are more pronounced in regions
of low recombination, where neutral alleles are less able to recombine
off the background of deleterious alleles. Thus, under background
selection, we also expect to see reduced diversity in regions of lower
recombination.

For a neutral locus that is a recombination fraction r away from a
locus subject to constraint, the level of diversity is

Efr] = 7 (1 - Q(Clj—SZh)Q> (13.12)

As we move away from a locus experiencing purifying selection, we
increase ¢, and diversity should recover. For example, moving away
from genic regions in the maize genome we see the average level of
diversity recover. This occurs in both maize and teosinte, the wild
progenitor of maize. The dip in diversity around non-synonymous sites
is stronger in teosinte, perhaps because the accelerated drift due to
the bottleneck in maize may have somewhat released constraint on
sites where very weakly deleterious alleles segregated previously at
mutation-selection balance.

More generally, if a neutral locus is surrounded by L loci experi-
encing purifying selection at recombination distances ¢y, --- ,cp, then
compounding equation (13.12) across these loci, the expected reduced
diversity is approximately

L ush L ush
E[x] = wo};[l (1 - 2(cL+sh)2) A exp ; e 1 sh)E (13.13)
To model an average neutral locus in a genomic region with a given
recombination rate, we can imagine that our neutral locus is situated
in the center of a large region with total recombination rate C and
total deleterious mutation rate U, where U = pL. Then our expression
for diversity, equation (13.13), simplies to

E[n] = mp exp (~U/(sh+C)) &~ mgexp (-U/c). (13.14)
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Figure 13.14: A cartoon depiction of a
region for 10 haplotypes experiencing
background selection. Neutral muta-
tions are shown as gray circles, and
deleterious mutations in red. Over
time, chromosomes carrying deleteri-
ous mutations are removed from the
population, such that most individ-
uals are descended from a subset of
chromosomes free of deleterious alleles
(highlighted here by orange boxes).
Mutation is constantly generating new
deleterious alleles on the background
of chromosomes previously free of
deleterious alleles, and so this pro-
cess is constantly repeating (orange
arrow). Figure modified from SELLA
et al. (2009), licensed under CC BY
4.0.
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Figure 13.15: Relative diversity
compared to the mean diversity in
windows > 0.01 ¢cM as a function of
the distance to the nearest gene. See
(BEISSINGER et al., 2016) for details.
Figure licensed under CC BY 4.0 by
Jeff Ross-Ibarra.
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In this last approximation, we assume that we’re looking at a large
region, with C' > sh . Note that much like genetic load, equation
(11.8), this expression depends only on the total deleterious mutation
rate. Any dependence on the selection coefficient drops out, as weakly
selected mutations segregate in the population at higher frequencies,
but are also removed from the population more slowly, allowing more
of the genome to recombine off the deleterious background.

For a first go at fitting this to genome-wide data, we could look
at diversity in windows of length W bp (as in Figure 13.16). If we
assume that there is a constant rate of deleterious mutation per base
pair, ugp, then U = pupgpW. Furthermore, if our genomic window
has a recombination rate cgp per base-pair, our total genetic length
is R = cppW. Making these substitutions in equation (13.14), our
window size cancels out to give

E[n] = 7o exp (—#BP/cy,,) (13.15)
Looking across windows that vary in their recombination rate, i.e.
cpp, we can fit equation (13.15) to data to estimate upp. An ex-
ample of doing this to data from D. melanogaster is shown in Fig-

ure 13.16, yielding an estimate of the deleterious mutation rate of

upp ~ 3.2 x 1079, This is roughly on the same order as the mutation
rate per base pair in D. melanogaster, and so this deleterious mutation
rate estimate is somewhat high as it would require most of the genome
to be constrained, but as a first approximation it’s not terrible. Note
how similar the fit is to a model of hitchhiking, suggesting that some
combination of BGS and hitchhiking can explain the broad relation-
ship between diversity and recombination seen in D. melanogaster and
other species.

Diversity
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As our annotations of functional regions of the genome have im-
proved, so have our methods to infer background selection. A more
rigorous version of this analysis today would incorporate variation in
coding density among windows into the parameter ppp. With de-
tailed genomic annotations showing coding regions and constrained
non-coding regions, we can also move beyond just analyzing broad-
scale patterns. For example, MCVICKER et al. (2009) fit a model
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Figure 13.16: The relationship be-
tween recombination rate and synony-
mous site pairwise diversity (7) in D.
melanogaster, as in Figure 13.13. The
red curve is the predicted relationship
between 7 and recombination rate,
obtained by fitting the BGS equation
(13.14) to this data using non-linear
least squares via the nls() function
in R. The blue line is the recurrent
hitchhiking equation line from Figure
13.13. Code here.

Figure 13.17: Observed (black line)
and predicted pairwise diversity across
chromosome 1, from a background se-
lection model that assumes a uniform
mutation rate (red line) or a mutation
rate that varies with local human/dog
divergence (blue line). Figure from
(MCVICKER et al., 2009), licensed
under CC BY 4.0.
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of background selection to putatively neutral pairwise diversity along
the human genome, using equation 13.13 to estimate the effect of BGS
at each locus, weighing the genetic distance to all of the surround-

ing coding regions and constrained non-coding sites. This allowed
MCVICKER et al. (2009) to estimate mutation rates and average

selection coefficients acting against deleterious alleles in these regions
of the genome. This best fitting model also allowed them to predict
diversity levels along the genome, a section of which is shown in figure
13.17. Thus, broad-scale features of polymorphism along the genome
are well described by background selection (or by linked selection more
generally).

The deleterious mutation rates estimated by MCVICKER et al.
(2009) from fitting a model of BGS were again too high, as in the

Drosphila example above, suggesting the BGS alone is not sufficient
to explain all of the effect of linked selection. But how then do we go
about distinguishing the impact of BGS from hitchhiking?

Distinguishing the impact of hitchiking from background selection

in genome-wide data A variety of approaches have been taken to
start to separate the effects of hitchhiking from background selection.
Much of the strongest evidence showing the effects of both comes from
Drosophila melanogaster and we review some of that evidence here.
Hitchhiking is expected to have systematic effects on the neutral site
frequency spectrum, distorting it towards rare minor alleles, (reflecting
the slow recovery of diversity following a sweep). Therefore, we should
expect a distortion of summary statistics such as Tajima’s D in regions
of low recombination if hitchhiking is contributing to the reduction in
diversity in these regions (BRAVERMAN et al., 1995; PRZEWORSKI,

2002; K1Mm, 2006). In D. melanogaster, there is a greater skew towards

rare alleles at putatively neutral sites in regions of low recombination
(ANDOLFATTO and PRZEWORSKI, 2001; SHAPIRO et al., 2007);
see left panel of Figure 13.18. However, while this skew isn’t expected

under simple models of strong background selection.

Another prediction of the hitchhiking model, where an allele sweeps
to fixation, is that there should be a functional substitution associ-
ated with each sweep. Or, to flip that around, we might expect to
see a greater impact of hitchhiking where there are more functional
substitutions. For example, regions surrounding non-synonymous sub-
stitutions should have lower levels of diversity, if a high fraction of
non-synonymous substitutions are adaptive. Again, this pattern is
seen in D. melanogaster (ANDOLFATTO, 2007; MACPHERSON et al.,
2007; SATTATH et al., 2011b, , right side of Figure 13.18).

Pushing this idea further, we can look at the dip in diversity sur-

rounding a non-synonymous substitution averaged across all the sub-
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stitutions in the genome. ELYASHIV et al. (2016) found a stronger

dip in diversity around non-synonymous substitutions than synony-
mous substitutions (see also SATTATH et al., 2011a). Extending the
model of MCVICKER et al. (2009) to fit a model of background se-
lection and hitchhiking to putative neutral diversity along the genome,

they found that the dip in diversity around synonymous substitu-
tions comes mostly from BGS. But to fully explain the dip in diversity
around non-synonymous substitutions, a reasonable proportion of
these non-synonymous substitutions have to have been accompanied
by a classic (hard) sweep. The majority of these sweeps are estimated
to be due to very weak selection, with selection coefficients < 107%.
Furthermore, ELYASHIV et al. (2016) estimated a 77 - 89% reduc-
tion in neutral diversity due to selection on linked sites, and concluded

that no genomic window was entirely free of the effects of selection.
Thus linked selection has a profound effect in some species such as
Drosophila melanogaster.

Figure 13.18: Left) Average Tajima’s
D in genomic windows plotted

against their recombination rate in

D. melanogaster. Data from SHAPIRO
et al. (2007). Right) Synonymous
pairwise diversity in genomic win-
dows as a function of the density of
non-synonymous subsitutions in the
window. Data from ANDOLFATTO
(2007). Code here.

Figure 13.19: Left) Scaled syn-
onymous pairwise diversity levels
around non-synonymous (NS) and
synonymous (SYN) substitutions in
D. melanogaster. Right) Predicted
scaled diversity levels around non-
synonymous substitutions based on
models including background selection
(BS), classic sweeps (CS) and both
(BS & CS). Figure from ELYASHIV
et al. (2016), licensed under CC BY
4.0.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/Genomewide_HH.R
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13.2  Appendix. The probability of not recombining off the se-
lected haplotype during the sweep.

We know that in the present day our neutral lineage is linked to the
selected allele. The probability that our lineage, in some generation
t back in time, is in a heterozygote is 1 — X (t), and the probability
that a recombination occurs in that individual is 7. So the probability
that our neutral lineage is descended from a recombinant haplotype ¢

generations back is

e(1— X(¢)) (13.16)

So the probability (pyg) that our lineage is not descended from a re-
combinant haplotype from a recombination event in the 7 generations
it takes our selected allele to move through the population is

T

pve =[] (1—c(l-X(j)) (13.17)

t=1

Assuming that ¢ is small, then (1 — ¢(1 — X (¢))) ~ e="0=X®) such
that

PNR = H(l — (1= X(t)) =~ exp <—Czl —X(t)> = exp (—07(1 —X’))

t=1
(13.18)
where X is the average frequency of the derived beneficial allele across
its trajectory as it sweeps up in frequency, X = % S X(¢). As
our allele is additive, its trajectory for frequencies < 0.5 is the mirror
image of its trajectory for frequencies > 0.5, therefore its average
frequency X =0.5. This simplifies our expression to

pnr =€ /% (13.19)
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Chapter 13 summary.

e When an initially rare selected allele sweeps up in frequency
it carries with it the genetic background (haplotype) that it
arose on. Alleles that are lucky enough to hitchhike along
with the selected allele are dragged to high frequency and
diversity is depleted by this hitchhiking effect.

e In recombining regions, diversity is only locally supressed by
a selective sweep as further from the selected site alleles can
recombine on/off of the sweep allowing diversity to persist
in the population. The genomic scale of the hitchiking effect
depends linearly on the time it take the selected allele to
sweep through the population and inversely on the local re-
combination rate. The characteristic dip in diversity is used
to find selective sweeps in genome scans and to estimate the
timing and strength of selection.

e Selective sweeps leave a range of other genomic signals that
have been used to identify them, including distortions to
the frequency spectrum (a more extreme skew towards rare

alleles) and elevated Fsr between populations.

e We see reduced diversity in regions of low recombination
consistent with the greater removal of diversity in these
regions due to recurrent hitchhiking. However, this genome-
wide effect is also consistent with background selection, the
removal of linked diversity along with deleterious alleles.

Modern maize derived from teosinte, a weedy plant that grows
in South and Central America. A striking phenotypic difference
between teosinte and maize is that teosinte is a bushy plant,
while maize grows primarily upwards. One gene that has been
implicated in this transformation is thl. WANG et al. (1999)
sequenced a region around this gene to find that background

levels of neutral diversity decrease around this gene.

A) Tt takes roughly 300bp for the diversity to recover moving
away from the sweep. WANG et al. estimate r = 4 x 1077 per
base pair. Estimate the time (in years) since the selected maize
variant of tbl arose as a new mutation. Maize is an annual
plant, so assume 1 generation per year.

B) Assume that the effective size of this diploid population is
N = 10°. What is the selective coefficient of this tb1 allele?

Figure 13.20: Top) Teosinte plant
architecture is branched, with multi-
ple ears per plant. Bottom) Maize
architecture is apically dominant, with
side branches tipped by female inflo-
rescences (ears) Caption and image
(cropped) from STITZER and ROss-
IBARRA (2018) drawn by Mitchell
Provance. licensed under CC BY 4.0.
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Interaction of Multiple Selected Loca.

Selection doesn’t act on loci in isolation, and the fates of selected
alleles in the genome are correlated. In the prior chapter we looked
into how selected loci affected neutral loci. Here we’ll explore the
interaction of multiple selected loci. Throughout this chapter we’ll
see how multi-locus dynamics are key to understanding hypotheses

about the evolutionary significance of sexual reproduction, after all the

primary evolutionary costs and benefits of sex arise the independent
assortment of chromosomes and recombination. Multi-locus dynamics
are also often key to understanding how new species arise and are
maintained. From a population-genetic perspective, species are sets of
traits and alleles held together by assortative mating and selection.

14.1 Why sex?

The vast majority of eukaryotic organisms reproduce sexually. Sex-
ual reproduction, the fusion of two cells to form a zygote (syngamy)
followed by meiosis, represents an ancient feature of eukaryotes. How-
ever, the ubiquity of sex is not just due to sex being a fixed ancestral
state of eukaryotes. Many eukaryotic species are not obligately sexual
and can reproduce clonally (i.e. asexually), e.g. vegetative growth in
plants. However, they will reproduce clonally only for a short while
before having sex again. There are even asexual vertebrate lineages.
For example, there are a number of obligately parthenogenic species
of whiptail lizard (Aspidoscelis), where every individual in the species
is female and reproduce clonally. However, only a small fraction of

eukaryote species are obligate asexuals, and these species appear to be

short-lived twigs on the eukaryotic tree of life.

Sex reproduction is confined to eukaryotes, but most non-eukaryotic

species have some form of genetic exchange where genetic material is
acquired and incorporation into their genomes via a range of mecha-
nisms. These non-eukaryotic mechanisms often seem to have evolved

in part because they facilitate genetic exchange.

Figure 14.1: Mexican racerunner
(Aspidoscelis guttatus. Synonym,
Cnemidophorus guttatus). Many
whiptail lizard (Aspidoscelis) species
are entirely reproducing clonally by
parthenogensis. These parthenogenic
species have arisen by hybridization
between genetically distant Aspi-

doscelis species.

Biologia Centrali-Americana: reptilia and
batrachia (1902). Giinther ACL Image from
the Biodiversity Heritage Library. Contributed
by Missouri Botanical Garden, Peter H. Raven
Library. Not in copyright.


https://www.biodiversitylibrary.org/page/573200#page/371/mode/1up
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Thus, sex and genetic exchange are incredibly widespread. Yet sex
has substantial short-term costs.

The costs of sex. Three broad costs of sex have often been hypothe-

sized:

1. The cost of mating. Finding and attracting a mate are costly and
may be impossible, and mating can be dangerous.

2. The cost of recombination. Why risk breaking it up a winning
genotype? If you’ve managed to survive to reproduce you're geno-
type likely can’t be a terrible fit to the environment. But if you
engage in sexual reproduction, i.e. meiosis, you're shuffling up your
genome with that of your partner. There’s no guarantee that this
new genotype will work well in the current environment.

3. The two-fold cost of sex (MAYNARD SMITH, 1971). The offspring
of sexual organisms have two parents. Therefore, sexual parents

only contribute half of their genome to their offspring. While asex-
ual organisms contribute their entire genome to the next genera-
tion. Thus a sexual organism has to have twice as many children to
leave the same number of copies of their genome to the next gen-
eration. That might be doable if both sexual parents were equally
committed to contributing to those offspring. However, that is
rarely the case. This cost is sometimes called the two-fold cost of
males, as males often provide little in terms of resources to their
children. Thus any allele that makes its host asexual should initially
spread all else being equal.

Yet sex and other forms of genetic exchange persist, despite these
short-term advantages to asexual reproduction. Indeed asexual lin-
eages often arise and spread within some sexual populations due to

these advantages.

The benefits of sex. Numerous benefits to sexual reproduction have
been suggested. Throughout this chapter we’ll encounter a range of
models that touch on the advantages of sex. We’ll see that selection
allows beneficial alleles to shed their background of deleterious alle-
les as they sweep through the population. In the absence of sex and
recombination, beneficial alleles can block each other’s progression to
fixation, so called ‘clonal interference’. Another major advantage of sex
is that beneficial alleles can be brought together on the same genetic
background via recombination, allowing faster rates of adaptation.
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14.2 A two locus model of selection and recombination.

Models involving many selected loci can be very challenging to an-
alyze. Luckily for us many of the key insights of the interaction of
selection and recombination can be understood in relatively intuitive
terms, and demonstrated using two locus models.

Consider two biallelic loci segregating for A/a and B/b. There are
four haplotypes, AB, Ab, aB, ab, which for simplicity we label 1-4.
The frequency of our four haplotypes are x1, x2, T3, and x4. Each in-
dividual has a genotype consisting of two haplotypes; we label w;; the
fitness of an individual with the genotype made up of haplotype 7 and
j (we assume that w;; = wj;, i.e. there are no parent-of-origin effects).
Assuming that these fitnesses reflect differences due to viability selec-
tion, and that individuals mate at random, we can write the following
table of our genotype proportions after selection:

AB Ab aB ab
AB wllx% U}122(E1£L'2 ’U)132£L'1£L'3 ’UJ142£L'1.’E4
Ab ° ’wggmg U}232l’21‘3 w242x2:c4
aB L] [ ] wggzg ’LU342I3I4
ab . ° ° w44a:i

This follows from assuming that our haplotypes are brought together
at random (HWE), then discounted by their fitnesses. Our mean
fitness w is the sum of all the entries in the table, so dividing by w
normalizes the complete table to sum to one. The frequency of the AB
haplotype (1) in the next generation of gametes is

2 = (w112} + w1221 22 + Fwis22173 + (1 — )w142%134 + Fewa32To3)
w
(14.1)

This is a bit of a mouthful, but each of the terms is easy to under-
stand. Each of the HWE genotype frequencies (e.g. 2x1x2) is weighted
by its fitness relative to the mean fitness (w;;/w), and by its proba-
bility of transmitting the AB haplotype to the next generation. For
example, AB/Ab individuals (1/2) transmit the AB haplotype only
half the time. The final two terms include the recombination fraction
(¢). The first term involving recombination refers to the AB/ab geno-
type (1/4), who with probability (1—c)/2 transmits a non-recombinant
AB haplotype to the gamete. Similarly, the second term refers to the
Ab/aB genotype; a proportion ¢/2 of its gametes carry the recombi-
nant AB haplotype.

In the single locus case, we defined the marginal fitness of an allele.

Here it will help us to define the marginal fitness of the i*” haplotype:

4
Wi = Zwijxj (142)
j=1
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This is the fitness of the i** haplotype averaged over all of the diploid
genotypes it could occur in, weighted by their probability under ran-
dom mating. Using this notation, and with some rearrangement of
equation (14.1), we obtain

1wy — wiacD

w

Ty = (14.3)
Here we have assumed that wa3 = wiy, i.e. that the fitness of AB/ab
individuals is the same as Ab/aB individuals (i.e. that fitness de-
pends only on the alleles carried by an individual, and not on which
chromosome they are carried; this assumption is sometimes called no
cis-epistasis).

We can then write the change in the frequency of our 1 haplotype
as
1’1(11)1 — ’u_)) — C’LU14D

Axy = (14.4)

W
Generalizing this result, we write the change in any haplotype i from

our set of four haplotypes as

2i(w; — w) + cwy4 D

W
where the coupling haplotypes 1 and 4 use +D and repulsion haplo-
types 2 and 3 use —D. Note that the sum of these four Ax; is zero, as
our haplotype frequencies sum to one.

So the change in the frequency of a haplotype (e.g. AB, haplotype
1) is determined by the interplay of two factors: First, the extent
to which the marginal fitness of our haplotype is higher (or lower)
than the mean fitness of the population (the magnitude and sign of
(w1 — w)/w). Second, whether there is a deficit or any excess of our
haplotype compared to linkage equilibrium (the magnitude and sign of
D), modified by the strength of recombination. This tension between
selection promoting particular haplotypic combinations, and recom-
bination breaking up overly common haplotypes is the key to a lot of
interesting dynamics and evolutionary processes.

14.3  Types of interaction between selection and recombination

Throughout the rest of the chapter we’ll discuss some general forms
to the interactions between selected loci and how recombination plays
into either facilitating or hindering selection. To illustrate these ideas
we make use of Muller diagrams (MULLER, 1932), where we visualize
the allele dynamics in terms of a plot of the stack frequencies over
time. All of our simulations use the same basic two locus dynamics
given by eqn (14.5). To keep things simpler we just discuss through
the qualitative dynamics of these models, but many of these models
have been investigated in much more depth.
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Let’s start by revisiting our neutral hitchhiking in this two locus
setting in the previous chapter we saw that neutral alleles can hitch-
hike along with our selected allele if they are tightly linked enough.
Figure 14.2 shows the frequency trajectories of the various haplotypes
for neutral allele (A) that is present at 10% frequency in the popula-
tion when our beneficial allele (B) arises on its background. When the
recombination rate (c) is low between the loci, A gets to hitchhike to
high frequency, but for higher recombination rates it only gets dragged
to intermediate frequencies. For the highest recombination rate shown
(¢ & s) the neutral allele’s dynamics (pay + pap) are barely changed
at all, as it recombines on and off the sweeping allele frequently and so
barely perceives the sweep.

14.8.2  The hitchhiking of deleterious alleles

Deleterious alleles can also hitchhike along with beneficial mutations
if they are not too deleterious compared to the benefits offered by the
selected allele. Again our allele A is at 10% frequency in the popu-
lation in Figure 14.3, but this time it is deleterious and so initially
decreasing in frequency across the generations when the beneficial
mutation (B) arises on its background. If the loci are tightly linked,
and A were too deleterious, B would never get to take off in the pop-
ulation. However, if the benefits of B outweighs the cost of A, even in
the case of no recombination between our loci, allele A gets to hitch-
hike to fixation and merely slows down B’s rate of increase and their
combined fitness is reduced. With moderate amounts of recombination
between the loci, our deleterious starts to hitchhike but before it can
get to fixation the beneficial allele manages to recombine off its back-
ground. This recombinant aB haplotype, which has higher fitness as it
lacks the deleterious allele can now sweep through the population dis-
placing the AB haplotype. For higher recombination events we have to
wait less long for a recombination to break up the hitchhiking deleteri-
ous allele, so the adaptive allele easily escapes its background. For the
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Figure 14.2: A beneficial mutation

B arises on the background of a
neutral allele whose initial frequency
is pa = 10%. The beneficial allele has
a strong, additive selection coefficient
of hs = 0.05.
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purposes of illustration here, we’ve used a relatively common deleteri-
ous allele, but in reality these alleles will likely be often be rare in the

population and at mutation-selection balance. If they are rare, it is

likely that a beneficial mutation arises on a specific deleterious allele’s

background, but as we have seen there are likely going to be many

rare deleterious alleles in the population, so it is likely that a beneficial

mutations may often have to contend with deleterious hitchhikers.
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Figure 14.3: The hitchhiking of a
deleterious allele. The beneficial
allele B arises on the background of a
deleterious allele A, and the extent to
which the A allele gets to hitchhiking
along depends on the recombination
rate. Code here.
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14.8.8  Clonal interference between favourable alleles.

When rates of sex and recombination are zero, or very low, positively
selected alleles can prevent each other from reaching fixation and so
the rate of adaptation can be slowed. In the absence of sex and re-
combination, when two positively selected alleles arise on different

400 600 800 1000

Generations

Figure 14.4: Interference between two
positively selected alleles. Left) the
red and blue (A and B) beneficial
alleles arise on different haplotypes.
They rise in frequency, but in the
absence of recombination only one
can fix. This is shown in a Muller
diagram, where p4p is initially set

to zero. Right) In the presence

of recombination the population

can generate the recombinant (AB)
haplotype, which can subsequently fix.
Code here.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/two_locus_sel.R
https://github.com/cooplab/popgen-notes/blob/master/Rcode/two_locus_sel.R
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0 100 200 300 400 500 600 Figure 14.6: Muller plot of the drug
resistance interference dynamics from
Figure 14.5. Figure from WILLIAMS
and PENNINGS (2019), licensed under
CC BY 4.0.

Given the rapid evolution of HIV, we can see interference taking
place over very short time periods indeed. HIV uses its reverse tran-
scriptase (RT) gene to write itself from an RNA virus into its host’s
DNA, allowing HIV to hijack the hosts regulatory machinery, a critical
part of its life cycle. One of the early HIV drugs was Efavirenz, which
inhibits HIV’s RT protein. Sadly, mutations are common in the RT
HIV gene, and these mutations, in the presence of the drug, confer a
profound fitness advantage, allowing them to spread through the HIV
population in patients undergoing anti-HIV treatment. In Figure 14.5
we see that by day 224 after the start of drug treatment two different
drug-resistance amino-acid changes beginning to spread within a pa-
tient (also shown as a Muller diagram in Figure 14.6). Because these
alleles occur on different genetic backgrounds, with little chance for
genetic exchange between them, they interfere in each other progress
as they compete to fix within the population. Eventually the amino
acid change at site 188 wins out.
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14.8.4 Epistatic combinations of alleles and the cost of recombi-
nation.

Recombination comes at a cost. While recombination can bring bene-
ficial combinations of alleles together, it will also tear them apart. To
see this imagine a pair of alleles A and B at two loci that work very
well together, and offer a fitness advantage over the ancestral combi-
nation of allele a and b. You could for example imagine that A and B
are changes in a protein and its receptor, and that they offer a much
more efficient signalling response. However, imagine that A doesn’t
work withb, nor does the allele a work well with B. Perhaps the pro-
tein made by allele A gums up the receptor b, and similarly for the
other the other combination.

The haplotype AB can spread from low frequency if recombina-
tion doesn’t break it apart at too high a rate. When recombination
rates are higher, recombination prevents either the A or the B allele
from spreading because recombination swops the A allele from the B
background onto the b background, where it suffers low fitness (and
similarly for the B allele). The ab haplotype doesn’t suffer the same
consequence because it is in the majority, so when recombination oc-
curs the a allele is usually recombined back on to the b background
with no consequence. Thus recombination can prevent the spread of
beneficial epistatic combinations of alleles. We’ll look into this more
when we discuss the evolution of recombination suppressors in Section
14.3.7.
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14.8.5 Muller’s ratchet

There is a constant influx of deleterious mutations along any chromo-
some (red alleles in Figure 14.9). In asexual populations, or regions of
the genome lacking recombination, this leads to nearly inevitable de-
crease in fitness due to the loss of high fitness haplotypes— a process
known as ‘Muller’s ratchet’ (MULLER, 1964).

“Love, love will tear us apart
again” —Joy Division.

Figure 14.7: The spread of a beneficial
epistatic combination of alleles is
inhibited by recombination. Code
here.

Figure 14.8: A ratchet. A cog (b)
with asymmetric teeth that can only
turn one way as the pawl (a) prevents
it turning the other way.

Original sketch from Brockhaus Konversations-
Lexikon, Vol. 10, 1894, page 420. Georg Wiora
(reworked by Dr. Schorsch). From wikimedia.
Licensed under CC BY-2.0


https://github.com/cooplab/popgen-notes/blob/master/Rcode/two_locus_sel.R
https://commons.wikimedia.org/wiki/File:Sperrklinke_Schema.jp2

Different haplotypes vary in the number of deleterious alleles they
carry. The haplotypes carrying the most deleterious alleles can be lost
by drift, and by selection acting against them, but haplotypes carrying
high numbers of deleterious alleles are quickly recreated by new mu-
tations. The converse can also happen, if the selection against these
each deleterious alleles is relatively weak, the population can acciden-
tally lose the haplotype carrying the least number of deleterious alleles
(middle panel of Figure 14.9).

Once we have lost this haplotype it is hard to recreate, as that
would require unlikely back mutations to remove the deleterious mu-
tations from the population. After the the loss of the least deleterious
haplotype, we have ratcheted up the mean deleterious mutations in
the population and ratcheted down the mean fitness of the population.
This will keep happening, by chance we can keep losing the haplotype
with fewest deleterious alleles (bottom left panel of Figure 14.9). Thus
number of deleterious alleles carried in our asexual population will
gradually increase. This may eventually doom asexual population to
extinction, as their mean fitness declines over time.

In a sexual population, the same process can start. We can lose by
chance the haplotype with the fewest deleterious mutations (middle
right panel of Figure 14.9). However, recombination among deleteri-
ous haplotypes can recreate this haplotype carrying few deleterious
alleles. Such a crossover is shown as a red X in the middle right panel
of Figure 14.9, and the resulting recombinant haplotype few of dele-
terious is shown in the lower right panel. Therefore, Muller’s ratchet
doesn’t tick forward in sexual populations, as even a small amount of
recombination is enough to stop its progression.

14.83.6  An example of the costs of asexuality.

In the evening primrose genus (Oenothera), there are a number of
young, independently-derived, asexual species. In each species this
asexuality is due to a complicated series of reciprocal translocations,
which form a ring at meosis preventing recombination and segregation,
and ensure that every plant is permanently-heterozygote for these re-
arrangements due to lethality. This system is quite complicated, and
super cool. We don’t need to worry about the details, but importantly
each species is functionally asexual. HOLLISTER et al. (2014) sam-

pled transcriptome data from across the evening primrose clade, and
took advantage of 7 independent, asexual-sexual sister pairs of species
to examine the impact of the evolution of asexuality for molecular
evolution.

The dn/dg for the sexual and asexual species for each of the seven
pairs (C1-C7) is shown in Figure 14.11. In every pair d~/ds is higher in
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Figure 14.9: A cartoon of haplotypes
at three time points showing the
action of Muller’s ratchet in Left)
an asexual population and Right) a
sexual population.

EVENING PRIMROSES
(A) GENOTHERA SPECIOSA B) GENOTHERA MISSOURIENSIS

Yy Nat. size
PL 104

Figure 14.10: Showy evening primrose
(Oenothera speciosa), the sexual
species in the clade C2 from Figure
14.11.

Favourite flowers of garden and greenhouse
(1896). Step, E. Image from the Biodiversity
Heritage Library. Contributed by Missouri
Botanical Garden. Licensed under CC BY-2.0.


https://www.flickr.com/photos/61021753@N02/10575005313/
https://www.flickr.com/photos/61021753@N02/10575005313/
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the asexual species. The genomes of the asexual species are evolving in
a less constrained fashion, likely due to weakly deleterious mutations
accumulating due to hitchhiking with beneficial alleles and the slow
crank of Muller’s ratchet.

14.8.7 The maintenance of combinations of alleles in the face of
recombination.

In some cases balancing selection may be attempting to maintain mul-
tiple combinations of alleles in the population that work well together.
However, recombination may be constantly ripping those alleles away
from each other making it difficult to maintain these alleles. This can
select for the suppression of recombination. Some of the most dra-
matic demonstrations of this tension involve the evolution of so-called
super genes. We'll first consider the evolution of a mimicry supergene
in Heliconius numata as an example of these dynamics.

Some of the most spectacular examples of Miillerian mimicry in
the world are found in Heliconius butterflies. These butterflies are
unpalatable to predators, and different species mimic each other so
benefiting from not being eaten by predators, which rapidly learn to
avoid all these species). In many of these species multiple mimicry
morphs are found as we move across geographic space. In Heliconius
numata, a number of different morphs mimic morphs from a distantly
related Melinaea species, see Figure 14.12.

To keep things relatively simple, let’s focus on two differences be-
tween silvana and bicoloratus, the yellow stripe on the top wing of
sitlvana and the black bottom wing of bicoloratus. Let’s imagine that
these two differences are due to a simple two locus system (see left
column of Figure 14.13). The first locus segregates for Y/y, where the


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/recom_selection/evening_primrose/evening_primrose_omega.R
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Y allele encodes for a top-wing yellow band, and y encodes for the ab-
sence of the yellow band. The second locus segregates for B/b where
B encodes for the bottom-wing being black, and b for the absence of
black on the bottom wing. If Y is recessive and B is dominant, then
the silvana phenotype corresponds to a YY bb genotype. Due to the
dominance of the y and B alleles the bicoloratus phenotype can be
achieved by various genotypes (Yy Bb, yy BB, Yy BB, yy Bb). Let’s
assume that both of these phenotypes offer an advantage as they
mimic a M. menophilus model. But there are also genotypes that
don’t do as well; YY BB individuals have a yellow band and a black
bottom and so don’t do a great job mimicking anything and so will
be eaten. Thinking about the four possible haplotypes, y-B has high
marginal fitness as due to its combo of dominant alleles it will always
produce a bicoloratus phenotype. Likewise the Y-b haplotype has high
marginal fitness, as it does well in the homozygous state (silvana phe-
notype) and when it is paired with the y-B allele. However, the Y-B
and y-b haplotypes fair less well as they carry two alleles that don’t
work well with each other and so are often individuals who suffer high
rates of predation.

If no recombination occurs between these loci (¢ = 0, Figure 14.13),
then the Y-B and y-b are selected out of the population, and the y-B
and and Y-b can be stably maintained. However, when there’s too
much recombination between our loci (e.g. ¢ = 0.4, Figure 14.13) the
high-fitness haplotypes keep getting ripped apart by recombination
and the Y-b is lost from the population as its recessive advantage
is lost because it’s too often being broken up by recombination in
heterozygotes.

14.3.8 Supergenes to the rescue!

So our polymorphisms can only be maintained if they are tightly
linked, i.e if these alleles arose at loci that are genetically close to
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Figure 14.12: Five sympatric forms
of H. numata from northern Peru,
and their distantly related comimetic
Melinaea species. First row: M.
menophilus ssp. nov., M. ludovica
ludovica, M. marsaeus rileyi, M.
marsaeus mothone, and M. marsaeus
phasiana. Second row, H. n. f. tara-
potensis, H. n. f. silvana, H. n.f.
aurora, H. n.f. bicoloratus, and H. n.
f. arcuella. Figure and caption from
JORON et al. (2006) cropped, licensed
under CC BY 4.0.

“[Supergenes are] coadapted
combinations of several

or many genes locked in
inverted sections of chromo-
somes and therefore inherited
as single units” DOBZHAN-
sicy (1970).
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Figure 14.13: Left) A hypotheti-

cal two locus model to describe the
H. numata silvana and bicoloratus
morphs. Right The frequency dy-
namics of the four haplotypes under
two different recombination regimes.

0 20 40 60 80 100 The model has negative frequency
dependent selection acting to increase
the frequency of the mimicry morph
that is rarer in the population. While
all individuals with genotypes cor-
responding to a mixed phenotype,
e.g. YY BB, have very low fitness as
they mimic no Melinaea and so are
quickly eaten. Butterflies cropped
from JORON et al. (2006) cropped,
Generations licensed under CC BY 4.0, Code here.
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each other. But how is it possible that these alleles arose close to each
other? The trick is that they don’t necessarily have to arise very close
to each other. If such a system is polymorphic but being regularly
broken up by recombination, a chromosomal inversion—the flipping
around of a whole section of chromosome— can arise and will suppress
recombination. Imagine that our two loci are far apart genetically, and
a chromosomal inversion arises on the Y-b background forming the b-Y
haplotype. This inverted haplotype will not recombine with the y-B
haplotype when it is present in a heterozygote, thus it is not broken
down by recombination. This inverted haplotype, which enjoys the
fitness benefits of the Y-b, can therefore replace the Y-b haplotype in
the population. The two other low fitness haplotypes will disappear as
they are no longer being generated by recombination, leaving just the
y-B and b-Y. The polymorphism system now behaves like alleles at a
single locus, a super gene (e.g. like ¢ = 0 in Figure 14.13).

Now the H. numata system is vastly more complicated than our
toy two locus system, presumably involving many changes and re-
finements, but the same principle holds (JORON et al., 2011). The
differences between the different H. numata mimicry morphs is found

on a single chromosome, and the inheritance behaves as if controlled
by a single locus (albeit with many alleles). The H. n. f. silvana in-
dividuals carry a recessive haplotype of alleles that which is known to
be locked together by a ~ 400kb inversion, that is a different chromo-
somal orientation from the bicoloratus allele (haplotype) which acts as
a dominant allele. Other alleles at this same chromosomal region pro-
vide the genetic basis of the other morphs, and sometimes correspond
to further inversions with a range of dominance relationships.

Local Adaptation, Speciation, and Inversions.


https://github.com/cooplab/popgen-notes/blob/master/Rcode/two_locus_sel.R
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Inversions have long been thought to play an important role in local
adaptation and speciation. One example of an inversion underlying lo-
cal adaptation occurs in Mimulus gutatus, in Western North America,
where there are annual and perennial ecomorphs with very different
life history strategies (see Figure 14.14). The perennial form grows
in many places along the Pacific coast, and in other places with year
around moisture; it invests a lot of resources in achieving large size
and laying down resources for the next year, and as a result flowers
late. The annual form grows inland, e.g. the California central val-
ley, where it has to invest all its effort in flowering rapidly before the
long, hot, dry summer. Neither ecomorph does well in the other’s en-
vironment. The perennials get crisped before they have a chance to
flower, while the annuals suffer from high rates of herbivory and can-
not tolerate the salt spray. LOWRY and WILLIS (2010) found that

large inversion controled a lot of the phenotypic variation in flowering
time and a range of other morphological differences between these two
morphs. They also showed that the inversion controled a reasonable
proportion of the differences in fitness in the field, consistent with it
underlying the fitness tradeoffs involved in local adaptation.

Why would an inversion be involved in locking together local
adapted alleles? The basic idea, like above, is that an inversion can
be selected for to block recombination when we have two (or more)
loci segregating for locally adapted alleles (Figure 14.15). Locally
advantagous haplotypes are in danger of being broken up by recom-
bination with maladapted haplotypes, which are constantly being
introduced into each population by migration from the other. If an in-
version arises that locks these alleles together in one population, it can
be selected for as it does not suffer the ill effects from recombination
with migrating maladaptive haplotypes.
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Figure 14.14: Left) A coastal peren-
nial and an inland annuals Mimulus
gutatus LOWRY and WILLIS (2010),
image from LOWRY and WILLIS
(2010) licensed under CC BY 4.0.
Right) A reciprocal transplant exper-
iment showing that coastal perennial
and an inland annuals are locally
adapted to their respective habitats.
Data from LOWRY and WILLIS
(2010), Code here..

Coastal Pop.
A B

Co 1 1

In (1-5) (1-5)

Inland Pop.

A B
Co (1-5s) (1-5)
In 1 1

Figure 14.15: A two locus, two pop-
ulation migration-selection balance
system. Two loci A and B segregate
for an inland and coastal adapted
alleles.


https://github.com/cooplab/popgen-notes/blob/master/Journal_figs/recom_selection/Mimulus_inversion/annual_perennial_fitness.R
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14.8.9 Sex Chromosomes and the dynamics of selection and recom-
bination.

The evolution of sex chromosomes and new systems of genetic sex
determination provide a beautiful demonstration of the interplay of
selection and recombination. But first it’s worth taking a step back
and thinking the difference between an species being sexual, having
male and female gametes, and having separate sexes (i.e. males and
females), and the mechanisms for determining the sexes. Many species
are sexual but with no separate sexes or even male or female gametes.
The production of different sized gametes (anisogamy) has arisen a
number of times in multi-cellular life, with male and female gametes
are defined by their relative sizes. The smaller, and often more mobile,
gametes are defined as male gametes (e.g. sperm), while the larger,
well provisioned, and often less mobile are defined as female gametes
(e.g. egg cell). The evolution of anisogamy is thought to be due to
disruptive selection due to a tradeoff pulling in opposite directions
towards mobile gametes able to move further and in the opposite
direction towards better provisioned gametes better able to build
larger zygotes. In many organisms individuals can produce both male
and female gametes, while some species have evolved separate sexes,
likely in part as an inbreeding avoidance mechanism. There is huge
diversity in sex determination mechanisms across the eukaryotic tree
(Figure 14.16). This is all to say, biology is wonderfully diverse and
complicated.

In mammals, and many other systems with genetic sex determina-

tion, the genes responsible for sex determination lie on a pair of het-

Figure 14.16: Diversity of sex deter-
mination systems for representative
plant and animal clades. Figure
and caption from BACHTROG et al.
(2014), licensed under CC BY 4.0.

Figure 14.17: Volvoz aureus. Volvox
are spherical, multicellular green
algae. The surface is made up of a
single layer of somatic cells (up to
50k cells) beating their flagella. Some
species of Volvox have individuals
with both male and female gametes,
being made here in the germ cells (a
and g respectively) in the middle of
the sphere. Some Volvox have sepa-
rate sexes, where different individuals
produce male and female gametes.



eromorphic sex chromosomes, i.e. a pair of chromosomes that are quite
different in size. In mammals, most males are XY and females XY,
and the Y chromosome that has a very small gene content compared
to the X chromosome. But in other groups such as birds, and some
snakes, sex determination is a ZW system with females being ZW and
males being ZZ. In those systems females carry a gene poor W with
males being the homogametic sex, carrying two Zs. If you are still
reading send Graham a picture of Nettie Stevens, she discovered sex
chromosomes in 1905 (STEVENS, 1905). These examples of hetero-

morphic sex chromosomes, and many others like them, are thought to
have arisen from an ancestral pair of autosomes. What then explains
their evolution?

One broad explanation for the evolution of sex chromosome is illus-
trated in Figure 14.18 and goes as follows:

1. There are a pair of ancestral autosomes with sexually-antagonistic
male-beneficial, female-detrimental alleles segregating on them
(the converse can occur but aren’t central to the evolution of Y
chromosomes). These alleles can persist in the population for some
time but are eventually lost due to their cost in females.

2. A dominant, male-determining allele arises on one of the chromo-
somes. Let’s call this chromosome our proto-Y and the other our
proto-X. All individuals who are heterozygous for the proto-Y will
be male, individuals who are homozygous for the proto-X. No in-
dividuals will be homozygous for the proto-Y, as individuals can
receive at most one proto-Y, that of their father.

3. Our sexually-antagonistic alleles benefit from being on the same
chromosome as our male-determining allele because then they
are guaranteed to be in males. However, if they recombine off the
proto-Y on to the proto-X, they are at a disadvantage.

4. If an inversion arises on the background of the proto-Y chromosome
it can lock together the male-determining allele and some of our
sexually-antagonistic alleles. This inversion can initially spread as
gains the benefit of the sexually-antagonistic alleles without the
cost of recombination. This inversion can’t spread to fixation as
Fisherian selection on the sex ratio keeps it in check (see Section
10.3 for more on sex-ratio selection).

5. Further inversions can potentially cement additional sexually-
antagonistic alleles into tight linkage with the male-determining
allele.

Sex chromosomes, under this hypothesis, are super genes locking to-
gether sex determination and sexually-antagonistic alleles. Our male-

POPULATION AND
QUANTITATIVE
GENETICS 281

Figure 14.18: A cartoon of formation
of a neo-Y chromosome and subse-
quent suppression of recombination.
A pair of orthologous automosomes
is shown in the top most panel.
Sexually-antagonistic male-beneficial,
female-detrimental alleles are shown
as vertical lines. A newly arising
dominant, male-determining allele

is shown as a blue circle. The in-
versions are shown as brackets. The
non-recombining region linked to the
sex determining allele coloured red.
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beneficial, female-detrimental alleles work well on the background of
the male-determining allele and poorly off it, that’s exactly the su-
pergene setup we encountered in Section 14.3.8. This sketch can be
flipped to describe the evolution of ZY systems.

Figure 14.19: The sex-specific effects
of the OB allele.

Image credits: Blue mbuna Male L. fuelleborni
by Chmee2; OB Male L. fuelleborni by Doro-
nenko; Brown ob Tropheops female by Alexandra
Tyers; Female L. fuelleborni orange morph, by
Mikko Stenberg

Female

A colourful example of the initial conditions for the evolution of a
novel sex determination system is offered by cichids from Lake Malawi,
where there are many very closely related cichlids species (ROBERTS
et al., 2009). In many of these species the males are brightly coloured
to attracted females, while the females are often brown to help them
avoid predators. In some of these species there is an alternative orange
morph, called the marmalade cat morph, which are cryptic against the
rocky bottom of the lake. This morph is due to a dominant mutation
called OB at the pax7, and the allele appears to shared across many
of these species. This OB allele works well in females, however, in the
males the OB allele disrupts their bright colouration. Thus the OB
polymorphism is sexually antagonistic, i.e. it works well in females and
poorly in males.

Males carrying the male-deleterious OB allele are rarely found, de-
spite the allele being common in females. Why is that? Well because
the OB allele is tightly linked to a newly emerged female-determining
allele (W), with males carrying two copies of the Z allele. Males usu-
ally are homozygous for the 0b-Z haplotype, while females can being
either orange (OB-W/0b-Z) or brown (ob-W/0ob-Z). Recombination
between these two loci seems to be very rare, and so the sexually an-
tagonistic allele OB appears to be mainly female specific. Thus the
spread of this sex determining allele has potentially helped resolve


https://commons.wikimedia.org/wiki/File:Labeotropheus_fuelleborni_in_Botanic_garden_in_Teplice_(2).JPG
https://de.wikipedia.org/wiki/Schabemund-Buntbarsch#/media/File:Labeotropheus_fuelleborni_01.jpg
https://de.wikipedia.org/wiki/Schabemund-Buntbarsch#/media/File:Labeotropheus_fuelleborni_01.jpg
https://www.flickr.com/photos/52993488@N03/4890217915
https://www.flickr.com/photos/52993488@N03/4890217915
https://commons.wikimedia.org/wiki/File:Labeotropheus_fuelleborni1.jpg
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sexually-antagonism while it aided its own spread. An inversion on the
Z background would lock together these two alleles, and spread.

The degradation of heterogametic sex chromosomes. Our inversions
on the neo-Y chromosome have created a issue (or conversely the
neo-W in ZW systems). The inverted block, containing the male-
determining allele, is now inherited as a non-recombining haplotype.
Why’s that? The inversion doesn’t recombine in heterozygotes, and

the neo-Y inversion region is only ever found in heterozygote males.! ! This differs from the situation that
most other non-sex chromosome

inversions find themselves in as they
asexual and subject to many of the issues that come along with that. homozygous some of the time and so

The hitchhiking of deleterious alleles will be common and Muller’s experience recombination.

Thus the region of chromosome tied up within inversions is effectively

rachet will begin to tick. Many mildly deleterious alleles will be al-
lowed to fix through these mechanisms, leading to the accumulation of
permature stop codons and silencing mutations in non-essential genes
within the neo-Y inversion. The X chomosome will maintain copies of
these genes, and sometimes the expression of these genes will have to
be up-regulated in males to accommodate for the degradation of the

Y based copy leading to lower dosage of these genes.2 Transposable 2Indeed in some heterogametic sex
chromosome systems there are evolved

. . . dosage compensation systems that
Y chromosome, some times in huge numbers, as the purging of these deal specifically with these issues.

elements can also accumulate on the non-recombining section of the

transposable elements will be inefficient in this region. But there’s
little to stop the non-recombining section of neo-Y chromosome from
expanding more due to the short-sighted selection for inversions that
further tie up sexually-antagonistic alleles. Our non-recombining sec-
tion of the Y chromosome maybe expanding to occupy more of the
chromosome, as it is losing functional genes and bloating up with re-
peative DNA. Eventually much of what remains may be genes that are
essential to male function, as is the case with old Y chromosomes such
as humans.

Evolutionary hypotheses about the evolution of sex chromosomes
offer a wonderful illustration about the short term advantages of
surpressing recombination and the long costs. In the short term su-
pressing recombination between sexually atagonistic alleles and sex
determining alleles offered strong advantages as it kept together a
winning haplotype. However, in the long term the supression of recom-
bination lets the long term disadvantages of asexuality play out for the
sex chromosome, deleterious alleles accumulate and the chromosome

loses functional gene content.
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Chapter 14 summary.

e There are a number of short-term advantages to asexuality.
Asexuals don’t waste resources on finding/attracting a mate,
they keep together winning genotypes, and they avoid the
two-fold cost of sex. However, in the longer term sexual re-
production and recombination offer stronger advantages that
lead to the long term maintainance of sexual species.

e The advantages and disadvantages of sex and recombination
both (mainly) result from the fact they break up existing
combinations of alleles.

e Recombination offers an advantage when allows it allows
benificial alleles to shake off their deleterious hitchikers.
Recombination also can help bring together beneficial alle-
les together on the same haplotype reducing the selective
interference between alleles. Finally recombination allows
haplotypes free of deleterious mutations to be brought to-
gether stopping the action of Muller’s rachet.

e One significant cost of recombination and sex is that it
breaks up beneficial, epistatic combinations of alleles. Thus,
selection can favour the evolution of recombination supres-
sors that arise on the haplotype background of favourable
epistatic combinations as they lessen the costs of recom-
bination. The evolution of recombination supression by
inversions are one example of that, with the evolution of
‘supergenes’ being a particularly dramatic example.

o Evolutionary hypotheses about the role of recombination
in the evolution of new sex chromosomes offer a strong case
study for the short-term costs and long-term advantages of
recombination.




A.

An Introduction to Mathematical Concepts

From Haldane’s entertaining response

“Now, in the first place I deny that the mathematical theory of popu- to Mayr’s criticism of population

lation genetics is at all impressive, [... We] made simplifying assump- genetics.

tions which allowed us to pose problems soluble by the elementary HALDANE, J. B. S., 1964 A

mathematics at our disposal, and even then did not always fully solve defense of beanbag genetics. Perspec-
tives in Biology and Medicine 7(3):

the simple problems we set ourselves. Our mathematics may impress 343360
zoologists but do not greatly impress mathematicians”-HALDANE

Throughout these notes we make use of mathematical concepts,
many of which are based in probability theory and statistics. Here we
briefly review some of these concepts. The wikipedia pages on statis-
tics and math topics are often excellent introductions and worth con-
sulting if you want to know more. Parts of this primer were originally
written by Sebastian Schreiber and myself. Some of these concepts
may go beyond what you have covered in previous courses. The notes
do not rely on you knowing all of these results, but I'll refer to this
appendix when these concepts first come up in the main body of the
notes. To answer the questions in the first chapter you will need to
know some basic rules of probability, so reviewing Sections A.2.2 and
A.2.1 below would be a good place to start.

A.1 Calculus

In evolutionary genetics we're often interested in how quantities
change over time, and so we're interested in the rate of change over
time. This particular obsession is shared with much of science and so
the concepts we make use of appear in many other fields. The deriva-

tive f'(a) of a function f(x) at @ = a represents the instantaneous rate

df (z)
dz

of the graph of the function at x = a. A derivative of zero indicates

of change of the function, at © = a or, equivalently, the slope
a local maxima, minima, or saddle point of the function. An exam-
ple is shown in Figure A.1, note how each maxima/minima of f(x)
corresponds to a value of zero of f/(a).

To give a physical example, imagine that the derivative of position
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with respect to time gives the (instantaneous) speed of a car. Think of
the top panel of Figure A.1 as showing a car driving up and down an
alley, with f(z) giving the car’s position at time z. The bottom panel
shows the car’s speed, with the sign (i.e. + or —) of the derivative
giving the direction of movement. Moving from left along the x (time)
axis, in time period A our car is moving up the alley (page), the speed
is positive (i.e. f’(a) > 0). In the time period B, the car is reversing
down the alley, its speed is negative (f'(a) < 0 ). As we move from A
to B the car is beginning to slow down, i.e. the derivative gets small
in magnitude, as it’s going to reverse direction at time indicated by
the first dotted line at the point. At the dotted line between A and B,
we are at the moment when the car is changing direction, the car is
stationary, its speed is zero (i.e. f'(a) =0).

We'll sometimes want to know about the second derivative of f,

denoted by f”(a) or dzdé(;). The second derivative measures the rate
at which the first derivative is changing i.e. the concavity/convexity
of the function. See Figure A.1. In our physical example, the second
derivative with respect to time is the (instantaneous) acceleration
of the car, as it is the rate of change in the speed of the car (signed
by whether it’s accelerating in a positive or negative direction). One
useful property of the second derivative is that it is positive at local

maxima of the function, and negative for local minima of the function.

Figure A.1: Top) An example func-
tion, f(z) = @ — (/6)x® — (Y/3)a*,
Middle) its derivative f/'(z) =

1 — 3(5/6)x2 — 4(1/3)x3, and
Bottom its second derviative

f'(x) = —2 x 3(5/6)x — 3 x 4(1/3)x>
Code here.


https://github.com/cooplab/popgen-notes/blob/master/math_background/Calc_background.R

A.1.1 Approximating functions by Taylor Series.

A wonderful thing about derivatives is that they allow us to approx-
imate complicated, nonlinear functions by linear functions (this is
called a first-order Taylor approximation). Namely, a first order ap-
prozimation of f(x) at x = a is given by

f(x) =~ f(a) + f'(a)(z — a) for z near a (A1)

Returning to our car example, this corresponds to trying to guess
the past or future position of the car extrapolating from its current
location and speed. We’ll do well when the car is traveling at a rela-
tively constant speed, i.e. isn’t accelerating or deccelerating too fast.

Two common first-order Taylor approximations that we’ll encounter
throughout the notes are

exp(x) =~ 1+ for z near 0 (A.2)
(1—x)* ~ 1—ka for x near 0 (A.3)

where exp is (natural) exponential function. We’ll also use the Taylor
approximation given by eqn (A.2) as a trick to write

(1+2)" ~ exp (Lz) for = near 0, (A.4)

which allows us to move from a geometric decay to an exponential
decay. As a generalization of this, we’ll approximate the product

L L
H(l + x;) & exp <Z :cl) if all z; are near 0, (A.5)

=1 i=1

Where Hle is the product of elements running from ¢ = 1 to L and
Zf:l is the sum of entries from ¢ = 1 to L. This approximation is
useful as it allows us move from a product to thinking about a sum
(where averages are easier to think about).

We’ll sometimes want more accuracy and so use a second order
approximation, i.e. we will approximate the graph of a function with a
parabola instead of a line (see Figure A.3). This is often useful when
examining the effects of stochasticity on some process. These second-
order Taylor approximations take the form:

f@) = f(a) + f'(a)(z — a) + " (a)(z — a)*/2 (A.6)

where f(a) denotes the second derivative of f at x = a. In our car
example, this is equivalent to predicting the location of the car from
its speed and acceleration.

One place this second order approximation is useful is for the log
function and yields

log(1 4 z) ~ 2 — 2%/2 for = near 0. (A7)
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Figure A.2: Our function from the top
panel of Figure A.1 approximated by
first-order Taylor approximations (red
lines) at a variety of points a (solid
dots). Note how the approximation
breaks down away from the dot; we
stop plotting the approximation a
little away from the dot for easy of
presentation. Code here.
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Figure A.3: Our function from the top
panel of Figure A.1 approximated by
second-order Taylor approximations
(red lines) at a variety of points a
(solid dots). Code here.
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A.1.2  Integrals

Regarding integrals f; f(z) dz, just remember that they represent the
signed area “under” the graph of y = f(x) over the interval [a,b]. The
integral is found by taking the limit of the summed area under the
curve in each bin dz as the bin size goes to zero. An example is shown
in Figure A.4.

A.2  Probability

Evolution is fundamentally a random process. Which individuals live,
die, and reproduce in any given moment is far from predictable. The
randomness of Mendelian transmission, what genetic material is trans-
mitted to the next generation, reflects randomness at the molecular
and cellular level. While this makes it impossible to predict the out-
come for a given individual we can speak of average outcomes and the
statistical properties of evolutionary processes. Indeed evolution is a
statistical process, evolution occurs because some types of individuals,
and alleles, on average leave more offspring to subsequent generations.
Thus to understand the details of models of evolutionary change we
will have to understand something about probability and statistics.

A.2.1 Random Variables

A random variable X, roughly, is a variable that takes on values
drawn randomly from some probability distribution. There are two
major types of random variables, discrete and continuous. For a dis-
crete random variable, think of it as a person calling out numbers by
drawing them randomly out of a hat with some distribution of num-
bered slips of paper. We use uppercase X to think about the number
that might be drawn (before it is drawn) and lowercase x to denote
the number that is actually drawn. Discrete random variables take on
a countable number of values, say x1, x2, ..., with some probabilities
P1,P2,- ... We can denote this assumption as

P[X = z;] = p; “the probability that X equals x; is p;”

Continuous random variables, which can take on values in a contin-
uum, are characterized by their probability density function p(z) i.e.
a function that satisfies p(z) > 0 for all z and [*°_p(z)dz = 1. For
example, think about the precise time of day a baby is born in a hos-

pital (not just the hour or the minute, where discrete random variables

would suffice, but the precise moment). For these variables,

b
Pla < X <b| = / p(z) dz “the probability that X is interval [a,b] equals the area under the curve p(z) from a to b”

()

Figure A.4: Our function from the top
panel of Figure A.1. The integral of
f(z) from z = —0.5 to 1, f_lo.s f(z)dz
is the signed area “under” our curve
and so is the red area minus the blue
area. Code here.
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for example, we could ask the probability that a baby was born some-
where between midnight and 12.18am.
Dog

A.2.2 Basic Rules of Probability

Imagine a fairground game where you reach into a box and pull out an 12 10 8

egg. There are 100 eggs in the box, 57 of them are empty. Forty three
have a toy in them. There are eggs with a stuffed dog toy, eggs with
a cat toy, eggs with a lizard toy, eggs with both a dog and cat toy in
them. The counts of each type of egg are shown in Figure A.5.

. 13

You reach into the box and pull out one egg: Lizard
i) For each egg type (dog alone, cat alone, lizard, dog+cat, and
Figure A.5: Venn diagram of fair-

ground game toys, there are a hun-
type? What do these probabilities sum to? dred eggs in total, including 57 eggs

ii) What’s the probability of getting an egg with a dog? What chff;enfef;ize that are not shown.

no prize), what is the probability that you get an egg of that

is the probability of getting an egg with a dog in it or an egg
without a dog in it.

iii) What’s the probability of getting an egg with a dog in it or
an egg with a lizard.

These questions above illustrate the principle that if events A & B
are mutually exclusive then P(A or B) = P(A) + P(B), following from
these P(A or not A) = P(A) + P(not A) = 1. What is the probability
of getting an egg with a dog or a cat? Well, for events that are not
mutually exclusive we need to discount the sum of the probabilities by
their overlap, giving

P(A or B) = P(A) + P(B) — P(A & B). (A.8)

We call P(A & B) the joint probability of A & B.

Question 2.

What is the probability P(dog or cat)?

Conditional probability. We often want to know the conditional prob-
ability, the probability of an event conditional on some other particu-
lar event. For example, the conditional probability of getting a cat toy
given that I've pulled out an egg containing a dog (recall that ten of
the hundred eggs contain both a dog and a cat toy.). We write this as
P(cat|dog), where we read |dog as ‘given dog’ or ‘conditional on dog’.
The rule of conditional probabilities is that
P(A & B)

PAIB) = =5

(A.9)
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we caln now answer

Question 3.

What is P(cat|dog)?
Explain the underlying intuition of your answer?

By rearranging equn , we obtain the rule that
P(A & B) = P(A|B)P(B). (A.10)

Thus we can always obtain the joint probability of A & B by multi-
plying the conditional probability by the probability of the event we
are conditioning on. Equivalently, we could have computed the joint
probability as

P(A & B) = P(B|A)P(A). (A.11)
these two ways of writing the same thing will come in useful in just a

moment.

The law of total probability. The total probability of an event can be
obtained by summing over all of the L mutually exclusive ways that A
can happen

L L
P(A)=> P(A & B;) =Y P(A[B,)P(B) (A.12)
i=1 i=1
where By, ---, By give the mutually exclusive events that can occur
alongside our event B. This is the law of total probability. For exam-
ple, we can write the probability of obtaining a cat as

P(cat) = P(cat & dog) + P(cat & not dog). (A.13)

Independence. Two events are independent of each other if
P(A & B) = P(A)P(B) (A.14)

this requirement implies independence because the conditional and un-
conditional probabilities are equal, P(A) = P(A|B), i.e. I learn noth-
ing about the event A from the event B having occurred. For example,
if I draw two eggs with replacement from the box the probability of
getting a lizard then a dog is P(lizard then dog) = P(lizard)P(dog).

Bayes Rule. We often want to reverse of conditional probability
statements, i.e. turn the statement of P(B|A) into the statement of
P(A|B). We have two different ways of expressing the joint probability
in terms of conditional probabilities. Because they each equal the joint
probability, they are equal to each other, meaning

P(B|A)P(A) = P(A|B)P(B). (A.15)



Rearranging eqn (A.15) we obtain

A[B)P(B)

P(BjA) = L PCA) (A.16)

Equation (A.16) is also called “Bayes’ Rule” or “Bayes’ Theorem,”

and it which allows us to reverse the variable we condition on.

Question 4.

Use Bayes’ rule to calculate P(dog|cat) from the conditional
probability you calculated in Question A.2.2.

A.2.8  Ezxpectation of a Random Variable
The expectation of a random variable is the point at which the dis-
tribution is “balanced”. For discrete random variables it is given by

p=E[X] =pia1 + paxa + -+ (A.17)

L over a set of independent events is an esti-

The average outcome
mate of the mean fi, where the hat denotes that it is an estimate. A
more precise interpretation of the relationship between the average
and the expectation is given by the law of large numbers described

below. For a continuous random variable,

E[X] = / o pl) da. (A.19)
For any “reasonable” function, one can define E[f(X)] by
E[f(X)] = puf(e1) + paf (2) + .. (A.20)
for discrete random variables and
BIF(X)) = [ fop(e) ds (A.21)

for continuous random variables.

A particularly important choice of f is f(x) = (z — u). In this case,

0? = E[(X — 2] = B[X?] — i (A.22)
is the variance of X which measures the mean deviation squared
around the mean i.e. “the spread around the mean”. o (i.e. the square
root of the variance) is the standard deviation of X. We can compute
the sample variance as

L
— 1 _
=1
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According to Pascal, the expectation
is the excitement a gambler feels when
placing a bet i.e. each term in the
sum equals the probability of winning
times the amount won. Apparently
Pascal knew some unusually rational
gamblers.

! Recalling that we compute average,
the sample mean, of a set of numbers
X1, ,X as

L
X = EZXi (A.18)

where the bar over the X denotes that
it is the average value of X.
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Note that the units of our variance will be the units of X2, e.g.
if X is height measurements in cm the variance will have units cm?.
One reason that the standard deviation is a more intuitive than the
variance is that its units are the same as X, e.g. cms.

Another important choice of f is f(z) = logz. Provided that X
is positive, exp(E[log X]) corresponds to the geometric mean of X.

Alternatively 1/E[1/X] corresponds to the harmonic mean of X.

Your friend offers you a wager on the outcome of one round of
playing the fairground egg game. She’ll give you: $1 for a only
dog, $2 for a only cat $5 for an egg with a cat and a dog, and
$4 for a lizard. However, she’ll take $1 from you if you get an
empty egg. What is your expected payout?

Some Useful Properties of Ezxpectations. One of most useful mathe-
matical properties of the expectation is its linearity, in that the expec-
tation of a linear function of random variables is the linear function
applied to the expectation, i.e.

E[aX +bY + ¢] = aE[X] 4+ DE[Y] + ¢ (A.24)

where X and Y are random variables, and a, b, and ¢ are constants.
This holds regardless of whether X and Y are independent. Note, that
our multipliers (a & b) must be constant, as this does not hold for the
expectation of products of random variables. One sensible property of
the linearity is the units of the mean is the same as our observation,
for example if we change our measure height of adult height from
inches to cm, the unit our mean also changes from inches to cm (as
this change just involves multipling by a number).

Using our linearity of expectations, we can obtain an analogous
result for the variance

Var[aX 4+ bY + ¢ = a*Var[X] + b*Var[Y] 4+ 2abCov(X,Y) (A.25)

we’ll discuss covariances (the Cov term) below. Note that the constant
c has disappeared as the variance is a statement about the spread of
the points around the mean, and so it doesn’t matter how we shift the
mean.

We are often interested in the expectation of a random variable X
conditional on some event Y = y, this conditional expectation is

L
E(X|Y =y =) aP(X =z;]Y =y) (A.26)
i=1



summing over the L possible values X could take. For example, we
could ask the expected payoff of your friend’s wager conditional on
knowing that you have an egg with a dog in it. With the analogous
expression for continuous random variables replacing the sum with an
integral.

We can recover our total expectation from the conditional expecta-
tions by taking the sum of our conditional expectation over the values
that Y could take, weighting each by their probability

M
E[X] = 3 E[X|Y = y,]B(Y =) (A27)

Jj=1

this is the law of total expectation, the analog to the law of total
probability (eqn (A.12)). We can write this law more generally as
E[E[X|Y]], i.e. we are taking the expectation of our conditional ex-
pectation over Y.

A.2.4 Discrete Random Variable Distributions.

Important discrete random variables include

Binomial random variables count the number X of heads when flip-
ping a coin n times whose probability of being heads is p. In which

case,
n!
Pi= it —i

For a binomial random variable,

E[X] = np, and 0 = np(1 — p). (A.29)

Examples are shown in Figure A.6, Note how the mass of the distri-

bution becomes more centered on the mean for larger sample sizes,
as the standard deviation increases only as y/n. Another way that
we can write that our observation ¢ is drawn from the binomial dis-

tribution is ¢ ~ Binomial(p,n), where i ~ is read as “i is distributed

”

as”. we will use the ~ notation as short hand for the distribution of

random variable in the notes.

Geometric random variables count the total number of flips X before

seeing a heads on a coin with probability p of being heads. In which

case,

pi=p(l—p)~t i=1,2,... (A.30)

For a geometric random variable E[X] = 1/p; if our coin is fair

p = 1/2 we wait two flips for a head on average while if the coin-flip
is very biased against heads p <« 1 we can be waiting a very long
time. The variance of a geometric random variable is 02 = 1-p/p?,

)!pi(l —p)"" 0<i<n. (A.28)
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Figure A.6: Binomial distribution for
a sample of n = 10 and n = 100, the
vetical lines show the means np. Code
here.
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Figure A.7: Geometric distribution for
different probabilities of success (p).
The vertical lines show the means 1/p.
Code here.
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which means that the mass of the distribution is much more spread
out if we consider the waiting time for rare events. See Figure A.7
for examples of the distribution.

Poisson random variables count the ¢ events that occur in a fixed
interval of time or space (t), when these events occur independently
of each other and of time. If \ events are expected to occur in this
interval, then

pi = Ne /il (A.31)

For a random Poisson variable E[X] = X and 02 = \.

The form of this is less intuitive than that of the binomial. How-
ever, the Poisson is actually a limiting case of the binomial. Think
of setting up a game of chance, where there’s a very large number
of coin flips (n — o0), but you've set the chance of heads on a single
coin flip is very low (p = A/n — 0, where A is a constant). Under
these conditions you’d still expect some heads (np = A), and the
distribution of the number of heads is Poisson.? See Figure A.8 to
see how well they match. Therefore, the Poisson represents a limit
of the binomial for rare events.

A.2.5 Continuous Random Variable Distributions.

Important continuous random variables include

Uniform random variables correspond to “randomly” choosing a num-
ber in an interval, say [a,b]. The pdf for a uniform is

p(z)=3—

for x € [a,b] and 0 otherwise. (A.33)
For a uniform random variable E[X]| = (a +b)/2.

Ezponential random variables with rate parameter A > 0 correspond
to the waiting time for an event which occurs with probability AA¢
over a time interval of length A¢. For these random variables

p(x) = Aexp(—Ax) for x > 0 and 0 otherwise. (A.34)
For an exponential random variable E[X] = 1/A.

Normal random variables have the “bell-shaped” or “Gaussian”
shaped distribution. They are characterized by two parameters,
the mean p and the standard deviation o, and

pla) = —=expl((a = )"/ (20°)). (A.35)

For a normal random variable E[X] = p.

e A=1
o A=5
o 0 A=10
3
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Figure A.8: Poisson distribution with
different means (). the vetical lines
show the means. The lighter coloured
lines show a binomial with n = 100
and p = A/n to illustrate how well the
Poisson approximates the bionomial
for rare events. (It’s hard to see them
as they are close together!) Code
here.
2To see this we substitute p = Mn
into our binomial probability and take
the limit as n — oo
n!

pi = mpl(l -p)

n—1

- lim n(nfl)..i.!(nfifl) (%)l(

nt \ A\ "
= lim —— (1 — 7)
n—oo ¢l nt n

2
= lim e (A.32)
n—oo q!
The third line assumes that n —
i =~ n, which holds for n > i, and
the forth line uses our exponential
approximation given by eqn (A.4).

The Exponential distribution is

the continuous-time version of the
Geometric distribution. Informally
this can be seen by considering the
trials in the geometric distribution

as corresponding to narrow time-
intervals, where the probability of
success is small. Then we can use
our exponential approximation to the
geometric probability (eqn (A.4)).

.
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Multiple random variables

Covariance and Independence To fully specify multiple random vari-
ables, say X and Y, one needs to know their joint distribution. For
example, if X and Y are discrete random variables taking on the val-
ues r1,Ts, s, ..., then the joint distribution is given by

pi; = P[X =;,Y = z;] ¢ the probability that X equals z; and Y equals z5”
(A.36)
for all 4 and j, see also our discussion around eqn. (A.14).
Alternatively, if X and Y are continuous random variables, then the
joint distribution is a function of the form p(z,y) which satisfies

b pd
P[aﬁXﬁb,cSYﬁd]z/ / p(z,y) dz dy. (A.37)

where X and Y are said to be independent if we can write the joint
density as a product of the probability density functions

p(z,y) = p(x)p(y)- (A.38)

Given any function f(z,y) of x and y, one can define the expec-
tation E[f(X,Y)] by integrating with respect to the distribution.
Namely,

SE[f(X,Y)] = //f(x,y)p(x,y) dxdy for continuous case and ZZ f(xi,z)pi; in discrete case
i g
(A.39)
The covariance of X and Y is given by

Cov(X,Y) =E[(X — ux)(Y — py)] = E[XY] — pxpy. (A.40)

X and Y are said to uncorrelated if their covariance equals zero. If X
and Y are independent, then they are guaranteed to be uncorrelated,
but it is possible to construct X and Y to be uncorrelated but not
independent.

Binary variable correlations One application of our covariance for-
mula is to two binary variables, for example taking values A/a and
B/b. Let’'s set X = 1if A, and X = 0 otherwise, and Y = 1 if B.
For example, you could imagine drawing a once from a deck of cards
and A being the event of drawing an queen or a jack, with a being any
other type of card, and B being that the card is a heart and b it being
any other suit. So XY = 1 if our card is a Queen or Jack of Hearts,
and zero otherwise. Then

E[XY] - E[X]E[Y] = P(X = A, Y = B) - P(X = AP(Y = B)
= PAB — PAPB (A.41)
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Thing 1
where pap is the frequency of AB, eg. the proportion of cards that o Absent mgPresent
are the Queen or Jack of hearts in our deck, and p4 is the (marginal) £ Absent 20 1
frequency of B, e.g. the proportion of (and similarly for p4). B Present 1 9

Table A..1: Counts of the appearances
of Thing 1 and Thing 2 over the 31
pages of The Cat in the Hat (SEUSS,
1957). (Counts are approximate and
disagreements were adjudicated by 4
year old.)

What is the covariance of A and B in our deck of cards exam-
ple?

What is the covariance of the presence of Thing 1 and 2 in The
Cat in the Hat (Table A..1)?

Calculate the correlation for each of the above.

Sample Covariance and Correlation We can calculate the sample
covariance for X and Y of a set of observations of X1, --, X, and

Y1, -+, Yy, where these observations are paired (X;, Y;) asx

L
— 1 _ _
Oy =17 2 (Xi = X)(¥; - Y)

=1

(A.42)

this captures the extent to which two sets of numbers covary. For
example, the running speeds of kids in a race at age 8 and 9 positively
covary. Example datasets are shown in Figure A.9.
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Figure A.9: Examples of datasets
where pairs of variables show varying
degrees of covariance, the sample
correlation (pxy ) is shown in the top
corner. Code here.

To move covariances to a more understandable scale we can divide
through by the product of the standard deviations

oXyYy

Cor(X,Y)=pxy = (A.43)

oOxXoOx
this is the correlation of our variables X and Y, if we calculate it
for our sample it is our sample correlation. A correlation can range
between 1, perfectly correlated, to —1 perfectly negatively correlated.
If pxy = 0 the variables are said to be uncorrelated.
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Fitting a linear regression using least squares. We often want to
approximate the relationship between our two variables X and Y

by the best fitting linear relationship predicting Y value from their
observed X value. For example, think of a linear prediction of a child’s
weight from their height. See Figure A.10 for an example plot. To do
this we can think of approximating the Y; that accompanies the X;
value for the i*" pair of data points by

where a and b are the intercept and slope of a line.

What is the best fitting line? One common definition of the optimal
fit is the choice of a and b that minimize the squared error between
the observed (Y) and their predicted values, i.e.

L

> (¥ —a—bX;)?

i=1

(A.45)

here (Y; — a — bX;)? is the squared residual error, the square of the
length of the dotted lines in Figure A.10. The best fitting slope, i.e.
that with least squared error, is

= okv/o2 (A.46)
i.e. the sample covariance of X and Y divided by the sample variance
of X. Thus the slope will be of the same sign as the covariance, and
will be larger in magnitude when the covariance of X and Y is a large
proportion of the variance of X.

This least squares fit is the solution to the linear regression

Y, ~a+bX; +¢; (A47)

where the errors (¢;) are uncorrelated across data points with an ex-
pectation of zero and constant but unknown variance. These assump-
tions would hold for example if ¢; ~ Normal(0, o).

We often want to include additional terms in our regression, or have
more complicated error structures, but these extensions can usually be
understood as simple extensions of this machinery. For example, least-
squares can also be used to fit a non-linear function of X, f(X, Q),

where we minimize
L

S - (X5 Q)

i=1

(A.48)

over our choices of parameters 2. Often there is no analytical solu-

tion, i.e. no equivalent of eqn. A.46, and the answer must be found

computationally exploring over choices of Q (using tools available in
R and other programming languages). Throughout the book we use
non-linear least squares to fit various models to data.
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Figure A.10: An example of a linear
regression with best fitting least-
squares line. The sample variance and
covariance are given, so that you can
see for yourself that the best fitting
slope is just the ratio of these two.
Code here.
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Useful Properties of Covariances. Following from the linearity of
expectation, eqn (A.24), if we rescale X to mX +n and Y to oY +p
then

Cov(mX +n, oY 4+ p) = (mo)Cov(X,Y) (A.49)

Such linear transforms leaves our correlation unaffected, as it cancels
out of the top and bottom of eqn (A.43).

Useful Limits.

Law of Large Numbers If X1, X5, ... are a sequence of independent
random variables (i.e. “the outcomes of a sequence of independent
experiments) with common expectation p = E[X;], then

Xy 4+t X
S S LS N i as n — oo with probability one. (A.50)

Hence, LLN implies that if you repeat a bunch of experiments and
take the average outcome (X) from the experiments, the value you get
is likely to be close the expected outcome of the experiment.

Of course, in the real world, we can only perform a finite number
of experiments in which case it is useful to have a sense of how much
variation there will be in the average outcome. The central theorem is

the key tool for understanding this variation.

Central Limit Theorem 1If X7, X5, ... are a sequence of independent
random variables (i.e. “the outcomes of a sequence of independent
experiments) with common expectation u = E[X;] and variance o2,

then

Xy 4+ X, —pun
Vno

— mnormal distribution with mean 0 and variance 1 as n — 0o

(A.51)
Hence, for n large enough X; + --- + X, is approximately normally

distributed with mean pn and variance o?n. This is one of the reasons
the normal distribution is so useful, many outcomes (e.g. phenotypes)
have an approximately normal distribution as they are the combined
outcome of many (somewhat) independent quantities.
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