
Genomic Prediction in Livestock 

Monday May 11, 2015- Friday May 15, 2015 8:30 AM - 5 PM daily 

Course website: qtl.rocks 

Preamble - installing Julia 

a. An overview as to the promise of genomic selection 
Include basic idea of linkage disequilibrium (LO) 

b. An introduction to simple linear models and the simulation of data for such models 
(using Julia) 
Concept of a Model Equation 
Other aspects of the model 

Expected Values, location parameters or First Moments 
Second Moments or variance-covariance 
Distributional Assumptions 

Simulate X 
Simulate b 
Simulate e 
Construct y=Xb+e 
Form a function to simulate data 

c. The theory and application of Least Squares (using Julia) to simulated data 
Ordinary Least Squares 

Estimating the fixed effects 
Standard error of fixed effects 
Estimating linear functions of fixed effects 
Estimability - is a function able to be estimated 
Residual standard error 
Model sum of squares (reductions) 
Coefficient of Determination 

Generalized Least Squares and Weighted Least Squares 

cl. An introduction to Monte Carlo methods, including Markov chains (MCMC) via 
Metropolis-Hastings and Gibbs Sampling 
Integration of a pdf- for example to determine intensity of selection 
Numerical integration - Monte Carlo sampling to estimate intensity of selection 
More complex example - intensity of selection in a multivariate context 
Metropolis-Hastings sampling from a bivariate normal distribution 
Gibbs sampling from a bivariate normal distribution 

e. Application of MCMC (Gibbs sampling) for statistical inference from linear 
regression (using Julia) 
Livestock Production paper 
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Genomic Selection in Livestock 

Short course - focus 

• Statistical, quantitative genetic, 
and computational aspects of genomic selection 

Next week's Short course - focus 

Design of Breeding Programs with 
Genomic Selection 

• Strategies for implementation of genomic selection in 
livestock breeding programs 

5/10/15 

Genomic Selection in Livestock 

Some housekeeping 

Course hours: 

8:30-12 AM with 30 min. break at~ 10 AM 

Lunch on your own 

1:00- ~5 PM with 30 min. break at- 3 PM 

Course notes: 

Distributed daily+ posted at: 911.,ocks 

Tuesday@ 5:30 details tolollow J 
Saturday@ 6 AM -detallstofo::________ 

Course social: 

Field trip: 

Course Outline/ Topics 
Preamble - installing Julia 
a. lnlToduction to Genomic Prediction 

b. An inlToduction to simple linear models and simulation of data for such models 

c. The theory and application of Least Squares (using Jul,a) to simulated data 

d. lnlToduction to Monte Carlo methods 

e. Application of MCMC for statistic.-1 inference from linear regression 

f. Theory and application of pedigree-based mixed lineu models to predict BV 

g. lnlToduction to Bayes theorem with applic.-tions to Bayesian linear regression 
for genomic analyses 

h. Mixed models fitting marker effects or fitting BV using genomic relationships 

The Bayesian alphabet for genomic analyses 

j. GWAS and QTL inference using the Bayesian alphabet 

k. Concepts of eslimability and upper limits on accur.-cy of BayesCO/GBLUP 

Imputation, fitting haplotypes and using imputed sequence for GWAS 

m. Single step GBLUP, Single step hybrid models 
n. Multi.trait genomic prediction 

o. Industry applications of genomic prediction 
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Genomic Prediction Workshop - Ames 2015 

Introduction to 
Genomic Prediction 

Dorian Garrick 

Lush Endowed Chair in Animal Breeding & Genetics 

doria n@i astate. ed u 

Genomic Prediction 

Ranking candidates for selection using 
knowledge of the "complete set of genes" 
along with conventional pedigree and 
performance information 
- Using everything we've got to obtain the most 

accurate EPD/EBV (at as young an age as possible) 

Performance of the Progeny 

II . ;~~11 
f!f~~·~ .... ·.·.:, .. Sire .·J,J 

Offspring of one sire exhibit I.it~ 
more than ¾ diversity of li!lfl"III 

+30 kg 

+15 kg 

-10 kg 

+ 5 kg 

+10 kg 

the entire population Progeny +10 kg 

Genomics 

gc•no,rrucs ·.,, ... 
p!LU'alnoun [ trealtd as sing.] 
che branch Dfmolecular biology concerned with che 

~trucrnn·, funccion: e\'olution, and mapping of genomes. 

ORIG[\ 1980s: from_gawme 'the complete set of genes 
present in an org,mism' + -fr.r. 

Suppose we generate 100 progeny on 

1 bull 

II 
;~~m ..,~,~-

~~~-fl 
~.~ 

Progeny 

We Learn about Parents from Progeny 

, 

"' 
·- ;;..;J 

Sire 

(EBV is "shrunk' 1'S\1 + 10 kg 
. (<2x progeny) - " __ _ 

Sire EBV +16-18 kg.., __ Progeny +10 kg 
How much we shrink depend> upon the number of progeny 

5/10/15 
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EBVs on widely-used old sires are accurate 

' 
,u 

i --·sin/''' 

Wth enough progeny, 
this is usually close to 

the bulls true EBV/EPD 
(not surprisingly!) 

Sire EBV +16-18 kg 

~--------------------·------

Chromosomes are a sequence of base pairs 
Part of 1 pair 

of chromosomes 

....;<,1-1 i i-1" 1-1 ,u • ·U --
Cattle usually have 30 pairs of chromosomes 
One member of each pair inherited from the sire. one from the dam 
Each chromosome has about 100 million base pairs (A, G. Tor C) 
About 3 billion describe the animal 

■ Blue base pairs represent genes 

D Yellow represents the strand 1nher,ted from lhP 11re 
Orange repre,en!S the strand mhemed from the dam 

□ 

Mutations 

Could cause complete loss-of-function of the 

gene (ie the gene is "broken") 

- These can sometimes be catastrophic when an 
individual is homozygous and carries 2 copies of 
the broken gene 

• For examples DUMPS, Citrullinemia, BLAD, etc 

Suppose we generate new progeny 

all 

;~& 
wl )) • 

Expect them 
to be 8-9 tg 
heavier than 

those fror>, an 

aoerage sire 

Sire .I ~-ff 
Sire EBV +16-18 kg "~,\, 

Some w,11 be more 

others will be less 
but we cant tell 

wh1<h are bettH 
without "buying" 
more rntormaMn 

.i~jm□ //, 
/6' c:r~, .... \ 
'·- -:_·_,t?J;~<~f ; 'It/Yi!• ., 

• w,{J{. 
u .. 

Errors 1n duplication 17::t 
Most are repaired] t 
Sornew,llbetran~ • 
Some of those may ,nnuence perfor 

Some will be benehc1al, others har 

Progeny 

A common error" the 
subsMu~on of one base pa,r 

for another 
Srngle Nuclear.de Polymorphosm 

ISNPI 

'• 

\ 

Inspect-on of whole genome sequence 
Demons\rote h,stomal errors 
And occasmnal new (de nova) mutations 

a \ 

it~" \ / ·-v.~ \ / 
v/ _, 

Mutations 

Could cause complete loss-of-function of the 
gene (ie the gene is "broken") 

Caul~ increase or decrease expression level 

The variant might change amino acid sequence to 
cause subtle changes to the shape of the protein 
products making them function a little better or a 
tittle worse 
- Natural or artificial selection will favour the variants 

that improve fitness in that particular climatic and 
environmental circumstance 

5/10/15 
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1.-·pll 

Ulll 

Leptin 

Prokop et al. Peptides 2012 

Joining the two 

Prokop et ;,I, Pepndes. 21:112 

EBV is sum of the Gene Effects 

-2 +3 -4 +5 
~~ Sum=+2 

:;;u;_- >'l-lo'u_;,1.1 ::J.1::>IL, .<H<HiX,iH>, ;;::,- Sum=+8 
+2 -3 +4 +5 

■ Blue base pair, represent genes 

EPD" HALF the surn of the gene effects 

EBV=10 
EPD=S 

Leptin Receptor 

Prnkop et al. Pepndes. 2012 

Leptin and its Receptor Across Species 

,A,✓ ·'+ i-t\ ::',, 
~~- ~, -~::•~,. 

,, It' 
~,.:,,,~-.-

"~-~,-

There are ,mall differences 1w,thrn &) between spec,es ,n the1e proteins 

Prokop et al, Pepndes, 2til2 

Consider 3 Bulls 

-2 +3 -4 +5 

-00000 ... :iaoooaoooooacJ- EBV=10 

+2 -3 +4 +5 
-2 +3 +4 -5 

-00000711[)[J[JEJ[TI[ EBV= ·6 

-2 -3 +4 -5 

+2 +3 -4 +5 

-00000: ~ EBV= 2 

+2 +3 -4 -5 

Below-average bulls will have some above-average allele, and vice v~isa! 

5/10/15 
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lllumina Bovine 770k, SOk (v2), 3k 

700k IHDI 50k (Sever~! vers,onsl 3k ILD) 

lllumina lnfinium SNP genotyping ~., ttr::;,,;moo 111 
BeadChip scanned 
For red ?r green 

'!~ 

--,!·. 

r 
µ,;, l: ¼ 4J 

SNP is labeled with fluorescent 
dye while on BeadChip 

DNA finds ils complement 
on a bead (hybridiiation) 

Regress performance on SNP genotype 

AA 

Slope = advantage of substituting 
an A allele with a B allele 

AB BB 

lllumina SNP Bead Chip 

-S00,000 copies of 
specific oligo per bead 
50k or more bead )ypes 

SNP Genotyping the Bulls 
I of 50,000 loo 150k chip) 

-4 +5 

EBV=10 

EBV= -6 

+2 +3 

-00000 
EBV = 2 

+2 +3 

Linkage Disequilibrium (LO) 

·2 

+2 

-00000 
+2 

5/10/15 
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Practice - EBV/EPD on SNP 

Us~ SNP genotypes at locus 1 (in high LDI as surrogates for QTL 

I 
\ 

www.23andme.com 

Alzheimer's Disease 

Tochn,c~I Report 

• $NP•....,d (io~otyp_• _ ,il;U~• 

LC t.L'3 

Adju .. ..r Odd, Ratio 

Only s,gnihcant, validated GWAS hnd,ng; u<ed ,n predicl>on 

Theoretical Basis for Accuracy 
> 

.-t: ~emab,l1ty=0.8 

:.a N,=100 
<( l1l<e Holsteins & Jerseys 

QJ n > 1.000 tra,n,ng an,mal1 
·.i:; r•0.43 20% genenc vanance 
u 

"1J 3,000 tram,n~ animals 

QJ r•0.6 36% ~en enc variance 
~ 

a. 

I Size of Training Population I'""""'"'•"•'"· ,,,-.,0 •'"· 

Reliable prediction requires large training populations 
of genotyped and phenotyped individuals 

Predictive Ability= Accuracy (r) = correlation true & predicted merit 

Practice - EBV/EPD on SNP 

~ ~ :-: 
1c' 
-6 
w e 
ro 
w 
0 

~ 

Use SNP genotypes at locus 2 {1n low LDI as surrogates for QTL 

B-B, 

www.23andme.com 

• Coronary Heart Disease 

foch1"0,""""°"""d•//e<ec,,.,, Oil n,','e'e 
/moa,rn,cc mo~, ta,,,,,,,. oa,1/•oh lo to,,,,cocchp"Cl•rnOcos/ 

Only s,gn,hc,rnt, val,dat~d GWAS hr>dmgs used ,n pred<et>on 

Accuracy of Genomic Prediction 

Validation in Offspring 

->BLue 

ro Pl W ~ Ea M 00 c, 

Correlat>on(g,g -hat) 

Early Select>on 

Layers 

Wale el ol 9WCGAU' 

5/10/15 
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Accuracy of Genomic Prediction 

Validation in Offspring 
Correlat,on(g,g-hat) 

tarlySelHMn 

,/ ~ E,tentgenom,c l pred,c~on 

0 '"""" 
Mendel1;m Sampling -

___ ./ 

,au, 

Wale Cl ol 9WCGAl'P 

Cut genome into 2,700 1Mb windows 

#SNPs %Var cum%Var map_pos 
11 7. 10 7. 10 

7 93} 
Regions 

28 3.70 10.80 20 4 with 
22 1. 34 12. 14 13_58 biggest 

22 1.23 13. 37 26 34 effects 

9 0.92 14. 29 6 29 -
25 0.89 16.09 4 75 -
26 0.79 16.88 4 114 -
23 0.65 1 7. 53 2 121 -
17 0. 61 18. 14 18 55 
25 0.60 18.74 8 88 -

Argus Birth W_ll19Ct 

Iowa State University (ISU) 

A land-grant institution with responsibilities for 
research, teaching and extension 
- Such activities have been applied to genetic 

improvement of animals since 1930's when Iowa 
State Professor, Dr JL Lush, wrote the first textbook 
on animal breeding 

- That tradition continues just as strongly today as we 
research the role of genomics for improvement 

Genome-Wide Association Studies 
(GWAS) 

Use a historical population of bulls and cows 
with EBV information that have been 
genotyped with 50k panels 

Derive an EBV for every chromosome 
fragment (we call this training), and find the 
regions with biggest effects 

Major Regions for Birth Weight 

5.90 16.3 

0.07 1.53 

0.71 3.05 

Some of lh<ese same regions have b,g effects on one or more of 
weanrng weight, yearlir,g weight marbling, nbeye area, calving ease 

Summary 

0.03 

8.14 

Genomics will increase accuracy of evaluation 
- The technology is starting to mature but works 

better in some traits and breeds than in others 

- It works better with greater amounts of data 

- Genomic prediction will get more accurate than it 
is today if we continue to undertake research 

This workshop will explain the statistical basis 
for methods of genomic prediction and GWAS 

5/10/15 
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An Introduction to Linear 
Models 

Simple Models 

Performance= Breeding+ Feeding 

Phenotype= Genotype+ Environment 

• Animal Model - model equation 

y = herd - year - season + EV + e 

y = Xb+ Zu +e 

Fixed Effects - Linear Regression 

y =Xb+e 

E[1t] =O 

var[e] = R = liJ; 

J>erhap8 oBsmnr e ~ N[O.Ia:'] 

r. ::' N[O.O"'J 

Models 

• Concept of a Model Equation 

Other aspects of the model 

- Expected values, location parameters or first 
moments 

- Second moments or variance-covariance 

- Distributional assumptions 

The "usual" Animal Model 

y =Xb+Zn+e 

E[n) = 0 and E[e) = 0 

therefore E [y) = Xb 

rnr[uJ = C: = AO"; rnr[rJ =II= 10"' cov[n.c'J = l} 
rarl:1Jl = V = zczr + N 3 [),spernonPa,amete" 

y - MVN [Xb, V] } 4 D"tnbuMnal As,umpbon, 

Simple Linear Regression 

y =Xb+e 

b = [ a j = I intercept I 
(3 slope 

I .r, 

5/10/15 

8 



Multiple Linear Regression 

y =Xb+c 

u intercept 

I!= ~ slope 

8 slope 

I .1· .r, • •• .r. 

X = l .r 1 

1 .r .r ••• .1 

Linear Regression 

Linear Regression 

y = Xb + e 

Residual 

e = y -Xb, with E[e]=O, and var[e]=la,' 

Residual Sum of Squares 

e'e = (y- Xb)'(y - Xb) 

= y'y - y'Xb - b'X'y + b'X'Xb 

Estimation 

bis solulion to X'Xb = X'!i 

whir-h for full rank Xis b = [ X'X] • X'1J 

r;[b] a/,'[[ X'X) X'y[ 

a[X'X) x,t;[!II 

a[X'X) X'Xbab 

rnrlhl = rnr[[X"X] 'X':i,I 
= [ X'X] X'rnrliJl.YI X'X] 
a I X'X) 'X'/6 .\'[ X'X)' 

a i,,'X) 'X'Xi,\C'X [ '6 

a[X'X) 'a 

Estimation 

If 

.1.J =Xli+c 

then 

K1y = J('Xh + f('c 

for r xampfr. choosing /{' = X' 

X',11 = X'X/i + X'e 

ond zf X',11 = X'Xli then X'c = 0 

so bis sohllion to X'Xb = X'y 

Least Squares 

Residual Sum of Squares 

e'e = y'y- y'Xb - b'X'y + b'X'Xb 

• Take derivatives with respect to vector b 

de'e/db = - X'y-X'y + (X'X + (X'X)')b 

set=O and solve to find minima/maxima gives 

X'Xb = X'y 

known as the Least Squares Equations 

or the Normal Equations 

Linear functions of b 

k'b is estimated from k'b 

with vnr[k'b] = k'[X'X] 'kCJ; 

5/10/15 
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X not full rank 

k'b is estimated from k'b 

with mr[k'b) = k'[X'X] kCJ" 

provided k' = k' [ X'X] X'X 

rmcsof k'rnn bcslackrd ina nwlri.r I( 

red or 1(/1 is est imaled from f(b 

1rilhrnr-cov[Kb]~K[X'X] /('6' 

proridrd g:;: K[ x1x]·x 1x 

Generalized Least Squares 

y~Xb+(Zn+c) 

~x&+c: 

rnr[y] = V = ZGZ' + R 

bis solution to x 1v·1xb = X 1V 1y 

Hypothesis Testing 

To test hypotheses we need to know the 
distribution of the test statistic 
- Which is derived from the distribution of the 

residuals 
• Commonly assumed to be normally (iid) distributed 

Residual Standard Error 

-;; = JJ:,;/i'//U/' = /,',','/;,/,,,/,' /rfj 

= (y-Xh)'( .I) - xb )/ (X- ronk/.\')) 

:-i'.'i'11·1:,,,: = S!,'1,,J II - S.<.,' ,.,,,;,1 i 

= illJ - b'X'.IJ 

I(= SS,,,,,,,,!/ ,,1.,, /SSr,,111 ,,1" 

,'-iS,,,,,,,1, '/!_I\ =S.5\/,•l•.'! -SS,1,,1, 

.'-l,'i,11.1, =Ny· 

S.\'.,,,11,_ ru, =S~';1,,u1 -SS,,11·, 

= y'y- A'Y-

Weighted Least Squares 

y =Xb+c 

var[e) = R = D = diag (CJ.') 

bis solution to X'D-'Xb = X'D-'y 

Linear Regression 

1. least Squares simple linear regression 

(unknown ~o and ~1) 

2. Gibbs Sampler with known a/ 

3. Bayesian Gibbs sampler with unknown cr/ 

4. As above but with random not fixed f31 

5. Bayesian {multiple) linear regression 
(many random Ws) 

6. Various models {BLUP, BayesA, B, C, Cn etc) 

5/10/15 
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Fixed effects models 
to predict SNP effects 

Data on some locus 

M00<11h,aat,,.,m,yp,c,lf«~ 
,,,.,,.+, 1::[_1'1/11] = ,II 

I' ',, . , 'I E[>'_\l,]=,ll+g1H +g/;/I 

'' i: 
'' 

',, 
0', 
o , o I 
""•I 

Four Unknowns 
Thr~~ piece, of ,nformaMn 

[or less ,fa genotype is 

not represented) 

•• Genotype 

Fixed Effects Model for Genotypes 

y=Xb+Wq+e 
b contaim the 11.rnal fixed ('.{(ccts 

<J1, 

q = q w . dcfi11c.1 ii d11.1.1 t:ffi'c/ 

lfaR 

,v i.1 Ilic incidcncl' 111111rix for ,\,\. AB, BIJ gc1101_r1w.1 

m11/ has 3 co/umm - 0/11' jiw each gl'nof_l'/1<' d11.1.1 

and N rmr.1 - m1<' _fiir ('och animal wirll <'.wci/_1· 011t 

I in each rm,· according to the gc11ol_rfll' 11/' the w1i11wl 

Data on some locus 

Howdowemodel1t' 
(,e What are our expettarui•>'i 

lllumin,1 ~otation 

Genotype 

Parameters and Information Content 

The information content (in fixed effects model) 
is partly reflected in the degrees of freedom 
- Some degrees of freedom are available to estimate 

functions of fitted parameters 

- The remainder, if any, contribute to the error sum of 
squares 

Overparameterized models have more 
parameters than (independent) estimable 
functions 

Fixed Effects Model for Genotypes 

y=Xb+Wq+e 

E[y]=Xb+Wq 

var[y] = var[e] = Ia; 

5/12/15 
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Least Squares Equations 

X'X 
W'X 

L/IS m 

I/ ;a 

" 
0 

0 0 

"» 

" 
0 

""· 

In this example 

Onlv 1"ea ertect o< mean 

RII.'> m 

In general equancns ~ave order equal to number Of foed eHects plus ~eflalypes 

No unique solution 

.11 <111<'/hcr l""'il>le I/J/w10,1 

0 

11,. () l) 

0 "v- 0 
NIIS-

Estimable Functions 

In fixed effects models, many model 
parameters or functions of model parameters 
are not estimable, even though a numeric 
value can be obtained by solving the least 
squares equations (eg by generalized inverse) 

[x·x] is :my generalized illl'CfSC ufX'X if (X'X)[X'XJ (X'X)= X'X 

Deline II= [ X'X] (X'X) 

A linc.ir runcliun k'b 0 is cstiniahlc if k'H = k' 

v.:ir(k'b0
) ~ k'[ X'X ]- k {ork'[X'X] k,,'(ifR w.is not explicitly !illc<.IJ} 

ru 
u 
C s 
] 

No unique solution 

J./1\e 

I) 

I) 

() ", .. 
11,, () (l 

·"+'I,, 

" 
" 

kl/\= 

ii 0/1(" fiU\,\//,/c,\0/1//f(II/ 

/I+ i/ 11, 

Different Solutions have same 
Estimable Functions 

0 

lnteresn,i~ contrast, 

I) 

/1 +11,, 

/I +</111 

/I+ 'fnft 

0 0] rlw11k'h 1 =k'h,=11~-" 

-I O] 1hc11k'h1 =k'h,=,1~w 

Data on some locus 

Three Unknown, 
lhree pieces of 1nforn1anon 

Genotype 

5/12/15 
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Genotypic vs genetic effects 

O=g/!i<-g,,,/11/(/d=" _E~~ 
2 ,, w 2 

0 

_, 

Suppose I ignore dominance (d=O) 

i' 
i· f{f111]=a+I/J 

; --~JrH ]= U + Q/1 
_\'H 

AA Genotype 

Suppose I ignore dominance (d=O) 

; Fli°'1•1 ] = 2/11 + 0/11 

- Y11 

Genotype 

Equivalent Models 

p=O µ=10 µ=16 
~,,= 10 ~"= 0 ~ .. = 6 
g,,, = 14 g, ,= 4 g,,,= 2 
is»= 16 ~-,= 6 g.,= 0 

Both models have the same expe,tatmn 
Both models have the same valiance 

Therefore the models are equ1valen! 

10=13-3 

14=13+ l 

l6=ll+l 

{I can fit either model and migrate from one to the other) 

Suppose I ignore dominance (d=O) 

' " 

!fi\.1 ]= ,11-T 

Yu 

"" 

-l [,:, 
Y,w 

Genotype 

Equivalent Models 

AA <>+OP w "' 10 2p1,op, 10,hS 

'" o•IP " 1l IP,•IP 1 13,5+8 

"" (H2P " "" 16 op,,2p 1 16=2'8 

«=10 µ=B P,=s 
P=J t=l P,•8 

All models ~ave the same expecta~on 
All models have the same variance 

Therefore !he models are equivalent 

N6 P., P_=3 

(1 can ht any of the models and migrate from one to the other) 

5/12/15 

3 



Summary Fixed Effects Models 

Model di 

Genotyp,c 

All allele; 

Subsntunon 

Animals 

dominance d=O dom,nance 

r./a 

Equivalent model, 

d=O 

Fitting SNPs as random effects 

Suppose we have many loci 

The obvious solution is to flt the o effects jointly for every locus 

y=Xb+Ma+e 
i aonmarkers 

= Xb + I ID/I; + e 
i=l 

o1 is the substitution effect for the ith locus 

Summary Fixed Effects Models 

damrnance d=O dominance 

Modeldf 

GenotypK 

All,1lleles 

Subsntunon 

Anomals o/a 

Eau,valent models 

o/a 

Nan equ1v.1lent model, 

Fixed or Random 

Reasonable to consider animal effects as 
random in the usual context 

-Variation in alleles (ie genotype) between animals 
that contributes to the genetic variance 

• Not variation 1n allelic value at a particular locus 

Not so clear that an individual locus (or every 
loci) should be treated as random 

- Especially when the genotypes are observed and 
treated as known in the incidence matrix 

Singular Coefficient Matrix 

The incidence matrix of genotypes, M, has n rows 
(= number of genotyped animals) and p columns 
(= number of loci/markers/haplotypes) 
Typically using lllumina livestock chips 
(cattle, horses, pigs, sheep, chickens, dogs) 
n < 10,000 and p > 40,000 
If no 2 animals have the same p genotypes, then 
M has full row rank 
The M'M component of the coefficient matrix 
cannot be full rank (rank M'M is n«p) 
- Rank(AB) is at most the lesser of rank(A) and rank(B) 

5/12/15 
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Practical Consequence 

It is not possible using ordinary least squares 
to simultaneously estimate more than n 
effects of loci plus other fixed effects 
- Can use stepwise approaches to successively add 

loci and determine a subset of markers that are 
informative in the training data 

• But least squares tend to produce upwards biased 
estimates of effects (especially when power IS limiting) 

- Cannot use all markers to predict genomic merit 

Random locus effects 

Following the treatment of locus effects as 
fixed, we could consider the following possible 
models for random locus effects 

- A) fitting every genotype at a locus 
• This would require us to describe the variance

covariance matrix between the alternative genotypes 

• That matrix is singular in the ab5ence of dominance 

- B) fitting every allele at a locus 

- C) fitting substitution effect at each locus 

Alternative Approaches 

Modifications to Least Squares 
- Ridge Regression, Partial least Squares etc 

Treat a effects as random rather than fixed 

- We routinely fit single and multi-trait animal 
models with many more effects than observations 

- Provides opportunities for many mixed model 
procedures, such as BLUP, REML, Bayesian analyses 

-These methods will also "shrink" estimates 

5/12/15 
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and the corresponding partitions of the inverse are 

[ 
X'R'X X'R'Z ]-I [ C" C" l 
Z'R'X Z'R'Z + c-' = c" C" 

In relation to random effects, we need only concern ourselves with the C" partition 
of the inverse coefficient matrix. Note however that the entire coefficient matrix 
must be inverted to obtain the partition of interest. From this partition you have the 
prediction error variance-covariance matrix. That is, 

• c" varfu-uJ = •• 

var[ u I = G - C" , and recall that var[ u J = G. 
A common unitfree measure of how well we have estimated the BLUP is the square 
of the correlation between the true and estimated effect. Since the true effects are 
not known, this cannot be calculated directly, but is a function of the G and C" 

' var[uj diag f G- C" l 
matrices. Specifically, ,.- = -- = [ ] for best linear predictions (BLP) 

var[uJ diag G 
and best linear unbiased predictions (BLUP). 

Exercise 4 

In many circumstances we are interested in linear combinations of random effects. 
For example, we might want to know the BLUP and the r2 of a team of sires rather 
than an individual. Alternatively, we might be interested in the contrast or 
difference between one or more alternative sires or teams. To compute these, we 
need to construct a relevant vector of contrasts that we will denote ask. For 

example, to predict the superiority of sire 1 over sire 2, for u' = [ u, u2 u3 114 ] , 

we would form k' = [ I - I 0 0 ] . To compare a team of the first two sires to 

thesecondtwosireswewoulduse k'= [ 0.5 0.5 -0.5 -0.5 ]· Bothofthese 

contrasts can be considered simultaneously by stacking them up the rows of k' 

together in a matrix, K = [/ 
5 

.;:~ _g_ 
5 

_g_ 
5

] 

The BLUP of k'u is simply obtained as k'u, and var(k'u) = k'Gk, 

var(k'u)= k'[G-C"]k. 
Construct some linear combinations, and estimate the prediction error variance and 
r2 for these linear combinations. 
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Introduction to Monte-Carlo Methods 

Rohan L. Fernando 

May 2015 

Mean and Variance of Truncated Normal 

Suppose Y ~ N(µy, Vy). 

The mean and variance of Y given truncation selection are: 

E(YIY > t) = µy + Vl 2i 

where 
. f(s) 
l=-

p 
f(s) is the standard normal density function 

s= 
t-µy 

yl/2 
y 

p = Pr(Y > t) 

Var(YIY > t) = Vr[l - i(i - s)] 

Proof: 

Start with mean and variance for a standard normal variable given truncation selection. 

Let Z ~ N(O, 1). 

The density function of Z is: 

The density function for Z given truncation selection is 

f(zlz > s) = f(z)lp 

From the definition of the mean: 

http:// I 27 .0. 0. I :8888/notebooks/Goo gl e% 20 Ori ve/iJ u] ia/Presentati ons/wrkShpSI ides 2 .i pyn b 1/11 • 
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1 100 E(ZIZ > s) = - zf(z)dz 
p s 

I = -[-f(z)].\"' 
p 
f(s) 

p 
=l 

because the first derivative off (z) with respect to z is: 

d ff,, 
-f(z) = -e-,' (-z) 
dz 2tr 

= -zf(z) 

Now, to compute the variance of Z given selection, consider the following identity: 
d d 
dz zf(z) = f(z) + z dzf(z) 

= f (z) - z2f(z) 

Integrating both sides from s to oo gives 

zf(z)].\"' = f 00 

f(z)dz - f 00 

z
2
J(z)dz 

Upon rearranging this gives: 

So, 

Results for Y 

/

00 

z2J(z)dz = /
00 

f(z)dz - zf(z)].;"' 

.!. / 
00 

z2J(z)dz = .!. f 00 

f(z)dz + f(s) s 
p s p s p 

=I+ is 

Var(ZIZ > s) = E(Z2 1Z > s) - [E(ZIZ > s)] 2 

= I + is - i2 

= I - i(i - s) 

Results for Y follow from the fact that 

µy + vt2z ~ N(µy, Vy) 

So, let 

Then, the condition 

Y>t 
is equivalent to 

http:// I 27 .0 .0 .1 :8888/notebooks/Googl e% 20Dri ve/iJ ul ia/Presentati on s/wrkS hpS I ides2 .i pyn b 2/1 I 
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In [ 3 9] : 

Then, 

and 

wrkShpSlides2 

µy + viV2z > t 

v}12Z>t-µy 
t- µy 

z > 1/2 
Vy 

z > s 

E(YIY > t) = E(µy + vt2ZIZ > s) 

= µy + vt2;, 

Var(YIY > t) = Var(µy + Vl 2ZIZ > s) 

= Vy[l - i(i - s)] 

Numerical Example 

µ = 10 
a = 10 
t = 15 
s = (t-µ)/CJ 
d = Normal(0.0,1.0) 
i = pdf(d,s)/(1-cdf(d,s)) 
meanTruncatedNormal = µ + a* i 
variTruncatedNormal = CJ*CJ*(l - i*(i-s)) 
@printf 11rnean %8. 2 f \n II rneanTruncatedNorrnal 
@printf "variance= %8.2f \n" variTruncatedNormal 

mean 
variance 

21. 41 
26.85 

Monte-Carlo Approach: 

In [43]: using Distributions 
µ = 10 
a = 10 
z = rand(Normal(µ,a),10000); 

In [56]: mcmcMean = mean(z[z.>t]) 
mcmcVar = var(z[z.>t]) 
@printf "MC mean %8. 2f 
@printf "MC variance= %8.2f 

MC mean 
MC variance 

21.34 
25.78 

\n" mcrncMean 
\n 11 rncrncVar 

Bivariate Normal Examole 
http://] 27 .0.0.1 :8888/notebooks/Google%20Drive/iJulia/Presentations/wrkShpSlides2 .ipynb 3/11 
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Let (Y) ~ N(µ, V) 

= [10] V= [100 
µ 20 ' 50 

50] 
200 

In [54]: µ = [10.0;20.0J 

Out[54J: 

V = [100.0 50.0 
50.0 200.0J 

ct= MvNorrnal(µ,V) 
XY = rand(d,10000)' 

10000x2 Array{Float64,j}: 
10.3117 41.2371 

8.49604 30.121 
1.49591 5.04669 
2.0137 21.2858 
8.12043 9.99512 

17.9018 16.9568 
1.01726 20.0321 

-8.29162 40.2454 
14.6496 45.1535 
13.9381 12.9118 
-0.612875 24.1609 
20.5875 15.1366 
16.2409 25.9275 

3. 98896 3.67185 
13.8927 24.0219 

3.93784 11.8521 
3.83364 4.41762 

20.7947 37.1139 
9.11036 15.7678 
4.45919 32.2166 

19.5114 21. 9018 
12.777 29.3537 
18.1348 11.6092 

0.640994 14.6436 
3.39195 27.4398 

wrkShpSlides2 
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hJ cp:/1127 .0 .0. I :8888/note books/Google% 20 Dri ve/iJu 1 ia/Presenta ti ons/wrkShpS [ides 2 .i 1:iynb 4/1 I 



5111/2015 wrkShpSlides2 

In [111]: sel = XY[:,l].>10 
xxy= [XY sel] 

Out[lll]: 10000x3 Array{Float64,2}: 
10.3117 41.2371 1.0 

8. 49604 30.121 0.0 
1.49591 5.04669 0.0 
2.0137 21. 2858 0.0 
8.12043 9.99512 0.0 

17.9018 16.9568 1.0 
1. 01726 20.0321 0.0 

-8.29162 40.2454 0.0 
14.6496 45.1535 1.0 
13.9381 12.9118 1.0 
-0.612875 24.1609 0. 0 
20.5875 15.1366 1.0 
16.2409 25.9275 1.0 

3.98896 3.67185 0. 0 
13. 8927 24.0219 1.0 

3.93784 11.8521 0. 0 
3.83364 4.41762 0. 0 

20.7947 37.1139 1.0 
9. 11036 15.7678 o.o 
4.45919 32. 2166 0.0 

19.5114 21.9018 1.0 
12. 777 29.3537 1.0 
18. 1348 11. 6092 1.0 

0.640994 14.6436 0.0 
3.39195 27.4398 0.0 

In [115]: ( xxy [ : , 1 ] [ xxy [ : , 3 ] . == 1 ] ) 

Out[ll5]: 18.03854352069298 

http://] 27 .0.0.1 :8888/notebooks/Google% 20Drive/iJufo1/P:resentations/wrkShpSlidcs2.ipynb 5/11 
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In l 5 9 J : 

Out[59]: 

In l 60 J : 

Out[60]: 

In [ 61 J : 

Out[6l]: 

wrkShpSlides2 

selY = XY[sel,2] 

5026-element Array{Float64,l}: 
41.2371 
16.9568 
45.1535 
12.9118 
15.1366 
25.9275 
17.4284 
20.6601 
44.2587 

7.21451 
26.9525 
29.502 
41.1791 

41.4734 
20.1128 
33. 6962 
17.7152 
16.6372 
48.6728 
27.0785 
24.0219 
37.1139 
21. 9018 
29.3537 
11. 6092 

mean(selY[selY.>30]) 

38.95540792778809 

var(selY[selY.>30]) 

52.61527300087836 

Markov Chain Monte-Carlo Methods 
• Often no closed form for f(01,y) 
• Further, even if computing/(01,y) is feasible, obtainingf(0;1y) would require 

integrating over many dimensions 

, Thus, in many situations, inferences are made using the empirical posterior 

constructed by drawing samples from f ( 01y) 
, Gibbs sampler is widely used for drawing samples from posteriors 

Gibbs Sampler 

http:/1127 .0 .0. I : 8888/not ebooks/Goo g I e% 20 Drive/iJ ulia/Presentati ons/ wrkShpS I ides 2 .i pynb 6/11 



5/11/20!5 wrkShpSlidE's2 

• Want to draw samples fromf(x1, x2, ... , x11) 

• Even though it may be possible to compute f (x 1 , x2, ... , x11), it is difficult to draw 

samples directly fromf(x 1, Xz, ... , x11) 

• Gibbs: 

• Get valid a starting point x0 

• Draw sample x1 as: 
x1 

I 

x1 
2 

x1 
3 

f f( I 1-1 1-1 1-1) fOill X1 Xz , X3 , ... , Xn 

f f( I I I-] I-]) fOill XzX 1,x3 , ... ,Xn 

f f( I I I 1-1) 
TOill X3Xl'Xz,·•••Xn 

x/, from f (x11 Ix\ , xf , ... , x:,_ 1 ) 

• The sequence x1 , x2, ... , x11 is a Markov chain with stationary distribution 

f(x1 ,X2, ... ,x 11) 

Making Inferences from Markov Chain 

Can show that samples obtained from a Markov chain can be used to draw inferences from 

f(x1 , Xz, ... , x,,) provided the chain is: 

• Irreducible: can move from any state i to any other state j 
• Positive recurrent: return time to any state has finite expectation 

• Markov Chains, J. R. Norris (1997) 

Bivariate Normal Example 

Letf(x) be a bivariate normal density with means 

µ
1 = [ 1 2] 

and covariance matrix 

V _ [ 1 0.5] 
0.5 2.0 

Suppose we do not know how to draw samples fromf(x), but know how to draw samples 

fromf(x;lxj), which is univariate normal with mean: 

and variance 

Vij 
µ;J = µ; + -(Xj - µj) 

Vjj 
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In [ 125]: m = fill(0,2) 
nSamples = 2000 
rn:;:: [1.0, 2.0] 

v = [l.0 0.5; 0.5 2.0] 
y = fill(0.0,2) 
sum= fill(0.0,2) 
s12 = sqrt( v[l,l] 
s21 = sqrt(v[2,2] 

v[l,2J*v[l,2J/v[2,2]) 
v[l,2]*v[l,2]/v[l,l]) 

ml= 0 
rn2 = 0; 
for (iter in l:nSamples) 

ml2 = m[l] + v[l,2]/v[2,2]*(y[2] - m[2]) 
m21 = m[2] + v[l,2]/v[l,l]*(y[l] - m[l]) 
y[l] = rand(Normal(ml2,sl2),l)[l] 
y[2] = rand(Normal(m21,s21),l)[l] 
sum+= y 
mean :;:: sum/iter 
if iter%100 -- 0 

@printf "%10d %8.2f %8.2f \n" iter mean[l] 
end 

end 

100 1. 09 2.21 
200 1.06 2. 16 
300 1.06 2. 16 
400 1.05 2. 12 
500 1.03 2 .11 
600 1.01 2.10 
700 1.00 2.09 
800 1.01 2.09 
900 1.00 2.08 

1000 1.02 2.10 
1100 1.00 2.09 
1200 1.01 2.08 
1300 1.01 2.08 
1400 1.02 2.08 
1500 1.03 2. 10 
1600 1.02 2.08 
1700 1.02 2.08 
1800 1.02 2.08 
1900 1.03 2.07 
2000 1.02 2.06 

Metropolis-Hastings Algorithm 

mean[2] 

• Sometimes may not be able to draw samples directly fromf(x;lx; ) 
• Convergence of the Gibbs sampler may be too slow 

• Metropolis-Hastings (MH) for sampling fromf(x): 

• a candidate sample, y, is drawn from a proposal distribution q(ylx 1
-

1) 

http:// I 27 .0 .0 .1 : 8888/ note books/Google% 20 Ori ve/iJ uli n/Presenta tions/wrkShpS tides 2 .i pynb 8/11 
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with probability a 
with probability I - a 

. f(y)q(xt-1 ly) 
a= mm(! -----) 

, f(xt-1 )q(ylxt-1 ) 

• The samples from MH is a Markov chain with stationary distributionf(x) 

Bivariate Normal Example 
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In [ 127]: nSamples = 10000 
m = [1.0, 2.0] 
v = [l.0 0.5; 0.5 2.0] 
vi= inv(v) 
y = fill(0.0,2) 
sum= fill(0.0,2) 

ml = 0 
m2 = 0 
xx = 0 
yl = 0 
delta = 1.0 
minl = -delta*sqrt(v[l,l]) 
maxl = +delta*sqrt(v[l,l]) 
min2 = -delta*sqrt(v[2,2]) 
max2 = +delta*sqrt(v[2,2]) 
z = y-m 
denOld = exp(-0.5*z'*vi*z) 
dl = Uniform(minl,maxl) 
d2 = Uniform(min2,max2) 
ynew = fill(0.0,2); 
for (iter in l:nSamples) 

end 

ynew[l] = y[l] + rand(dl,l)[l] 
ynew[2] = y[2] + rand(d2,l)[l] 

denNew = exp(-0.5*(ynew-m) '*vi*(ynew-m) ); 
alpha= denNew/denOld; 

u = rand() 
if (u < alpha[l]) 

y = copy(ynew) 
denOld = exp(-0. 5* (y-m) '•vi* (y-m)) 

end 
sum+= y 
mean= sum/iter 
if iter%1000 == 0 

@printf "%10d %8.2f %8.2f \n" iter mean[l] mean[2] 
end 

1000 1.04 1. 93 
2000 1.10 1. 91 
3000 1.13 1. 91 
4000 1.13 1. 98 
5000 1.05 1.96 
6000 1.03 1. 94 
7000 1.03 1.96 
8000 1.03 1.96 
9000 1.04 1.96 

10000 1.06 1.97 

http:// 127 .0 .0. I : 8888/notebooks/Goo gl e% 20Dri vc/iJ nli a/Prescnta ti ons/wrkShpSlides 2 .i pyn b 10/11 



wrkShpPedSlides 5/12/15, 12:59 AM 

Pedigree Package 

Rohan L. Fernando 

May 2015 

Install PedModule 

Do this only once 

In [ l] : Pkg. clone ( "https: / / gi thub. com/reworkhow/PedModule. j 1. git" ) 

INFO: Cloning PedModule from https://github.com/reworkhow/PedModule.jl.git 
INFO: Computing changes ... 

In [2]: using PedModule 

In [ 3 l : ;cat pedFile 

1 0 0 
2 0 0 
3 0 0 
4 1 2 
5 1 2 
6 1 3 

In [4]: ped = PedModule.mkPed("pedFile") 
ped.idMap 

Out[4]: Dict{Any,Any} with 6 entries: 
"4" => PedNode ( 3, "1" , "2" , 0. 0) 
"1" => PedNode(l, 11 0'',''0'',0.0) 
"5" => PedNode(4,''l'',''2'',0.0) 
11211 => PedNode(2,"0'',"0",0.0) 
"6" => PedNode(6,''l'',''3'',0.0) 
II 3" => PedNode(S,''0'',''0'',0.0) 
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In [5]: Ai= PedModule.Ainverse(ped) 

Out[5]: 6x6 sparse matrix with 22 Float64 entries: 

[ 1 ' 1 l 2. 5 

[ 2 ' 1 l 1.0 

[ 3' 1 l -1.0 

[ 4' 1 l -1.0 

[ 5' 1 l 0. 5 

[ 6' 1 l -1.0 

[ 1' 2 l 1.0 

[ 2' 2 l 2. 0 

[ 3' 2 l -1.0 

[ 4 ' 2 l -1.0 

[ 2' 3 l -1.0 

[ 3' 3 l 2.0 

[ 1 ' 4 l -1.0 

[ 2' 4 l -1.0 

[ 4' 4 l 2.0 

[ 1' 5 l 0.5 

[ 5' 5 l 1.5 

[ 6' 5 l -1.0 

[ 1' 6 l -1.0 

[ 5' 6 l -1.0 

[ 6' 6 l 2.0 

In [ 6 l : full(Ai) 

Out[6]: 6x6 Array{Float64,2}: 
2.5 1.0 -1.0 -1.0 0.5 -1.0 
1.0 2.0 -1.0 -1.0 0.0 0.0 

-1.0 -1.0 2. 0 0.0 0.0 0.0 
-1.0 -1.0 0.0 2.0 0.0 0. 0 

0.5 o.o 0.0 0.0 1.5 -1.0 
-1.0 0.0 0.0 0.0 -1.0 2. 0 

In [ 7 l : A = round(inv(full(Ai)),2) 

Out[?]: 6x6 Array{Float64,2}: 
1.0 0.0 0. 5 0.5 0.0 0.5 
0.0 1.0 0. 5 0.5 -0.0 -0.0 
0.5 0. 5 1.0 0.5 0.0 0.25 
0.5 0. 5 0. 5 1.0 0. 0 0.25 
0.0 0.0 0. 0 0.0 1.0 0.5 
0.5 0. 0 0.25 0.25 0. 5 1.0 
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Pedigree-based 
mixed linear models 

Original Solution 

Cicucrnli1.cd Lcas1 Squares (Ci-LS) 

For c>timablc q'b. q•b• is HLllE (Rest J,incar llnhiascd Eslimalor) 

lorV=ZGZ'+R 

then i1 = GZ'V·' (y · xb" ). is UUIPOH,U Predictor) 

(same as Selection Jndcx/HLI' nccpl (y-Xb0) in plm:c uf(y - Xb) 

ohlaiucd by exploiting (gcnclic) covariances hctwccn auinmls 

In trndi!io1ml animal breeding pr.icticc 

G is large and dense and dctcm1incd by A the uumcrntor rclp matrix 

V is 100 big to comp11lc x•v· 1 

Henderson's Contributions One 

Developed methods lo compute G and R from field data 
Henderson's Method I (not his!), II and Ill 
Including circumstances that involved selection 

The Prediction Problem 

Model Equation 

y=Xb+Zu+c 

Other aspects of the model 

First moments EluJ = 0, J<:lel = 0. therefore Ely]= Xb 

Second moments var[u] = G, var[cl = R. cov[u,c' I= 0 

Distributional Assumptions e.g. u,e ~ MVN 

Wm1t to predicl u or linear functions like k'u 

BLP vs GLS BLUP 

y=X/J+Zu+e 

y -X/3 = Zu + e, a fully random model 

Selection Index Equations Pb= Gv 

b = p-1Gv, defines the best linear function to predict u 

the "weights" are the same for every animal with the same 

sonrces of infonnation (ie same traits observed) 

BLP i, = b'(y-X/J) = vGr·• (y- X/J) 

t/ GLSBLUP1l=GZ'v· 1 (y-xiJ 0
) 

Henderson's Contributions Two 

Invented lhe Mixed Model 1-'.q11alion, 

[ ~:::~ ,.:::~zG' ][ t ]=[ X'R"ly l 
, /or full r,m/.. G 

Z'R''y •• 

and jointly showed k'b" and U were HI.UF. and HI .UP 

Cornpu1atiu1mlly tractable if G mid R assumed diagonal or block-diagonal 

(cg sire model with relalion,hips ignored) 

(Ordcr40 ma!rix lakes weeks to inwrt b)' hand) 

MME typkally sparse in nalional a11irnal nalualion 
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Example NRM or A matrix 

Offsp-inJ,_ 

Offs~':'~ 

,_O~f~~i_':'9i 

~'£ri'19• 

S,re1 Daml Sirel Oarn1 S11e2 ? S,re2 ? 

\', 
------

Sires and dams unrelated and non-inbred 
Simple calculation of A/ requires including all ancestors 
and would result in a matrix of order 7 not 4 

Henderson's Contributions Three 

lnl'cntcd an al,gorithm lo dircctly fom1 A"' rmrn .i p,:di,grcc I isl 

Then G·' can be forn1cd ,is a sc,ilor product or krorn:ckcr product 

ddinc d to be "mcndcli,111" ,am piing vari;rncc 

,/=(I, J/4. 112) for 0, I or 2 parents known 

dcllm: s' =(-1/2. - l/2, I ) 10 rcprcscnl sire (if known) <.L1m (if known) 

and individual cqu:11ions 

:1c<·l11m1la1c s.r's'in the sin:, dam and individu.il n1ws/colun111, 

for C\'Cl)' trio of animals in the rx;digrcc li'>! 

Consider rearranging the MME 

In gcncr.11, 

[ Z'R'X Z'R'Z+G' l[ t ]=[Z'R'y] 

or ,·quini/rn1/_1 [ Z'R'Z+G·' ][ii]= [ Z'R'(y- Xb0 )] 

Single 1rnit animal model R =le,,', G =Ac,'., G '= A -•er~' 

(J1"m11/1ipfri11~ er.'. [ Z'Z +AA·'][ i1) = [z•(y- xb' )]. n·i1h A=¾, 

Sire, 

Dam, 

. s;,e, 

Off, 

ort, 
. Off, 

A·1 matrix (animal model) 
sirel Darnl s,re2 

Sire1 Darnl Sire2 ? 

__ 1 ____ ._, -i------9-_j 

_ _p ___ _ 

·1 I _Q_ 

0667 _j Q§l_ 

_o , _ _Q__ 

_Q_ __ 

llH 0 

,Olf, o · ___ o_ ·_·0.667~0 o l_dll 

Ancestors w/out records are fitted for simple A·1 structure 

Consequence of A·1 structure 

Accumula!e lor each ae,mal 

dw" 0.25 025 ---05 ,r' 
[ 

1125 0.25 ---05 l 
\\il1cn bo1h pa1cnts are known 

Nonparc111s (IC lmninal otfapring) 

---{)_5 ---0.5 1 

Own equ:ilion (ie row) has 2 on diagonal, .j iu sire column -I i11 Jam n,lumn 

Parcllt with 011c offspring 

Owu cqt~11ion has 2+ l/2 on diagon,11. - I in sire :iml dam rnlumns 

in s1ddition lo -112 in 1he cohmm of,ts ,rntc, -l ill column ofollspnug 

Parent wit!! many offspring to Jiffcrcnl males 

a<Tllnmblcs a lar~c dia~o,rnl clement. 111,111)· small ,iegalive offdia~ormls 

Consider the MME for a non parent 

Nonp:ncnt animal wich one record 

(I+ 2A)1/,,,.,,, , - All .. , - i\11,,,,,, = (l((/11.1/n/ __ 1 

Z-1.(11, .. +1;,,,.,)+((1(//11.wd _1·) 
1/, ""'' - (1+2..i.)2 (l+ZA) 

5/12/15 
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Consider the MME for a nonparent 

u,,,,.,,,. = (I - 1r)/',-I + ,r( 11,{i1111ed _ r) ./i!! u· = (I+ lie I 

,1. = I - Ii' so /or Ii'=]. ;, = 0.IL-= I. {110 shri11kugc) 
ti 

fi,rh 1 = Ion·, }. = /Jig. 1r = .1m<11/. (shrink 1hc dcl'iarion) 

Two somccs of BV infom1,11ion ,uc pooled 

The parent avcr.1gc PA 

The individual prc<lii.:lion (\hnmk deviation) 

with hcrit;1hility intlucm:ing shrinkngc 

Reliability of nonparents 

, , , rnr/1/J 
Pmpc11y ofBLP/BUTP is cov(11. u)= \'Hf(u) so r· = -

\'ilr(11) 

but -~+~ I -
2 2 

, for IImI1111r,,,11 1ritho111 11 rccor, 

.\(/ 
= r}, + ,),,,, '.::'.__!__ 

4 4 2 

Firw/1_, 
ir __ <Y 

CiG =~.limiting selection response L C 

wbcn candidates al puberty lnck phcnolypit· infonnation 

Solution 

We need a different representation of the 
covariance between relatives, that allows 
relatives other than parents to directly 
contribute to the prediction of nonparents 
without records 

The NRM or A-matrix is an expectation of 
relationships in the context of repeated 
sampling of the pedigree (conditional on 
pedigree) 

Consider the MME for a nonparent 

Nonparent animal with one record 

11"'"'""1 = (I- 1r)/-'1\ + ll'(t1{U11s1ed _y) 
Nonparent animal with no record 

2A1/
11111111

,.
1 

- A.1/ _,,. - Atf,lam = 0 

(I{,,.,. + 1/ddm) 

2 

An option to do better 

A-matrix 

PA 

Relationship with self is 1+F (noninbred F=O) 
(Additive) relationship of½ between non-inbred 
full-sibs and between parents and non-inbred 
offspring 
Relationship of¼ between non-inbred half-sibs 
and between grandparents and offspring 
But particular individuals can have greater or 
lesser values 
- If we know their genotype we can compute 

relationships conditional on the chromosome regions 
they inherited 

5/12/15 

3 



Relationship matrix 

Amatm 

" ' 

Con<ide, J s,re. dam anJ 4 lull s,bs 

A-inverse m.ilm 

-1 -] 

-1 -1 

_, _, 

Predict the last animal with no data 

.,12s,i ."\125,;,. -.11251i 2.1875,i 

1.25(1! .. , + 1(,,., )- 03125(1/_,,., + 1i.,1., )+ CU 1251i 

2.1875 

Blll to form G, we needed to know which loci/QTl 
contribute to variation in performance 

Amatm 

Relationship matrix 
Gmatm 

I !I 5 5 

015555 
5 5 I 6 4 

5 5 6 I 4 

55441/J 
5 5 4 4 r, I 

G•in•ersemalm 
A-inverse matm 

3,5 25 -125 -1.25 -1.'.c'i -115 
25 ."l.5 -1.25 -l.25 -1.25 -1.25 

-1 -I 
-I 25 -1.25 2 1875 -0.3125 0.3125 (Ul25 

-I -I -1.25 -1.25 -0.3125 2 1875 ll.'\125 0.1125 
-1 _, -I 25 -1.15 03125 0.112~ 2 1875 ---(Ul25 
-I -I -1.25 -1.25 0.J125 03125 -01125 2 1875 

Some MME Results 

[
X'X X'Z l [C" C"] 
Z'X Z'Z + AG ' - C"' C"2 

vartg'•gl~C" ,., __ v;:ir(Ql/ 
- /v.ir\d 

v<lr(k'g)uk'Gk var(k'g)~k'(G-C")k 

5/12/15 
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2\Im· 12. 201G 

1 Bayesian Regression Models for Whole-Genon1e Analyses 

.\h'll\\'isst>n Pl al. (2001) introducnl tlirl'l' n'grl'ssio11 n1odels for wholl'-g<'IIOllH' pr<'diction of hr<'<'ding Yc.dtll' 
01' till' fonll 

/, 

.11, =fl+ L Xijn_, + c 1 • 

i=l 

,dl{'rl' .111 is !Ii<' phPnotypic rnhl{'. I' is tli(' intcJT<'pL X 1.i is /h H1Hrkl'r coYariatc of animal i. Oj is tlil' 
1wrt ial rP~;n·ssion codl"icient of X iJ. and c1 al"(' id<'nt ica\l.,· and i11dl'j)l'JH[c·11t.ly dist ri hut.c'd n's id uals wit Ii 111c·a11 

;,;prcJ and \'ariann' a}. In mos! c11nc•11t a11alys<'s. Xij ar(' S:\'P p;Pno1ypl' coYarinl<'s t!int nm lH' codt'cl ns 0. l 
and :2. depending on thP num]){'r of B all<'ll's at SNP locus j. 

Ju nil tlm'l' of tllC'ir modr-ls. a flat prior ,ms usC'd for tlw intercept and a srnkd iuYPrt<'d rhi-squan' 
distribution for rr/. Thc> thrf'f' rnodds i11trodt1cPd by .\Il'll\\'isspn cl al. ((i\Iemvissl'I1.TIIE.c·c1.'2001a dilrl'r only 
in the prior used for O.j-

1.1 BLUP 

In their first rnodd. which the_,. called BLl.TP. a normal clistribut i011 wit Ii mean ZPr0 and knmn1 \'mia11ce. a!.. 
is usPd as the prior for n.i. 

1.1.1 The meaning of a; 
Asstlllll' I hl' QTL are in the urnrkcr panf'I. Then. the µ;pnol_\'pic \'alue Yi for a ra11do111l_,. sn111plcd nni111al i 
can he writ ten as 

iii = 11 + x;a. 

\\"IH'H' x; is the ,,cctor of S\P gcnot_\"JW cu\'ariatt>,-; and o-: is the n'clor or rcg;rC'ssion codlicients. \"ote that 
randomly sa111plcd animals differ 011\~-in x; and hm•p o-: in crn11111011. Thus. gcnot,Ypic ,·ariability is ent.irel_\' 
dm· to ,·ariability i11 tile genot~'J>cs or aninrnls. So. a~ is not the gc1wtic YariancP at a locus (Fcrnauclo:2007. 
Gia1Hila:'2009:Ge11eties: 19G'20397). 

1.1.2 Relationship of a~ to genetic variance 

Assume loci \\"ith effect on trait arc in linkage Pquilihritllll. Then. t"hc' adcliti\'c gf'nC'tic ,·ariance is 

/, 

·_., = L '2}Jj(}j<I~. 

l - r;1 is gf'11<' fn·q11e11Cy at S\"P locus j. Letting {/j = '2JJj(JJ and \-·j = o._j. 

/, 

i.,=Luj1·; 
J 



For ;1 ra11do11dy sa111plf'd locus. co\·ari,uH-(' lw1 \H.'ell l ·'.1 a11d \ ~ is 

Bmrrnnging this Pxpn•ssioll for (' 1-1 giYPS 

So. 

nnd 

which gi\'l'S 

, 
a;; 

~-\ - k('rT 

Lj 2p.1(J.1 

if gt'IH' frC'qllt'llC~· is ind('pPndP11t of t IH' effect oft hP p;enP. 

1.1.3 Full-conditionals: 

ThC' joint postPrior for all thP pan.1111<'tcrs is proportional to 

f(0ly) x /(yl0)/(O) 

( ')-"'' { A a; ' - C'Xj) 

II ( ')-'" . "7 ' { ' } X rrn C'X]) --, -, 
)r,

j= l - n 

where 0 denotes all t hC' unknowns. 

1.1.4 Full-conditional for 11 

"l'he full-co1H!it.ional for JL is a non1ial dist.ribution \\·ith IIH'a11 j1 and variarn·<' ~;~. where ti is tlH' !C'nst-squarcs 
<'stimatP of pin thC' modt>l 

k 

y - ~x ·n. = 111 + e, L...., ) .I 
j=l 

nnd ~;~ is the variance of (.his estimator (11 is thC' 11urnher of olis('rYHtious). 
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1.1.5 Full-conditionnl for nj 

,. { (wj-X/lj)'(w.i-X.ini)} f ( o ; i ELSE I , exp - ~'--".c., "-',~, ~--"--'-

- ' 

W_j =y-111- LX101. 
l-=f.j 

So. thP f111l-co1Hlitio11al for n.i is n normal dislrih11tio11 ,,·ith JW'illl 

1.1.6 Full-conditional for rr~ 

a11<i 1 his is J>rOjHlrl io11al to a scaled in,·<•rlP<I chi-sq1iarP dist rib11tio11 with 1/0 = /Jn + k a1HI scalf' J>ara11l('tn 

.S'(~ = (L1.-n] +11(\.\~)/i/(\. 

1.1. 7 Full-conditional for rr/ 

} '( 'II'! SE) ( ')-" 12 { a; '.. ., ' X a; PXJ) 
(y-111 - I:XJC\J)'(y-111 - I:Xjoj)} 

'2.a/ 

,,·hich is proportio11al to a scall'd inn'rlcd chi-square d<'Hsit~-with 1/1 = 11 + 111. degrees of frpedorn and 
i:j"l _ {y-lJ1-LX,n 1 J

1

(y-l1,-LX 1n,H-1,,s'; scnlc> JJaram<•ln . 
.... f - ,,-, 

L2 BayesB 

1.2.1 Model 

The usual rnodPI for BayesB is: 



l/1 =fl+ L .\,jnj + ci. 

1=! 

,,·ll('l"l' th(' J)!"i(ir 11 is flat a11cl t!H' prior for Clj is H 111ixt11n' di.-;trilH1lio11: 

probability,;

prolrnliilit_Y ( I - r.) 

\\"ll('r(' aj ltas a srnJr,c[ imTrtcd rhi-squarf' prior \\'it h seal(' pan1111('1(>r S'(~ and ,,,0 dPgn•f's of frp('dom. Th(' 

rPsiclual is 11on1wlly <listril)utccl \\'itl1 1m'a11 zpro c111d ,·nria11c-P af. \\·l1id1 has a scal('d i11w•rtc>d chi-sqtian' prior 
with seal<' parnrnc!Pr ,i.,} and Ur dPgT<'l'S of fr{'(,dorn . .\IPuwiss('ll et ,t!. c"1_.\l<>uwis:c;P11.TIIE.P,1.:200ln gan' a 
.\letropolis-IIast i11gs sarnp\c>r to joint]_,. s,rn1pk, aJ mid Cl_j. Ikn'. m' \\·ill show hmY th(' Gibbs ,-;ampkr rnn lw 
used ill BayC'sB. 

l11 cm\('I" 1o 11sc' thC' (;i]>lis sa111pll'r. thP IIHHl<'i is \\'rittPn as 

,. 
,11, =fl+ L s,J'-J/5., + c /· 

.J=I 

probability r. 

prohahilit_Y ( I -· 11) 

Other priors arc tlw samP a.-; in thC' 11s1wl model. :\ot(' tlmt 111 this IIH>dcl. n 1 
dist rihu1 io11 as in t hP 11s11nl Bn.w•sB modPI. 

1.2.2 Full-conditionals: 

The joint postcrior for nil the pnramPll'rs is proport.ional to 

/(0jy) X /(yj0)/(0) 

(y - 111 - L X/l;,5'.;'~ - 111 - L XrlA)} 
_(J, 

X IT ((Jj)-l/' <'XJ> {- 2J,} 
J=l J ,. 

x IT "(1-6,)u - r.ri, 

J=l 

' { 'i'} II( .
'l-(,,,+21n . v, •. _., 

x a j • C'XJ) - 'hr2 
J=l - ./ 

1.2.3 Full-conditional for 11 

Thc> full-conclit.ional for 11 is a 11ornml dist.ribut ion wit 11 BH'HII 11 and \'arim1cP a;. \\·lwre 11 is th(• least-squarPs 
('stimalP or,, in thP rnodel II 

k 

y - LX;.l 1JJ ~ 111 + e. 
j=l 

and~ is the' \'ariaJH'P of tliis <'stirnator (11 is tll{~ 1111111lwr of obscrrntions). 



1.2.4 Full-conditional for ,:/.1 

f(.J;IELSE) X <'XJJ { 

'2w_}XJ.3/)j + .3_f (xjxj<)j + a//aj)]} 
'2af 

Wj = y - 1;1 - L Xi.31151, 

lie J 

So. tlw f11ll-co1alitiu1rnl for .-iJ is a 11on1wl <listributio11 wit Ii llH'tlll 

1.2.5 F\111-conditional for ,Jj 

Pr(<l = !IELSE) x . /,(,I;= I). . 
J h(,)J = 1) + h(o1 = 0) 

(w; - X 1.J1r51)'(w 1 - Xi3;r51 )} 

'la( • 

1.2.6 Full-conditional for aj 

·) - ·) - I /-, { Jj } 
f(o7jELSE) x (o;) ,-"'" -

2
aj 

{ ,,, } > -(P +•<)/') /IJ~J_j 
x (a~) .< - 1 

- PXJJ - -, -.-, 
.1 2a] 

{ 
l ' ,, } 

( 
:1)-(i+,, 1 +:.!J/:2,. , J + 11_.iS,-:; 

x a J l xp - 'Ja:.! , 
- ) 

and I his is proportirninl ton scaled im'Prted chi-squnrP distribution with 1/j = v3 + 1 and scale pan.1metPr 
,,·> ( y> c•'i; • ,:,; = ,JJ + /Jy-,_j /Jj, 

1.2. 7 Full-conditional for a"; 



\\·liich is proportio1wl to a srnl{'d i11n•rl<'d c-hi-scpwn' dC'11sit.\· \\·i1h i\ 
1y-_.!1_,__::-_) x, .01 ,11 )'ly-1 1,-) x,.-i,,i, 1+1,, .-:-·" 

1 1~ sea<' pnrnm<'lt'L 

(i 
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BayesCO 

Simulating Genotypes and Phenotypes 

In [31]: using(Distributions) 

In [ 2 J : nObs = 100 
nMarkers = 1000 
X = sample([0,1,2],(nObs,nMarkers)) 
a = randn(nMarkers) 
a = x•a 
stdGen = std(a) 
a= a/stdGen 
y =a+ randn(nObs) 
saveAlpha = a 
nothing 

Centering Genotype Covariates 

In [3]: meanXCols = mean(X,l) 

In [ 4 J : 

X = X - ones(nObs,l)*meanXCols; 

Priors 

seed 
chainLength 
probFixed 
dfEffectvar 
nuRes 
varGenotypic 
varResidual 
scaleVar 
scaleRes 
nothing 

= 
= 
= 
= 
= 
= 
= 
= 
= 

10 
2000 

0 
4 

# set the seed for the random number generator 
# number of iterations 
# parameter "pi" the probability SNP effect is, 
# hyper parameter (degrees of freedom} for locu, 

4 # hyper parameter (degrees of freedom} for resic 
1 # used to derive hyper parameter (scale} for lac 
1 # used to derive hyper parameter (scale} for lac 

varGenotypic*(dfEffectvar-2)/dfEffectVar # scale fc 
varResidual*(nuRes-2)/nuRes # scale fc 

Function for Sampling Marker Effects 

htt p://127. 0. 0. 1 : 8888/notebooks/Google%20Drive/iJ u lia/Ba yesABC/BayesC0. i pyn b# Page1ol7 
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In [5]: function get_column(X,nRows,j) 
indx = 1 + (j-l)*nRows 

end 

ptr = pointer(X,indx) 
pointer_to_array(ptr,nRows) 

Out[S]: get_column (generic function with 1 method) 

In [6]: xpx = [(X[:,i] 'X[:,i])[l]: :Float64 for i=l:nMarkers] 
xArray = Array(Array{Float64,l},nMarkers) 
for i=l:nMarkers 

xArray[i] = get column(X,nObs,i) 
end 

In [7]: typeof(xArray[l]) 

out[?]: Array{Float64,l} 

Computing the adjusted right-hand-side efficiently 

We want to compute: 

This is more efficiently obtained as 

rhs = XJYcorr + x;x1a;, 

using the diagonals of X'X that have already been computed (line 4 of the function below). 

In [ 19]: 1 
2 
3 

4 
5 

6 

7 
8 

9 
10 
11 
12 
13 

function sampleEffects! (nMarkers,xArray,xpx,yCorr,a,meanAlpha,vare,va1 
nObs = size(X,l) 

end 

for j=l:nMarkers 
rhs::Float64 
lhs::Float64 

= dot(xArray[jJ,yCorr) + xpx[j]*a[j] 
= xpx[j] + vare/varEffects 

invLhs: :Float64 = 1. 0/lhs 
mean::Float64 = invLhs*rhs 
oldAlpha::Float64 = a[j] 
a[j] =mean+ randn()*sqrt(invLhs*vare) 
BLAS.axpy! (oldAlpha-a[j],xArray[j],yCorr) 

end 
nothing 

Out[l9]: sampleEffects! (generic function with 1 method) 

Function for BayesCO 

The intercept is sampled first and the sampleEffects! function is called to sample the marker effects 
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In [10]: chil=Chisq(nObs+nuRes) 
chi2=Chisq(dfEffectVar+nMarkers) 

function BayesCO!(nurniter,nMarkers,X,xpx,yCorr,rnu,rneanMu,~,rneanAlpha,vare, 
for i=l:numiter 

end 
end 

# sample residula variance 
vare = (dot(yCorr,yCorr)+nuRes*scaleRes)/rand(chil) 

# sample intercept 
yCorr = yCorr+mu 
rhs = sum(yCorr) 
invLhs = 1. 0/ ( nObs) 
mean = rhs*invLhs 
mu = mean + randn()*sqrt(invLhs*vare) 
yCorr = yCorr - mu 
meanMu = rneanMu + (mu - meanMu)/i 

# sample effects 
sampleEffects! (nMarkers,xArray,xpx,yCorr,a,meanAlpha,vare,varEffec 
meanAlpha = meanAlpha + (a - meanAlpha)/i 

#sameple locus effect variance 
varEffects = (scaleVar*dfEffectVar + dot(a,a))/rand(chi2) 

if ( i%1000 )==0 
yhat = meanMu+X*meanAlpha 
resCorr = cor(a,yhat) 
println ("Correlation of between true and predicted breeding v 

end 

Out[l0]: BayesC0! (generic function with 1 method) 

Run BayesCO 
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In [30]: meanMu = 0 
meanAlpha = zeros(nMarkers) 

#initial valus 
vare = 1 
varEffects = 1 
mu= mean(y) 
yCorr = y - mu 
alpha= fill(O.O,nMarkers) 

#run it 
@time BayesCO! (chainLength,nMarkers,X,xpx,yCorr,mu,meanMu,alpha,meanAlpha, 

Correlation of between true and predicted breeding value: 0.77452987300536 
Correlation of between true and predicted breeding value: 0.77472194735639 
elapsed time: 0.213988087 seconds (53211392 bytes allocated, 12.66% gc tirr 

Compare Runtime with R Implementation 

In [18]: ;Rscript RBayesCO/BayesCO.R 

user system elapsed 
50.936 1.524 52.569 

In [32]: ;cat RBayesCO/BayesCO.R 

# This code is for illustrative purposes and not efficient for large pre 
# Real life data analysis (using the same file formats) is available at 
# bigs.ansci.iastate.edu/login.html based on Gensel cpp software impleme 
# 
# 
# 
# 

Rohan Fernando 
Dorian Garrick 
copyright August 

(rohan@iastate.edu) 
(dorian@iastate.edu) 

2012 

# Parameters 
setwd( "RBayesCO") 
seed 10 
chainLength 2000 
dfEffectvar 4 
nuRes 4 
varGenotypic 1 
varResidual 1 
windowSize 10 
outputFrequency 100 

markerFileName 
trainPhenotypeFileName 
testPhenotypeFileName 

# set the seed for the random number generator 
# number of iterations 

# hyper parameter (degrees of freedom) for locus 
# hyper parameter (degrees of freedom) for resid 
# used to derive hyper parameter (scale) for loc 
# used to derive hyper parameter (scale) for res 
# number of consecutive markers in a genomic win 

# frequency for reporting performance and for c 

"genotypes.dat" 
11trainPhenotypes.dat 11 

"testPhenotypes.dat" 
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set.seed(seed) 

genotypeFile 
trainPhenotypeFile 
testPhenotypeFile 
commonTrainingData 
ype 

read.table(markerFileName, header=TRUE) 
read.table(trainPhenotypeFileName, skip=l)[,1:2] 
read.table(testPhenotypeFileName, skip=l)[,1:2] 
merge(trainPhenotypeFile, genotypeFile, by.x=l, by. 

commonTestData merge(testPhenotypeFile, genotypeFile, by.x=l, by. 
ype 

remove(genotypeFile) 
remove(trainPhenotypeFile) 
remove(testPhenotypeFile) 
animalID 
y 
z 
z 

unname(as.matrix(commonTrainingData[,l])) 
commonTrainingData[, 2] 
commonTrainingData[, 3: ncol(commonTrainingData)] 
unname(as.matrix((Z + 10)/10)); 

# Free 
# Free 
# Free 
# Firs 
# Secc 
# Rema 
# Recc 

markerID colnames(commonTrainingData)[3:ncol(commonTrainingData)] 
remove(commonTrainingData) 

# Reme 

unname(as.matrix(commonTestData[,l])) 
commonTestData[, 2] 

# 
# 

First fi 
Second f 

testID 
yTest 
ZTest 
ZTest 

= commonTestData[, 3: ncol(cornrnonTestData)] 
= unname(as.matrix((ZTest + 10)/10)); 

# 
# 

Rernainin 
Recode 9 

remove(cornrnonTestData) 

nrnarkers 
nrecords 

ncol(Z) 
nrow(Z) 

# center the genotype matrix to accelerate mixing 
markerMeans = colMeans(Z) 
z = t(t(Z) - markerMeans) 
p = markerMeans/2.0 
mean2pq = mean(2*p*(l-p)) 

varEffects = varGenotypic/(nmarkers*mean2pq) 

# number C 

# number C 

# compute the mean f 
# deviate covariate 
# compute frequency 
# compute mean genot 

# variance of locus 
#(e.g. Fernando et a 

192-195) 
scaleVar 
scaleRes 

varEffects*(dfEffectVar-2)/dfEffectvar; # scale factor for 1 
varResidual*(nuRes-2)/nuRes # scale factor for r 

numberWindows 
numberSamples 

alpha 
meanAlpha 
modelFreq 

nmarkers/windowSize 
chainLength/outputFrequency 

# number of genomic 
# number of samples 

array(0.0, nmarkers) # reserve a vector to store sampled 
array(0.0, nmarkers) # reserve a vector to accumulate th 
array(0.0, nmarkers) # reserve a vector to store model f 
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mu mean(y) # starting value for the location p 
meanMu 
geneticVar 

0 # reserve a scalar to accumulate th 
array(O,numberSamples) # reserve a vector to store sampl 

windowVarProp 
sampleCount 

# reserve a matrix to store sampled 
matrix(O,nrow=numberSamples,ncol=nurnberWindows) 
0 # initialize counter for number of 

# adjust y for the fixed effect (ie location parameter) 
ycorr = y - mu 

ZPZ=t(Z)%*%Z 
zpz=diag(ZPZ) 

ptime=proc.time() 
# mcmc sampling 
for (iter in l:chainLength){ 

# sample residual variance 
vare = ( t(ycorr)%*%ycorr + nuRes*scaleRes )/rchisq(l,nrecords + n 

# sample intercept 
ycorr = ycorr + mu 
rhs = sum(ycorr) 
invLhs = 1.0/nrecords 
mean= rhs*invLhs 
mu= rnorm(l,mean,sqrt(invLhs*vare)) 
ycorr = ycorr - mu 
meanMu = meanMu + mu 

# Unadjust y for the previou 
# Form X'y 
# Form (X'X)-1 
# Solve (X'X) mu= X'y 
# Sample new location parame 
# Adjust y for the new sampl 
# Accumulate the sum to comp 

# sample effect for each locus 

} 

for (locus in l:nmarkers){ 

} 

rhs=t(Z[,locus])%*%ycorr +zpz[locus]*alpha[locus] 
rnrneLhs = zpz[locus] + vare/varEffects 
invLhs = 1.0/rnrneLhs 
mean= invLhs*rhs 
oldAlpha=alpha[locus] 
alpha[locus]= rnorm(l,mean,sqrt(invLhs*vare)) 
ycorr = ycorr + Z[,locus]*(oldAlpha-alpha[locus]); 
meanAlpha[locus] = meanAlpha[locus] + alpha[locus]; 

# sample the common locus effect variance 

# In 
# So 

# Sa 

# Ac 

varEffects = ( scaleVar*dfEffectVar + sum(alpha'2) )/rchisq(l,dfEf 

h1t p:/ /127 .0.0. 1 : 8888/notebooks/Goog le%20Drive/iJ u lia/BayesABC/BayesC0. i pynb# Page6of7 
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Application of Whole--Genome Prediction Methods 
for Genome-Wide Association Studies: a Bayesian 

Approach 
" ' 1/ ,o 

R.L Fernando A. Toosi D.J. Garrick J.C.M. Dekkers 

Department of Animal Science 
lowa State University 

10th World Congress of Genetics Applied to livestock 
Production 

tcompare Approaches ' 

Model 
False Positives (FP) 

Inference 

SM 
Simple Regression 
Genomewise Error Rate 
Frequentist 

,; Composite Genomic Window 

BMR 
Multiple Regression 
Proportion of FP 
Bayesian 

I I I I: 1 1 1 I : , 1 i ,1, i • 1 I 1 1 I I I I I!; 

", Two Approaches , ' 

o Bayesian multiple-regression models (BMR) 

o Single-marker models (SM) 

,Models , • 

Simple Regression 

o QTL may have low LD with all markers in region 

o Need to explicitly mode! population structure 

Multiple Regression 

o Inference based on genomic windows 

o Markers can capture population structure 

o Explicit modeling of structure results in lower power 

o Inference of QTL 

'Coo trolling' f'alse' Positives , , 

Genomewise error rate 

o Control probability of one or more false positives among all 
tests 

" Incurs multiple-test penalty 

,Proportion,of false·positives ' ; , 

g Control proportion of false positives (PFP) 

" Related to FDR 

" No multiple-test penalty (Fernando et al., 2004; Stephens and 
Balding, 2009) 

'-----------------~ 



Q V number of false positives 

Q R number of positives 

PFP E(V) 
O :::: E(R) 

•FDR= E(¾IR>O)P,(R>O) 
o If PFP is y in each of n independent experiments, the 

proportion of false positives among significant results across all 
experiments wi!I converge to y as n increases. 

Q In general, the above property does not hold for FDR. 

o PFP is a multiple test extension of the posterior type ! error 
cate (PER). 

o If PER is y for a random test, PFP is also y for the collection 
of tests. 

,. Definition of PER • • 

o In the Bayesian approach, inference on Ho is based on 
Pc(Holy). 

o Typically, Pr(HolY) is estimated by counting the number of 
MCMC samples where Ho is true. 

o If Ho is rejected when Pr(HolY) < y, PER< y. 

o Pr( HolY) is not a frequentist probability. 

, ~esults for N=lOOO • 

B3yesCPI 

V.'PPA 

o Jn the frequentist approach, inference on Ho is based on the 
distribution of some test statistic given Ho is true 

o posterior type I error rate (PER) is the conditional probability 
of Ho being true given that, based on a statistical test, Ho has 
been rejected. 

PER 
Pr(Hois rejected,H 0 is true) 

Pr(Ho is rejected, Ho is true)+ Pr(H 0 is rejected, Ho is false) 

aP,(Ho) 
a P,(Ho) + (1- ~)11- P,(Ho)] 

a is the type I error rate, and (1- /3) is the power of the test 

o 52k SNP genotypes from 3,570 Angus bulls 

o 100 data sets of size 1000 or 3,570 were randomly sampled 

G marker effects randomly sampled according to Bayes( with 
n = 0.995 

o markers with non-zero effects (QTL) were not included in 
marker panel 

G h2 = 0.9 

1. Results for" N=3,5io. • · . .' · . · 

V/PPA 



Q Genomic window based inference multiple regression models 

g When PFP is used to manage false positives, no multiple-test 

penalty 

i;, Bayesian posterior probabilities can be used to control PFP 

~ Pr{H0), and power of test can be treated as unknown 
11 Do not need to know the distribution of test statistic 
o Simple to determine significance threshold 

Ad<rowledgements ' , _ 
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11 NIH Grant R01GM099992 
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F:xtension to Multiple Linear Regression 
vvnsider the multiple regression model 

Y; = /Jo + L x;; (J; + e; 
j 

(2) 

which extends model (1) to include multiple covariates x;;. In matrix notation, this model can be written as 

y = X/J + e, 

where **/J' = [/3oJ31, fh, ... , /3 k] **and the matrix X contains the corresponding covariates. 

Model with Normal Prior for Regression Coefficients 

Here we consider a model with a flat prior for /Jo and iid normal priors for the slopes: 

/3; ~ N(O, o}) forj = 1, 2, ... , k, 

where 6} is assumed to be known. The residuals are assumed iid normal with null mean and variance 6), 
which itself is assigned a scaled inverted chi-square prior. Then, the joint posterior for 0 is 

f(01y) rx f(yl0).f(0) 

( o )-11/2 { rx 6/; exp 
(y - X/J)' ~y - X/J) } 

26;; 

k/2 { x (6})- exp 

The posterior distribution for /J can be written as 



for 

7 7 
f(ylp, a}, a;)f(/Jla})f(a}) 

f(/Jly, (Jii, (J;_;) = 
7 0 f(y, rJ11, a;_;) 

ex f(ylp, a}, (J( )f(/Jla;7 )f((J}) 

ex f(ylp, (J}, a} )f(/Jla}) 

( 
J )-11/2 { (y - xp)' (y - xp) } ex a;_; exp 

7 
2a;_; 

( 
J)-k/2 { Z:1=1 Pl} x (J/J exp 

7 
2(J/J 

Li1-I J c,-

{ 

(y - XP)'(y - XP) + "k_ /32 
"';} 

• Ji 
ex exp 

7 2a;_; 

"f! ex exp 
{ 

y'y- 2y'xp + P'(X'X + D"''. )p} 

2a} 

ex exp 

/\ I ~ I\ "' ~ A 

y'y - (/J - P) (X'X + D (1~ )(/J -P) - p (X'X + D "''. )P 
0 ii 0

1/ 

? 

(X'X + D a,: )/J = X'y, 
(J/J 

(3) 

where D is a diagonal matrix with zero on the first diagonal and ones on the remaining diagonals. Thus, the 

full-conditional posterior for p is a normal distribution with mean given by (3) and variance 

(X'X + D ",; )- 1(J}. 
(\i 



Full-conditionals: 

The full conditionals for /Jo and CT} are identical to those in simple linear regression. 

Full-conditional for /J.i 

The full-conditional for /Jj is obtained by dropping from the joint posterior all terms and factors that do not 
involve /Jj : 

f(/3 IELSE) o: exp - 1 1 1 1 1 
.1 { 

(w - x /3)' (w - x fJ)} 
J 2 ' {5(';' 

xexp -~ 
{ 

/32 } 

2CT/J 

W-Wj - W X; j + . X-X; + fYc fYf, .I .I J .I 

{ 

I 2 I fJ fJ 2 ( I 2/ 2) } 

where $$ \hat f\beta)U}=\frac{\mathbf{x}{j) '\math bf{ w )U}}{{\mathbf {x}{j) '\math bf {x} 

{jJ+\sigma{e)A{2)/\sigma_{\beta)1 1{2})), $$ and $\mathbf{w}_{j}=\mathbf{y}-\sum_{l\neq 

j}\mathbf{x}_{l}\beta_{I}.$ So, the full-conditional posterior for $\beta_{j}$ is a normal distribution with mean 
$\hatf\beta}_{j}$ and variance $\frac{\sigma_{e)A{2}} 

{(\mathbf{x}_{j}'\mathbf{x}_{j}+\sigma_{e)A{2}/\sigma_f\beta)A{2})}.$ 

Exercise 

1. Use /Jo = I , fYtJ = 0.1 and CT} = 1.0 to generate a data set with 1 D observations from model (2) 

with k = 15 covariates. • 

2. Setup and solve the mixed model equations given by (3). 

3. Sample the elements of fJ using Gibbs. 

4. Compute the posterior mean of P from the samples and compare with the mixed model solutions. 

5. Compute the posterior covariance matrix from the sampled values. Compare results with inverse of 
the mixed-model coefficient matrix. 



Model with unknown aJ 
1e previous section, we assumed that a} in the prior of the slopes was known. Here, we will consider 

this variance to be unknown with a scaled inverted chi-square prior with scale parameter S1] and degrees of 

freedom v13. The joint posterior for this model is 
f(01y) cx f(yl0)f(0) 

( 
2 )-1112 { (y - xp)'(y - XP)} 

cx a" exp - , 
2a; 

( 
2)-k/2 { Li1 fJ]} x a/J exp -

0 2a11 

{ 

V S
2

} 
( 

7 )-(2+,,,112 /i 1_, 
X a- exp ---

/! 2 7 

(J/! 

o <'+ 11, { v"SJ } X (a,~)- - "·· - exp ---, . 
2a,~ 

Then, the full-conditional posterior for a} is 

{ 

°"k 7} , 7 , -W ~~lfy 
f(a/Jly,p,a;;)cx(aF) exp -

2 2a13 

( 
7 )-(2+v,il/2 { VfJSft } x a- exp ---
/! 2 ? 

(J/! 

( 
2 )-(2+k+u 11)/2 ~j=I /Ji + Vj!Sji 

{ 

°"k 2 7 } 
cx a/J exp - , , 

2a13 

which can be recognized as a scaled inverted chi-square distribution with v11 = k + vp degrees of freedom 

and scale parameter S~ = (2,J=I /3] + vpSft )lvp. A sample from this posterior can be obtained as 
""'~ ~ ~ 
~i=I /Ji +1.t115ii 

X·2 
'fl 



Exercise 

~--•end the sampler used in the previous section to treat CJ} as an unknown. Plot the posterior distribution 
? 

5/i. 

Model with unknown covariate-specific variances 

Here we consider a model where the prior for the slope corresponding to covariate j is normal with mean O 

and variance CJ? , where CJ? has scaled inverted chi-square prior with scale parameter SJ and degrees of 

freedom vp. The joint posterior for this model is 

It can be shown that: 

f(01y) o:.f(yl0).f(0) 

( 
")-11/2 { (y - xp)'(y - xp)} o: CJ;: exp - , 

. 2CJ;: 

Ilk ( 7 )-1/2 { f3}_ } x CJ.- exp ---
1 ? 

j=I 2~-

k { 52} II ( 7 )-(2+o 11)/2 Vf] f} 
X CJ~ exp ---

1 2 ? 
j=I CJ/ 

X (o})-(2+,,.)/2 exp {- VeS! } . 
2CJ;: 

2. The full-conditional posterior for ~ 2 is a scaled inverted chi-square distribution with VfJ = I + VfJ 
_7 

degrees of freedom and scale parameter Sµ = (/3} + v1!Sfa )iv 13. A sample from this posterior can 

JJ/+v,,s,~ 
be obtained as , 

r 
~ ,, 

3. Marginally, the prior for /3j is a scaled t distribution with v/3 degrees of freedom, mean O and scale 

parameter sj. 

Exercise 

Derive the full-conditional posterior for (31. 
2. Derive the full-conditional posterior for ~ 2

. 

3. Use a Gibbs sampler to compute the posterior mean of p. 



Model with Mixture Prior for Regression Coefficients 

f:Jefcire, a flat prior is used for the intercept, p. The prior for slope j is a mixture: 

{ 
0 probability 1r 

(J; = ~ N(O, a}) probability (I - n) ' 

where a} has a scaled inverted chi-square prior with scale parameter SJ and degrees of freedom v11. In 

order to use the Gibbs sampler, it is convenient to write (31 as 

/3 = oy J J }' 

where D; is a Bernoulli variable with probability 1 - ;r of being 1: 

<5· = { 0 probability 1r 
1 1 probability ( 1 - 1r) ' 

and r,; is normally distributed with mean zero and variance a}. Then, the model for the phenotypic values 

can be written as 

"· = 11 + " Xy o + e.t, f' ~ I] J J I' 

J=I 

Full-conditionals: 

J joint posterior for all the parameters is proportional to 
f(01y) ex f(yl0)f(0) 

( 0)-"12 { (y-1µ-LXJYJ°J)'(y-lp-LX;YjD;)} ex a(;' exp • • 
2a} 

Ilk 1 )-112 { rl } X (a13 exp --· 
7 

j=I 2ap 

k 

XII ;r(l-,5, )(1 - ;r)°j 

j=I 

X (a 2)-<"11+2l12 exp ---
{ 

vpSf] } 
/! 2 7 

(Jf! 

X (a})-(2+u,)/2 exp {- /JcS! } , 
2a;; 

where 0 denotes all the unknowns. 



Full-conditional for fl 

full-conditional for fl is a normal distribution with mean jt and variance a,' , where ji is the least-squares 
II 

._,_.,mate of fl in the model 
k 

y - '\' X y D = lp + e, £... J .I .I 
j=I 

and a,' is the variance of this estimator (11 is the number of observations). 
II 

Full-conditional for Yi 

{ 
(w-Xy<5)'(w-Xy8)} j(y)ELSE) o:: exp - ., ., 1 ., 

7 
., 1 1 1 

2a;; 

where 

xexp{- rl
0

} 

2afi 

o:: exp { 
[w1w1 - 2w1X1y181 + r](x 1xiD; + a}/a})J} 

2a} 

.I .I 

{ 

(y - y)2 } 

w1 = y - lp - L X1r181. 

lfci 

So, the full-conditional for Y; is a normal distribution with mean 

, x;w;81 
Y; = ( 1 ;: 2; 2) x1xjuJ+ae a/! 

Full-conditional for 6j 
h(D = I) 

Pr(b = IIELSE) o:: ., , 
1 h(DJ=l)+h(DJ=O) 

.re $$h(\delta{i})= \pjl 1{(1-\de/taU})}(1-\pi)1'{\delta_{j}}\exp\left{ -\frac{ (\math bf {w){j}-\mathbf{X} 

(j)\gamma{j}\delta{j))' (\mathbf{w){j}-\mathbf{X}{j}\gamma{j}\de/ta{j}) }{2\sigma_{e)!'{2}}\right} .$$ 



Full-conditional for r5} { .._,k , } 

7 7 -k/2 Lij= I YT 
j(o-/JIELSE)o:(o- 13) exp - • , 

2o-/! 

{ '} 7 - 7 7 llf!Sf} 
X (a") 1011+-l 1-exp ---

/! 2 7 O"f} 

{ 

.._,k ' + S" } 
( ')-(k+• +2)/') Lij=I YT ll/J /! o: a- "1' - exp -/J , , 

20-.-
J 

and this is proportional to a scaled inverted chi-square distribution with v/! = v11 + k and scale parameter 

s~ = c~::;=l Yl + ll/JSj] )Iv/!· 

Full-conditional for n 

which is proportional to a Beta distribution with parameters a = k - r;=I Dj + I and b = L D; + 1 . 

.II-conditional for r5} 

2 ( 2)-,,12 { (y - Ip - I Xjr'.;oj)'(.y - 111 - I Xjyjo)} f(o-e IELSE) o: ae exp - , 
2a;; 

which is proportional to a scaled inverted chi-square density with v e = 11 + v e degrees of freedom and 
, (y-t/1- I X;r/5; )' (y-11,- I X;r;i5; )+v,.s,' 

St = • _ scale parameter. 
v,. 



Rayesian Inference by Application to Simple Linear . 
. . cgress1on 
Simple linear regression is used to illustrate Bayesian inference, using the Gibbs sampler. The Gibbs sampler 

is used to draw samples from the posterior distribution of the intercept, the slope and the residual variance. 

The Model 

Consider the linear model: 

Yi =/Jo+ xi/Jr + ei. (35) 

where for observation i, Yi is the value of the dependent variable, /Jo is the intercept, xi is the value of the 

independent variable and e; is a residual. Flat priors are used for the intercept and slope, and the residuals 

are assumed to be identically and independently distributed normal random variables with mean zero and 

variance er;. A scaled inverted chi-square prior is used for er,~. 

Simulation of Data 

T'] [ l] : 

ing Distributions 
using StatsBase 

In [20]: 

n = 20 #number of observations 
k = 1 #number of covariates 

x = sample([0,1,2],(n,k)) 
X hcat(ones(Int64,n),x) 

betaTrue = [l,2] 
y = X*betaTrue+ randn(n); 



---------------------------------

Least Squares Estimation 

• 'latrix notation, the model (35) is 

y = Xf) + e, 

where 

X = [ I x 1 I 
Then, the least-squares estimator of f3 is 

and the variance of this estimator is 

Calculations in Julia: 

In [ 3 J : 

XPX; X'X 
rhs; X'y 
XPXi; inv(XPX) 
println(XPXi) 

16363636363636364 -0.09090909090909091 
-0.09090909090909091 0.07272727272727274] 

In [ 4] : 

betaHat; XPXi*rhs 
println(betaHat) 

[0.6986138506616033,2.293983905821345] 

In [ 5 ] : 

eHat; y - X*betaHat 
resvar; eHat'eHat/(n-2) 
println(resVar) 

[0.45974834730130465] 

: I x,, l . 



Bayesian Inference 

r~risider making inferences about /3 from f(/Jly, a}). By using the Bayes theorem, this conditional density is 

,en as 

f(/Jly, a}) 
f(yl/3, a})f(/J)f(a}) 

f(y, a?) 

o:. f(yl/J, a} )f(/J)f(a?) 

o:.f(yl/J, a}) 

(2 2)-1112 { I (y- X/J)'(y- X/3)} = Jr(Je exp --
7 . 2 a;; 

(36) 

which looks like the 11-dimensional normal density of y with mean Xf) and covariance matrix la}. But, 

f(/Jly, a?) should be a two-dimensional density. So, the quadratic Q = (y - X/J)' (y - X/J) in the exponent 

of (36) is rearranged as 
Q = (y - X/J)' (y - X/3) 

= y' y - 2y' X/3 + /3' (X'X)/3 
A A ,.._, A 

= y' y + (/} - /3)' (X'X)(/J - /3) - /3 (X'X)/3, 

where fl is the solution to (X'X)/J = X' y, which is the least-squares estimator of /J. In this expression, only 

the second term depends on /3. Thus, f (/Jly, a?) can be written as 

!(/JI 2) { I (/} - fl)' (X'X)(/J - /J) } y, (Je (X exp - - 7 , 

2 a;; 

which can be recognized as proportional to the density for a two-dimensional normal distribution with mean 

fl and variance (X'X)- 1a}. Thus, in this simple setting, the posterior mean of /3 is given by the least

squares estimate, and drawing samples from the posterior are not needed. But, to illustrate the Gibbs 
sampler, we will apply it to this simple example. 



Gibbs Sampler for p 
T'"-9 simple regression model can be written as 

y =1/30 + x/31 + e. 
In the Gibbs sampler, /Jo is sampled from its full-conditional posterior: f(f301y, f31, o} ). This conditional 
distribution is computed for the current values of /31 and CJ}. So, we can write the model as 

w0 = 1/30 + e, 
where Wo = y - x/31. Then, the least-squares estimator of /30 is 

and the variance of this estimator is 

IJ = l'w 0 

/·O l'l ' 

A (J2 

Var(/Jo) = +. 
1 1 

By applying the strategy used to derivef(/Jly, CJ}) above, the full-conditional posterior for /Jo can be shown 
A ' 

to be a normal distribution with mean /Jo and variance ;,·', . Similarly, the full-conditional posterior for /31 is a 

normal distribution with mean 
, x'w 1 
/31 = --

x'x 
and variance ~,' , where w1 = y - I/Jo. In the calculations below, we will use the true value of CJ}. xx 

-dlculations in Julia: 



In [ 9 l : 

# loop for Gibbs sampler 
niter - 10000 # number of samples 

= [0.0, 0.0] 
. _dnB = [ 0. 0, 0 . 0] 
a=Float64 [ ] 

for iter = l:niter 

end 

# sampling intercept 
w = y - X[:,2] * b[2] 
x = X(:,l] 
xpxi = 1/(x'x)[l,l] 
bHat = (xpxi*x'w)[l,l] 
b[l] = rand(Normal(bHat, sqrt(xpxi))) # using residual var= 1 

# sampling slope 
w = y - X[:,l]*b[l] 
x=X[:,2] 
xpxi = 1/(x'x)[l,l] 
bHat = (xpxi*x'w)[l,l] 
b[2] = rand(Normal(bHat, sqrt(xpxi))) # using residual var= 1 
meanB = meanB + b 
push! (a,b[2]) 

if ((iter%1000) == 0) 
@printf("Intercept %6.Jf \n", meanB[lJ/iter) 
@printf( "Slope = %6.Jf \n", meanB[2J/iter) 

end 



Intercept = 0.725 
Slope 2.283 
Intercept 0.695 
Slope = 2.301 

ercept = 0.700 

-'Pe = 2.297 
Intercept = 0.702 
Slope = 2.294 
Intercept = 0.700 
Slope = 2.294 
Intercept = 0.696 
Slope = 2.296 
Intercept 0.699 
Slope = 2.294 
Intercept = 0.709 
Slope = 2.287 
Intercept = 0.714 
Slope = 2.283 
Intercept 0.712 
Slope = 2.285 

In [ 11 ] : 

using Gadfly 



In [ 15]: 

plot(x=a, Geom.histogram, 
Guide.title("Posterior distribution of 131''), 

de. ylabel ( "Frequency" ) , 
. -~de.xlabel(''l3l'')) 

Out[l5]: 
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Full-conditional Posteriorfor CJ; 

~ ~all that we assumed a scaled inverted chi-square prior for al. The density function for this is: 

f( ') (S? v)2)"•
12 

( ')-('+< in { VcS} } a;; = a:: - ' -exp ---, , 
f'(v)2) 2a;; 

(37) 

where S} and Ve are the scale and the degrees of freedom parameters for this distribution. Applying Bayes 
theorem to combine this prior with the "likelihood" (given in (36)), the full-conditional posterior for the 
residual variance can be written as 

f( a? 
1 

P) = f (yip, al )f(P)f (a}) 
• ' y, f(y,p) 

rxf(ylp, al)J(P)f(al) 

rx (al)-11!:. exp{-_!_ (y - XP)',(y - XP)} 
2 ae- (38) 

( ')-('+' )/7 { VeSf.: } x a/ - "• -exp ---, 
2a;; 

= (al)-(11+2+0,.)/:. exp { (y - xp)'(y - XP) + veSt } 

2aJ • 

Comparing (38) with (37), can see that it is proportional to a scaled inverse chi-squared density with 

S
2 (v-X/J)'(y-Xp)+c,.S' , . 

-= 11 + Ve degrees of freedom and " = • - ' scale parameter. A sample from this density 
"·· 

(y-Xp)'(y-XP)H,.S' 2 
can be obtained as • , ' , where x - is a chi-squared random variable with Ce degrees of 

X"' v,. ,, 
freedom. 

Exercise 

In the Julia script given here, the simulated value of the residual variance was used in the sampling of p. 
Extend this script to also sample al from its full-conditional posterior given above. In Julia, rand(Chisq(v),1) 
gives a chi-squared random variable with v degrees of freedom. Solutions can be found here 

,( . ./solutions/BaY.esSimglelinearExercise.igY.nb) where flat priors for aJ is used. 

Model with Normal Prior for Slope 

Consider the simple regression model that can be written as 

y =1/30 + x/31 + e. 
Here we consider a model with a flat prior for Po and a normal prior for the slope: 

where aJ is assumed to be known. 



Then, the full-conditional posterior for 0' = [f}, o)] is 

f(01y) r:x. f(yl0)f(0) 

( 
o )-1112 { (y - lf3o - x/31 )' (y - 1/311 - x/31)} 

r:x. a; exp 
0 2a,c 

x (a})-112 exp {-pf"} 
2a11 

( ")-("+• )/2 { lleS( } x a; - ", exp - --
7 

. 

2a; 

Full-conditional for /31: 

The full-conditional for /31 is obtained by dropping all terms and factors that do not involve /31 : 

f(/31 IELSE) r:x. exp {- (y - lf3o - x/31 )' ~y - lf3o - x/31)} x exp { - pf" } 
2ae- 2a/J 

{ 

w'w - 2w'xf31 + /Jf(x'x + aZ.!al)} 
r:x. exp 

0 2a;; 

r:x. exp 
{ 

w'w-(/3 1 -/3 1)
2(x'x+a}!ar7)-/3~(x'x+a}/a;7)} 

2a} 

"exp{ 

where 

x'w 
I "/ 7 ' (x x + a;; a11) 

and w = y - I/Jo. So, the full-conditional posterior for /31 is a normal distribution with mean /31 and 



Exercise 

1 Use Julia to simulate a vector of 1000 values for /31 from a normal distribution with mean zero and 
variance 3. Plot a histogram of these values. 

2. Use /Jo = I , /J 1 = 2 and c;] = S, to generate a vector of observations, y, that follows a simple 
linear regression model. 

3. Use the Gibbs sampler to draw 10,000 samples for /31 from its posterior distribution. 

A. Compute the mean and variance of the sampled values. 

B. Draw a histogram of the sampled values. Compare with prior. 





An Equivalent (animal) Model 
for Genomic Prediction 

Mixed Model Equations 
J=l'.u+Zu+e 

' [ z, 
l'Z 

Z'Z+,1}G·' 
fnr _full ron( G = var(u) 

l = I I) I 
Or Mr of MME "numoer of h,ed etiec,; plu< nurn~er of animal, 

Conside< '"' I-ipl•<anons fc• 100-'.,000 animals wI1h ',0,0DO loci 

GBLUP 

If "the variance parameters are assumed 
known and the inverse of the genomic 
relationship matrix is multiplied by (known) A, 
the system is known as GBLUP, as opposed to 
conventional pedigree or PBLUP 

- It is effectively weighting all the loci equally 

- It is similar to BayesCO except that in that method 
we estimate the variance components after 
including a prior distribution for them 

More loci than animals 

Allol,, eflec:, 

y=l_u+ I M,a,+e 
,., 

)'=1,u+"Z""u"+e 

Orde: of MME "n~mbe, of ~,,d ettern plc•s nJmbe, of an,.,.,,1, 
Com,der the 1mpl,canons lor 100-1.00Q ,n,ma's ,v,th 50.000 ,oc, 

Mixed Model Equations 

I= I , , I 

Lack of Equivalence 

The GBLUP and Marker Effects Models (MEM) 
such as BayesCO with high df for the prior 
variances will give the same EBV for the 
genotyped animals 
- This is true regardless of 

• whether the models fit the A ~!!ele at every locus, tne 8 
allele at every locus, or both alleles at every locus 

• how the alleles ;,re centered (coded 0,1,2 or -1,0,1 etc) 

- However, the PEV (and reliability) for GBLUP are 
not invariant to these alternative models 
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Genomic Analysis 
Combining Genotyped 

and Non-Genotyped Individuals 

Multi-step Genomic Prediction Analysis 

Mixed model evaluation using all phenotypes and 
pedigree information to generate EBV and R2 

De regression of EBV on genotyped individuals 
using EBV and R2 of trios of every genotyped 
individual, its sire and its dam 

Weighted multiple regression analysis of 
deregressed EBV to estimate SNP effects 

Genomic prediction DGV of genotyped individuals 

Pedigree prediction of DGV for nongenotyped 

Selection Index blending of DGV & EBV for GE-EBV 

Nejati-Javaremi et al (1997) 

,=~/,,, ,=~"Vd" 

Replace A with G = L L rn9 rn,1 1 for genotypcd 
,= I J= I 

Various other authors expanded this 
with various approaches to center the marker covariates 

to create a Genomic Relationship Matrix 

Fitting G·1 in the mixed model equations 
is known as GBLUP 

and gives the same estimates 
of genomic merit as MHG "BLUP" 

Why a Combined Analysis? 

To exploit all the available phenotypic data in 
GWAS and genomic prediction 

- Not just the records on genotyped individuals 

-Account for preselection of genotyped individuals 

To ensure that genomic predictions include all 
available information 

To avoid approximations required in multi
step analyses (that lead to double-counting) 

Pedigree Prediction 

[y"] = [X"]b + rz, O. l[u"] + [e.,,l 
y, X, 0 Z, u, e, 

with 

[
u". ]-[A,,,, A,,,;] , var - o. 
Ur,- A(,'n Ar;qJ 

Where A Is the numerator relationship matm: (from ped,g.-ee) 
with subscripts necnon-genotyped & g=genotyoed 

Genotyped Animals 

MeuwIssen, Hayes & Goddard (2001) 

j= #ioci 

with u, = M,a = L m)a/;1 
J= l 

a J = substitution effect 

o J = ( 0, 1) indicator i;ariable 
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o, 
o, 

0 

Bayesian Alphabet 

(known) er; wa,s "BLUP" 

(unknown) er; was BayesA 

o, ....IJ-with known probability- H 

er;,= ( nnknown) er; was BayesB 
Meuw,ssen. Haves & Goddard 110011 

(J 11·il.h (tin) knmcn prr1/)(J,/J,ilit_1; = iT 

K,1dlcaya" al !lOJO) .-lat>,er et al (lOll) 

What to do with the non-genotyped7 

Known as Single-Step "First Attempt" 

Just replace that pan of the nume,alor relationsh,p matri> with genomic relatlomhips 

Then need a "brute-force" inversion of the var-cov matrix 

M,mal ~t al 11009) 

What's wrong with Single-Step GBLUP? 

When there are less loci than genotyped 
individuals, G is singular 

When there are more loci than genotyped 
individuals, G is singular if locus covariates are 
centered by allele frequency 

(since G=MM' and M'l=O then Gl=O) 

These problems can be overcome by ad hoc 
regression of G towards A 
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Evolution of "The Model" 

y u■ e 

y 

""'"'"'"""((,;/ 
"11/H • 

UWt: 

I''"' 
I 

[Qu,,a,en1 I "" ,. ' , ,·,,,,,I I' . . 1· 
,'_"_· _" ,_•~:=~;;=,::=.~='' ==~•=·~:=~M=':=-~:,; 

y JJulle 

What to do with the non-genotyped7 

Known as Single-Step "Second Attempt'' (w,:h brute force irwerse\ 

Then with recogn11lon ol its simply structured ,nverse 

A,,,A;,,G,,,1 
G,,, 

Offering programmmg appeal by <,,mplv replac.ng A 1 ,n MME by H: 
known as Single-Step GBLUP and varian:s of which are widely used 

What's wrong with Single-Step GBLUP? 

The var-cov matrix involves a blending of A 
and G requiring that they represent the same 
"base" 

- Thf> base in A is the pedigree founders but the 
allele frequencies are not usually known 1n that 
population 

Jt is not clear what to use to center locus 
covariates in populations of mixed breeds, or 
populations with variable breed percentages 
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What's wrong with Single-Step GBLUP? 

Its predictive ability can be improved by 
introducing another ad hoc constant K whose 
optimal value can be found by trial and error 

What's wrong with Single-Step GBLUP? 

It is not computationally straightforward for 
extension to Single-Step BayesA 

It is not suitable for application of mixture 
models (BayesB, Bayes(, BayesCn) 

- But these models that provide variable selection 
are particularly appealing in fine-mapping 
applications such as with imputed NGS genotypes 

Substituting these results gives 

IY·]=[x··]b+[z. O.J[u··]+[e··] 
y,, X., 0 Z,, u, e, 

=[x']b+[z •• o][A .. ,A;.'M,a]+[z. o][' ]+['··] 
A., 0 Z, M.,a O O O c, 

Ferr,andoet al fl0l4i G5f 

What's wrong with Single-Step GBLUP? 

It requires brute force inversion of 2 matrices 

whose order is the number of genotyped 
individuals (ie G and Agg) 

- The inversion effort rnc.rease rapidly with number 
of genotyped individuals 

- Inversion is impractical beyond say 100,000 
individuals 

Let's revisit the basic idea 

IY."]~[~··]b+[z •• o ]["·]+[e'.·.] 
y. .\ ., 0 Z.. 11., e. 

with u 1, = M,,a for genotyped indirid11.als 

whereas u,, = -;;,/u,+ ( u,, - ;;:_/11,) = ;;,. 11 .. + c,, 

with ;;:/u,, = A,,A;i,'n,, 

so U,, = Ae,.A;,) U,;+ (11, -A,,,,A ,.'u,,) 

With "Hybrid" Mixed Model Equations 

with EBV ghen by 

~=M,G 

~: =M,Cl+ €. 

"4[< :,,,sic '.,te~ ~BlJ'· 
"' <C••·r,; , ;·a ,,f)·,-• ~,,,,e 
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If everyone is genotyped 

These are the MME that form the basis of BayesA. BayesB. Bayes( etc 

Invariant to Covariate Centering 

Genotyped 

y, 111111µ ---t X QB ---t-Z,M oM e_, 

= 1µ + Xr,b + Z9 1c'a + ZQ(Afq - lc 1)a + e0 

define t = c'a 

y,, ~ !(µ + t)+ X,b + Z,,(M,- lc')a + e,, 

= 1µ· + X,1b --r Z,).1'.,a---t-e,1 

when all animals genotyped (BayesA, BayesB etc) 

Computational Aspects 

It is easy to compute A ,,;.A~; ./11,, 
- And this can be done in parallel 

The computing becomes easier (rather than more 
difficult or impossible) as more individuals are 
genotyped 
Readily caters for variable selection or mixture 
models (eg BayesB, Bayes() 
We believe this formulation is readily extended 
to multi-breed and multi-trait settings 
In an MCMC framework can provide PEV 

If no one is genotyped 

i 

" -M'-Z'X ·},1'7'kM~·¢ ! 
X'X XIZM 

Z,'X, Z,'Z,M, 

These MME form the basis o! Lrad,nonal pedigree-based 8L;JP 

But non-genotyped NOT invariant 

l\ron - ge1,o/yped 

y.•11µ..,->,,b, Z,Av,,:1..111,a~z.t•e. 

= lµ--,- X.b+ Z,A.,A,;' k'o + Z.A.,A~' (1\l;- lL')a + Z .. e, + ~. 
= lp-i- X.b+ Z . .4 •. ,A~.' 11 + z,.,LA~ Af'.o - Z.E- - ~ 

So combined ar,alys1s of genotyped and non-ger~type animals 
need to include a covariate for I if there is arbitrary centerrng 

(unless t = O) 

Summary 

Genomic prediction is an immature 

technology 

Much effort is required to extend algorithms 

and to develop parallel computing procedures 

to implement the full range of multi-breed, 

multi-trait, maternal effects and other models 

that have been routinely applied to large-scale 

animal prediction in recent decades 
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Prediction of BVs 

with EBV given by 

u" =Mga 
- ~ -u,, =M,,a+ €, 

or, with M" = A,,9A~,iM_, 

~ =A~YA;)M9CY + z 
= A,,,.A;/ Ug +?: 
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