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Julia Packages 
• List of registered Julia packages {http://docs.julialang.org/en/release-

0.1/packages/package Ii st/#ava i I able-packages) 
• Will use Distributions Package (http://distributionsjl.readthedocs.org/en) to simulate 

data. 
It can be added to your system with the command: 

In [l]: Pkg.add("Distributions") 

INFO: Nothing to be done 
INFO: METADATA is out-of-date - you may not have the latest version of Distributions 
INFO: Use 'Pkg.update()' to get the latest versions of your packages 

This needs to be done only once. 

But, to access the functions in the Distributions package the "using" command has to be 
invoked as: 

In [2): using Distributions 



Simulate matrix of "genotype" covariates 

In[]]: nRows = 10 
nCols = 5 

Out[3]: 

X = sarnple([O,l,2],(nRows,nCols)) 

10x5 Array{Int64,2}: 
0 0 2 1 2 
1 1 1 1 0 
0 2 1 1 0 
1 2 
0 2 
2 1 0 0 2 
2 2 2 0 2 
1 2 2 

0 2 
2 0 2 0 

Each element in Xis sampled from the array [O, 1,2]. 

Other methods of the function "sample" 

In [4]: methods(sample) 

out[ 4 J: 7 methods for generic function sample: 

sam p I e( a ::AbstractArray{T,N]) at /Users/ roh a n/.ju I i a/v0.3/Stats Base/ s re/ sa m pl i ng.j I: 2 77 
(https:/ / /!ith '-\ b.com/ Ju Ii aS tats/Stats Ba se.j l/tree/2 3b3 6af460cf d 6c 14 7 ef ef 90 7 4a 7 6a4e8cf 13d ae/s re/ 

• samplei._ T j (a::AbstractArray(T,N],n::I nteger) at /Users/rohan/.jul ia/v0.3/StatsBase/src/sampl ing.jl 
(https :/ / /!ith'-\ b.com/ Ju Ii aStats/S tats Base .j l/tree/23b36af 460cf d 6c 14 7 ef ef 90 7 4a 7 6a4e8cf 13d ae/ s re/ 

• sample i._ T j (a::AbstractArray(T,N],dims::(I nt64 ... ,)) at /Users/rohan/.julia/v0.3/StatsBase/src/sampl 
(https :/ / githu b.com/ Ju Ii aS tats/Stats Base .jl/tree/2 3 b36af 460cf d 6c 14 7 ef ef 90 7 4a 7 6a4e8cf 13dae/ src/ 

• sample(wv::WeightVec{W,Vec<:AbstractArray(T <:Real,1]]) at /Users/rohan/.julia/v0.3/StatsBase/sn 
(https:/ / githu b.com/ Ju Ii aS tats/S tatsBase.j l/tree/23b36af 460cf d 6c 14 7 ef ef 907 4a 7 6a4e8cf 13dae/ src/ 

• sample(a::AbstractArray(T,N],wv::WeightVec{W,Vec<:AbstractArray{T <:Real,1]]) at 
/U sers/roh a n/.j u Ii a/v0.3/S ta ts Base/ src/sa m pl i ng. j I: 34 7 
(https:/ / j!ith'-\ b.com/ Ju Ii a Stats/S tatsB ase.j l/tree/2 3b3 6af 460cf d 6c 14 7 ef ef 907 4a 7 6a4e8cf 13d ae/ src/ 

• sample i._ T j (a::AbstractArray(T,N],wv::WeightVec(W,Vec< :AbstractArray(T <:Real, 1]],n::lnteger) 
/U sers/rohan/.j u Ii a/vO. 3/S tats Base/ src/ sa mp Ii ng.j I : S 2 9 
(https:/ / jlith'-\b.com/ Ju Ii aS tats/S tatsBase.j l/tree/2 3b36af 460cf d6c 14 7 ef ef 90 7 4a 7 6a4e8cf 13d ae/ src/ 

• samplei._ T j(a::AbstractArray{T,N],wv::WeightVec(W,Vec<:AbstractArray(T <:Real,1]],dims::(lnt6• 
/Use rs/ ro han/.j u I i a/vO. 3/S tatsBa se/ s re/ sa mpl i ng.j I: 5 3 2 
(https:/ / gi thu b.com/ Ju Ii aS tats/Stats Ba se.j l/tree/23b36af 460cf d 6c 14 7 ef ef 90 7 4a 7 6a4e8cf 13d a e/ src/ 



Column of ones for intercept 

In [ 5 l : X • [ones(nRows,l) X] 

Out[5]: 10x6 Array{Float64,2}: 
1.0 0. 0 0.0 2. 0 1. 0 2.0 
1.0 1.0 1.0 1.0 1.0 0.0 
1.0 0. 0 2. 0 1.0 1.0 o.o 
1.0 1.0 2. 0 1.0 0. 0 2. 0 
1.0 0. 0 1.0 1.0 0. 0 2. 0 
1.0 2. 0 1.0 0.0 0. 0 2. 0 
).0 2. 0 2.0 2. 0 0. 0 2. 0 
1.0 1.0 2.0 2. 0 2. 0 1.0 
1.0 0.0 0.0 2. 0 2. 0 1.0 
1.0 2. 0 2.0 0. 0 2. 0 0.0 

Simulate effects from normal distribution 

In [6]: nRowsX, nColsX = size(X) 
mean= 0.0 

Out[6]: 

std = 0.5 
b = rand(Normal(mean,std),nColsX) 

6-element Array{Float64,l}: 
-0.34724 

0.0406174 
-0, 316707 

0.233593 
0.0933254 
0. 277288 



Simulate phenotypic values 

In [7]: resStd = 1.0 

Out[7]: 

y = X*b + rand(Normal(O,resStd),nRowsX) 

IO-element Array{Float64,1}: 
-0.0880872 
-1.17895 
-2.80082 

2. 08141 
0.371737 

-0.358808 
0.0203133 

-1.26218 
0.317851 

-1.2807 

Function to simulate data 

In [8]: using Distributions 

Out[S]: 

function simDat(nObs,nLoci,bMean,bStd,resStd) 
X [ones(nObs,1) sample([0,1,2],(nObs,nLoci))J 
b = rand(Normal(bMean,bStd),size(X,2)) 
y = X*b + rand(Normal(0,0, resStd),nObs) 
return (y,X) 

end 
nabs 10 
nLoci 5 
bMean 0.0 
bStd 0.5 
resstd 1.0 
res= simDat(nObs,nLoci,bMean,bStd,resStd) 
y res(l] 
X = res(2J 

10x6 Array{Float64,2}: 
1.0 1.0 0.0 2.0 2.0 1.0 
1.0 2.0 0.0 2.0 0.0 2.0 
1.0 2,0 1.0 0.0 0.0 0.0 
1.0 0.0 1.0 1.0 1.0 1.0 
1.0 2.0 1.0 1.0 2.0 1.0 
1.0 2.0 1.0 1.0 0.0 0.0 
1.0 1.0 1.0 0.0 0.0 0.0 
1,0 1.0 2.0 2.0 0.0 0.0 
1.0 0.0 0.0 2.0 0.0 0.0 
1.0 1.0 2.0 0.0 0.0 2.0 



XSim: Genome sampler 
Simulate SNPs on chromosomes 
Random mating in finite population to generate LO 
Efficient algorithm for sampling sequence data 

Install XSim 

In [9]: # installing package 
# only needs to be done once 
Pkg .clone ( "https: / /github. com/reworkhow/XSim. j 1. git") 

INFO: Cloning XSim from https://github.com/reworkhow/XSim.jl.git 

XSim already exists 
while loading In[9], in expression starting on line 3 

in error at error.jl:21 
in clone at pkg/entry.jl:148 
in clone at pkg/entry.jl:175 
in anonymous at pkg/dir,jl:28 
in cd at /Applications/Julia-0.3.7.app/Contents/Resources/julia/lib/julia/sys.dylib 
in cd#228_ at /Appl1cat1ons/Jul1a-O.J.?,app/Contents/Resources/Jul1a/l1b/Jul1a/sy 

s.dylib 
in clone at pkg.jl:30 



Initialize sampler 

In [10): using XSirn 
chrLength 1 . 0 
numChr 
numLoci 2000 
mutRate O .O 
locusint chrLength/numLoci 
mapPos = {O:locusint:(chrLength-0.0001)] 
geneFreq = fill(0.5,numLoci) 
XSim.init(numChr,numLoci,chrLength,geneFreq,mapPos,mutRate) 

Simulate random mating in finite population 

In (14]: pop 
nGen 

startPop() 
10 

popSize 500 
pop.popSample(nGen,popSize) 

Sampling 500 animals into base population. 
Sampling 500 animals into generation: 1 
Sampling 500 animals into generation: 2 
Sampling 500 animals into generation: 3 
Sampling 500 animals into generation: 
Sampling 500 animals into generation: 
Sampling 500 animals into generation: 
Sampling 500 animals into generation: 
Sampling 500 animals into generation: 
Sampling 500 animals into generation: 





Julia & IJulia Cheat-sheet (for 18.xxx at MIT) 

Basics: 
j ulialang. org documentation 
gi thub. com/ stevengj / julia-mi t installation & tutorial 
ipython notebook --profile-julia start IJulia browser 
shift-return execute input cell in !Julia 

Defining/changing variables: 
x = 3 define variable x to be 3 
x = [l,2,3] array/"column"-vector (1,2,3) 
y = l 1 2 31 1 x3 row-vector (1,2,3) 
A= [l 2 3 4; 5 6 7 8; 9 10 11 12] 

-set A to 3x4 matrix with rows 12,3,4 etc. 
x[2 J = 7 change x from (1,2,3) to (1,7,3) 
Al 2, 11 = o change A,_Jrom 5 to 0 
u, v = (15.03, l.2e-27) set u=IS.03, v=l.2xl0 27 

f Ix 1 = 3x define a function f(x) 
x -> 3x an ""anonymous" function 

Constructing a few simple matrices: 
rand I 12 I, rand 112, 4) random length-12 vector or I 2x4 matrix 

with uniform random numbers in [0,1) 
randn[ 121 Gaussian random numbers (mean 0, std. dev. I) 
eye Is I Sx5 identity matrix I 
linspace I 1. 2, 4.7,1001 100 equally spaced points from 1.2 to 4.7 
diagm[ x I matrix whose diagonal is the entries of x 

Portions of matrices and vectors: 
x[ 2, 12 I 

x[2:end] 

A[ 5, 1, 3] 

A[ 5,, I 
diag(A) 

the 2"' to l 2'h elements of x 

the 2"" to the last clements of x 
row vector of I" 3 elements in S'h row of A 
row vector of S'h row of A 
vector of diagonals of A 

Arithmetic and functions of numbers: 
3*4, 7+4, 2-6, 8/3 mull., add. sub .. divide numbers 

37 "'>8+'.>1 3'7, 3'(8+2im) compute or_,· - power 

sqrt(-S+Oim) ~ as a complex number 
p 

exp(12) e -
log(31, 1091011001 naturallog(ln),base-10log(log 10) 

abs ( -s I, abs ( 2+3im) absolute value 1-51 or 12+ 3il 
sin I Spi/31 compute sin(Srr/3) 
besselj I 2, 61 compute Bessel function }2(6) 

Arithmetic and functions of vectors and matrices: 
x * 3, x + 3 multiply/add every element of x by 3 
x + y element-wise addition of two vectors x and y 
A*y, A*B product of matrix A and vector y or matrix B 
x * y not defined for two vectors' 
x . * y element-wise product of vectors x and y 
x . • 3 every element of xis cubed 
cos Ix 1 , cos (A I cosine of every element of x or A 
exp(AI, expm(AI exp of each element of A, matrix exp eA 

x', A' conjugate-transpose of vector or matrix 
x'*y, dot(x,y), sum(conj(x).*y) threewaystocomputex·y 
A \ b, inv(Al return solution to Ax=b, or the matrix A-1 
i,, v = eig(Al eigenvals A and eigenvectors (columns of\/) of A 

Plotting (type using PyPlot first) 
plot(y), plot(x,y) plot y vs. 0,1,2,3 .... or versus x 
loglog(x,y), semilogx(x,y), semilogy(x,y) log-scaleplots 
title ( "A title"), xlabel ("x-axis"), ylabel ( "foo") set labels 
legend ( [ "curve 1", "curve 2" J , "northwest" ) legend at upper-left 
grid( 1, axis 1 "equal" 1 add grid lines. use equal x and y scaling 
title(L"the curve $e'\sgrt{x}$") title with LaTeX equation 
savefig( "fig .png"), save fig{ "fig .eps") save as PNG or EPS image 



uenunuc .::,e1en10n L.ourse 

The objective of this laboratory session is to gain familiarity with the mixed linear 
models that we will be using in the Bayesian analyses later in the course. 

The lecture notes introduced the equations for generalized least squares (GLS). The 
GLS equation(s) for the model we discussed in the lecture are 

b0 = (x•v·'x)" (x•v·'y), for v = ZGZ' + R. 

These equations are useful as Vis typically full rank, but are not practical in many 
situations where Vis large. In this example with just the mean fitted as the only 
fixed effect, the GLS equation will be a scalar form. 

In order to form V, you will need to know G and R. 

Create a small Hendersonian data set by constructing a vector y of phenotypic 
observations (no more than 6 observations). Create a corresponding X matrix to 
represent the incidence matrix for the fixed effects. This matrix will have as many 
rows as there are observations in y, and as many columns as there are fixed effects 
in b. Use the minimum configuration for X which is a vector of l's that would 
correspond to a model that included an overall mean. Other alternatives for X might 
be to include a vector of covariates (eg age of the animal at measurement) or a class 
variable such as a fixed effect for the sex of the measured animal, or covariates and 
classes. 

Construct a G matrix that will be square and have order equal to the number of 
animals in the pedigree file. For ease of viewing, the order of G should not exceed 6. 
The G matrix is the variance-covariance matrix of the fitted random effects, such as 
the breeding values. In that case, G will be the product of the numerator 
relationship or A matrix, and the scale additive genetic variance. You c·ould form A 
for some simple pedigree and assume a value of the additive genetic variance, or 
create a small pedigree, and use Julia to form K' directly and invert it to inspect A. 
Note that the pedigree might contain some animals that do not have observed 
phenotypes, so the length ofy may be less than the order ofG. 

Construct an incidence matrix Z, that relates the observations in y to the 
corresponding breeding value in u. The matrix Z may be an identity matrix if all 
animals in the pedigree have a phenotypic record. More typically, Z has as many 
rows as there are records in y, and as many columns as there are animals in u (and 
therefore the G matrix). 

Construct R, the variance-covariance matrix for the residual effects, which for 
independent and identically distributed residual effects will be an identity matrix of 
order equal to the length ofy, multiplied by the scalar residual variance. Recall that 



tunes lL tv1ay L.:UlJ uenon11C .)etecuun L.uurse 

the heritability is the ratio of the genetic variance over the phenotypic variance, and 
the phenotypic variance in this model is the sum of the additive genetic and residual 
variances, so the values you assume will imply a particular heritability. 

Lastly, construct y using MvNormal to produce the vectors u and e. Remember 
these vectors may be different lengths if some animals in the pedigree do not have 
observations. 

Given defined values for all these vectors, matrices and constants, calculate the 
phenotypic variance-covariance matrix V, and then solve the GLS equations to 
obtain best linear unbiased estimates (BLUEs J of the fixed effects. Use the BLUEs to 
adjust the phenotypic records and form deviations, that you can then use to 
compute the best linear unbiased predictions (BLUP) of the random effects as a 
linear function of these deviations, as described below. Note that this form of 
obtaining BLUP works with a singular G matrix. 

The equations to obtain BLUP estimates are 

u = cz•v·1(y-Xh'). 

Be sure to save all your steps so you can immediately repeat your calculations with 
a modified dataset or different parameters. Print out and inspect the results of all 
your calculations. 

Exercise 2 

Repeat the same exercise as above, but this time estimate the BLUEs and predict the 
BLUPs by setting up and solving the mixed model equations. The answers should be 
identical to those you obtained using GLS. The mixed model equations are shown 
below. 

Exercise 3 

X'R 1Z 
Z'R 1Z+G· 1 

Obtain the variance of the-estimated BLUP effects, and the prediction error variance. 
These values require elements of the inverse of the mixed model coefficient matrix. 
We will use the following notation 

n,... .... ;,.....,. r ........... ;,.,1, 

ell 

e" 
ell 

e" 

., 


