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OUTLINE/ TOPICS 

• Introduction and motivation (Jack) 

• Models to predict single SNP effects (Dorian) 
o Fixed effect models 
o Fitting SNPs as random effects 

• Bayesian methods (Rohan) 
o Bayes theorem 
o Gibbs sampler 
o Metropolis Hastings 

• Genomic prediction (Dorian) 
o An equivalent (animal) model for genomic prediction 
o Some alternative computing strategies that are not equivalent models 
o Two practical problems of genomic prediction 

• Bayesian methods applied to genomic prediction (Rohan) 
o Bayes A 
o Bayes B 
o G-BLUP 

• Interpretation of SNP effect estimates (Jack) 
o Linkage and Linkage Disequilibrium 
o Spurious associations from relationships and breed mixtures 

• Application of genomic prediction models to real data (Dorian) 
o Training and validation 
o Problems with validation 
o Improved Validation - simulated real beef cattle applications 
o Validation Statistics 

• Other genomic prediction methods (Rohan) 
o Bayes Cn and estimation of n 
o Estimating the scale factor 
o Alternative distributions - Heavy-tailed vs. Normal distributions 
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ADDITIONAL TOPICS 

• BIGS Genomic Selection Analysis software (Dorian) 

• Genomic Prediction across breeds and in crossbreds (Dorian, Jack) 

• Low density panels for Genomic Selection (Jack) 

• Degression of EBY and weighting information (Dorian) 

• Pooling genomic EBY and pedigree or own information (Dorian, Jack) 
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Genomic Selection in Livestock 

Dorian Garrick 
Rohan Fernando 

Jack Dekkers 

June 14 -18, 2010 

, r- A,T 11~:._. n)'.IMAL 
IOWASTATE SCIENCE 
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College of Agriculture and Lliettc,,s 

Genomic Selection in Livestock 

Some housekeeping 

Course hours: 

8:30 -12 AM with 30 min. break at - 9:45 

Lunch on your own 

1 :30 - 5 PM with 30 min. break at ~2:45 

Course notes: 

Distributed daily+ posted at: 
http:lltaurus.anscl.lastate.edu/groups/genomlcselectionlnllvestock/wiki/129ad/Course_lnformation.html 

Course BBQ: Thursday@ 5:30 -details to follow 
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Genomic Selection in Livestock 

Introduction and Motivation 

Jack Dekkers 

Past and Current 
Selection Strategies 

Genes 

selection 

!!i~ Estimated 
~ Breeding 

~ Value 

~ 1J 
Phenotype 
of relatives 
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This approach has been very successful 
for many traits 

US Holsteins - Milk production 
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and has Important limitations 
1-9-Need to select Bulls by Progeny TMt 

X 
0 
r 

5years and 
c:::::::> 
$$$$ later 

Superior progeny 
tested bull 

Limitations: 
-Long generation Intervals 
-High cost of progeny test 
-Difficult to Improve 

low heritable traits 
tf-rtUlty, dlaNu realatanu) 

·10- '00: Promise of 
Molecular Genetics 

Mean 
weight.., 

-~~t~t-r,,:• Find"'-:;' genes 

markers linked to QTL 

;!l~~~p~~> ·:::i:i: 
Selection 
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The promise of MAS 

c:} Phenotyplc ~ 

data ~.--~----, 
Marker-Assisted 

~--~~ Selection (MAS) 

c:}I M°c!.9:~r I 
• Expressed In both saxes 
• Expressed at early age 

• Requires lass phenotyl)IC data 

PotenUal gains from MAS In livest 
... ······•-•NC.1"1CGU) 

QTL wllll 113 of 1"''1io ~ ••otyf,ll -1ttd 

l~I 
MAS ls moat 
beneftclal for 
'dlfflcult' traits 

~tic 
Carcus trait 

.• -•- / S.X-llmtt.d trait 
o ,.::______ ,..;2· / PhenotyiMdatlwaelectlon 

1 -2---- 3 -~__/- Phenotyped before aeledlon 
Generation 5 
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Many m.rkers Trait Direct markers LO markers LE markers 
Congenital BLAD (OJ 
d81"C(S Cltrullnaemla (D,B) 

andQTLhave DUMPS (D) 

CVM(D) 

been reported Maple syrup urine (D,B) 

Mannosldosis (D,B) 

but few have RYR(P) RYR(P} 

Appearance CKIT (P) Polled (BJ 

been utlllnd 
MC1R/MSHR (P,B,D) 

MGF(B) 
Milk quality •·-Casein (D) 

(1-lactoglobulln (D) 

Examples of 
FMOJ (D) 

Meat quality RYR(P) RYR (PJ 

RN/PRKAG3 (P) RNIPRKAGJ (P) 

gene tuts In A-FABPIFABP4 (P) 
H-FABP/FABPJ (P) 

commercial CAST (P, BJ 
:>15 PICmarq'"' (P) 

breeding THYR (B) 
Leptin (B) 

D • dairy cattle 
Feed intake MC4R (P) 
Disease Prp (SJ B blood group {C) 

······--

a • beef cattle 
FfB (P) K88 (Pl 

Rei,ro;:lu;,tion Booroola (S) Booroola {S) 

C•poultry tnverdale(SJ ESR{P) 
Hanna (S) PRLR (P) 

P•plp RBP4 (P) 

Growlh & MC4R (P) CAST cPI QTL(PJ 

S•atMp 
composition IGF-2 (P) IGF•2 {P) 

Myo5tatin {B) QTL(B) 
Callipyge (SJ Carwell (S) 

Milk yield & OGAT(D) PRL (DJ QTL(D) 

Dol<ken, -. J.Anlm.Scl composition GRH (OJ 
,·'k·>Ca~11ln /D) 

- - -

3 types of marker loci for MAS 
Direct m.rkers Functional mutations g] - known genes 

LD-markers - In pop.-wide Linkage Disequilibrium 
withQTL 

Marker-QTL linkage phase ffiQ BE]Q ~9 
-consistent • • 

across population G A A 
~ 

I/ LE-markers • used on a within-family basis '\ 

• In pop.-wide Linkage Equll. with QTL 
Marker-QTL linkage phase NOT consistent across families 

Sire 1 Sire 2 Sire 3 Slre4 
G Q G 9 G Q G 9 I - I 

A A n ;. 0 ;. -
" n a / 
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Reasons for limited use of MAS 
in livestock tto •te> 

• # markers available was limited 
• Markers only explained limited % of genetic variance 

• Only QTL with rnodefate - Iara- effects detected 

• Genotyplng costs 
• Marker/QTL effects were not consistent/ 

not transferable to commercial breeding populations 
• 'Beavis' effect- effects of 'significant' marke.-s 

tend to be overestimated 
• Marker effects were estimated within families 

or In experimental crosses 
• Interactions of markerlQTL effects with genetic: 

background and / or environment 
• Inconsistent marker-QTL LO across nopulatlons 
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High-density SNP genotyping tools are 
now available for most livestock species 

-~ 

BovineSNPS0 
- Developed in collaborat!on with USDA - Beltsville. University of 

Missouri. and University of Alberta 

CanineSNP20 ➔ Ciininf;l.!D (,)nifl{l in QJ /n{i':J'. 
- 22.000 validated SNP probes deri~·ed from the Ca111Fam2.0 assembly 

EquineSNPSO 
- Developed In collaboration with: lntemat1onal Equine Genome 

Mapping Workshop and the Morris Animal Foundation's Equine 
Genome Consortium 

PorcineSNP60 
- Developed in collaboration v,ith Int'! Porcine SNP Consortium (~lartien 

Greenen: Wageningen Univ) 

OvineSNP50 
- Developed in co!laboration with u,e International Sheep Genomics 

Consortium (!SGC) 

MaizeHD - cc,min~I in Q4 20UfJ'. 

And many more ... 
illurriina· 

How to use these new tools? 

Conduct Statistical Analysis for 
each SNP (Genome-wide Association Analyses - GWAS) 
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GWAS 
SNP genotype vs. phenotype 

AAGCCTT AATT 

associations analyses across genome 

Estimates of SNP Effects 
Mille 

Very noisy estimates 
; ~ Heird to separate true 

• from false ossociations 
1 7 Many false negatives/positives • 

i 
' ' • 

. . :: . .,oifv • ::. ,h}· .. ;,;: 

USDA Paul VanRaden cm-om, == -· Animal Im rovement Pro rams Laborato 

9 



How to use high-density SNP data? 

Conduct Statistical Analysis for 
each SNP (GwAs) 

Use only 
significant SNPs 

for MAS 

Allows cletKtlng men LO ma 
but •till~ from only ualng 
•ltlnlflcant muken 

• Small etr.cts are mined 
• 

' 

Use of high-density SNPs for MAS 

Conduct Statistical Analysis for 
each SNP (GwAs) 

Genomic 
selection 

:1 
1i: 1:, 
Ji _, 

Use only 
significant SNPs 

for MAS 

Use all 
SNPs 

for MAS (Meuwissen et al. '01) 
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Solution: Genomic selection 
-1111.2001-

Genetic Evaluation using high-density SNPs 
• All SNPs fitted simultaneously, I.e. 50,000 w. 11t • time 

• SNP effec:ts fitted as random vs. fixed effec:ts 
• enables all SNPs to be fitted simultaneously 

• shrinks SNP effect estimates to O depending on evidence from data 

~ tQl\m 
""'' Ii ., •• ,~ .... 

y,=µ+~ ~•• + e, 
SNPk 

-
~~ 

~ 
Use to estimate 

Eatlmatu of SNP effec:ta ~k breeding value of new 
Implemented using a variety of animals based on 
Bayesian methods (Bayes-A, -B, -CJ genotypes alone 
Or by using genomic vs. pedigree 

Genomic EBV • L l-91 relationshins in animal model BLUP IGBLUP\ 

Example Genomic EBV based on 3 SNPs 
/\ 

with eatlmated effec:ta (ll fort A ahlea 1-111111) of: 
+10forSNP1 
+ SforSNP2 
-10forSNP3 

Genomic 
SNP 1 SNP 2 SNP3 Breeding 

Individual henotype Value 1.,enotype Value lienotype Value Value 
1 AA 1u HA l AA -lU 5 
2 AA 10 AA 5 BB 10 25 
3 AB 0 BB -5 AB 0 -5 
4 AB 0 BB -5 AA -10 -15 
5 BB -10 AA 5 AB 0 -5 
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II) 
;; 
E 
t: 
<i: .... 
0 ... 
C1) 
.c 
E 
:::, 
z 

Data used to develop 
Genomic predictions In Holsteins 

1000 >3,500 progeny-tested bulls 
• Predictor 

Predictee 

···Young 800 

600 

400 

200 

0 
0 0 0 N 
ll) t- O> O> 
O> O> O> O> .... .... .... .... 

··~~---· 

'<t <O co 0 
O> O> O> 0 
O> O> O> 0 .... ..... ..... N 

Year of Birth 

N ~ CO CO 
0 0 0 0 
0 0 0 0 
N N N N 

Genomic EBV have greater reliability 
for young bulls and heifers 
than Parent Average EBV 

E.~for Youn!! Holstein Bulls 
nR-n •nd 11 er, 2009 USDA-AIPL) 

flp:ll•lpl.arsusda.gov/pub/outgolng/Genomk:Rellablllly0608.doe 

Gain over parent average 
lralt rellablllty (-39%) 

Net merit +23 
Mllkyleld +32 
Fat yield +36 
Protein yield +28 
Productive life +33 
Dtr. Pregancy rate +20 
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The Promise of Genomic Selection 
(based on simulation and some empirical results) 

• Increase accuracy of EBV at a young age 
• Reduce generation Intervals 
• Reduce rates of Inbreeding 

• Reduce need to obtain phenotypes on 
selection candidates and/or close relatives 

This has the potential to revolutionize the 
design and Implementation of breeding 

programs for livestock (and plants) 

Potential impact of GS on dairy cattle breeding 

X 

Superior 

& 
$$ 

r 
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Potential impact of GS on Dairy 
Cattle Breeding 

• Al Studs market 
young bulls / bull teams 
selected on Genomic EBV 

• These young bulls result from 
ET flushes of heifers contract

mated to young bulls 
selected on Genomic EBV 

• Need for progeny
testing may decrease 

Genomic Selection in Livestock 

Short course • focus 

•Statistical, quantitative genetic, 
and computational aspects of genomic selection 

•Software for genomic selection analyses 

•Strategies for implementation of genomic selection in livestock breeding 
programs 

w~T~ Ay1f~ ~:• 
College of Agriculture and Ll~S1::ien~ce-s~-'lfl;,lGenetics 
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Course Outline/ Topics 
Models to predict single SNP effects (Dorian) 

• Fixed effect models ; Fitting SNPs as random effects 

Bayesian methods (Rohan) 
• Bayes theorem, Gibbs sampler, Metropolis Hastings 

Genomic prediction (Dorian) 
An equivalent (animal) model for genomic prediction 

• Some alternative computing strategies that are not equivalent models 
• Two practical problems of genomic prediction 

Bayesian methods applied to genomic prediction (Rohan) 
• Bayes A, Bayes B, G-BLUP 

Interpretation of SNP effect estimates (Jack) 
• Linkage and Linkage Disequilibrium 
• Spurious associations from relationships and breed mixtures 

Application of genomic prediction models to real data (Dorian) 
Training and validation; Problems with validation 

• Improved Validation - simulated real beef cattle applications 
• Validation Statistics 

Other genomic prediction methods (Rohan) 
Bayes C,c and estimation of it 

• Estimating the scale factor 
• Alternative distributions - Heavy-tailed vs. Normal distributions 

BIGS - Genomic Selection Analysis software (Dorian) 

Additional Topics 
- as time/ interests permit -

Genomic prediction across breeds and in crossbreds 

Development and use of low density panels 

Degression of EBV and weighting information 

Pooling genomic EBV and pedigree or own information 

Examples of the design of breeding programs 
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Genomic Selection 
Why does it (not?) work? 

Jack Dekkers 

AB&G short course 2010 

·~ r-n• {'t, k An' a1 
•llJ:l•l!ii,,,•~• IMAL ,m 

I • •'_JL_)s' ;,.,;" 5c1EN CE Br,e•' ... edi .• ng. 
OWA TATE !!!! ·:·"'t,, & .., 
UNNERSITY • • ~~J . 
College of Agriculture and ur = ~ ~~ GenetICS 

Original Premise of Genomic 
Selection 

(Meuwissen et al. 2001) 

Although SNP panels contain few (if any) 
genotypes for the actual QTL, 

they are predictive because causative 
SNPs capture the effects of closely linked QTL 
through Linkage Disequilibrium between SNPs 

and QTL 

i.e. associations between SNPs and phenotype 
result from the QTL being in LD 

with one or more SNPs 
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Marker-phenotype 
associations 

=•= ... 
'"~ •.••• 

Mean 
weight,,,, 

Lt'> 105 
+ 
II :;1 
Q) ]j 

: ~ 100 -- 0 
(!I 0 - " 
- li ~ (I 

w 95 

Marker is associated 
with phenotype 

because the marker is 
in LD with the QTL 

Two loci are in 
Linkage Disequilibrium 

in a population 
if 

Alleles present at the two loci are not independent 
( statistically) 

Thus ... 

If the allele you see at locus M (e.g. mar,.,> 

(on a particular chromosome/ haplotype) 
depends (in part) 

on the allele that is present at locus Q (e.g. aTL) 
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Linkage Equilibrium (LE) 

M q M Q ma 
m q 

m q 
M q M q M Q m q m q m a 

M Q M q M Q ma ma 
M q ma 

M q M Q ma m q 
M Q m q 

M is as often associated with Q 
as m is associated with Q 

D = PMQ - PMPQ = 0 
Marker enot e NOT related to henot e 

Linkage Disequilibrium (LD) 

M Q m q 
M Q m q m q 

M Q M Q M Q m q m q m ~ M Q I 

M Q M Q '!1 ~ ma 
M Q m q 

M q M a m q 

M Q m q 

M is more often associated with Q 
than m is associated with Q 

D = PMQ - PMPQ / 0 

m q 

-+ Marker genotype IS related to phenotype 
(if Q/q has effect on phenotype) 
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A useful measure of LD between two loci 
r2 = squared correlation betw~en allele/genotype present at 

locus Mand the allele/genotype present at locus Q 

lndi- Parental Ordered genotypes # 1 alleles 

vidual origin Locus M Locus Q Locus M Locus Q 

1 Paternal 0 0 0 0 

Maternal 0 0 

2 Paternal 1 0 2 1 
Maternal 1 1 

3 Paternal 1 1 1 1 

Maternal 0 0 

4 Paternal 0 0 1 0 

Maternal 1 0 

5 Paternal 1 1 2 1 

Maternal 1 0 

Correl =0.53 Correl =0.76 

r' =0.29 r2 =0.58 
r2 based on alleles and r2 based on genotypes are expected to be equal 

if males and females are mated at random 
r2 based on es is much easier to com ute doesn't r 

Consider 1 SNP and a nearby single QTL 
The SNP will have an association with phenotype 

iff the SNP is in LD with the QTL 
The SNP effect depends on LD between the SNP and QTL 

Phenotype = y = µ + gaTL + e g0TL = additive QTL effect 

SNP association analysis: y = µ + PgsNP + e 9sNP = 0/1/2 
or -1/0/1 

P = Cov(y,gsNP)/Var(gsNP) = Cov(gaTugsNP)/Var(gsNP) 

= r Vvar(gaTL)!Var(gsNP) = r Vvar(gaTL)/ 2pq 
r = correlation between SNP and QTL = \/LO 

Amount of variance explained by the SNP: 

Var(PgsNP) = p2var(gsNP) = [r2Var(gOTL)/Var(g5Np)] Var(gsNP) 
= r2 Var(gaTLl 

-+ The proportion of variance at the QTL that is explained 
lcaotured) bv the SNP = r2 = LD between SNP and QTL 
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Mechanisms that Generate and Erode LD 
A variety of mechanisms generate linkage disequilibrium, and several of these can operate 
simultaneously. They can be separated into: 

1. Recurrent factors - operate to create LD each generation 

a. Drift (inbreeding) in small populations - by chance or sampling, haplotypes 
passed on to the next generation are not in LE frequencies 

b. Recurrent migra1ion - continuous mixing of populations in which haplotypes occur 
in different frequencies (e.g. Pr(A1B1)=1 for pop. I and =0 for pop. 2) 

c. Selection - certain haplotypes may be selected upon and increase in frequency 
- selection also creates LD between loci that are selected upon 

(= Bulmer effect- see later) 
- selection with epistasis (certain combinations of alleles are favorable) 

also creates LD between loci involved. 

2. Punctual factors - operate only sporadically over time to create LD 

a. Mutation - occurs in a specific haplotype, which is then the only haplotype 
that contains that mutation, resulting it to be in LD with the mutation. 

b. One-time admixture/migration/crossing (e.g. producing Fi/Fi) - results in mixing 
populations with different haplotype frequencies 

c. Population bottleneck I founder effects - severe drift from I-time sampling effects 

Processes that create LD 
Inbred line I Line Crossing Inbred line II 

M Q M Q m q 
m ~ q m 

M Q 
M Q X M Q m q m q 

M Q 
M Q m q m q 

'r ~ m 

M Q M Q m q 
m q 

M Q 
M Q 

Q m q 
m q 
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Processes that create LD 
Mutation and Selection 

M q M 
'1' ~ m q '1' ~ 

M q m q Selec- M q M m q 

~ ~ 9 
m q M Q M q 

~ m q M ~ I 

m q m q 

Allele on M chromosome mutates from q to Q 
and then increases in frequency because of 
- random drift 

m q 

Q m 
I 

M Q 

M q 

- or selection on Q ➔ selective sweep = LO block around Q 

Selective Sweep 

Original mutation (q ➔ Q) occurred in marker haplotype: 

001110010Q01001110110 

Many generations D of recombination 

100110( 10Q01 00110100 

0111100 OQ01 )01011010 
0010011 10Q01 D00010111 
0011101 10Q01 01101110 
011010( 10Q01 )01100010 

Unique haplotype <: 000110( 10Q01 )01000111 
I 111010( 10Q01 )11101111 associated with Q 

010110( 10Q01 )01101010 
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Processes that create LD 
Random drift/inbreeding 

M 
T ~ m q M Q 

M q M Q Gamete M Q 
M m Q 

m Q 
M Q 

~ampl~g 
m q 

M Q 

M q m q 
M q 

m q 

But, any LD is continuously 
eroded by recombination 

C c = recombination 
M•····a rate 
~ ~ = proportion of 

m q recombinant 

~ -1>~ 
gametes 

~ "o ·,S' 
~ Gametes "?6, 

c,O ~ 
~e produced ~~ 
~ '4-

~o by meiosis 

M Q m q M q m Q 
- - . . 

1/2(1-c) frequency 1/i1-c) 1/2C frequency 1/2C 
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r2 

Break-up of LD by recombination 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 5 10 15 

Generation 

C=.001 

C=.01 

m q 

20 25 

Another way of looking at LD 
Conservation of chunks of ancestral chromosomes 

Marker Haplotype 

1 1 1 2 
--

✓ --

Size of conserved chunks depends on how 

long ago LD was created - longer if N0 larger 
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Historic LO expected only over short distances 

r2 1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 5 10 

Generations of recombination 

15 

. LD 
distani:f!,r long 

20 

1 ere t recently a ed 

25 30 

Balance between Drift and Recombination 
In small(er) closed populations 

• LD is continuously created by drift - more with smaller effective pop. size, Ne 
• LD is continuously eroded by recombination - faster at longer distan,,,.c=e~s ____ _, 

This results in a balance/equilibrium of average LD at a given distance: E(r 2 
co,c) ::::-

1
- ,· 

1+4N,c, 
(Sved 1971) 

1.0 -

0.9 

0.8 

0.7 

0.6 
CT 
0 0.5 L 

0.4 

0.3 

0.2 

0.1 

0.0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cM 

LO is very variable 

LO at short distance 
is often lower than 
expected based on a 
given effective 
population size 
(:e yellow line) 

Because LO 
reflects historical 
effective population 
size and this has 
not been constant 
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Balance between Drift and Recombination 
In small(er) closed populations 

• LD is continuously created by drift - more with smaller effective pop. size, Ne 
• LD is continuously eroded by recombination - faster at longer distanr"'ce~,~--~~-----1 

I 
This results in a balance/equilibrium of average LD at a given distance: E(r2aJ,c) = 1 +4N c 

1 ' 

0.9 

0.8 

0.7 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 

(Sved 1971) 

Most outbred domesticated plant 
and animal populations have 
small(er) (historical) effective 
population size and drift
recombination balance is expected 
to be the main contributor to LO 

-+ LO is expected to be sizeable at 
short distances, but small at 
longer distances. 

Most human populations have large 
(historical) effective size 

➔ E(r')= _I_ 
I +4N,c 

-+ LO is smaller at given distance. 

Genetic distance (Morgans) 

Estimating historical Ne from average LD at a 
given distance 

0.9 

0.8 

0.7 

0.6 

0.5 

0.3 

0.2 

0.1 

0 
0 5 10 

E(r;) = l 
1+4N,.,c 

160 

140 

120 

100 

80 

60 

40 

20 

0 

==> 

>100 80-100 60-80 40·60 30-40 20-30 10·20 5-10 1-5 

15 20 25 30 cM 
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,.oo 
---+-HF_NLO • .,. RW_NLD 

ooo+-------------i --+-HF_AUS -~-ANG_AUS 

10 ~ ~ 40 00 M M M ~ 100 
M•rl<•tdl«•nulkbl 

1,000.000 · .. · ... ---- .. --- · .. · 

LD in Dairy 
Cattle 

De Roos et al. 
(Genetics 2009) 

~HF_AUS ··-·•ANG_A,J.S 

-----'-IF _NZL - -a- JER_NZL 

,o+-------------~-------------s 
,0 1,000 10.000 100000 1.Joo.::mo 

Nurnb"r of genesntlan& l" 1>not 

But: LD always exists WITHIN families 

Sire 

n 
Half-sib 
Progeny 

M Q 

C = 0.2 
M•----0 

m q 

meiosis 

M q m q 

1/ 2(1-c)=0.4 Freq. 1/ 2c =0.1 1/ 2(1-c)=0.4 Freq. 

m Q 

And this LD extends over long distances 
- only 1 round of recombination 
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m q 

Implications for 
~u 

QTL detection gi 
and MAS 

D 5 10 1! ~ 

Dlotarooo(cld) 

• In closed breeding populations 
- Population-wide LD only over short distances (< 2 cM) 

► need many markers or carefully placed markers 
(candidate genes) to detect QTL 

► Positive markers expected to be close to QTL 

• Recent crosses} . - LD over long distances (20 cM) 
• Within-families 

► Fewer markers needed to detect QTL 

► Positive markers ma be far from QTL 

Accuracy of EBV from Genomic selection 
Does it result from historic SNP-QTL LD? 

Meuwissen et al. (2001 Genetics: 1819) 

Ne= 100 
Estimates from 2200 individuals 

1 

;;-0.9 j 
m 

~ GEBV accuracy Marker distance ~0.8 
u 

0.85 1 cM ~0.7 

0.6 

0.81 2cM 1 2 3 4 5 6 7 8 

Generalion 

0.75 4cM 

And does the decline of accuracy over 
generations result from 

erosion of LD by recombination? 
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Impact of historic LD on accuracy of GEBV 
A Simulation study - Habler, Dekkers, Fernando (unpublished) 

• 8 chromosomes 

• 200 QTL/chromosome 

• Heritability 0.5 for female phenotypes, 0.8 for male phenotypes 

• No historic LD, only LD from the pedigree 

D. Habier 

Simulations - without historic LD 

Generation 0 

Real pedigree 

(13 generations) 

Population in equilibrium 

N=500 

1500 males + 1500 females 

(Matings: 50 sires+ 500 dams) 

4 training generations start 

ro '·1, c. 1 r ( v i:1 •. ,,. , 

G;Ct, 2 • '' D. Habier 
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Linkage disequilibrium 
No Historic LD - Real pedigree 

0.6 

6 8 9 '° 
D. Habier 

Simulations - WITH Historic LD 

Generation -1050 

Generation - 50 

Real pedigree 

(13 generations) 

Random mating 

(N=500) 

Random mating 

(N=100) 

1500 males + 1500 females 

(50 sires + 500 dams) 

4 training generations start 

D. Habier 

14 



I 

0.8 

o.e • 
>, 
0 

' ' 0 

~ 
0.4 

-
0.2 • 

0 

Linkage disequilibrium 
Historic LD - Real pedi ree 

7 8 9 
Mllp dislonce (CM) 

Accuracy of GEBV 
With/without historic LD 

• Similar initial accuracy 

10 

D, Habier 

• Faster decline in accuracy without historic LD 
" ~ 

-...;.:_-.:.~~~:-- ·---
"•<., 

'••··•,,, ----- ' ' With ,, --
.,, -- ---" " --

"· -- Without ·•, .. , 

·•, ... 
"• .......... 

"•• ....... 
,, • .. , .... 

" " ' .......... ,, ........... ...... Pedigree 
BLUP 

' ' 
1 2 3 ' Generalron D. Habier 
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Factors that contribute to accuracy 
of Genomic Selection EBV 

• Historic marker-QTL LD - the original premise of GS 

• Pedigree relationships captured by markers 
• Does not require marker-QTL LD or linkage 

Habler, D. et al. Genetics 2007;177:2389-2397 

• Deviations from pedigree relationships 
(genomic vs. pedigree relationships) 

• Requires marker-QTL LD or linkage to be useful 

• Population structure / stratification 
(e.g. mixed populations, unbalanced family structure) 

• Within-family linkage/ cosegregation information 
• Cosegregation between markers and 

linked QTL from parents to progeny 

Pedigree vs. Genomic Relationships 

I 
D 
5 

5 
5 
5 

Sire, dam, and 4 full sibs (from Dorian Part I) 

G matrix 
A matrix 

0 5 5 5 5 
1 0 5 .5 .5 .5 

I 5 5 5 5 0 1 5 .5 5 5 

5[I]555 
5 .5 []·6 .4 .4 

5 5 l 5 5 5 .5 .6 1 .4 .4 

5 5 5[]5 .5 .5 .4 .4 []·6 
5 5 5 5 l .5 .5 .4 .4 .6 1 

Deviations of genomic from pedigree relationships 
are predictive only if SNPs are in LD or linked to QTL 

16 



c,0.9 
> fl 0.8 
C ·!! 0.7 

~ ~ 0.6 
C .J 

"§ 0 0.5 
> -8 ~ 0.4 

i 0.3 
0 
~0.2 

E, 0.1 

0 

0 

Proportion 
of alleles 
shared by 
fullsib pair 

COVARIANCE BETWEEN RELATIVES BASED ON A LINKED MARKER 

Example for paternal half-sibs and for full-sibs based on 
genotypes at a marker linked to a QTL with recomb. rate c. 

Covariances between HS/FS at QTL if marker alleles 

0.1 0.2 0.3 0.4 0.5 
Marker-QTL recombination rate 

Pro- Distribution of the proportion 
ba- of alleles shared by Sibs 
bility Based on Van Raden 2007, lnterbull 

1 locus Percentage of alleles shared 
0/2 = 0 ¼ # Loci Full sibs Half sibs 
1/2 = 0.25 ½ Mean SD Mean SD 
2/2 = 1 ¼ 1 50 35.4 25 17.7 

Average 0.5 C 
:, 5 50 15.8 25 7.9 

St.Dev. 0.35 s· 
10 50 11.2 25 5.6 

~ 2 loci a. 50 50 5.0 25 2.5 
0/4 = 0 'Is 0 

!:?. 100 50 3.5 25 1.8 
1/4 = 0.25 ¼ Infinite 50 0.0 25 0.0 
2/4 = 0.50 31s Linked loci 50 >3.5 25 >1.8 
3/4 = 0.75 ¼ Genomic relationships capture some of the 
4/4 = 1 'Is Mendelian sampling terms 

Average 0.5 if the SNPs are linked to QTL 

St.Dev. 0.25 Note that a parent and offspring always share 
exactlv 50% of their alleles 3 
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Genomic vs. pedigree relationships 
in real data 

C. 
:c 
Cl) 
C 
0 .,, ., 
al 
~ 

,uh,• -C cri fC ;;1:ipdirrcc ,., 

'' 
'' 
'' ' ' ' ,., 

u 

Wolc and Dekkers, unpublished 

' 

:, :iii:/ 
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I++- ! • 
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•:.. t..f + + 

I' • 

j:,.,:\. 
~): ... -··· 
.. 

l'.t ... ~ .. 

{t 

O.J U '·' 
I Pedigree relationship I 

t,i 

The impact of genetic relationships on genome
assisted breeding values in German Holstein cattle 

David Habier, J. Tetens, F. Seefried, P. Lichtner, G. Thaller 
Institute of Animal Breeding and Husbandry, Christian-Albrechts University of Kiel 

GSE 2010 42:5 

► 3,863 progeny-tested German Holstein bulls ► Sampling of bulls into training and validation 

► Genotyped for 54,001 SNPs ► Excluding bulls that cause to exceed amax 

► Traits: Milk, lat and protein yield, somatic cell score ► Training size: 2,084 and 1,042 bulls 

► Family structure: Half-and full sib families, fathers ► Validation size: 490 bulls 

and sons 

Controled the maximum additive-genetic relationship 

(amad between bulls in training and validation 

0.6 

0.49 
0.249 
0.1249 

Close relatives in training 

Fathers, full sibs, half sibs 

Hall sibs 

D. Habier 
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Additive-genetic relationships between 
bulls in training and validation 

0.6 

upper/ under quartile -
median-

~ 
"' 5 0.43 -~ 

1! 
0 
-~ 

§ 0.249 

i 
. .,; 
'5 0.125 
~ 0.085 

0 

0.60 0.49 0.249 

Estimation of GEBV 

BayesB (Meuwissen et al., 2001) 

► 1% of available SNPs are fitted 

G-BLUP 

0.1249 

D. Habier 

► Genomic relationship matrix (uses all SNPs) 

P-BLUP 

► Numerator-relationship matrix 

D. Habier 
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Accuracy of GEBV against amax between 
training and validation populations 

Milk yield 

0.8 

'"".:::.: 
[□<~------~-•, 

• ,:-.~'--. 

,::-----':::---. 
,,"""-. ::_,._'¾..! 

~ - .:--! J- -
'· ,..._ - -

0.6 

Q. 

0.4 -

0.2 

0 1 

' ' >)~ 

0.65 

__ .t_ -

0.49 

amax 

. 

- -

Conclusions 

BayesB --B-

G-BLUP --{';::7-

P-BLUP A 

I I 
: --~ I ----~----qi 

T· 
·- - -.. I ·---..... I 

·-·:r-:,. ~) 
", I 

'--, i 
~1, 

·--·-·· 

0.249 0. 1249 

D. Habier 

• Genetic relationships (between Individuals used for training and validation I 

prediction) can contribute substantially to the accuracy of GEB 

Implications 

• Accuracy of GEBV will be lower for individuals that are not 
well connected to the training data. 

• Part of the decline in the accuracy 
of GEBV over generations results 
from declining genetic relationships 
with the training data. 

12345678 

Generation 

• -+Ongoing phenotyping and re-training will be needed to 
maintain accuracies of GEBV 

• How accurate are GEBV when used across breeds? see later 
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Motivation 
The problem of predicting genetic merit 

What's wrong with what we do now? 

The Prediction Problem 

Model Equation 

y =Xb+Zu+e 

Other aspects of the model 

First moments E[u] = O,E[e] = 0, therefore E[y] = Xb 

Second moments var[u] = G, var[e] = R, cov[u,e'] = 0 

Distributional Assumptions e.g. u, e ~ MVN 

Want to predict u or linear functions like k'u 

6/12/10 
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Original Solution 

Generalized Least Squares (GLS) 

For estimable q'b, q'b0 is BLUE (Best Linear Unbiased Estimator) 

where b0 = (x•v- 1x)"X'V-1y forV = ZGZ'+R 

then ii = GZ'V-' ( y - Xb0
), is BLUP (BLU Predictor) 

(same as Selection lndex/BLP except (y- Xb0
) in place of(y- Xb) 

obtained by exploiting (genetic) covariances between animals 

In traditional animal breeding practice 

G is large and dense and determined by A the numerator relp matrix 

V is too big to compute X'V-1 

BLP vs GLS BLUP 

y =X/3+Zu+e 
y- X/3 = Zu + e, a fully random model 

Selection Index Equations Pb = Gv 

b = p-1Gv, defines the best linear function to predict u 

the "weights" are the same for every animal with the same 

sources of information (ie same traits observed) 

BLP ii= b'(y- X/3) = vGP-1 (y- X/3) 

cf GLS BLUP ii= Gz·v-1 
( y-xS0

) 

6/12/10 
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Henderson's Contributions One 

Developed methods to compute G and R from field data 
Henderson's Method I (not his!), II and Ill 

Including circumstances that involved selection 

Henderson's Contributions Two 

Invented the Mixed Model Equations 

[ 
X'R'X X'R"'Z l[ ii0 l ' 
Z'R"'X Z'R"1Z+G·' u =l 

X'R"'y l 
Z'R·'y 

, for full rank G 

and jointly showed k'b0 and u were BLUE and BLUP 

Computationally tractable if G and R assumed diagonal or block-diagonal 

(eg sire model with relationships ignored) 

(Order 40 matrix takes weeks to invert by hand) 

MME typically sparse in national animal evaluation 

6/12/10 
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Henderson's Contributions Three 

Invented an algorithm to directly fonn A·' from a pedigree list 

Then G·' can be fonned as a scalar product or kronecker product 

define d to be "mendelian" sampling variance 

d =(l, 3/4, 1/2) for 0, 1 or 2 parents known 

defines' =(-1/2, -1/2, 1) to represent sire (if known), dam (if known) 

and individual equations 

accumulate sr's'in the sire, dam and individual rows/columns 

for every trio of animals in the pedigree list 

Consequence of A-1 structure 
sire dam 

Accumulate for each animal sire 

f 
0.25 0.25 --0.5 

dam 0.25 0.25 --0.5 

-0.5 --0.5 

When both parents are known 

Nonparents (ie terminal offspring) 

jd-' 

Own equation (ie row) has 2 on diagonal, -1 in sire column -1 in dam column 

Parent with one offspring 

Own equation has 2+ 1/2 on diagonal, -1 in sire and dam columns 

in addition to -1/2 in the column of its mate, -1 in column of offspring 

Parent with many offspring to different mates 

accumulates a large diagonal element, many small negative off diagonals 

6/12/10 
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Consider rearranging the MME 

In general, 

[ Z'R'X Z'R"'Z + G"' ]l ~ ] = [ Z'R"'y] 

or equivalently [ Z'R'Z + G"' ][u] = [ Z'R' (y -Xb 0 )] 

Single trait animal model R = ICJ;, G = ACJ:, G-1 = A _'CJ;' 

or multiplying CJ;, [ Z'Z + AA"' ][u l = [ z•(y -Xb 0)], with A=¾: 

Consider the MME for a nonparent 

Nonparent animal with one record 

( 1 + ~A )Uaninw/ ~,,,AU sire - AU Jam = adjusted _y 

2 ,) • , 2i(u,,,,+ud,m) (adjusted_y) 
u . = + 

,mm,/ (1 + 2A)2 (1 + 2A) 

= (1- w )PA+ w(adjusted _y) for 
1 

w=--
(1+2?c) 

5 



Consider the MME for a nonparent 

u0 • 1 = (I - w )PA + w (ad;usted y) fior w = ( 1 
) 

111ma '.I - 1 + 2;l, 

1-h' 
;\,=~,-soforh 2 =1, A=O,w=I, (no shrinkage) 

h 

for h2 = low, ;I., = big, w = small, (shrink the deviation) 

Two sources of B V information are pooled 

The parent average PA 

The individual prediction (shrunk deviation) 

with heritability influencing shrinkage 

Consider the MME for a nonparent 

Nonparent animal with one record 

uanimal = (I - w)PA + w(adjusted _y) 
Nonparent animal with no record 

2Auanimal - Au,;,, - Audam = 0 

u . = ?.(u,;,, + udam) = (usire + udam) = PA 
ammal /42 2 

6/12/10 
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Reliability of nonparents 

, A A 2 var(u) 
Property ofBLP/BLUP 1s cov(u, u) = var(u) so r = --

var(u) 
A A 

,,. U. Ud 
but u,wnpa,en, = ;e + ;m , for nonparent without a record 

r 2 r2 1 
2 =~+ dam ,s;-

SO rnonparen/ 
4 4 2 

ir <5 
Finally 1',.G = no"P"""' ' , limiting selection response 

L 
when candidates at puberty lack phenotypic information 

An option to do better 

6/12/10 
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Solution 

• We need a different representation of the 
covariance between relatives, that allows 
relatives other than parents to directly 
contribute to the prediction of non parents 
without records 

• The NRM or A-matrix is an expectation of 
relationships in the context of repeated 
sampling of the pedigree (conditional on 
pedigree) 

A-matrix 

• Relationship with self is 1 +F (non inbred F=O) 
• (Additive) relationship of½ between non-inbred 

full-sibs and between parents and non-inbred 
offspring 

• Relationship of¼ between non-inbred half-sibs 
and between grandparents and offspring 

• But particular individuals can have greater or 
lesser values 
- If we know their genotype we can compute 

relationships conditional on the chromosome regions 
they inherited 

6/12/10 

8 



6/12/10 

Relationship matrix 

A matrix 

0 .5 .5 .5 .5 

0 .5 .5 .5 .5 
.5 .5 .5 .5 .5 

.5 .5 .5 I .5 .5 

.5 .5 .5 .5 .5 

.5 .5 .5 .5 .5 

Consider a sire, dam and 4 full sibs 

A-inverse matrix 

3 2 -I -I -I -I 

2 3 -I -I -I -I 

-I -I 2 0 0 0 
-I -I 0 2 0 0 
-) -I 0 0 2 0 

-I -I 0 0 0 2 

Relationship matrix 
G matrix 

A matrix 

0 .5 .5 .5 .5 0 .5 .5 .5 .5 

0 I .5 .5 .5 .5 0 .5 .5 .5 .5 

.5 .5 .5 .5 .5 .5 .5 [2~ 4 4 

.5 .5 .5 .5 .5 .5 .5 I I .4 .4 

.5 .5 .5 .5 .5 .5 .5 
.4 .4~~ 

.5 .5 .5 .5 .5 .5 .5 .4 .4 tc6__L 

G-inverse matrix 
A-inverse matrix 

3 .5 2.5 -1.25 -1.25 -1.25 -1.25 
3 2 -I -I -I -I 2.5 3 .5 -1.25 -1.25 -I .25 -1.25 
2 3 -I -I -I -I 

-1.25 2.1875 -0.3125 0.3125 0.3125 
-I -I 2 0 0 0 -1.25 

-I -I 0 2 0 0 -1.25 -1.25 -0.3125 2.1875 0.3125 0.3125 
-I -I 0 0 2 0 -1.25 -1.25 0.3125 0.3125 2.1875 -0.3125 
-I -I 0 0 0 2 -1.25 -1.25 0.3125 0.3125 -0.3125 2.1875 

9 



Predict the last animal with no data 

[ -1.2su,,,, -1.2s,,, . ., J12s,,,,., J12su,,., -J12su,,., 2.1s1s,,,.,,,,,,, ]~[o] 

,, ).25 ( U,;,, + Ud,m )- Q.3] 25 ( U,;bi + U,;b2) + Q.3 J 25u,;b3 
u = 

candidate 2. l S?S 

But to form G, we needed to know which loci/QTL 
contribute to variation in performance 

Fixed effects models 
to predict SNP effects 

6/12/10 

10 



QJ 
u 
C 
ro 
E 
~ 

.g 
QJ 
"-

Genomic Prediction 

• Two-step process 
- Training population 

• Predict the breeding value of (every) (small) genomic 
region (to find the informative regions ie QTL) 

- Target population 
• Predict the breeding value of the selection candidates 

by summing up the breeding values of all the genomic 
regions they inherited 

AA 

Data on some locus 

How do we model it? 
(ie What are our expectations?) 

AB BB 
lllumina notation 

Genotype 

6/12/10 
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a, 
u 
C 

"' E 
~ 

.g 
a, 

0.. 

Data on some locus 

Model the data as genotypic effects 

y=lµ+Qg+e 

0 0 I 

AA AB 

Four Unknowns 

Three pieces of information 
(or less if a genotype is 
not represented) 

BB Genotype 

Parameters and Information Content 

• The information content (in fixed effects 
model) is partly reflected in the degrees of 
freedom 
- Some degrees of freedom are available to 

estimate functions of fitted parameters 

- The remainder, if any, contribute to the error sum 
of squares 

• Overparameterized models have more 
parameters than estimable functions 

6/12/10 
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Fixed Effects Model for Genotypes 

y=Xb+Wq+e 
b contains the usual fixed effects 

q = [ :: ] , defines a class effect 

qBB 

W is the incidence matrix for AA, AB, BB genotypes 

and has 3 columns - one for each genotype class 

and N rows - one for each animal with exactly one 

1 in each row according to the genotype of the animal 

Fixed Effects Model for Genotypes 

y=Xb+Wq+e 

E[y] = Xb + Wq 

var[y] = var[e] = lo-: 

6/12/10 
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Least Squares Equations 

For[b]=[µ],X=l 

N /lAA llAB 11BB y .. 

/lAA /lAA 0 0 YAA· 
LHS= RHS= 

/lAB 0 /lAB 0 Yw 

n,, 0 0 "ss Yss· 

Equations have order equal to number of fixed effects plus genotypes 

No unique solution 

, 

n., llM 0 0 YAA· 
LHS= RHS= 

n,,, 0 11AB 0 YAs· 

' B 
0 0 llf/B Yse· 

. 

0 

, is one possible solution 

14 



No unique solution 

b= , is another possible solution 

N nAA JlAB 11 " y .. 

l1AA ""' 0 J YAA' 
LHS= RHS= 

nAB 0 llAB YAB' 

.. n n .. " .... , .. ... .. 

Different Solutions have same 
Estimable Functions 

µ+q,. 0 

- µ+qAA 
b - qM -qBB b -,- --- ,-

µ+q,. 
qAB -qBB 

0 µ+q,, 

Interesting contrasts 

k'=[ 

k'=[ 0 

0 O ] then k'b, =k'b 2 = ~ 

-1 O ] then k'b 1 =k'b 2 =~ 

6/12/10 
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Estimable Functions 

• In fixed effects models, many model 
parameters or functions of model parameters 
are not estimable, even though a numeric 
value can be obtained by solving the least 
squares equations (eg by generalized inverse} 

[x•xr is any generalized inverse of X'X if (X'X)[X•xr (X'X) = X'X 

Define H = [x•xr (X'X) 

A linear function k'b0 is estimable if k'H = k' 

var(k'b 0
) = k'[X•xr k { or k'[X'Xr k er' (if R was not explicitly fitted)} 

OJ 
u 
C: 
nJ 

E 
~ 

.g 
OJ 
"-

Data on some locus 

Model the data as additive and dominance cffcct.1 

y=lµ+Ff+e 

-I 0 µ+d' +a 
-I 0 

y,..._, -I 0 
µ+ 0 I 

Y,n, 0 I 

Three Unknowns 
Three pieces of information 

AA AB BB Genotype 

6/12/10 
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Genotypic vs genetic effects 

g --[ gg~, ]· ,, genotypic class effects 

g,, 

2 ' 
I l , K 1q = a, columns of Kare othogonal k 1k 2 = 0 

-I 

2 

but note g itself is not estimable, but functions like g88 -gM are 

Equivalent Models 

lll\llliHJ,folMOi &Ji®Wlr/JMIDBI 
AA µ_+gAA 10 µ-a 

AB µ+gAB 14 µ+d 

BB µ+gBB 16 µ+a 

µ=0 µ=10 µ=16 
gAA::: 10 gAA::: Q gAA= -6 
gAB::: 14 gAB= 4 gAB= -2 
gss= 16 gss= 6 gss= D 

Both models have the same expectation 
Both models have the same variance 

Therefore the models are equivalent 

10=13-3 

14=13+1 

i6=13+3 

µ=13 
a= 3 
d= 1 

(I can fit either model and migrate from one to the other) 

6/12/10 
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Suppose I ignore dominance (d=O) 
Model the data as an intercept and allele dosage [- l 
y=Iµ+Fr+e E YAB. = a+ 2/3 ~ 

Yw 

Y,u, 

Yw 
y,..., 

0 

0 

a+ O [JJ]+e 

• 

. 
-i._yA • 
t: y ] =a+ I/3 

• AB. 

Represents lack of linear fit 

AA AB BB Genotype 

Suppose I ignore dominance (d=O) 
Model the data as a mean and substitution effect 

y=lµ+TT+e 

Yw -I 
YM, -I 
YM, -I µ, 

0 Y,a, 

YJ.E, 0 

[T]+e 
• • 

-I-YA 

t : · E [YAs] = µ 
µ .,. .............. , ........................ . 

Represents lack of linear fit 

AA AB BB Genotype 

6/12/10 
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Suppose I ignore dominance (d=O) 
Model the data as an intercept and allele dosage [- ] -

y = 1µ + Bb « E y AB. - 0/3, + 2/3, • f Extra 
y,.., o 2 • _., • ..., .. y- residual 
~ 02 ' U . [ :: ]« YM, 0 2 

Y""1 
_;,,_ y A • 

t: YAB] = 1/3, + 1/3, y,,,,, 

Yas, 
2 0 

YAA]= 2/3, +0/3, 
I -

-YAA . • 

• 

AA AB 

Represents lack of linear fit 

BB Genotype 

Equivalent Models 

11■1. 
AA a+0~ 10 µ-T 

AB a+lj3 13 µ 

BB a+2~ 16 µ+T 

a=lO µ=13 
~=3 1::::3 

All models have the same expectation 

All models have the same variance 

Therefore the models are equivalent 

10 2~1+0~2 10=2x5 

13 1131+1132 13=5+8 

16 0~1+2~2 16=2x8 

~,=S 
~,=B 
NB ~2-~ 1=3 

(I can fit any of the models and migrate from one to the other) 

6/12/10 
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Summary Fixed Effects Models 

... 
Cfominanc·e· d>O domiriance d=O d=O 

Model df 3 2 

Genotypic , 

yes! .. 

no 

All alleles· yes 
yes·* 

Substitution yes yes 

Animals n/a n/a 

t Equivalent models 

Summary Fixed Effects Models 

Model df 

Genotypic 

All alleles 

Substitution· 

Animals 

Fi,ed, Effects 

3 

! Equivalent models 

d=O d=O 

2 

Non equivalent models 

6/12/10 
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Fitting SNPs as random effects 

Fixed or Random 

• Reasonable to consider animal effects as 
random in the usual context 

- Variation in alleles (ie genotype) between animals 
that contributes to the genetic variance 

• Not variation in allelic value at a particular locus 

• Not so clear that an individual locus (or every 
loci) should be treated as random 

- Especially when the genotypes are observed and 
treated as known in the incidence matrix 

6/12/10 
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Suppose we have many loci 
The obvious solution is to fit the a effects jointly for every locus 

y=Xb+Ma+e 
i=nmarkers 

=Xb+ I m.a. +e 
l l 

i=l 

a1 is the substitution effect for the ith locus 

Singular Coefficient Matrix 

• The incidence matrix of genotypes, M, has n rows 
(= number of genotyped animals) and p columns 
(= number of loci/markers/haplotypes) 

• Typically using lllumina livestock chips 
(cattle, horses, pigs, sheep, chickens, dogs) 
n < 10,000 and p > 40,000 

• If no 2 animals have the same p genotypes, then 
M has full row rank 

• The M'M component of the coefficient matrix 
cannot be full rank (rank M'M is n<<p) 
- Rank(AB) is at most the lesser of rank(A) and rank(B) 

6/12/10 
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Practical Consequence 

• It is not possible using ordinary least squares 
to simultaneously estimate more than n 
effects of loci plus other fixed effects 
- Can use stepwise approaches to successively add 

loci and determine a subset of markers that are 
informative in the training data 

• But least squares tend to produce upwards biased 
estimates of effects (especially when power is limiting) 

- Cannot use all markers to predict genomic merit 

Alternative Approaches 

• Modifications to Least Squares 
- Ridge Regression, Partial Least Squares etc 

• Treat a effects as random rather than fixed 

- We routinely fit single and multi-trait animal models 
with many more effects than observations 

- Provides opportunities for many mixed model 
procedures, such as BLUP, REML, Bayesian analyses 

- These methods will also "shrink" estimates 

6/12/10 

23 



Summary Fixed Effects Models 

Natural {but incorrect) progression to fitting loci as random 
Simply augment the coefficient matrix with a variance ratio 

dominance d~O dominance d=O d=O 

Model df 3 2 . :e,.'0 

Genotyplc yes no ,,_ .. ft ·,c, 

All alleles yes yes 
0e cP{:' ~e 

fves. ~n 1 ... 
(I>~ . {:''o 

Su~stitution .. ,fi-e; 
Animals n/a n/a 

The random models for substitution effects are NOT equivalent to the 
other random models unless you are very careful 

Random locus effects 

• Following the treatment of locus effects as 
fixed, we could consider the following possible 
models for random locus effects 

- A) fitting every genotype at a locus 

• This would require us to describe the variance
covariance matrix between the alternative genotypes 

• That matrix is singular in the absence of dominance 

- B) fitting every allele at a locus 

- C) fitting substitution effect at each locus 
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Mixed Model Theory 
• Prediction and estimation follow logically once 

we define relevant variance-covariance matrices 
- All effects are estimable (unlike least squares) 
var(g) = G var(ii) = G - C" var(g - g) = C" ,'. = var(g)/ ( ) 

cc /var g 

var(k'g) = k'Gk var(k'g) = k'( G-C")k 

• The analogous terms in routinely applied animal 
models are the numerator relationship matrix, 
genetic and residual variances 
- Random effects might be interpreted in the context of 

resampling in repeat experiments 

Summary of Model Alternatives 

dciminance d=O dominance d=O d=O 

Model df 3 2 Not Relevant 

GE!notypic yes no 

All alleles yes yes 

Substitution yes yes 

Animals n/a n/a 
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Fit all allelic effects as random 

• Assuming no dominance we could fit effects of 
two (or more) individual alleles 

y=Xb+Ma+e 
• Mis a matrix of covariates, one column for each 

allele (or haplotype), that counts the number of 
copies - each row sums to two 

rows of M are one of l ! ! J a= [ :: l for [ ~: ] 

Estimable Functions in Fixed Models 

• Class variables of fixed effects are not estimable 
- Differences between levels in the same class are 

estimable 

- The sum of any one level and the mean are estimable 
(in a 1-way model) 

- Fitting a fixed class variable is typically done by 

• deleting the row and column of the coefficient matrix for any 
one level of the class 

• Introducing a lagrange multiplier to fit a sigma constraint 
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Sum to Zero in Random Models 

• Class variables of random effects (e.g. sire or 
animal) are all estimable 
- Typically all levels are fitted, even though interest may 

be focused on differences between levels 
(eg one sire compared to another) 

• A feature of BLUP(u) is that certain sums of the 
elements are zero 
- A biallelic factor fitting say a1 and a2 will have 

solutions that sum to zero (ie a-hat 1 = - a-hat 2) 

- In a model fitting many biallelic loci as random effects, 
the number of equations can be halved 

Var(a) (ie allelic effects) 

For the 3 possible 
biallelic genotypes 

var(MA) = MAM' = [ r 

0 ]CJ2 = ICJ2 I A A 

2 0 

2 2 

2 4 

Note this A is the variance-covariance matrix of allelic effects, not the NRM 
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Peculiar Feature of this Model 

re, 

y = 1µ + m1a1 + m 2a2 + e but m2 = 2i- m1 

=lµ+m 1a1 +(2 l-m 1)a2 +e 

= 1µ + m1a1 - m1a2 + 2la 2 + e 

but 2a2 = k2 = constant 

=l(µ+k 2 )+m 1a1 -m 1a2 +e 

Peculiar Feature (cont) 

y = lµ * +m,a, • m1a2 + e (last slide) 

N l'm l -l'm l 

m;1 m;m, +.:l ' -m 1m1 

-m;1 ' m;m, + A -m 1m1 

Now add equations 2 and 3 

.:la, + .:la2 = o 

.:l(a, + ai) = o 

A * µ 

a, = 

a2 

a
1 

= -a2 and therefore ii, - a2 = 2a, = -2a2 

l'y 
' m,y 

-m,y 

This "sum to zero" feature is common to all mixed models with factors 
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Extension to multiple loci 
Allellic effects 

y = 1µ + Ma + e (1 locus) 
i=ploci 

y = 1µ+ L, M;a; + e (ploci) 
i=l 

MME for two uncorrelated loci {order is 1+ 2 x 2 = 4 allelic effects) 

N l'M I l'M 2 µ 

M;l M;M, +Jc, M;M2 a, = 

M'l M~M, M~M2 +,\ 
A 

2 
az 

Order of MME is number of fixed effects plus twice number loci {if biallelic) 
Consider the implications for 100-1,000 animals with 50,000 loci 

Summary of Model Alternatives 

dolllinance • d~O . dominance d=O d=O 

Model df 3 2 Not Relevant 

Genotypic yes no 

All alleles yes yes 

SubstiJution yes yes 

Animals n/a n/a 
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An equivalent (animal) model 
for genomic prediction 

More loci than animals 

Allellic effects - but for selection we are more interested in animal (not allelic) merit 

i=ploci 

y =Iµ+ L M;a; + e 
i=l 

y=lµ+"Z""u"+e 

Order of MME is number of fixed effects plus number of animals 
Consider the implications for 100-1,000 animals with 50,000 loci 
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Mixed Model Equations 
y=l'µ+Zu+e 

][ t l = [ ~•,: l for full rank G = var(u) 

Order of MME is number of fixed effects plus number of animals 
Consider the implications for 100-1,000 animals with 50,000 loci 

Mixed Model Equations 
y = 1'/L+ II,M,a, + e 

[ 
N 1' ][ µ l I 1 'y ] 
1 I+cr;[ var(IM,a;)r ~ =l y 

var(I,M,a;) = I, var{M,a,} = I,M,A,M; = I,M,M;u;, = like Au; 
numerator relationship matrix=A 
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An Equivalent Animal Model 

M;M/ has order equal to number of animals (N) 

I.M;M,' is summed over p loci 

A diagonal element for a totally heterozygous animal is 1 x 2 L,.a; .. 
Therefore a: in a typical animal model is (at least) 2 La;, 
A diagonal element for a totally homozygous animals is (1+F)==2 x 2 I,.a;; 
A typical off diagonal element is a weighted function of 0, 1 or 2 

The number of O's is the number of loci that the 2 animals are alternate homozygotes 

The number of 2's is the number of loci that the 2 animals are the same homozygote 

The number of 1 'sis N minus the number of O's and 2's 

Non-inbred animal 

• In the usual context, a non-inbred animal is 
IBS but not IBD (with a;;=l) 

• The fraction of homozygosity across loci is 
expected to be the sum over all loci of p2+q2 in 
the absence of inbreeding 

• Such an animal would have an average 
diagonal of the genomic matrix>> 1 
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Summary of Model Alternatives 

dominanCe d=O dominance d=O d=O 

Model df 3 2 Not Relevant 

Gen_otyp_ic yes no 

All alleles yes yes 

s·ubstitution yes yes 

Animals n/a n/a 

Some alternative computing 
strategies that are not equivalent 

models 
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Reconsider a single locus 

y =lµ+Ma+e 

N l'm I l'm 2 µ l'y 

m;t m;m 1 +Jc ' ' 
ID1ID2 al = ID1Y 

m~l ' 
IDzID1 m~m2 + Jc a2 IDzY 

' For A::: <J~, these MME have the same solution for 01 -Cl2 (but not Ji) as 

l ;/ l'm 1 ][ fl* l [ l'y l 
m;t m;m1 +½ ~ = m1y 

As if we fitted y = 1µ + m1a1 + e with different ,l 

Hint of Identical Solutions 
y=lµ+Ma+e (Model I), with M'1=21 

y = 1µ + m1a1 + m 2a2 + e but m2 = 21-m, 

= 1µ + m
1
a

1 
+ (2 1- m, )a 2 + e but 2a2 = k2 = constant 

=1(µ+k,)+m,a 1 -m,a2 +e 

=l(µ+k,)+m,(a,-a,)+e (Model II) 

E[y] = (µ + k,), var[y] = m,m; 20"; + Io; A11 = 0"/2c,; = \{ 

Clear! y the first and second moments are different in models I and II 
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Proof of Identical Solutions 

y=lµ+Ma+e 

= 1µ + MT"1Ta + e 

= 1µ + [MT 1 ][Ta]+ e 

Ta= [ a1 ] = [ ~ 1 ][ a1 ] = [ a1: a2 ] 
a2 11 a2 a2 a1 

Proof of Identical Solutions 

y=lµ+[MT- 1 ][Ta]+e 

=1µ+_!_[ m1 +mz IDz •m, J[ a1 +a2 
2 a2 -a 1 

butm 1 +m 2 =21 and m2 -m 1 =2(1-m 1) 
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Proof of Identical Solutions 

y = lµ + [ I 

1 '1 

l '1 

1 '1 

1'1+~
1
~ 

2a; 

subtract column 1 from column 2 

1 '1 0 1 '(1- m1) 

1 '1 
I 

20-; 
l'(l•ffi1) 

a1 +a 2 := l'y 
[ 

µ j [ l'y j 
(l•m1)'1 0 (1-m 1)'(1-m 1)+~ 

a2 -a 1 (l-m 1)'y 

2<Y. 

Proof of Identical Solutions 

y = lµ+ [ I 

1 '1 

1 'l 

0 

I 

2cr; 

subtract row I from row 2 

1 '1 

0 

]+ r 
"1 +a, ] [ 2 0 ] 2 e, var :::: a,, 
a

2
-a 1 0 2 
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Proof of Identical Solutions 

y = 1µ+[ 1 j [a,+a,j-[20]2 +e, VITT - G0 a2 - a1 0 2 

I 'I 0 

0 
2cr; 

equation 2 is independent from equations 1 and 3 

0 0 

Proof of Identical Solutions 

y = 1µ + [ 1 

1'1 1'(1-m,) 0 

(1-m,)'l (1-m )'(1-m )+· .. 
1
~ O 

I I 2a; 

0 0 

has the same solution for substitution effects as 

from the model equation)' = 1µ + (1- m1 )( a2 - a1) + e 
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More Alternatives 

Previously y = 1 (µ + k2 ) + m, ( a1 - a,)+ e 

Note m, ( and m2) contain covariate values of 0, 1 or 2 

another model with k
12 

= ( a
1 

- a,) is 

y = 1 (µ + k, + k
12

) + m1 ( a1 
- a, )-1 ( a1 - a,)+ e 

y =l(µ+k 2 +k 12)+(m 1 -1)(a 1 -a 2 )+e 

whereby the covariate values are now -1, 0 and 1 

Computational Alternatives 

y=lµ+Ma+e 

y = 1 (µ + k,) + m1 ( a1 - a,) 

covariates 

0, 1, 2 and 2, 1, 0 

+e 0,1,2 

y =1(µ+k
2 

+k
12

)+(m
1 
-l)(a

1 
-a,)+e -1,0, 1 

y=l(µ+k
1

) +m
2
(a

2
-a 1 ) +e 2,1,0 

y =l(µ+k 1 +k
21

)+(m
2

-l)(a
2

-a
1
)+e 1,0, -1 

All these models have different E[y] 
All these models have identical predictions of random effects 
Only the first model has the correct PEV for the random effect if e assumed diagonal 
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Consider the genetic part of var[y] 

covariate genetic variance (ZG Z ') M=[ m, m, l=[ r n 
M 

m, 

[ . , , l / var[Ma]=MAM'= 2 2 2 cr! 
0 2 , 

These are typically singular, unless there are more loci than animals 

Animal Model Counterpart 
Any fall rank inverse of the following 

can be used in place of A-10"; in MME 

to predict animal merit 

2,M,M;'<J:, = 2,(m"m;, + m2,m~, )o-:, 
~ ' 2 
L,_; mlimli 20" ai 

2,(m" -1 )(m" - 1 )'2<J:, 

2,(m 2, -1 )(m2, -1 )'2<J;, 

Only the first can be used for PEV or r 2 
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Summary of Model Alternatives 

' Fh<ed Effetts ' '~ 

dominance d=O dominance d=O d=O 

Model df 3 2 Not Relevant 

Genotypic yes no 

All alleles yes yes 

Substitution yes yes-

Animals n/a n/a 

Correct handling of the model 
y=lµ+Ma+e with M'l=21 

y =Iµ+ m,a, + m,a, + e but m, = 21- m, 

=1µ+m,a 1 +(21-m,)a, +e 

=1µ+m,a 1 -m 1a2 +(12a 2 +e) 

= lµ+m 1 (a, -a,)+e' 

with var(e') = var(12a2 + e) = 411 'a~+ Ia; 

but cov[(a, - a,),e' '] = -2l'vara 2 ct O ⇒ no MME, GLS OK 
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Summary of Model Alternatives 

... 
d,omlnance d;O c!ominance , d=O d=O 

Model df 3 2 Not Relevant 

Genotypic yes no 

All alleles yes yes 

Substitutioil yes yes R•D R=D 
Not MME (1) 

Animals n/a n/a (1) (1) 

Models (1) are equivalent 
Models (2) are equivalent (if both use pt allele, or 2nd allele, or-1,0,1 etc) 
Models (1) and {2) give the same BLUP solutions, but not PEV or r2 

Equivalent "Animal" Model 

• Any of these models with equivalent 
computations for loci effects, can be 
formulated to solve for animal effects rather 
than locus effects 

- Give identical estimates for every animal 

- Will not all give the same PEV for animal (or locus) 

effects 
• This has implications in quantifying accuracy/reliability 
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More complex model 

• Partition variance unequally among every locus 
(Bayes A) 

- Practical impact of this will depend upon shrinkage 

• Partition variance unequally among a subset of 
the loci (Bayes B) 

- But which subset? 

- And how do you assume the size of the subset, 
a parameter they referred to as n 

The variance component problem 

• We need to jointly estimate the residual and 

genetic variances for perhaps tens of 

thousands of loci, simultaneously considering 

model selection criteria to discard models 

with low levels of support 

- 50k 1-locus additive models 

- About 50k2 2-locus models and so on 

- Little knowledge of how many loci might be 
needed but it could be hundreds 
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Fitted Model 

• We will use the model that fits a substitution 
effect for each locus, recognizing that we 
cannot use the equations for estimating 
reliabilities 

- Equations are too big anyway 

- Bayesian posteriors can be used for reliability of 
SNP effects 
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Reliabilities 

Reliability (R2) of EBV/PTA 

• Difficult concept 

- Square root of reliability reflects the correlation 
you would observe if you could relate the true and 
estimated merit of animals with that particular 
reliability 

• Square root of reliability is known as accuracy 
- Used in many industries other than dairy cattle 

- US beef industry uses another (related) measure 
known as "BIF accuracy", as defined by the Beef 
Improvement Federation 
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High & Low Reliability 

Rellablllty: 0.36 Reliability= 0.50 Reliability= 0.85 
Correlation = 0.6 Correlation= 0.7 Correlation= 0.92 

• 
" " 

0 

0 
0 

g • 0 

s s s 
0 0 ,, 0 

0 0 0 0 

40 " 120 160 40 " 120 160 50 100 150 

Estimated Merit Estimated Merit Estimated Merit 

Reliability of non-genotyped Offspring 

R2,·r . o spnng 
4 

Reliability increases with individual records or offspring 

Reliability of individual 
with accurate sire is at most 0.25 
with accurate sire & dam is at most 0.5 
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Reliability of EBV/PTA 

• Unreliability is easier to understand 
- (100-reliability) is the percentage of genetic 

variation that cannot be explained from 
knowledge of the pedigree & performance 
information (or pedigree, performance and 
genomic information) 

• 0 

N 
0 

0 
0 

With no other information 
we expect a Holstein to have "average" merit 

-2 -1 

Deviation 

but could be 
above average 

Holstein 
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0 
0 

0 

0 

0 

-2 

A young bull born to a high reliability sire 
Is less likely to be much bettor 
or much worse than expected 

-1 

Deviation 

I,,, 
'«J!1A,,i :; ,: ?'.-, 

Young bull 
Reliabil,ty" 0.5 

-2 -1 
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Conventional Reliability 

• Computed from the coefficient matrix of the 
MME 

• Has nothing to do with observed performance 
values or deviations, but everything to do with 
information content 

- Reliabilities of parents, number of records on the 
individual and offspring, loss of information from 
fixed effects 

Genomic Reliability 

• If the estimated effects of allelel are the 
negative of the effects of allele2, what is the 
contribution of one locus to the genomic 
merit of a heterozygote? 

- What about an animal that is completely 
heterozygous? 
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Genomic Reliability 

• Consider the genomic merit (using an additive 
model) for an animal that is homozygous for 
the superior allele at every locus 

- What is the reliability of this animal likely to be? 

• Genomic reliability is determined by the 
genotypes, and these dictate genetic merit 
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Iowa State University 14 June 2010 Genomic Selection Course 

Laboratory 1 

The objective of this laboratory session is to gain familiarity with the R 
programming language and the mixed linear models that we will be using in the 
Bayesian analyses later in the course. 

Exercise 1 

The lecture notes introduced the equations for generalized least squares (GLS). The 
GLS equation(s) for the model we discussed in the lecture are 

6° =(x•v-1x)"(x•v·1y), for v =ZGZ'+R. 
These equations are useful as Vis typically full rank, but are not practical in many 
situations where Vis large. In this example with just the mean fitted as the only 
fixed effect, the GLS equation will be a scalar form. 

In order to form V, you will need to know G and R. 

Create a small Hendersonian data set by constructing a vector y of phenotypic 
observations (no more than 6 observations). Create a corresponding X matrix to 
represent the incidence matrix for the fixed effects. This matrix will have as many 
rows as there are observations in y, and as many columns as there are fixed effects 
in b. The minimum configuration for X would be a vector of l's that would 
correspond to a model that included an overall mean. Other alternatives for X might 
be to include a vector of covariates (eg age of the animal at measurement) or a class 
variable such as a fixed effect for the sex of the measured animal. 

Construct a G matrix that will be square and have order equal to the number of 
animals in the pedigree file. For ease of viewing, the order of G should not exceed 6. 
The G matrix is the variance-covariance matrix of the fitted random effects, such as 
the breeding values. In that case, G will be the product of the numerator 
relationship or A matrix, and the scale additive genetic variance. Form A for some 
simple pedigree and assume a value of the additive genetic variance. Note that the 
pedigree might contain some animals that do not have observed phenotypes, so the 
length of y may be less than the order of G. • 

Construct an incidence matrix Z, that relates the observations in y to the 
corresponding breeding value in u. The matrix Z may be an identity matrix if all 
animals in the pedigree have a phenotypic record. More typically, Z has as many 
rows as there are records in y, and as many columns as there are animals in u ( and 
therefore the G matrix). 

Lastly, construct R, the variance-covariance matrix for the residual effects, which for 
independent and identically distributed residual effects will be an identity matrix of 
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order equal to the length of y, multiplied by the scalar residual variance. Recall that 
the heritability is the ratio of the genetic variance over the phenotypic variance, and 
the phenotypic variance in this model is the sum of the additive genetic and residual 
variances, so the values you assume will imply a particular heritability. 

Given defined values for all these vectors, matrices and constants, calculate the 
phenotypic variance-covariance matrix V, and then solve the GLS equations to 
obtain best linear unbiased estimates (BLUEs) of the fixed effects. Use the BLUEs to 
adjust the phenotypic records and form deviations, that you can then use to 
compute the best linear unbiased predictions (BLUP) of the random effects as a 
linear function of these deviations, as described below. Note that this form of 
obtaining BLUP works with a singular G matrix. 

The equations to obtain BLUP estimates are 

ii= GZ'V-1 (y-Xb0 ). 

Be sure to save all your steps so you can immediately repeat your calculations with 
a modified dataset or different parameters, Print out and inspect the results of all 
your calculations. 

Exercise 2 

Repeat the same exercise as above, but this time estimate the BLUEs and predict the 
BLUPs by setting up and solving the mixed model equations. The answers should be 
identical to those you obtained using GLS. The mixed model equations are shown 
below. 

Exercise 3 

X'R·'z 

Z'R 1Z+G· 1 

Obtain the variance of the estimated BLUP effects, and the prediction error variance. 
These values require elements of the inverse of the mixed model coefficient matrix. 
We will use the following notation 

and the corresponding partitions of the inverse are 
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I X'R"'X 

l Z'R"1X 

X'R"1Z 
Z'R"'Z+G·' 

In relation to random effects, we need only concern ourselves with the C22 partition 
of the inverse coefficient matrix. Note however that the entire coefficient matrix 
must be inverted to obtain the partition of interest. From this partition you have the 
prediction error variance-covariance matrix. That is, 

var[u- u] = C22 

var[u] = G- C", and recall that var[u] = G. 
A common unitfree measure of how well we have estimated the BLUP is the square 
of the correlation between the true and estimated effect. Since the true effects are 
not known, this cannot be calculated directly, but is a function of the G and C" 

var[u] diag[G-C"] 
matrices. Specifically, r2 = -- . [ ] for best linear predictions (BLP) 

var[u] dwg G 
and best linear unbiased predictions (BLUP). 

Exercise 4 

In many circumstances we are interested in linear combinations of random effects. 
For example, we might want to know the BLUP and the r2 of a team of sires rather 
than an individual. Alternatively, we might be interested in the contrast or 
difference between one or more alternative sires or teams. To compute these, we 
need to construct a relevant vector of contrasts that we will denote as k. For 

example, to predict the superiority of sire 1 over sire 2, for u' = [ u
1 

u2 u3 u
4 

] , 

we would form k' = [ 1 -1 0 0 ] . To compare a team of the first two sires to 

the second two sires we would use k' = [ 0.5 0.5 -0.5 -0.5 ]. Both of these 

contrasts can be considered simultaneously by stacking them up the rows of k' 

together in a matrix, K = [ 1 -l O O ] . 
0.5 0.5 -0.5 -0.5 

The BLUP of k'u is simply obtained as k'u, and var(k'u) = k'Gk, 

var(k'u) = k'[ G- C22 ]k. 

Construct some linear combinations, and estimate the prediction error variance and 
r2 for these linear combinations. 
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Useful R commands for this exercise, 

array() 
matrix() 
dim() 
diag() 

t() 
%*% 
solve() 

rbind() 
cbind() 
? 

used to form a vector 
used to form a matrix 
used to determine the dimension of an object (eg vector or matrix) 
used to construct a diagonal matrix 
or extract the diagonal elements of a matrix 

transpose a matrix 
used to perform matrix (or matrix-vector) multiplications 
used to solve a set of equations 
or to obtain the inverse of a matrix 
used to join objects in different rows 
used to join objects into columns 
used for syntax help, e.g., ?solve 
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Laboratory 2 

Consider the dataset in Table 1, from pllO Ben Hayes course notes. We will use this 
dataset to explore some alternative models for fitting SNP effects. The columns 
include the allele calls at each marker locus (Ml, M2 and M3), followed by the 
covariate that represent the number of 1 (al, bl and cl) or 2 (a2, b2 and c2) alleles 
at each locus ( designated A, B and C). 

Animal phenotype Ml M2 M3 al a2 bl b2 cl c2 
1 9.68 22 21 11 0 2 1 1 2 0 
3 2.29 12 22 22 1 1 0 2 0 2 
20 0.81 11 21 12 2 0 1 1 1 1 
4 3A2 11 21 11 2 0 1 1 2 0 
2 5.69 22 22 22 0 2 0 2 0 2 
5 5.92 21 11 11 1 1 2 0 2 0 
6 2.82 21 21 22 1 1 1 1 0 2 
7 5.07 22 21 22 0 2 1 1 0 2 
8 8.92 22 22 11 0 2 0 2 2 0 
9 2.4 11 22 12 2 0 0 2 1 1 
10 9.01 22 22 11 0 2 0 2 2 0 
11 4.24 12 12 21 1 1 1 1 1 1 
12 6.35 22 11 12 0 2 2 0 1 1 
13 8.92 22 12 11 0 2 1 1 2 0 
14 -0.64 11 22 22 2 0 0 2 0 2 
15 5.95 21 11 11 1 1 2 0 2 0 
16 6.13 12 21 11 1 1 1 1 2 0 
1 7 6. 72 21 21 11 1 1 1 1 2 0 
18 4.86 12 21 12 1 1 1 1 1 1 
19 6.36 22 22 22 0 2 0 2 0 2 
21 9.67 22 12 11 0 2 1 1 2 0 
22 7.74 22 21 12 0 2 1 1 1 1 
23 1.45 11 22 21 2 0 0 2 1 1 
24 1.22 11 21 21 2 0 1 1 1 1 
25 -0.52 11 22 22 2 0 0 2 0 2 

This data first needs to be read into R. The command getwd() will show the 
working directory. The datafile needs to be located in the working directory. You 
could either copy it there, navigate to the working directory from the menu options, 
or change the working directory using the setwd("dirname") command, where 
dirname is the path to the working directory. The command dir() will show the files 
in the working directory. 

A simple R script will be provided with the following commands to read the datafile. 
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genomicdata <- read.table("BenHayespllO.txt", header=TRUE) 

will read the text file into a table object in R. Typing the name of the table (ie 
genomicdata) or using the command print(genomicdata) will display the 
information if the read.table command was successful. The commands dim() or 
str() will also provide details of the object if you place the object name between the 
brackets. The named columns of the table can be accessed using the name of the 
table, followed by a$ sign, followed by the name of the column. For example, 

ytmp <- matrix(genomicdata$phenotype, ncol=l) 
Ztmp <- as.matrix( cbind(genomicdata$al, genomicdata$a2, 
genomicdata$bl, genomicdata$b2,genomicdata$cl,genomicdata$c2)) 

will read in a potential y vector and Z matrix. 

We will be fitting some models where rank is an issue for certain analyses. For 
example, in least squares models, we need to have at least as many animals as we 
have effects. This is typically not an issue if the fitted effects are treated as random. 
However, for equivalent models that fit animal effect using SNP genotypes to form 
relationships, the genomic relationship matrix will not be full rank unless there are 
at least as many SNP effects fitted as there are animals. For this reason, in different 
models we will use different subsets of the complete y and Z vector. The variable 
nanim sets the number of animals to be used. The following lines will set up the 
example to use the first thirteen animals in the datafile. 

nanim <- 13 

y <- matrix(ytmp[l:nanim]) 
X <- matrix(l,nanim) 
Z <- Ztmp[l:nanim,] 
neffects <- dim(Z) [2] 
nfix <- dim(X)[2] 
nloci <- neffects/2 
istart <-nfix+ 1 #these are pointers to assist in extracting subvectors 
iend <-nfix+neffects 

Example 1: Fitting both alleles at the three loci as random effects using GLS. 

The GLS equation(s) for the model we discussed in the lecture are 

6° =(x•v- 1x)"(X'V- 1y), for V=ZGZ'+R. 
These equations are useful as Vis typically full rank, but are not practical in many 
situations where Vis large. ln this example with just the mean fitted as the only 
fixed effect, the GLS equation will be a scalar form. 
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In order to form V, you will need to know G and R. Suppose the residuals are 
homogeneous and uncorrelated. We will use a residual variance of 1. R can be 
formed using the diag command. 

R <-diag(sigmasqe,nanim) 

The incidence matrix Z has 6 columns - one for each of the allelic effects. Suppose 
the three loci have different variance - say 2, 4 and 3, respectively. Create a G 
matrix of order 6 with columns corresponding to the columns in Z. Inspect V. You 
will need to use commands for transpose ( eg t(X)), matrix multiplication ( eg, X %*% 
Vinv), and matrix inversion (eg solve (V)). Take advantage of the help facility in R, 
using commands such as ?solve or ?t() for any commands you are unsure of. Inspect 
the intermediate calculations and record the subsequent results. 

Be sure to save all your steps so you can immediately repeat your calculations with 
a modified dataset or different parameters. 

Estimate the fixed effects by solving the GLS equations. Print out the result(s). The 
BLUPs of the random effects can then be obtained from selection index principles, 
but adjusting the phenotypic records with the GLS estimates of the fixed effects 
(rather then the true values as is required in selection index). That is, solve 

a=GZ'v-1 (y-xfi"). 
Note that the estimates of the allelic effects sum to zero, even though no such 
constraint was actively used. This is a feature of mixed models in certain 
circumstances. 

Calculate the substitution effects by forming a contrast vector (k) with order equal 
to the order of a, that contains all zeros except elements 1 and -1 corresponding to 
the first and second allele at a locus, and then compute the linear function k'a. 
Record the results. You can align (using cbind()) the three contrast vectors into a 
matrix K whose first column is the k vector given above and the second and third 
columns are the corresponding vectors for computing substitution effects at the 
second and third loci respectively. In that case, the matrix-vector product K'a will 
compute all three substitution effects at once. 

Example 2: Shrinkage of substitution effects. 

Modify the three pairs of diagonal elements of G, or equivalently, modify the single 
diagonal element of the nanim by nanim matrix R in order to modify the variance 
ratio lambda, of residual to genetic variance. In an animal model, lambda is (1-h2)/ 

h2 which will be 0 if h2 is 1 and a large number if h' is small. For a heritability of 
0.25, lambda is 3. In genomic prediction models, the genetic variance is partitioned 
among all the loci. If there are hundreds of loci, the lambda ratio for each locus will 
be large. You can simulate this effect by making the diagonal elements or R say 10 

Dorian Garrick 3 



Iowa State University 15 June 2010 Genomic Selection Course 

or 100 times larger than G. Compare the estimated substitution effects for varying 
values of residual variance (in relation to additive variance). Shrinkage is related to 
the magnitude of the ratio of residual to additive variance. lf residual variance is 
small this ratio will be reduced and the estimates will approach least squares. 
Inspect the variance ratio for each scenario you attempt. 

If order to compute the least squares estimate you will need to form the least 
squares equations treating allelic effects as fixed. To do this, you need to form a new 
incidence matrix for fixed effects that includes the old fixed effects ( eg the overall 
mean) as well as the allelic effects. You can do this using cbind(X,Z) to augment the 
columns of the two incidence matrices. However, this new matrix will not have full 
column rank so the least squares equations will not be full rank. You should be able 
to constrain the new equations to full rank by limiting the augmented matrix to 
include only one column of allelic effects for each locus. 

For example, X",w <- cbind(X,Z[,c(l,3,5)]) will use only those three columns. Then 
the least squares solutions can be obtained from solving the following full rank 
equations. The first effect in these equations will be an intercept rather than a 
mean, unless you center the covariates in the Z matrix by subtracting 1. 

Modify the constant nanim to alter the number of animals in the datafile that will be 
used in the calculation. Try larger and smaller values. 

What do you conclude about the importance of treating SNP effects as random in 
terms of shrinkage of estimated effects? 

Before continuing, you will want to reset the genetic and residual variances back to 
their original values. 

Example 3: Fitting both alleles at the three loci as random effects using MME. 

An alternative approach to estimate random effects is to use the mixed model 
equations. Rather than requiring the inverse ofV, the typical form of the mixed 
model equations requires the inverse ofG and the inverse ofR. Its general form is 
as follows 

X'R 1Z 
z•R·1z+c· 1 
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In simple cases where R is a scaled identity, only the inverse of G is required as the 
scalar residual variance can be factored out by multiplication. Remember that the 
inverse of the coefficient matrix will need to be scaled by the residual variance to 
compute the correct prediction error variances or reliabilities when you use this 
modified form. Form and solve these simpler mixed model equations, as follows 

You will need to use the commands cbind() and/or rbind() to join two matrices of 
conformable order by column or by row respectively. 

Compare the solutions for the fixed effects and the six random allelic effects to the 
GLS solutions. They should be identical. If not, check your equations before you 
proceed. 

Extract the prediction error variance-covariance (PEV) matrix ( var(a - a)= C220';) 
of the fitted allelic effects, where C22 is that submatrix of the inverse of the mixed 
model equations corresponding to the rows and columns representing random 
effects (ie Z'Z+O';G·' portion of the inverse). Compute var(a)= G-C220'; by 
subtracting the PEV matrix from the genetic variance-covariance matrix. The 
reliability of the predictions (squared correlation between true and predicted merit) 
are obtained by dividing the diagonal elements of G-C22 O'; by the diagonal 
elements of G. You might find the R function diag() useful for this purpose. 
Reliability is used in some industries (eg dairy) to convey the information content in 
estimated breeding values (EBVs). 

Compute the substitution effects by forming relevant contrast vectors as in the 
previous question. 

From the viewpoint of genomic prediction rather than QTL detection, we will be 
more interested in linear functions of the estimated SNP effects, such as Za. 
Compute that linear function for all animals. You may want to plot that estimate of 
genetic merit against the phenotype using the plot() command, or compute the 
correlation with phenotype using the car() function. 

We typically have to compute reliabilities of estimated breeding values. The 
reliability for any arbitrary contrast k, can be calculated as linear function of the G 
and C22 matrices as follows 

2 
_ diag[ k'( G-C220';)k] 

r,., - diag[k'Gk] • 

In mixed models, any linear combination of random effects is estimable, so 
conformable k can contain any elements. One meaningful choice of k' is the 
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elements of a row of Z, as that contrast estimates the linear combination of random 
contributions relevant to a particular animal. The reliabilities of all animals can be 
simultaneously predicted using the entire Z matrix in place ofk' in the above 
equation. Compute the breeding values of all the animals and their corresponding 
reliabilities. 

Example 4: Directly fitting animal effects using genomic relationships. 

Rather than estimating allelic effects at every locus, an equivalent model can be 
derived that directly solves the animal effects in the appropriate mixed model 
equations. This formulation of the problem in the usual representation of the mixed 
model equations will only work when the genomic relationship matrix is full rank 
The genomic relationship matrix will not be full rank if there are more animals than 
loci or if any two animals have identical genotypes. 

Reduce nanim to 3 and recompute the quantities in example 2. The animals in the 
original Hayes datafile have been reordered so that the genomic relationship matrix 
is full rank for the first three animals. 

Form the genomic relationship matrix as ZGZ', and invert it using solve(). Form and 
solve the mixed model equations, and compute the reliabilities for each animal. In 
computing the reliabilities, note that the matrix you previously used for G should 
now be replaced by ZGZ'. To fit animal effects directly, use the mixed model 
equations in the form below where the previous incidence matrix for the random 
effects has been replaced by the matrix Z. 

Compare your results to the answers you obtained in example 2. They should be 
identical. 

Example 5: Alternative parameterizations fitting substitution effects rather 
than allelic effects. 

Modify the Z matrix by reading only columns 1, 3 and 5 ( or 2, 4 and 6). This allows 
you to fit substitution effects rather than both allelic effects. You will also need to 
appropriately alter the order of G and double the genetic variance for substitution 
effects for each locus compared to allelic effects because 
var(a) = var( a, - a,)= var(a,) + var(a,) = 2 var(a). If you don't recode the new Z 

matrix, you have effectively modified the overall mean and the estimated breeding 
values will all be altered by a constant compared to the previous questions. This is 
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no problem in real life, as breeding values are typically rescaled to a consistent base 
after computation and prior to publication of the results. 

You may want to further experiment by subtracting 1 from every element of Z, so 
each SNP is coded -1, 0 and 1 rather than 0, 1 or 2. 

For the modified incidence matrices, repeat example 1, fitting the GLS equations, 
example 2, fitting the mixed model equations for substitution effects and example 3, 
fitting the genomic relationship matrix. These three models are equivalent to each 
other and should give the same solutions to each other for this parameterization. 
You should also find that the solutions for substitution effects or animals are the 
same as you obtained in examples 1-3 except the breeding values may differ by a 
constant depending upon your parameterization. The fixed effects solutions will not 
be the same, neither will the prediction error variances or reliabilities of predicted 
random effects be typically identical. 
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Bayes Theorem 

The conditional probability of X given Y is 

P (XI Y) = Pr(X, Y) = Pr( YIX) Pr(X) 
r Pr( Y) Pr( Y) 

where Pr(X, Y) is the joint probability of X and Y, Pr(X) is the 
probability of X, and Pr( Y) is the probability of Y. 

Conditional Probability by Example 

Joint distribution of smoking and lung cancer in a hypothetical 
population of 1,000,000: 

Yes 
Lung Cancer No 

Smoking 
Yes No 

42,500 7,500 50,000 
207,500 742,500 950,000 
250,000 750,000 

Question: What is the relative frequency of lung cancer among 
smokers? 

A . 42,500 _ O 17 nswer · 2so,ooo - · 
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Conditional Probability by Example 

► As explained below, this relative frequency is also the 
conditional probability of lung cancer given smoking. 

► The frequentist definition of probability of an event is the 
limiting value of its relative frequency in a large number of 
trials. 

► Suppose we sample with replacement individuals from the 
250,000 smokers and compute the relative frequency of 
lung cancer incidence. 

► It can be shown that as the sample size goes to infinity, this 
relative frequency will approach 2~

2/gg0 = 0.17. 

► This conditional probability is usually written as 
42,500/1,000,000 _ Q 17 
250,000/1,000,000 - • • 

► The ratio in the numerator is joint probability of smoking 
and lung cancer, and the ratio in the denominator is the 
marginal probability of smoking. 

Meaning of Probability in Bayesian Inference 

► In the frequency approach, probability is a limiting 
frequency 

► In Bayesian inference, probabilities are used to quantify 
your beliefs or knowledge about possible values of 
parameters 

► What is the probability that h2 > 0.5? 
► What is the probability that milk yield is controlled by more 

than 1 00 loci? 
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Essentials of Bayesian Inference 

► I"'' ;;1 probabilities quantify beliefs about parameters before 
the data are analyzed 

► Parameters are related to the data through the model or 
''is,telihood", which is the conditional probability density for 
the data given the parameters 

► The prior and the likelihood are combined using Bayes 
theorem to obtain posterior probabilities, which are 
conditional probabilities for the parameters given the data 

► Inferences about parameters are based on the posteior 

Bayes Theorem in Bayesian Inference 

► Let f( 0) denote the prior probability density for 0 

► Let f(yl0) denote the likelihood 

► Then, the posterior probability of 0 is: 

f( I ) = t(yl0)t( 0) 
0 y f(y) 

ex t(yl0)t(0) 
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Computing posteriors 

► Often no closed form for f( 0\y) 
► Further, even if computing f( 0\y) is feasible, obtaining 

f( 0;\Y) would require integrating over many dimensions 

► Thus, in many situations, inferences are made using the 
empirical posterior constructed by drawing samples from 
f( 0\y) 

► Gibbs sampler is widely used for drawing samples from 
posteriors 

Gibbs sampler 

► Want to draw samples from f(x1, X2, ... , Xn) 

► Even though it may be possible to compute 
f(x 1, x2, ... , Xn), it is difficult to draw samples directly from 
f(x1, X2, ... , Xn) 

► Gibbs: 
► Get valid a starting point x0 
► Draw sample x' as: 

x/ from 
xJ from 
x; from 

x' from n 

► The sequence x1, x2 , ... , xn is a Markov chain with 
stationary distribution f(x 1, x2, ... , Xn) 
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Inference from Markov chain 

Can show that samples obtained from the Markov chain can be 
used to draw inferences from f(x 1 , x2 , ... , Xn) provided the 
chain is: 

► ,, , ,,duc:1hlo: can move from any state i to any other state j 

► ivc recurrent: return time to any state has finite 
expectation 

► Markov Chains, J. R. Norris (1997) 

Example 
Let f(x) be a bivariate normal density with means 

µ' = [ 1 2] 

and covariance matrix 

V _ [ 1 0.5] 
- 0.5 2.0 

Suppose we do not know how to draw samples from f(x), but 
know how to draw samples from f(x;lxj), which is univariate 
normal with mean: 

and variance 
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Gibbs sampler 

► Gibbs: 

► Start with x0 = [~] 

► Draw sample x 1 as: 

x! from f(x1 lxt 1) 
xJ from f(x2 lx!) 

► Use the sequence x 1, x2 , ... , xn to compute any property 
of f(x), for example 

Pr(x1 > µ 1 and X2 > µ2) 

MCMC Estimates of Pr(x1 > 111 and x2 > 1i2) 

g 
0 

• I 
• 0 

8 

1·<,a·G-5•~•\ 
-• OIOoclSarr-., .. , 

,.~·e"'"snm:::wnw:o:tM:T, "''~ 

L--,----~--~---~--~--~-
2e+04 4&+04 8e+-04 

iteration 
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Metropolis-Hastings sampler 

► Sometimes may not be able to draw samples directly from 
f(x;lx;J 

► Convergence of the Gibbs sampler may be too slow 

► Metropolis-Hastings (MH) for sampling from f(x): 

► a candidate sample, y, is drawn from a proposal distribution 
q(ylx'-') 

with probability a 

with probability 1 - a 

. f(y)q(x'-' IY) 
°' = m1n(1, f(x'-' )q(ylx'-')) 

► The samples from MH is a Markov chain with stationary 
distribution f(x) 

Proposal distributions 

Two main types: 

► Approximations of the target density: f(x) 
► Not easy to find approximation that is easy to sample from 
► High acceptance rate is good! 

► Random walk type: stay close to the previous sample 
► Generally easy to construct proposal 
► High acceptance rate may indicate that candidate is too 

close to previous sample 
► Intermediate acceptance rate is good 
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MH Sampler to Estimate Pr(x1 > /J,1 and x2 > µ2) 
MH Sampler: 

► Start with x0 = rnJ 
► Draw sample x1 as: 

h , LJ 'f ( 1 /2 1 /2) w ere u; Is nI orm -V;; , V;; , 

► Compute 
' f(y) 

o: = mm(1, f(xt-1)) 

and 

1 { y with probability o: 

x = x1- 1 with probability 1 - o: 

MCMC Estimates of Pr(x1 > 111 and x2 > /L2) 

il@ralioo 
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Distribution of y1 Sampled Using MH 

Histogram of y1 

_, 

Part II 

Bayesian Inference: Application to Whole 
Genome Analyses 
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Model 

Model: 

Priors: 

Y; = µ + L Xif°'i + e; 
j 

► µ ex constant (not proper, but posterior is proper) 

► { e;ler~) ~ {iid)N(O, er~); er~ ~ veS~x;;-,2 : , ,, r', 

► Consider several different priors for °'i 

Normal 

► Prior: (ailer~) ~ (iid)N(O, er~); er~ is known 

► What is er~? 

► Assume the QTL genotypes are a subset of those 
available for the analysis 

► Then, the genotypic value of i can be written as: 

► Note that a is common to all i 
► Thus, the variance of g; comes from x; being random 

► So, er~ is not the genetic variance at a locus 
► If locus j is randomly sampled from all the loci available for 

analysis: 
► Then, °'i will be a random variable 
► u~ = Var( °'i) 
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Relationship of o-; to genetic variance 
Assume loci with effect on trait are in linkage equilibrium. Then, 
the additive genetic variance is 

k 

VA = L 2pJqi°'T, 
j 

where Pi = 1 - qi is gene frequency at SNP locus j. 
Letting u1 = 2p1q1 and VJ = af, 

For a randomly sampled locus, covariance between u1 and VJ is 

"UV " U " V Cuv = L,j I I - ( !::::i.,_l_)(-0
-1- 1) 

k k .· k 

Relationship of a; to genetic variance 
Rearranging the previous expression for Cuv gives 

So, 

Letting o-; = I:~ °'J gives 

and, 

VA= kCuv + (L 2pfq1)0-; 
j 

VA - kCuv 
L-j 2pjqj 
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Blocked Gibbs sampler 

► Let 0' = [µ, a'] 
► Can show that (0ly, u~) ~ N(0, c-\,-~) 
► 

► 

0 = c-1 W'y; W = [1, X] 

[

1'1 
C= X'1 

1'X ] 
X'X + I"~ 

a' 0 

► Blocked Gibbs sampler 
► Garcfa-Cortes and Sorensen (1996, GSE 28:121-126) 
► Likelihood, Bayesian and MCMC Methods··· (LBMMQG, 

Sorensen and Gianola, 2002) 

Full conditionals for single-site Gibbs 

► 

► 

► 

x~w , I 
CTj= -

Cj 

w = y-1µ - z},xi'°'i' 
i'# 
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Derive: full conditional for o:1 

From Bayes' Theorem, 

f( ·IY . 2)- f(Oij,y,µ,ai ,u~) 
0'.1 , µ, a]_, (J'e ~ 2 

f(y, µ, °'j_, ae) 

( 2) 1112 { (w - x1'(t1)'(w- x1oi)] .... ; 
ex: (J" R I exp -- • ( 1 ' -- exp i - 2rr~ '\J -

where 
w = r-1µ- Lxi'°'i' 

it-i' 

Derive: full conditional for Oj 

The exponential terms in the joint density can be written as: 

1 { / I [ I (!~] 2} -- W W-2X·WOij+ X•Xj+- Oi· 
2a2 I I a2 I e a 

Completing the square in this expression with respect to Oij 

gives 
1 { ( A )2 / A 2} --

2 
Cj Oij - Oij +WW - CjCKj 

2ae 

where 

So, 
2 (ai - &j)2 

f(Oii1Y,µ,a 1• ,a.) ex exp{- 2 } 
- 2ae 

Cj 
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Alternative view of Normal prior 

Consider fixed linear model: 

y=1µ+Xa+e 

This can be also written as 

Suppose we observe for each locus: 

Y/ = CXj + Ej 

Least Squares with Additional Data 

Fixed linear model with the additional data: 

OLS Equations: 

[~, ~;] [lni~ h0;1] [~ X] [fl]= [1' O'] [In;~ 0 ] [Yl 
I & X' I' 0 lk:!, y* 

a, 
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Univariate-t 

Prior: 
( ailo}) ~ N(O, af) 

2 82 -2 
(Jj ,...._, Vo: Va Xvo: 

Can show that the unconditional distribution for ai is 

aj ~ (iid)/(0, s~o, Ve,) 

(Sorensen and Gianola, 2002, LBMMQG pages 28,60) 

This is Bayes-A (Meuwissen et al., 2001; Genetics 
157:1819-1829) 

Univariate-t 

0.4 

Generated by Wolfram!Alpha (www.wolframalpha.com) 
' 
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Full conditional for single-site Gibbs 
Full conditionals are the same as in the "Normal" model for 
µ,, ai, and aI Let 

Full conditional conditional for a}: 

f(o}ly,µ,,a,~j_,u~) ex f(y,µ,,a,~,u~) 

ex ( uf) 

Full conditional for al 

So, 

where 

and 
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Mu ltivariate-t 

Prior: 
(oiler;)~ (iid)N(O, er;) 

2 52 -2 a 0: rv Va Vc,Xvc,; 

Can show that the unconditional distribution for a is 

a ~ multivariate-t(O,/Sco' Va) 

(Sorensen and Gianola, 2002, LBMMQG page 60) 

We will see later that this is Bayes-C with 1r = 0. 

Full conditional for er~ 

We will see later that 

where 

and 

39167 
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Spike and univariate-t 

Prior: 
(al1r 0"2){~N(0,0"f) probability(1-1r), 

1 ' 1 = 0 probability 1r 

and 

Thus, 

(ajl1r)(iid) {~ univariate-t(O, S~, va) 
=0 

probability(1 - 1r), 

probability 1r 

This is Bayes-B (Meuwissen et al., 2001; Genetics 
157:1819-1829) 

Notation for sampling from mixture 

The indicator variable bj is defined as 

and 
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Sampling strategy in MHG (2001) 

► Sampling u~ and µ are as under the Normal prior. 

► MHG proposed to use a Metropolis-Hastings sampler to 
draw samples for uf and ai jointly from their full-conditional 
distribution. 

► First, uf is sampled from 

f(uf IY, µ, aj_, ~-' u~) 

using MH with prior as proposal. 

► Then, ai is sampled from its full-conditional, which is 
identical to that under the Normal prior 

MH acceptance probability when prior is used as 
proposal 

Suppose we want to sample 0 from f(0ly) using the MH with its 
prior as proposal. Then, the MH acceptance probability 
becomes: 

. f(0canlY)f(01- 1) 
a= mtn(1, t(01- 11y)f(0can) 

where f(0) is the prior for 0. Using Bayes' theorem, the target 
density can be written as: 

t(0ly) ex t(yl0)t(0) 

Then, the acceptance probability becomes 

. f(yl0can)f(0can)f(01- 1) 
a= mm(1, t(r101-1 )t(et-1 )t(ecan) 
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Sampling crf 

Thus when the prior for CJf is used as the proposal, the MH 
acceptance probability becomes 

°' = min(1, f(YICJ~~n, 01 ) ) 
t(yl(J1 , 01_) 

where CJ~an is used to denote the candidate value for CJf, and 01_ 
all the other parameters. It can be shown that, °'i depends on y 
only through r1 = x1w (page 30). Thus 

f(YICJf, 01_) ex f(r1l(Jf, 01J 

"Likelihood" for cr2 
J 

Recall that 

Then, 

When J = 1: 

and J = 0: 

w = y-1µ - I:,xrar = x1a1 + e 
i'#i 

E( WICJf, 01J = 0 

Var( wlS1 = 0, (Jf, 01J = fo~ 
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"Likelihood" for a-2 
1 

So, 

and 

So, 

Var(rjl'5j = 1,af,0L) = (x1xj)2af +x 1xja~ = V1 

Var(rjl'5j = 0, af, Bi_)= x1xja~ = v0 

2 

f(915j,af,0j_) ex (v,J- 112 exp{-iv,} 

Alternative View of Prior in BayesB 

► How much information is being added by the prior? 

► BayesB is identical to ML with additional data! 

► Can "see" how much additional data in BayesB prior. 
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Maximum Likelihood with Additional Data 

► Suppose at locus j, Si= 1, and we observe additional data: 

► Assume that only unknown is (ff 

► So, adjust phenotypes as: 

► Likelihood: 

W = y-1µ- L_Xi'°'i' 
i'#-i 

L((jJ; W, Uj) = L((jJ; &j, Uj) 

Likelihood with Additional Data 

► 

► 

► 
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Alternative algorithm for spike and univariate-t 

Rather than use the prior as the proposal for sampling (Jl, we 

► sample Oj = 1 with probability 0.5 

► when o = 1, sample CJl from a scaled inverse chi-squared 
distribution with 

► scale parameter= aJU-1l /2 and 4 degrees of freedom 
when 5U- 1

) = 1 and 
I ' 

► scale parameter = S; and 4 degrees of freedom when 
5U- 1l = o 
I 

Multivariate-t mixture 

Prior: 

( ·I 2 ) {~ N(O, CJ~) probability (1 - 1r), 
o:,J 1T, (J' a 

= O probability 1r 

and 

Further, 
1r ~ Uniform(O, 1) 

► The O:j variables with their corresponding oj = 1 will follow 
a multivariate-I distribution. 

► This is what we have called Bayes-C1r 
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Full conditionals for single-site Gibbs 

Full-conditional distributions forµ, a, and a~ are as with the 
Normal prior. 
Full-conditional for ry 

Pr(o1IY,µ,a_1,<L1,a;,a~,1r) = 

Pr(o11r1, 01_) 

Pr(olr· 0· ) = f(o1, 0101 ) 
1 1' 1- t(r10 ) J }_ 

f(r1101, 01 ) Pr(o1i1r) 
f(r1io1 = o, 01_)1r + t(9io1 = 1, 01_)(1 - 1r) 

Full conditional forO"; 
This can be written as 

But, can see that 

f(yla;, µ, a, o, a~) ex f(ylµ, a, o, a~) 

So, 
f(a;IY,µ,a,o,a~) ex f(a;,µ,a,o,a~) 

Note that a; appears only in f(ala;) and f(a;): 

f(ala;) ex (a;)-kl 2 exp{- °'
2

1
~} 

a,, 

and 
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Full conditional for a; 

Combining these two densities gives: 

So, 

where 

and 

Hyper parameter: S; 

If cr2 is distributed as a scaled, inverse chi-square random 
variable with scale parameter S2 and degrees of freedom v 

Recall that under some assumptions 

cr2 = Va 
"' L.j 2pjqj 

So, we take 

55/67 
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Full conditional for r: 

Using Bayes' theorem, 

But, 

► Conditional on o the likelihood is free of 1r 

► Further, 1r only appears in probability of the vector of 
bernoulli variables: /j 

Thus, 
f(1rlo, µ, O'., a-;, O"~, y) = 7[{k-m)(1 - 1rJITT 

where m = o' o, and k is the number of markers. Thus, 1r is 
sampled from a beta distribution with a = k - m + 1 and 
b= m+ 1. 

BayesCr: with Unknown S~ 

► Prior for S;: Gamma(a,b) 

► Using Bayes theorem, 

t(S;lo,µ,a,a-;,a-~,Y) (X t(ylS;,a-;, .. . )f(S;,a-2 .. . ) 

► Given µ, a, and a-~, f(yl S;, a-;, ... ) does not depend on S;. 
► In f(S;,o- 2 ... ), S; is only in f(S;la,b) and f(o-;IS;,va) 
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BayesCx with Unknown S; 

► Prior for S;: Gamma(a,b) 

► Prior for er;: 

► Combining these gives: 

59/67 

BayesC7T with Unknown S; 

So, f( S;la, b) is Gamma(a*,b*), where 

and 
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Simulation I 

► 2000 unlinked loci in LE 

► 1 O of these are QTL: 1r = 0.995 

► h2 = 0.5 

► Locus effects estimated from 250 individuals 

Results for Bayes-B 

Correlations between true and predicted additive genotypic 
values estimated from 32 replications 

7[ 52 Correlation 

0.995 0.2 0.91 (0.009) 
0.8 0.2 0.86 (0.009) 
0.0 0.2 0.80 (0.013) 

0.995 2.0 0.90 (0.007) 
0.8 2.0 0.77 (0.009) 
0.0 2.0 0.35 (0.022) 
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1/ .. 

Simulation II 

► 2000 unlinked loci with Q loci having effect on trait 

► N is the size of training data set 

► Heritability = 0.5 

► Validation in an independent data set with 1000 individuals 

► Bayes-B and Bayes-C1r with 1r = 0.5 

63/67 

Results 

Results from 15 replications 

Corr(g, g) 

N Q 7r ir Bayes-C1r Bayes-B 

2000 10 0.995 0.994 0.995 0.937 
2000 200 0.90 0.899 0.866 0.834 
2000 1900 0.05 0.202 0.613 0.571 
4000 1900 0.05 0.096 0.763 0.722 
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Simulation Ill 

► Genotypes: 50k SNPs from 1086 Purebred Angus 
animals, ISU 

► Phenotypes: 
► QTL simulated from 50 randomly sampled SNPs 
► substitution effect sampled from N(0,u~) 

2 ~ 
► (la= 502/Jq 

► h2 = 0.25 

► QTL were included in the marker panel 

► Marker effects were estimated for 50k SNPs 

Validation 

► Genotypes: 50k SNPs from 984 crossbred animals, CMP 

► Additive genetic merit (g;) computed from the 50 QTL 

► Additive genetic merit predicted (g;) using estimated 
effects for 50k SN P panel 
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Results 

Correlations between g; and g; estimated from 3 replications 

BayesC1r: 

► ii-= 0.999 

7r 

0.999 
0.25 

► Correlation = 0.86 

Correlation 

Bayes-B 

0.86 
0.70 

Bayes-C 

0.86 
0.26 
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Summary of Methods 

Various Methods 
y=Xb+ LM;a;+e 

estimate a-~; and a-; 
. BayesA 

y=Xb+ LM;a;6;+e 

estimate 6;, a-~; and a-; 
BayesB 

estimate 6;, a-: and a-; 
BayesC 

estimate Tr, 6;, er; and a-; 
BayesCPi 

2010-06-16 
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Various Methods 
Markers in Model 

Marker Effects All (n=O) Fraction (1-n) 

Random - Individual Variance (Normal) "Bayes A" (BO) "Bayes B" 

Random - Constant Var (when in model) Bayes C (CO)="BLUP" Bayes C 

Random -Constant Var {when in model) Fraction (1-n) 
estimated from 
data=Bayes CPi 

Categorical Variants {threshold models} 

Other Variants {estimate scale, heavy tails) 

Practical experience and results with 
various methods using real and 

simulated data 

2010-06-16 
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Pi influences convergence 

Correlations pi=0.9S 

ModelFreqlO Mode1Freq20 ModeIFreq40 Model freq SOD 
ModeIFreq10 1 0.8869 0.9053 
Mode1Freq20 0.8869 1 0.9425 
ModeIFreq40 0.9053 0.9425 1 
ModelFreqSOO 0.9223 0.9593 0.9786 

Correlations pi=0.998 

ModelfreqlO 
Mode1Freq20 
Mode1Freq40 

ModelFreqlO 
1 

0.9903 
0.9927 

Mode1Freq20 
0.9903 

1 
0.9961 

Modelfreq40 
0.9927 
0.9961 

1 

Genomic Selection 
Shrinkage of marker effects 

Dorian Garrick 
dorian@iastate.edu 

k1MAL 
SCIENCE 

0.9223 
0.9593 
0.9786 

1 

2010-05-16 
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Simplest Approach 

No selection of loci 

y=Xb+ L,M;a; +e 

constant(,; and <I; 

"BLUP" 

Assume 
normally distributed 
- allelic effects 
- residual effects 

Mixed Model Equations 

y=Xb+Ma+e 

[ 
X'X X'M ][ b

3
' ] = [ MX'

1
Yy ] 

• M;X M'M+,U 

These equations have order= number of SNP+l and are dense 

Like Ridge Regression 

2010-06-16 
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' I I _;. 
f 

Estimated Effects 

' w.~J.~rna ~!Wf.nlll. GenVar EffectDe!ta1 SDDettai t-1 \k shrink 
1 -1.63Se+OO 1.0Ell30 8,405 1 292214e+00 -1.63759e+08 5 ,3931Be+0e 0.304 0.479 
2 1.250e+OO 1.0000 0 ,390 7 40695e-01 1.25036e+00 5 .36582e+00 0.23 0.479 
4 -1.801e+OO 3,21872Je ... 01 .0600 0.560 1 97777e+00 -1.80061e+OO 5 .43059e+00 e.33 0.493 
5 -3.432e+00 3 .21872Je+01 .0008 0.200 3 69314e+00 -3,43246e+OO 5,'13894e+00 0.63 0.343 
6 -3. 792e-01 3,218723e+01 .0600 0.839 J , 75831e-02 -3. 79190e-61 5.43825e+00 0.07 0.3B6 
7 1.335e+00 J.218723e+01 .0080 0.581 8 73961e-01 1,33485e+B0 5 .J2827e+00 0.25 0.490 
8 -3.396e-01 3,218?23e+01 ,0000 0.604 5 16143e-02 -3.39610e-01 5.30083e+00 0.06 0.475 
9 1.018e+00 J.21B723e+01 .0000 0.391 4 38477e-01 1,018'\4e+80 5,296'f7e+00 0.19 ll,'f78 

11 -7.014e-01 3.216723e+01 1.0060 0.415 2 386126e-01 - 7 .01370e-M 5 .38394e+00 0.1 0.485 
12 2,146e-01 3,216723e+01 1.0000 0.555 2 274302e-02 2 ,14591e-01 5 .27857e+00 0.041 0,497 

1.0ooa 0.474 .600899e+00 -1. 79178e+OO 5 ,41718e+00 0.331 0.500 
1.0l'l00 0 .193 .690557e-01 9 . 29526e-01 5 .43449e+00 0.171 0.327 

Shrinkage= 
BLUPestimate· 

.•. 2 2pq a. CY OI.S estiinnte ·a 

Equivalent Model (All SNPs) 

y = Xb + L, M;a1 + e 

y = Xb + [1][IM1a1] + e, 

cr2
" M.M.' a ""-' 1 1 

Current method using genomic G instead of pedigree A 

5 



Analytical Methods 

No selection of loci 

y=Xb+ LM;a,+e 

constant a; and a; 
11BLUP 11 

SNP - specific a;, and a; 
BayesA 

Need to estimate a variance 
component for every locus 
Markov Chain Monte Carlo 
is an efficient method to explore 
the likelihood surface 

Meuwissen, Hayes & Goddard (2001) 

Bayesian Methods 

-
Data _ .=:;:t' Model that 

describes 
_ ____.;;, nature 

Prior 
Knowledge 

Posterior 
Knowledge 

2010-06-16 
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Markov Chain Monte Carlo 

• Sample unknown parameters based on 
knowledge of the prior 

• Quantify the fit (given the data) 
• Sample unknown parameters based on joint 

knowledge of the prior and the previous fit of 
each parameter 

• Repeat this process until convergence 

Bayes A 

Meuwissen, Hayes & Goddard (2001} 

so that a; - (iid)t ( 0 ,s;", v.) Sorensen & Gianola. 2002 

V V 
Assume <5~ = a 

' L,2p;(l- p,) k2p(l- p) 

so S2 = (va -z)v. fork SNP 
v. v.k2 p(l- p) 

2010-06-16 
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8,300 Holstein Bulls w/SOk 

liar er Effect Effectvor tlQ~.li!Jf.r.im xm~f.rnq GenVar EffectDelto1 SDDello1 
1 -1.659e+00 3. 931140e+01 1.0000 0.405 1.326<\15e+B0 -1.65912e+00 5 .84901e+00 
2 1.418e+00 3.846712e+01 1.mm0 0 .390 9 .573883e-01 1,41831e+00 5.62114e+00 
4 -1. 794e+00 3. 788716e+01 1.0000 0 .560 1.586915e+00 -1. 79448e+00 5, 72054e+08 
s -3. 952e+00 4. 949039e+01 1.0000 0.200 4.997357e+00 -3,95225e+00 7 .25751e+00 
6 -4.507e-01 3. 799973e+01 1.0000 0.839 5.'f74991e-02 -4.50678e-01 5.64675e+08 
7 1.171e+00 'I .1'15301e+01 1.0000 0.581 6 ,670957e-01 1.17062e+00 5 .58165e+00 
8 -4.866e-01 3.870845e+01 1.0000 0.604 1.132672e-01 -4.86648e-01 5.54109e+00 

' 5.559e-01 3 . 56 7120e+01 1.0000 0.391 1.471572e-01 5.559'\Be-01 5.28357e+00 
11 -2.480e-02 3, 785258e+01 1.0000 0,415 2.984811e-04 -2,47957e-02 5.53166e+00 

1.0000 0.555 1.646104e-02 1, 93337e-01 5 , 22843e+00 
1.0000 0 ,474 1. 936189e+00 -1. 97050e+OO 6 . 076 76e+00 
1.0000 0.193 2 ,181811e-01 8,37045e-01 5 .69654e+00 

Sh . k BLUP estimate rm age= 
OLS estimate 

Bayes A 

Bayes A Effect vs Var(effect) 

i 
I ... '-· 

df=4 
............. , 

df=3 

2010-06-16 
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Analytical Methods 

• Two major classes of mixed models 

No selection of loci 

y =Xb+ L,MA +e 
' d ' constant a; an a; 

"BLUP" 
• 2 d 2 estimate a., an a, 

BayesA 

Mixture Models (model selection) 

y = Xb + L,M,a,8, + e 

estimate 8,, a~, and a: 
BayesB (known n) 
n = fraction loci with 110 effect 

Meuwissen, Hayes & Goddard {2001) 

Mixture Models 

nchains 
kSNPs 

o, = I L1 = L(Xb + M,a, + e) gzven (1-n) 
o,=0 L0 =L(Xb+e) given n 

L 
Compute p = 1 Draw u = uniform[O,l] 

LI +4, 
u < p then locus i is in the model this chain 

2010-06-16 
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" u 
C 
ro 
E 
'-.g 
" a. 

Shrinkage Estimation 
cov(y,x) slope=--

var(x) 

m~(y- Jl) 
OLS=Biased up 

Bayesian Estimation 

Biased up 

True 

Biased down 

B1B1 Genotype 

• Extent of shrinkage that results by treating 
effects as random (due to uncertainty) 
depends upon the relative magnitude of 

' 2 2 
mAmA and a, I (Ja 

- Less shrinkage than animal models 

• Additional shrinkage in mixture models due to 
model frequency 

2010-06-16 

10 



2010-06-16 

Bayes A vs B marker effects 
EffectVor . J:l.~J.f.rng, ~i:n~f.r~ GenVor Eff ectDe I to1 SDDeltai t-tike shri 
3.596898e+01 0.1017 0,405 4,6062He-01 -9.61605e+00 1.53689e+01 0 ,626 0.9El7 
2.59311Se+01 0.0788 0,390 1.173018e-01 6 .29821e+00 1,20B37e+01 0,52 0.901 
3 ,696611e+01 0,1620 0 .560 4 .870099e-01 -9. 74370e+00 1.60608e+01 0.60 0.915 a, 5 -4.239e+00 9 . 636366e+01 0,2121 0 .260 5. 748372e+00 -1. 99B74e+01 2 . 40972e+01 0.82 0,869 

6 -2.223e-01 2 . 729070e+01 0.0823 0,639 1.331562e-02 -2. 70139e+00 1,33251e+01 0.20 0.802 
"' 7 1,113e-01 2.111116e+01 0.0681 0,581 6.035581e-03 1.634'16e+00 1.10551e+B1 0,14 0,900 a, 

8 -2,596e-01 2 ,267326e+01 6.0704 0 ,604 3 .22B674e-02 -3 ,69196e+00 1.10733e+01 0 .3 0.898 
9 6,843e-02 2.173070e+01 0,0689 0.391 2.229760e-03 9. 92863e-01 1.03528e+01 '., 0.897 

11 -4 .227e-02 2 . 312403e+01 0.0787 0.415 8.674818e-04 -5.97690e-01 1.16347e+01 0.05 0.903 
12 2.058e-01 2,195600e+01 0.6669 0.555 2,092082e-B2 3 ,07760e+0B 1.B3828e+01 0.29 0.908 

4 .200431e+01 0.1108 0.474 8.923503e-01 -1.20680e+01 1,70199e+01 0. 70 0.920 
3 .138620e+01 0,0878 0.193 1.164587e-01 6,96319e+00 1.38614e+01 0.50 0.830 

.. ~mf.rnq GenVor EffectDetta1 SDDe\ta1 t-llk 
,0000 0.405 1.326415e+00 -1.65912e+00 5 .84901e+00 0.284 

1. 0. 390 9. 573883e-01 1,41831e+00 5,62114e+00 0.252 
4 -1. 794e+00 3, 78B718e+01 1.0000 0.560 1.586915e+00 -1.79448e+00 5, 720546+00 0.314 0.561 
5 -3, 952e+00 4 ,949039e+01 1.0000 0 .200 4 .997357e+00 -3. 95225e+00 7 .25751e+00 0.545 0.465 

" 6 -4.507e-01 3. 799973e+01 1.0000 0.839 5.474991e-02 -4.50678e-01 5.64675e+00 0.080 0.362 
ru 7 1.171e+00 4 .145301e+01 1.0000 0.581 6.670957e-01 1.11e62e+00 5.5816Se+00 0.210 0.579 >-
"' 8 -4,866e-01 3 ,87084Se+01 1.0000 0 .604 1.132672e-01 -4 .86648e-01 5,541096+00 0.088 0.548 a, 

9 5.559e-01 3 .567120e+01 1.0000 0.391 1.471572e-01 S .55940e-01 5 ,28357e+00 0.105 0 ,530 
11 -2,480e-02 3, 785258e+01 1,0000 0,415 2.984811e-04 -2,47957e-02 5 .53166e+00 0.004 0.552 
12 1.933e-01 3. 710394e+01 1.0000 0.555 1.846104e-0Z 1. 9JJ37e-01 5 .22843e+00 0.037 0,559 
13 -1. 970e+00 4 .230186e+01 1.0000 0.474 1.936189e+00 -1.97050e+00 6,07676e+00 0,324 0,595 
14 8.370e-01 3 ,865098e+01 1.0000 0.193 2.181811e-01 8 . 37045e-01 5 ,696546+00 0.147 0.390 

Bayes B Effect vs Var(Effect) 

df=4 IT= 0.99 

Var vs clfuct"l 

"""; 

• • 

• ' :.:~,, 
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Analytical Methods 

• Two major classes of mixed models 

No selection of loci 

y=Xb+ L,M;ll;+e 
, d ' constant CJ; an (J; 

"BLUP" 
• 2 d 2 estimate (Ja; an CJ, 

BayesA 

Mixture Models (model selection) 

y = Xb + I, M;8;0; + e 

estimate o;, CJ;,; and CJ; 

BayesB (known re) 
re = ji·action loci with no effect 

Meuwissen, Hayes & Goddard (2001) 

Var vs effect 

1.#.J'E.Q-'I •• , .... '""·· 1 
------1~4-t---------

I 
o.ooe.o~--------- I 

.6.00E-0} -4.00U)3 .,.roE-03 O.oo:.,oo l.00!-03 •-~E-0l '6.00E-03 

Bayes CO 

24 

2010-06-16 
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Bayes C (pi>O} or Bayes CPi 

Like the following 

V~rvs effect 

• 

' ; 

Bayes C Var(Effect} 
Marker Effect ttq~-~Jf.r.~a P.w.~rnia, GenVor EffectDe I ta1 SDDel ta1 t-!ike shrink 

1 -1.126e+00 0.U\67 0,405 6.108835e-01 -1.05549e+01 1,61BE17e+01 0 .652 0,897 
2 5.088e-01 2 .358988e+01 0,0749 0.390 1.232100e-01 6. 79312e+00 1.30135e+El1 8,522 0.896 
4 -1. 009e+00 3,067300e+01 0,0973 0,560 5,022085e-01 -1.03724e+01 1.67909e+01 EL618 0.903 
s -5.03ee+00 7 .567490e+01 0.2403 0.200 8.093031e+00 -2,09325e+01 2,38519e+01 0.878 0.822 
6 -2.276e-01 2.641091e+01 0 .0838 0 .839 1,39b912e-02 -2. 71491e+0El 1.39947e+01 0 ,194 0.793 

w 7 2,364e-01 2 .156233e+01 0,0685 0 , 581 2 , 7208278-02 3 .45256e+00 1.16842e+01 0 .295 0.901 
>- 8 -2,716e-01 2 .276660e+01 0.0722 0 .604 3 .5284'\?e-02 -3, 76069e+00 1,25527e+01 0.300 0,895 "' "' 9 6.250e-02 0,0644 0.391 1.859712e-03 9.69699e-01 1.09029e+01 0.089 0.896 

11 -1,502e-01 0.0760 0.415 1.0951:l9Be-02 -1.97555e+08 1.25212e+01 0.158 0,899 
12 2.07<\e-01 0,0656 0.555 2,12<\5<\3e-02 3 ,16166e+00 1.12<\93e+01 0 ,281 0.90<\ 
13 -1, 269e+00 0.108<\ 0,<\74 8.027186e-01 -1.16991e+01 1,68533e+81 0.69<\ 0.905 
14 ?.37Se-01 0.ea0a e.193 1.693761e-81 8 , 30527e+00 1.519<\8e+01 0 ,5'17 0.811 

Marker Effect Effectvar ~-q~-~Jf.r.i;9. .Ql}Dl}f.rnq GenVar EffectDelta1 SDDetta1 t-l ike shrinl 
1 -9. 77?e-01 .596898e 1 0.1017 0.405 4.60621<\e-01 -9.61605e+00 1.53689e+01 0.626 0.907 
2 'I .965e-01 2. 31 .01 0.0788 0 .390 1,173018e-01 6,29821e+00 1.20B37e+01 e.521 0.901 

"' 4 -9.941e-01 3,696611e+01 0.1020 0 .560 4 .870099e-01 -9. 7<\378e+00 1.60608e+01 0.607 8.915 
5 -4.239e+0B 9.636366e+01 0.2121 0.200 5.748372e+00 -1.99874e+B1 2, 40972e+01 0,829 0,869 w 

>- 6 -2. 223e-01 2. 729070e+e1 B,0823 0 .839 1,331562e-02 -2. 70139e+00 1. 33251e+01 0,203 0,802 "' "' 7 1,113e-01 2 .111116e+01 0.0681 0.581 6,035581e-03 1.63446e+00 1.10551e+01 0,148 0,900 
8 -2.598e-01 2 . 26 7326e+01 0,070<\ 0.604 3,22867<\e-82 -3.69196e+00 1.10733e+01 0 .333 0.898 
9 6.843e-02 2 ,173070e+01 0.0689 0 .391 2 .229760e-03 9. 92863e-01 1,03528e+01 0.096 0.897 

11 -4. 227e-02 2.312403e+01 0.0707 0.415 B.674818e-04 -5.97690e-01 1.16347e+01 0,051 0.903 
12 2.05Be-01 2.195600e+l:l1 0.0669 0 .555 2 .092082e-02 3 .07760e+00 1,0382Be+01 0.296 0.908 
13 -1.338e+00 4 ,206431e+01 0.1108 0,474 8.923503e-01 -1.20680e+01 1.76199e+01 0.709 0.920 
14 6.115e-01 3 ,138620e+01 B.6878 0.193 1.164587e-01 6. 96319e+00 1,38614e+01 0.502 0,830 
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Summary 
• Genomic Selection methods rely on shrinkage 

of marker effects to get reliable estimation 
• There are several alternatives for shrinking 

marker effects 
- Treating marker effects as random 
- Fitting mixture models 
- (Using densities less extreme than normal) 

• Fitting Mixture distributions provides a much 
more powerful method for shrinking marker effects 
than simply treating marker effects as random 

Web-based system 

2010-06-16 
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Bioinformatics Infrastructure 

• Identify informative regions for fine-mapping 
and gene discovery 

• Provide a platform for collaborating (beef) 
researchers to undertake genomic training 
- eg US Meat Animal Research Center 
- Federally-funded beef projects 

• Provide a platform for delivering genomic 
predictions to (the beef) industry 

Site access 

• Follow links from bigs.ansci.iastate.edu 
- BIGS- bioinformatics to implement genomic 

selection 

• Federally-funded project (2010-2012) for US 
beef cattle researchers 
- Available for limited access to other parties 

conditional on demand for processors (64 CPUs) 
- Useful for benchmarking 

2010-06-16 
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Required Information 

• Research from analysis of high-density genotypes 
to predict merit has several objectives 
- Determine predictive ability of 

• same-density panels in validation/target populations 
closely related to the training population 

• same-density panels in validation/target populations less 
related or unrelated to the training population 

• low-density panels in populations closely related to the 
training population 

- Motivate other genomic selection research 

Predictive ability 
of Individual Chromosomes 

2010-06-16 
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Milk/at Data kindly shared by Vlad, LIC 

~-

' ' ' ! ' l I ' I I ' I ' I ' I I ' I ' t ' ' ' I ' ' J ' ' , ! I I .l. 1 I I ' I I ' I I I ; ..L I , ' I I 1 1 • 1 , I I -1.. 
"~~:::±.J..*=1:±-'-±±"""±-'-~:~·±~±.L ... .Ld.-'-±""' ..... :.J..~_c. 

0 

;m _.,_ 

·--· --· - ----'""" .. -
r-··· ·-· --- ... ... 

""' ,-.- ,~-" ·---~>aH -·-· .. ,_, __ --· 0 ···-• 
"'"' 

"' 0 

Red= all SNP 
Blue= all SNP except 1 chromosome 

- Green= only SNP on 1 chromosome 

' , , ' ' , ' ' 
0 1 2 3 4 5 • 7 • 9 10 12 14 16 16 20 22 ,. 28 29 ,0 

Problems with Validation 
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BayesB then BayesA (100 markers} 
"Heritability" for 100 markers chosen for trait in row, applied to trait in column 

0.64 0.50 ).23 J.33 D.29 l.22 ).45 J.30 D.24 
).53 0.61 ).24 J.33 D.29 l.23 D.45 J.30 D.26 
).27 0.29 ).57 D.33 ).29 l.22 ).36 J.30 D.25 
).27 0.27 ).23 0.67 D.29 l.26 ).42 J.30 D.29 
).28 D.24 ).23 D.33 0.57 D.25 ).40 D.35 ).27 
).27 0.29 ).26 D.33 ).29 0.53 ).42 0.30 D.25 
l.29 ).29 ).23 D.33 ).29 D.25 l.70 0.26 ).25 
).29 D.27 l.24 D.33 J.29 0.22 ).36 0.63 D.24 
l.32 ).27 J.26 ).33 ).29 D.25 ).42 D.30 0.65 

35 

Bayes B then Bayes A (100 markers) 
Correlation in training data 
chosen for trait in row applied to trait in column 

).79 0.68 ).37 l.41 D.42 ).33 0.56 ).46 ).39 
).69 0.76 ).38 ).4 0.44 ).34 0.54 ).42 ).41 
J.39 D.41 ).77 0.4 D.39 ).35 0.5 ).4 J.39 
).36 D.36 ).35 0.78 0.41 ).41 D.53 ).45 ).43 
).41 ).4 ).38 D.36 0.79 ).39 D.51 ).51 l.41 
).39 D.4 ).39 D.45 D.41 ).72 D.55 ).41 ).38 
J.41 ).4 J.35 D.45 ).4 l.41 0.87 ).4 ).41 

l.43 ).41 l.37 0.4 D.48 l.37 D.5 l.79 ).37 
l.44 ).4 ).39 D.44 ).38 J.37 D.5 ).45 0.78 

36 
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1st attempt Cross Validation 
• Dataset 1 comprising 8 breeds 
• Select best 100 markers in all data using BayesB 

0.66 
D.53 
0.01 
s0.05 
0.09 
s0.02 
s0.01 
),06 

D.08 

B1 
B2 

b.O B3 C ·- B4 C ·- B5 ro ,._ 
B6 I-
B7 
BB 

Validation B1 B2 B3 B4 B5 B6 B7 BB 

Bayes B then Bayes A (100 markers) 
markers in row chosen from Bayes Bon all data, Bayes A trained in cross-
validation for trait in column, predicting merit in omitted data 

J.53 0.02 D.09 J.02 0.06 ).07 ).08 0.03 
),65 0.01 J.03 ).1 s0.02 ).06 -0.02 ).06 

J.03 0.68 ).02 0.03 0.02 0.04 0.01 0.05 
-0.06 0.01 0.68 ).02 ).04 l.02 ).08 0.11 
),07 0.02 ) ).68 D.04 ) ).2 0.04 
).01 0.06 ), 14 ),08 0,58 0.11 ).03 0.03 
J.01 s0.04 J.14 ) ).1 0.74 -0.07 0.04 
).05 D.01 J.05 0.22 ).07 0.06 0.69 0.05 
0.02 0.02 ).15 0.08 0.01 0.01 0.14 0.7 

38 
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StepWise then BayesA 
Tra~ Number of Markers in Model , r 

i •• • •• 168 • ! 6]j99 
1 • - ··+·-· ••• : _ J__ - --- ---~-~ --~:;: 

. 4 . l . •• 129 __ _ 
s • • + • ••• • ·10s· • 

--"'"''"-5·····- '"("' ·- '"""'-"'~·--·----·-
+--- 138 -

--7· 
8 

···9· 
---··10··--·-<· 

-ff 
12 

-·· 13. • 
• - ·;4 

• -1·5 
16 

108 
• ·136 

Hit 
123 
135 
12·5. 

·-· f27 
135 

0.923 
' 0.924. 
! 

0.906 • 
0~02a· 
0.927 
0.925 
(i:922 
0.926··· 

••• 0:§27 
• •• 0.925 • 

-0.9Hf. 
• 0.897 
0.927 

StepWise then BayesA 

Successive datasets have previously best markers removed 

2010-06-16 
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2010-06-16 

StepWise and BayesA 

Data Set Number of Markers in Model r 
123 0.926 ••• 

• 9Cf 5.880 

Data Set 1 
- •• ·so •• •• •••• • o.774 • 

2s ' ·o.i321 •• 

Data Sef 1/f • 

41 

Improved Validation 
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Proper cross-validation 

• Marker subset selection and marker 
estimation are undertaken on each training 
data subset and used to predict "virgin" data 

• Correlation dropped to 0.18 (at best) when 
properly (100 marker subset chosen in 
training data) cross-validated 

Training and Validation 

Purebred (PB) 
(PB)---

PB 

SOK SNP 

Purebred 

2010-06-16 
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Validation 

• Almost always SNP that spuriously fit the data 
well 
- Having a model that fits the training data well 

provides relatively little information about how 
good the prediction will be in new data 

• Many world-changing research discoveries are 
announced in news releases and then never-to-be-
heard-of-again 

• Training & Validation can be done together to 
quantify the likely confidence in predictions 

Cross Validation 

• Partition the dataset (by sire) into say three 
groups 

tl.O G1 
C ·- G2 C ·-ro 
!,.... G3 I-

Validation G1 

l oec;,e g-EPD 

Compute the 
correlation between 

} 
predicted genetic 
merit from g-EPD and 
observed performance 

2010-06-16 
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Cross Validation 

• Every animal is in exactly one validation set 

b.O G1 
C ·- G2 C ·-ro 
!- G3 I-

Validation G1 G2 G3 

Cross-Validation 

• 1800 bulls with EPDs - split into 3 
- At random 
- By sire ID - sire of bulls nested in subset 

. - By sire ID - sires also fitted as fixed effects 
- By time - oldest, middle-aged, youngest 

2010-06-16 
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Results 
41028m Random Sire Sire+cg Time 
Bayes A 0.745 0.726 0.646 0.732 (BO) 
Bayes B 0.722 0.700 0.618 0.712 (.99) 
Bayes CO 0.746 0.728 0.648 0.730 

Bayes 0.746 0.728 0.647 0.730 C(.50) 
Bayes 0.728 0.708 0.625 0.717 C(.99) 

100m 
C.99/C100 0.553 0.567 0.389 0.583 m 
StepWise 0.547 0.558 0.393 0.542 
PRESS 0.523 0.539 0.365 0.574 

Simulated SNP Results - 1184 QTL 
52566 markers Number of training animals 

TI=0.977 1000 2000 3000 

B(true) 0.65 0.76 0.82 

C(true) 0.62 0.74 0.80 

B(inflated) 0.63 0.75 0.80 

C(infiated) 0.60 0.71 0.77 
B(0.50) 0.62 0.74 0.79 
C(0.50) 0.60 0.70 0.75 

B(O) 0.64 0.74 0.79 
C(O) 0.59 0.70 0.75 

True=#QTL/#markers; inflated=0.9 true; heritability=0.5 
(Christian Stricker for Swiss Cattle Breeders) 

4000 

0.84 

0.83 

0.83 

0.80 
0.82 
0.78 
0.81 
0.78 

2010-06-16 
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Simulated Results 
2000 animals Number of QTL 

171 493 
B(true) 0.88 0.82 
C(true) 0.88 0.81 

B(inflated) 0.84 0.79 
C(inflated) 0.70 0.74 

B(0.50) 0.81 0.78 
C(0.50) 0.65 0.72 

B(O) 0.82 0.77 
C(O) 0.64 0.72 

True=#QTL/#markers; inflated=0.9 true; heritability=0.5 
(Christian Stricker for Swiss Cattle Breeders) 

1184 

0.76 

0.74 

0.75 
0.71 
0.74 
0.70 
0.74 
0.70 

50k within-breed predictions 

Angus Al bulls Train 2 & 3 Train 1 & 3 Train2&3 
Predict 1 Predict 2 Predict 3 Overall 

Trait 
BFat 0.71 0.64 0.73 0.69 
CED 0.65 0.47 0.65 0.59 
CEM 0.58 0.56 0.62 0.53 
Marb 0.72 0.73 0.64 0.70 
REA 0.63 0.63 0.60 0.62 
SC 0.60 0.57 0.50 0.55 
WWD 0.65 0.44 0.66 0.52 
YWT 0.69 0.51 0.72 0.56 

2010-06-16 
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50k within-breed predictions 

• These predictions are characterized by 
correlations between genomic merit and realized 
performance from 0.5 to 0.7 
- They will account for 25 (0.52) to 50% (0. 72) genetic 

variation 
- Compared to a trait with heritability of 25%, the 

genomic predictions would be equivalent to observing 
6 to 15 offspring in a progeny test 

• Correlations of 0.7 are similar to the performance 
of genomic predictions in dairy cattle 

SOk within-breed predictions 

• These predictions are not as highly accurate as 
can be achieved in a well designed and 
managed progeny test, say with 100 or more 
offspring 

• However, for many traits they are much more 
reliable for animals of a young age (eg prior to 
first selection) than is currently achievable 
from individual performance 

2010-06-16 
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Across-breed prediction 

• Refers to the process of predicting performance for a 
breed or cross that was not in the training dataset 

• Critical interest to those selecting breeds that are not 
well represented in the training populations 

• May not be as reliable as within-breed predictions due 
to complexities associated with non-additive genetic 
effects (dominance and epistasis) 

• Potential can be assessed by simulating the effects of 
major genes using real SNP genotypes on various 
populations 

Introduction 
• Toosi et al.,(2008) simulated genotypic and 

phenotypic data 
- Training in crossbred and MB populations 
- Successful selection of PB for MB performance 

• Linkage Disequilibrium (LD) 
- Simulated LD in pure and MB populations may 

not accurately reflect real LD in beef cattle 
populations 

2010-06-16 
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Objective 
Training Populations -+ 

Multi-breed (MB) 
Validation Populations 

Purebred (PB) 

PB 

SOK SNP 

Purebred (PB) Multi-breed (MB) 

MB 

SOK SNP 

SOK SN P Datasets 
MB Population (N=924) PB Population (N=1086) 

• Angus 239 - Angus 1086 

5i f1 Brahman 1 O 
,-.-,.-

f.-)charolais 

Hereford 

JftLimousin 

t!!J!. Maine-Anjou 

, Shorthorn 

183 

78 

45 

137 

97 

South Devon 135 

2010-06-16 
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Simulation of Additive Genetic Merit and 
Phenotypic Performance 

SOK SNP 

SNP chosen at random 

QTL 5o, 100, 250, 500 

an, on, an1 

Additive Genetic Merit 

j 
Phenotypic performance 

Marker Panels 
SOK SNP 

j 
an, an, anJ 

QTL 50, 100, 250, 500 

HLD50, 100,250,500 
HLD1 HLD, HLD; 

SOKw/o QTL 
\ 

' 
Bayesian Analysis 

2010-06-16 
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2010-06-16 

Simulated Phenotypes/real SOk Data 

• Effect of number of available markers 

50 QTL Train in Multibreed Train in Purebreed 
Validate in Validate in 
Purebreed Multibreed 

Just QTL 0.953 0.962 
QTL + Best markers 0.931 0.938 
QTL+ 50k 0.766 0.842 

Simulated Phenotypes/real SOk Data 

• Effect of number of available markers 

50 QTL Train in Multibreed Train in Purebreed 
Validate in Purebreed Validate in 

Multibreed 

Just QTL 0.953 0.962 
QTL + Best markers 0.931 0.938 
QTL + 50k 0.766 0.842 
Just Best markers 0.570 0.489 
50k w/o QTL (real life) 0.388 0.422 

Kizilkaya et al, ASAS, 2009 
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Effect of number of available markers 

• Redundant markers reduce accuracy 
- Increased type I errors 

• Accuracy suffers greatly when QTL not on 
panel 
- Not enough markers of sufficiently high LD to act 

as good proxies on a one-for-one basis 

• Multi breed population generally inferior to 
purebred 

Purebred or Crossbred 
Highest LD markers for random QTL with Training in Purebred 

,, -------------------

.. 
y" 1.201B~ • 0,371 
R' :0.48309 
Means(r} 
P11rebred = 0.717 
Mulll-breed = 0,491 

FewQTLwith 
LD <0.4 in 
training 

. .. ,~-•• , .~•i;l 
• • • t. <111";•~ : ,t: •• ,· .. , .~ .. . • • .:. ,.. l 

• • ,. ... • ...... 
• , ... .~ :~:v. ·: •• ·~ .... \ : 

• , • .. :- t.: • 
• •• ,: ..... ,. •J;t, ;. .. 

• • 1. .., • •• •••• , • ••• Many markers 
•••I,''• d' .. .... ,.r ... ,•.•· • eroe1n . ,· . 

•.,, • • ••• •"•••• • ! • validation . .. 
• :•, , .pofiulation 
... • 

Purebred (r) ,/,, t, 
1

,. , • 
1 

;, . / 
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Purebred or Crossbred 
Highest LD markers for random QTL with Training in Crossbred 

"~-----------------~ 

.. 
,, 

y "0.8775x + 0.0406 
R'=0.39451 

in validation 
pof)ulation 

., '----------1-------------__j ,, .. " 
Multi-Breed (r) 

Effect of number of available markers 

• Easier to find high LO markers in purebreds than 
multibreed populations because average LO is higher 
- Favors the use of purebred populations 
- Necessitates higher density SNP panels in multibreeds 

• Markers chosen in purebreds may be less informative in 
multibreed populations as they will have less LD 

• Markers that work well in multibreed populations seem 
to work just as well in purebred populations 

• Nice to have larger multibreed populations & denser 
panels 

2010-06-16 
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Correlations between true and predicted genetic 
merits in validation population 

QTL 
50 
100 
250 
500 

Panel: QTL 

MB-+PB 
0.953 
0.938 
0.840 
0.720 

PB-+MB 
0.962 
0.941 
0.853 
0.786 

Simulated Phenotypes/real 50k Data 

• Effect of number of QTL 

50k w/o QTL Train in Multibreed Train in Purebreed 
Validate in Purebreed Validate in Multibreed 

50QTL 0.388 0.422 
100 QTL 0.289 0.308 
250 QTL 0.247 0.276 
500 QTL 0.200 0.299 

• Identical trends when panel comprises QTL only 
• These correlations a/c for< 20% variation at best 

2010-06-16 
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Correlations between true and predicted genetic 
merits in validation population 

QTL 
50 
100 
250 
500 

Panel: HLD 

0.570 
0.513 
0.510 
0.372 

0.486 
0.480 
0.429 
0.391 

Average LD between QTL and HLD marker 
in PB or MB populations 

HLD to QTL 
chosen from 

PB 

MB 

HLD-QTL LO 
assessed in 

PB MB 
0.549 

0.412 

0.322 

0.408 

2010-06-16 
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Conclusions 
• MB population 

- A good choice to carry out genomic selection 
- Reasonably accurate estimate of genetic merits 

of selection candidates in a PB population 
• Accuracy of genetic merit in genomic selection 

- Higher with fewer QTL 
- Erodes when more uninformative SNPs added 

• The extent of LO hence r2 are highly variable 
- Lower average r2 in MB than PB populations 
- No complete LO for all QTL with SNPs 
- Denser markers are needed 

Training and Validation 

Purebred (PB) 
(PB) ---

PB 

Reduced 
Panel 

Purebred 

2010-06-16 
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Training and Validation 

Purebred (PB) 

PB-+ PB 

Reduced 
Panel 

Purebred (PB) 

Reduced panel within-breed selection 

• Two-stage Bayesian analysis 
- Run all S0k markers 

• in each of the three training sets (2&3, 1&3, 1&2) 

- Select the best 600 markers on model frequency 
and genomic coverage 

- Rerun the training and validation analyses using 
only the markers on the 600 marker panel 

2010-06-16 
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2010-06-16 

50k versus 600 markers 

Angus Al bulls 50k panel 600 markers 
Overall Overall 

Trait 

BF at 0.69 0.63 

50k versus 600 markers 

Angus Al bulls 50k panel 600 markers 
Overall Overall 

Trait 

BFat 0.69 0.63 
CED 0.59 0.61 
CEM 0.53 0.55 
Marb 0.70 0.67 
REA 0.62 0.56 
SC 0.55 0.51 
WWD 0.52 0.49 
YWT 0.56 0.55 
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384 SNP Panels 

• Panels of 600 markers per trait for 8 traits 
would require a single panel of 4,800 markers 

• Technology is moving such that larger panels 
are costing the same as smaller panels used 
to, rather than reducing the cost of smaller 
panels 

• Significantly cheaper panels are currently 
limited to 384 (or less) SNP 
- Allow 100 or so of the best SNP for 3-4 key traits 

Even Smaller Panels 

Validation in 698 steers with carcass phenotypes 
50 100 150 200 384 

Trait 
Marb 0.28 0.29 0.39 0.43 0.49 
REA 0.43 

2010-06-16 
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2010-06-16 

Validation in New Al Bulls 

50k 600 384 
Trait 
Validation 3-wav 275 

BFat 0.69 0.63 0.32 
Marb 0.70 0.67 0.59 
REA 0.62 0.56 0.58 
YWT 0.56 0.55 0.35 
CCWT 0.44 
HP 0.39 

Summary- beef cattle in US 

• 50k within breed (like 5-15 progeny) 
• 50k across breed 

(like 1 individual record or 5 progeny) 
• Reduced panel within breed 

(varies up to 50k accuracy) 
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Validation Statistics 

Validation Statistics 

• Proportion of additive variation accounted for by 
the genomic prediction 
- Molecular BV used as an observation 

1/ Multivariate model using the MBV as a trait to 
estimate (eg ASREML) the genetic correlation 

2/ Reduction in estimated sire variance when the 
MBV is included as a fixed effect in the model 

3/ Regression of phenotype on MBV 

Thallman et al, 2009 BIF 

2010-06-16 
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Thallman et al, 2009 BIF 
Data on 1,000 animals representing 100 sires 

Proportion of additive variance explained by MBV 
BVN BVN Reduction Regression 

res cov estd res cov=0 
heritability rg 

Data Simula ed from Additive Model Only 
0.1 0.04 0.11 0.08 0.02 
0.1 0.16 0.21 0.23 0.17 
0.1 0.36 0.38 0.44 1.40 
0.1 0.64 0.54 0.64 0.29 
0.3 0.04 0.06 0.05 0.04 
0.3 0.16 0.17 0.19 0.15 0.20 
0.3 0.36 0.35 0.40 0.35 0.42 
0.3 0.64 0.64 0.68 0.66 0.83 
0.5 0.04 0.05 0.05 0.04 0.05 
0.5 0.16 0.16 0.18 0.16 0.18 
0.5 0.36 0.35 0.39 0.36 0.39 
0.5 0.64 0.63 0.66 0.63 0.72 

http://www.bifconfe re nee .com/bif2009/proceedings/C4 _5 _pro_ Quass.pdf 

Some observations on across-
breed prediction in dairy cattle 

2010-06-16 
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Comparison of the 5-SNP window 
variance in unrelated animals 

Holstein (HO) using 8512 bulls 
Jersey (JE) using 1915 bulls 

Brown Swiss (BS) using 742 bulls 

Milk Production 

Correlations Genomic & ProgenyTest 

Method Brown Swiss Jersey Holstein 

Bayes A 0.194 0.198 

0.191 0.201 

Bayes B (n=0.9) 0.141 0.244 

+FindScale 0.143 0.247 

Bayes C (n=0.9) 0.141 0.180 

+FindScale 0.145 0.183 

+FindScale 0.077 (JE & HO) 0.197 (BS & HO) 0.253 (BS & JE) 

Bayes CO 0.180 0.084 

+FindScale 0.184 0.082 

Bayes CPi 0.146 0.172 

+FindScale 0.152 0.169 

2010-06-16 
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, .. 

Holstein BTAl Milk 
Absolute value 
of SNP effects 

. ·, .· , . . . .. •. 
,,;::;,,( :, .. -~,: . .- ··i ..•. : .i.;,;cf.~. ~Ji:..; ~!J.:)/.:_;_~. :s- :,.::1 :i,; ..... ,, ;,.:',i::.-'. 

•· I I·• 

Variance of 
5-SNP window 

BTAl - Milk 

HO 

JE 

BS 

2010-06-16 
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2010-06-16 

BTA6 - Milk 

HO 

L • .I 

,. I_ I,. 

JE 
... 

• .1 • 

: .. ,4_.,,--,.~i.,.'?--•~;,,'---'-"~~..._...,--,._•=~\......i~ ... 4,,,,....;,;~•-~·~~--'""--"""--=-

BS 

BTA- 14 (location of DGATl) 

HO 

JE 

NB y-axis scales vary 

BS 
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BTA16 -Milk 

' _+-r-, ~~----,--"•'_,_ ••• ·-

. .• ,-, 
ci ,.;,·. ·.,. •~~-.. '" 

Genomic Selection 
Estimation of the mixture fraction 

k1MAL 
SCIENCE 

Dorian Garrick 
dorian@iastate.edu 

,11,~;#. 
IOWASTATE 
UNIVERSITY 

2010-06-16 
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Analytical Methods 

11BLUP" BayesA BayesB BayesC 
All All 

NumberSNP 1-pi 1-pi 

constant constant 
SNP Variance variable variable 

NA NA 
pi known known 

Simulated Results 
2000 animals Number of QTL 

52,566 SNP markers 171 493 

BayesB(true pi) 0.88 0.82 

BayesB(inflated pi) 0.84 0.79 

BayesB(0.50) 0.81 0.78 

Bayes A=B(O) 0.82 0.77 

"BLUP"=C(O) 0.64 0.72 

True=#QTL/#markers; inflated=0.9 true; heritability=0.5 
(Christian Stricker for Swiss Cattle Breeders) 

2010-06-16 

BayesCPi 

1-pi 

constant 

unknown 

1184 

0.76 

0.75 

0.74 

0.74 

0.70 

pi matters! 

so 



How do you know pi? 
Mixture Models (model selection) 

Simulated Results 

Fernando et al 2009 
(in preparation) 

• 2000 unlinked loci, Q QTL, N training 
animals, 1000 validation animals, 
heritability =0.5 

BayesB (.5) Bayes Cpi 
(pi known) (pi unknown) 

N Q pi Correlation pi-hat Correlation 
2000 10 0.995 0.937 0.994 0.995 
2000 200 0.90 0.834 0.899 0.866 
2000 1900 0.05 0.571 0.202 0.613 
4000 1900 0.05 0.722 0.096 0.763 

2010-06-16 
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Simulated Results - Real 50k 
• Train 1086 purebred animals 
• Validate 984 multibreed animals 
• Random 50 SNP = QTL (pi=0.999) 
• Heritability=0.25 

Correlation True and Predicted Merit 

Assumed pi Bayes B Bayes C Bayes Cpi 
(pi known) (pi known) (pi unknown) 

0.999 0.86 0.86 

0.25 0.70 0.26 

N/A 0.86 

50,000 markers (bovine) 
ao< 

000 

0.015 

ao, 

OM 

0 

'""' 

. 
IRON CONTENT OF RIBEYE 

. . 

• . 

i '! '.I' I i i 

' 
I ; 

. I 
1: 

,, 

:, i 
; 

)Ot I~ •i 
; 
I 

' :, 
, .... 

0.998•100 loci 

2010-06-16 

52 



C·' 

0." 

QO) 

o.u...~ 

QO, 

"Best" 100 markers 
IRON CONTENT OF RIBEYE 

Bayes C pi on 8,300 bulls 

Holstein Milk Yield 

Posterior pi 

""' 

j• 

I• 
I• 

I' 

I 

; . 
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Summary 

• The mixture fraction (pi) is an important 
parameter in determining the relative 
performance of alternative methods for 
genomic selection 

• The mixture fraction can be concurrently 
estimated from the data, more easily in 
Bayes C than in Bayes A 

Genomic Selection 
Scale Factor Estimation 

h1MAL 
SCIENCE 

Dorian Garrick 
dorian@iastate.edu 

I,( ' 
...... 'tiQ. 

IOWASTATE 
UNIVERSITY 

Animal 
B.reeding.,_. 

~
' &~ G ;.3,,. 

: .. , . 'v Genetics 
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2010-06-16 

Bayes A 

Meuwissen, Hayes & Goddard (2001) 

Sorensen & Gianola, 2002 

BayesA/B not Bayesian Methods -
D t g Model that 

a a - d 'b escn es 
_ n a tu re 

Prior Posterior 
Knowledge Knowledge 

Gianola et al "Bayesian Alphabet" 2009 

But they work very well in practice! 
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s: = 
" 

Bayes A on 8,300 bulls 
,= ' 

Posterior Holstein Milk Yield 
"" Scale Parameter . 

,= 
•• 

'"' 
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(va-2)Va (4 - 2) X 646100 = 20.85 = 
vak2p(l - p) 4 X 43043 X 0.36 

Alternative Distributions 
(to the normal) 
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Real SNPs - Simulated Traits 

• Training Data 
- 2,869 Angus and Angus-cross (steers) 

• Validation Data 
- 1,086 ISU Angus 
- 972 CMP half-sib groups representing 8 sire 

breeds (predominantly Angus) 

• Random 50 or 500 SNPs were QTL 
• Panels were the QTL, 50k+QTL, 50k-QTL 

Error Distributions 

• The impact of normally distributed vs 
students-t distributed residual effects in the 
true and/or the fitted model 
- Simulated effects had 3 degrees of freedom 
- Fitted effects estimated degrees of freedom 

simultaneously with all other relevant parameters 
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S0QTL 
True= Markers Normal Residuals Normal 

Fitted = Markers Normal Residuals Normal 
S0QTL BayesC Training-Y Training-G ISU CMP 
505NP=QTL n=O. 0.725 0.991 0.988 0.991 

50k+QTL n=0.999 0.743 0.975 0.973 0.974 

50k-QTL n=0.999 0.661 0.763 0.649 0.591 

50k-QTL Cpi n=0.996 0.763 0.806 0.657 0.599 

Fitted= Markers Normal Residuals t 
S0QTL BayesC df Training-G ISU CMP 

505NP=QTL n=0. 91 0.991 0.988 0.991 

50k+QTL n=0.999 91 0.975 0.973 0.974 

50k-QTL n=0.999 80 0.764 0.650 0.590 

50k-QTL Cpi n=0.996 59 0.807 0.658 0.598 

500 QTL 
True= Markers Normal Residuals Normal 

Fitted= Markers Normal Residuals Normal 
S00QTL BayesC Training-Y Training-G ISU CMP 

50SNP=QTL n=O. 0.776 0.932 0.910 0.910 

50k+QTL n=0.99 0.878 0.821 0.619 0.620 

50k-QTL n=0.99 0.853 0.760 0.370 0.318 

50k-QTL Cpi n=0.701 0.915 0.773 0.358 0.301 

Fitted= Markers Normal Residuals t 
500QTL BayesC df Training-G ISU CMP 

50SNP=QTL n=0. 78 0.932 0.910 0.910 

50k+QTL n=0.99 57 0.821 0.619 0.620 

50k-QTL n=0.99 53 0.760 0.370 0.319 

50k-QTL Cpi n=0.701 51 0.771 0.352 0.285 
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Conclusion (1) 

• There is no real harm in fitting a model that 
assumes residuals follow a students-t 
distribution with unknown df when the true 
model has normally distributed residuals 

SOQTL 
True= Markers Normal Residuals t 

Fitted= Markers Normal Residuals Normal 

SOQTL BayesC Training-Y Training-G ISU CMP 

505NP=QTL n=0. 0.552 0.977 0.977 0.973 

50k+QTL n=0.999 0.592 0.901 0.893 0.877 

50k-QTL n=0.999 0.551 0.664 0.529 0.472 

Fitted = Markers Normal Residuals t 

SOQTL BayesC df Training-G ISU CMP 

505NP=QTL n=O. 3 0.989 0.988 0.987 

50k+QTL n=0.999 3 0.953 0.947 0.942 

50k-QTL n=0.999 3.6 0.724 0.599 0.531 
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500 QTL 
True= Markers Normal Residuals t 

Fitted = Markers Normal Residuals Normal 

S00QTL BayesC Training-¥ Training-G ISU CMP 

505NP=QTL rr=O. 0.613 0.848 0.800 0.800 

50k+QTL rr=0.99 0.778 0.652 0.405 0.414 

50k-QTL rr=0.99 0.763 0.608 0.270 0.247 

Fitted= Markers Normal Residuals t 

S00QTL BayesC di Training-G ISU CMP 

505NP=QTL rr=O. 3 0.897 0.869 0.868 

50k+QTL rr=0.99 3.1 0.723 0.501 0.480 

50k-QTL rr=0.99 3.4 0.669 0.324 0.268 

Conclusion (2) 

• If residuals follow a students-t distribution 
with few degrees of freedom, there are 
modest benefits of fitting models that 
estimates the degrees of freedom from the 
data 
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Marker Effects Distributions 

• The impact of normally distributed vs 
students-t distributed marker effects in the 
true and/or the fitted model 
- Simulated effects had 3 degrees of freedom 
- Fitted effects estimated degrees of freedom 

simultaneously with all other relevant parameters 

SOQTL 
True= Markers Normal Residuals Normal 
Fitted= Markers Normal Residuals Normal 
SOQTL SOk-QTL Training-¥ Training-G ISU CMP 

Bayes B rr=0.999 0.656 0.761 0,648 0.589 

Bayes C n=O. 0.905 0.765 0.345 0.300 

Fitted= Markers t Residuals Normal 
50QTL SOk-QTL df Training-G ISU CMP 

Bayes C rr=0.999 31 0,770 0.646 0.580 

Bayes C rr=O. 2 0.822 0.663 0.593 
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500 QTL 
True= Markers Normal Residuals Normal 
Fitted= Markers Normal Residuals Normal 
SOOQTL SOk-QTL Training-Y Training-G ISU CMP 

Bayes B rr=0.99 0.836 0.753 0.362 0.314 

Bayes C n=0. 0.916 0.770 0.348 0.281 

Fitted = Markers t Residuals Normal 
SOOQTL SOk-QTL df Training-G ISU CMP 

Bayes C rr=0.99 48 0.762 0.370 0.319 

Bayes C n=O. 3.3 0.775 0.369 0.320 

Conclusion (3) 

• Recall the usual approaches (Bayes B or C) 
suffer from incorrect values of TI 
- When rr is correct, and effects are really normal, 

the estimated degrees of freedom are large and 
no harm is done to prediction accuracy 

- When rr is too low, and effects are really normal, 
the estimated degrees of freedom are small, 
shrinking the effects of spurious markers and 
overcoming the erosion of accuracy from fitting 
too many markers 
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2010-06-16 

S0QTL 

True= Markers t Residuals Normal 
Fitted= Markers Normal Residuals Normal 
S0QTL S0k-QTL Training-Y Training-G ISU CMP 

Bayes B rr=0.999 0.637 0.769 0.647 0.581 

Bayes C n=O. 0.891 0.732 0.319 0.274 

Fitted= Markers t Residuals Normal 
S0QTL S0k-QTL df Training-G ISU CMP 

Bayes C rr=0.999 19 0.767 0.646 0.587 

Bayes C rr=0. 2.2 0.807 0.640 0.586 

500 QTL 

True= Markers t Residuals Normal 
Fitted = Markers Normal Residuals Normal 
S00QTL S0k-QTL Training-Y Training-G ISU CMP 

Bayes B rr=0.99 0.828 0.765 0.462 0.395 

Bayes C n=O. 0.907 0.754 0.298 0.247 

Fitted = Markers t Residuals Normal 
S00QTL S0k-QTL df Training-G ISU CMP 

Bayes C rr=0.99 8.7 0.779 0.476 0.404 

Bayes C rr=0. 2.9 0.776 0.457 0.395 
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Conclusions {4} 

• When marker effects are distributed as 
students-t with small degrees of freedom 
- there is little accuracy loss if appropriate rr is used 

and effects are fitted as if normally distributed 
- When too many markers are in the model, that is 

rr is too small, this has little impact on prediction if 
degrees of freedom are estimated from the data 

Spurious Markers Effects 
Can Validate in Relatives 
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Goal in Marker/Gene Discovery 

Target Population 

0 

0 

30 pairs of 
chromosomes 

Goal in Marker/Gene Discovery 

iiiiiiiiiiiii'ttiiiii 
DNA markers (e.g. SNPs) 
>1,000 per chromosome 
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Goal in Marker/Gene Discovery 

Research is looking for markers in tight 
linkage disequilibrium (LO) due to close 
physical proximity to causal mutations 

1 
linked Marker 

Inheritance of a marker allele is indicative of inheritance of favorable allele in gene 

Ideal Validation of Good Marker 

Target Population 

Training Population 

Validation Population 
(Independent) 
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Ideal Validation of Good Marker 
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Validation Population 
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Ideal Failed Validation of Bad Marker 

Validation Population 
(Independent) 

Ideal Failed Validation of Bad Marker 

0 

JiJl!iM' 'ff'!f!!'~Xi 

1 2 

Number of marker copies 
Validation Population 

(Independent) 
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Validation in Practice 

Training Population 

Target Population 

Related Validation Population 
: {lrdegeprjcrt) : 

Problems with Related Validation 
and Discovery Populations 

-----I,-

Totally spurious markers can be discovered in the training population 
especially when there are many more {e.g. SOk) markers to consider 
then there are training animals 
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Problems with Related Validation 
and Discovery Populations 

Only these 
"recombinant" 
gametes lack the 
association 

Gametes from a parent in the discovery population show a marker effect 

Problems Validating in Relatives 

0 1 2 

Number of marker copies 

Regression in Discovery 

Regression in Validation 
(when offspring of Discovery) 

Spurious markers validate 
with HALF their discovery 
effect, rather than NO effect 
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Validating in Relatives 

• The marker effect of 
- real associations will be retained 
- spurious associations will halve each generation if the 

marker and gene are not linked 
• In general, the marker effect reduces by (1-r QM) 

each generation 
• Marker panels that comprise a mixture of real 

and spurious results, validated in relatives, will 
gradually erode over time 
- Validation will overestimate their real value 

Practical Demonstration - Habier et al 

amax is the maximum additive relationship between 
any bull in training and any bull in validation 

Scenarios: 
a max of 0.6, 0.49, 0.249 and 0.1249 
0.6: Fathers, full-and half sibs in training 
0.49: Half sibs in training 
<0.25: No half sibs 
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Additive genetic relationships between 
training and validation subsets 

O.G 
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These represent four different partitionings of the data into training & validation 

Accuracy of genomic EBVs vs a max 

o.~ 
a. 

0.4 

0.2 

i 
r in training data 

Milk yield 
[BayesB , , 
,G-BLUP 
I jP-BLUP , r=0.7 50% variance 

r=0.S 25% variance 

2084 training bulls 
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Conclusions 

• Presence of parent-offspring links, or of half-sibs 
represented in both the training and validation 
data leads to genomic predictions that appear to 
account for 2x as much variance compared to 
using less related animals in validation 

• Discovery populations that use all Al bulls in a 
breed will make it very difficult to form a reliable 
validation dataset 

• Validation results will overstate the real value of 
genomic tests 
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Introduction 
Implementation of GS 

f ,.,c·</ \ 

•~,~· 
IOWASTATE 
UNIVERSITY 

Original principle of Genomic Selection (GS) 

High-density (HD) SNP genotypes used for both 
• Estimation of marker effects (training) 

• Prediction of GS-EBV for selection candidates 

Not feasible for many species 

Need Low- 1<0001 vs. High-density panel for routine implementation 

?? $50 vs. $250 per animal ?? 

'Standard' approach to developing Low-density panels: 

• Select the 'best' SNPs from the HD-panel 
• Trait and population specific 

Proposed approach: use well-spaced Low-density SNP genotypes on 

selection candidates to 'fill in' missing HD SNP genotypes 

Concept of Low-Density 
Genomic Selection 

- -._.,, :"" 

-~,~-
!OWA:STATE 
UNIVERSITY 

S
·ire s 111111111111111111111111111111111111111111111111 paternal 

I I 111 I 111 I 111 I 111 I 111 I 1111 111 I 111 I 111 I 111 I 111 I 11 maternal 

l l l j l LD-GS l l l 
I I 111 I 111 I 111 I 111 I 111 I 1111 111 I 111 I 111 I 111 I 111 I 11 paternal 

rogeny I I 111 I 111 I 111 I 111 I 111 I 1111 111 I 111 I 111 I 111 I 111 I 11 maternal 

j 1 1 1 1 1 LD-GS 1 1 1 
Dam d I I 111 I I II I 111 I 111 I 111 I I II I 111 I 111 I 111 I 111 I 111 I 11 

111111111111111111111111111111111111111111111111 
paternal 
maternal 

HD-GS ~ EBVi = L (gmik + 9'ik) 
Sum estimates of effects 
of maternal and paternal 

SNP alleles SNPk 

LD-GS ~ EBV. = L (Prnd 9m + p''g' + pm'gm + pP•g' ) 1 SNPk lk dk ik dk ik sk ik sk <> 4 

Prob. that i received dam's mat. allele at SNP k ~ Prob. descent of marker PDM 
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Methods 
-f f~I /°'',; . 

• l!lll,,,.~. 
•·,,IL jf\J'., 

IOWASTATE 
UNIVERSITY 

j j j j j LD-GS j j j 
I I 111 I 111 I 111 I 111 I 111 I I II I 111 I 111 I 111 I 111 I 111 I 11 paternal 

Pro~eny I I 111 I 111 I 111 I 111 I 111 I 1111 111 I 111 I 111 I 111 I 111 I 11 maternal 

I 1 1 1 1 1 LD-GS 1 1 1 
Steps of proposed low-density genomic selection method: 

1. Estimate marker allele effects of HD-SNPs - Bayes-B 

2. Infer HD-SNP haplotypes of parents of selection candidates 
• Requires multiple generations of HD genotyped ancestors 

3. Track HD-SNP alleles from parents to selection candidates 
based on LowD-SNP genotypes, i.e. imput HD genotypes 

• Probability of descent of marker alleles (PDMs) 

4. Predict GS-EBV of selection candidates 5 

• Sum of effects of parental HD-SNP alleles weighted by PDMs 

-

I. Estimation of HD-SNP effects 

General statistical model used for training: 

y =lµ+ Ixk,Bk[\ +e 
k 

xk = # "1" alleles carried at SNP k 

/Jk = substitution effect of SNP k 
4 = indicator variable for SNP k to be in (=1) 

or out (=0) of the model 

BayesB is used here, but other methods 
modeling disequilibrium and co-segregation, 
dominance or epistasis can be used also. 6 
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II. Infer HD-SNP haplotypes of 
parents 

To track chromosomal segments from parents to progeny, 
haplotypes must be inferred for parents 

Parenti 1111II111111111111111111111111111111111111111111111111111111 I II I I 

111111111111111111111111111111111111111111111 I 1111111111111111111 

m /? 
X;k , X;k = maternal and paternal allele states 

of parent i at SNP k 

7 

III. Track HD-SNP alleles 
-im ute HD es 

Parenti 

Selection 
Candidate 

11111111111111111111111111 I I I I I I I I II I I I 111111111111 I 111111111 I I I I 

Ill 

Pik Probability of Descent of 
r Marker alleles (PDMs) 

P;k 

11111111111111111111111111111111111111111111111111111111111111111 

t t t t l 
Genotyped for evenly

spaced LD-SNPs 

l l l 
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Estimation of PD Ms 

■ MCMC sampling: 

■ Joint probabilities of sampled allele origins for 
adjacent ELD-SNP pairs were estimated 

■ Information from all ELD-SNPs is utilized 

■ Haplotype phases of HD-genotyped ancestors 
assumed known 

IV. Prediction of GEBVs 

■ ELD-SNP genotyped selection candidates: 
loci ,..._ 

GEBV - "'( ~,,, ~p)b 
ELD - ~ Xk + .\, k 

k 

Generation after training: 

Later generations: 

loci 

■ HD genotyped parents: GEBV11D = L Xbk 
k 
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Tested by Simulation 
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Generation -1060 

Generation -60 

Generation -1 o 

Generation 1-3 

Population 

Random Mating 

(N,=500) 

Random Mating 

(N,=100) 

Population Growth 

(N=100 lo N=1000) 

50 males x 500 females 
(N=1000) 

Pedigree recording and genotyping starts 

Genome 

1 0 chromosomes of 1 M 

20,000 SNPs ; 500 OTL 

1,000 SNPs selected 

after 1060 gen er. 

HD SNP spacing~ 1 cM 

LD SNPs at 10 or 20 cM 

Trait h2 = 0.5 

Generation 4 Training data Bayes-8 (Meuwlssen et al. '01) 

(N=1000) 

Generation 4-7 
___- GS·EBV using Hi~ro SNPs 

1 O males x 100 females -----.. 
GS-EBV using LowD SNPs 

Results 
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ELD-10 = LD SNP every 10 cM 
ELD-20 = LD SNP every 20 cM 
+ : animals used for breeding are re

genotyped using the HD panel 

4.5 5 

Training 
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Generation 
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HD 
ELD-10+ 

ELD-10 
ELD-20+ 

ELD-20 

6/17/2010 

6 



~ ro • , 
~ 15 

• .. 
~ 
~ 

~ 

ELD-10 ELD-10+ 88-110 88-40 FSS-0.01 FSS-110 

ELD-10 ELD-10+ BB-110 88-40 FSS-0.01 FSS-110 

Discussion & Conclusions 
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Genomic Selection can be 
implemented with low-density SNP 
genotyping of selection candidates 

• Loss in accuracy limited: < 3.5% after 1 generation 

"'[:::: 0, 

"' [0> ' 
; o, 
]01 

0, 

0, 

0 

< 8 % after 2 generations 

with 300 equally spaced SNPs 110cM) 

• Loss in accuracy - independent of # QTL and # traits 

• Lower rate of fixation of panel SNPs with selection ➔ slower accuracy decline 

• Cost effectiveness needs to be analyzed 

• Depends on costs of Low- vs. High-density genotyping 

$40 (,-??➔ $200 

• Optimal implementation needs to be further analyzed 

• Which individuals to genotype - HD/ LD 
14 
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