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1 Basic Concepts

1.1 Crossingover and Recombination

An odd number of crossovers between two loci results in a recombination be-
tween them. Because crossing over takes place at random, the probability of
recombination is higher for loci that are farther apart than for loci that are
closer to each other. This provides the basis for genetic linkage analysis, where
recombination rates between loci are used to order genes on chromosomes. For
example, if the recombination rate between locus A and B is rAB = 0.1, between
B and C is rBC = 0.1, and between A and C is rAC = 0.19, we can arrange the
loci in the order ABC. Note that rAC < rAB + rBC . This is because recom-
binations between A and B and between B and C result in an even number of
crossovers between A and C with no recombination between A and C.

1.2 Interference

Interference is the lack of independence in recombinations at different intervals
on a chromosome. Consider three loci ordered as ABC. If recombination in
the A-B interval is independent from recombination in the B-C interval, the
probability of a double recombinant, denoted by g11, is

g11 = rABrBC

where rij is the probability of a recombination between loci i and j. If recom-
binations in the two intervals are not independent, the above probability is give
by

g11 = crABrBC (1)

where c is called the coefficient of coincidence. Interference is quantified as
I = 1− c. Thus, under independence, c = 1 and I = 0.

1.3 Map Distance

The map distance x between two loci, in Morgan units, is defined as the expected
number of crossovers between them. Unlike recombination rates, map distances
are additive.

Map distances between loci provide a convenient set of parameters for models
used in linkage analysis. Consider the gametes produced by a parent heterozy-
gous at each of k loci. Each such gamete corresponds to a recombination event
that can be indexed by a k − 1× 1 vector εi where element j of εi is 1 if there
was a recombination between locus j and j + 1 or is 0 otherwise. Thus, in link-
age analysis with k loci, there are 2k−1 recombination events that need to be
modeled. The probability of each of these recombination events can be treated
as a parameter. Taking into consideration that these probabilities sum to one,
this approach would give rise to 2k−1−1 parameters that need to be estimated.
However, using the relationship between map distance and recombination rate,
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probabilities of the 2k−1 recombination events can be computed from the k− 1
map distances between adjacent loci. Then, these k − 1 map distances become
the parameters for linkage analysis. The relationship between map distance and
recombination rate is discussed next.

1.4 Map Functions

Map functions provide a transformation from map distance to recombination
rate. Two approaches have been used to derive map functions. In the first, a
probability model is assumed for the number of crossovers in an interval of length
x. Then, recombination rate is calculated as the probability of an odd number
of crossovers in the interval. In the second approach, recombination events in
two adjacent intervals are modeled, allowing for interference. This model is then
used to develop a differential equation, the solution for which yields the map
function. Both of these approaches are described in detail below.

Suppose that Pt is the probability of t crossovers in a chromosomal interval of
length x Morgans. Recall that a recombination is observed when an odd number
of crossovers occurs in this interval. Thus, probability rx of a recombination in
an interval of length x is

rx = P1 + P3 + P5 + · · ·

= 1
2 (1−

∑
t

Pt(−1)t)

= 1
2 (1− P (−1))

(2)

where P (S) =
∑
t PtS

t is the probability generating function of the distribution
of crossovers.

Haldane [7] used the Poisson distribution for Pt. This implies that crossovers
in one interval are independent of those in another and that the probability of
crossovers in a very short interval is proportional to the length of the inter-
val. According to the Poisson distribution, the probability of t crossovers in an
interval of length of x (in Morgan units) is

Pt =
(λx)te−λx

t!
(3)

The parameter λ in the Poisson distribution is the expected number of outcomes
in a unit interval. Because map distance between two loci is defined as the
expected number of crossovers between them, λ = 1, and

Pt =
xte−x

t!
(4)
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The probability generating function for (4) is

P (S) =
∑
t

xte−xSt

t!

=
∑
t

(xS)te−xS

t!

e−x

e−xS

= ex(S−1)

(5)

Using (5) in (2) gives Haldane’s map function:

rx = 1
2 (1− e−2x) (6)

The inverse of (6) is

x =

{
− 1

2 ln(1− 2rx) if 0 ≤ rx < 1
2

∞ if rx = 1
2

Karlin [10] used the binomial distribution with parametersN and p for Pt. Thus,
t is the number of successes in N Bernoulli trials each having probability p of
success. From the definition of map distance, it follows that the map distance
x = E(t) = Np, and p = x/N . Now, the probability of t crossovers in an interval
of length of x is

Pt =

(
N

t

)
(x/N)t(1− x/N)N−t (7)

The probability generating function for (7) is

P (S) =
∑
t

(
N

t

)
(x/N)t(1− x/N)N−tSt

=
∑
t

(
N

t

)
(xS/N)t(1− x/N)N−t

= [xS/N + (1− x/N)]N

(8)

because
∑
t

(
N
t

)
atbN−t = (a + b)N . Using (8) in (2) gives the binomial map

function:

rx =

{
1
2 [1− (1− 2x/N)N ] if x < N/2
1
2 if x ≥ N/2

(9)

The inverse of (9) is
x = 1

2N [1− (1− 2rx)1/N ] (10)

In the second approach for deriving map functions, recombination is modeled
in two adjacent intervals. Suppose three loci A, B, and C are ordered as ABC
with a map distance of x between A and B, and a distance of h between B
and C. Let M(x) be the map function that we wish to derive that transforms
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map distances to recombination rates. It is assumed that when x is sufficiently
small, rx = M(x) = x.

Also, let gεi denote the probability of the recombination event indexed by
εi; for example, g10 is the probability of a recombination in the first interval
and no recombination in the second interval.

Using this notation, the probability rAC of a recombination between A and
C can be written as

rAC = g10 + g01

If there is no interference,

rAC = g10 + g01

= rAB(1− rBC) + (1− rAB)rBC

= rAB + rBC − 2rABrBC

(11)

Recall that rABrBC = g11 is the probability of a double recombination when
interference is absent. When interference is present, the probability of a double
recombination is given by (1). Thus, when interference is present, the probabil-
ity of a recombination between A and C can be written as

rAC = rAB + rBC − 2crABrBC (12)

where c is the coefficient of coincidence. Now, (12) is rewritten using the map
function M(.) in place of the recombination rates:

M(x+ h) = M(x) +M(h)− 2cM(x)M(h) (13)

The above equation can be rearranged as

M(x+ h)−M(x)

h
=
M(h)− 2cM(x)M(h)

h
(14)

As h → 0, M(h)
h → 1. Thus, taking the limit as h → 0, on both sides of (14)

gives
drx
dx

= 1− 2crx (15)

Letting c = 1 and solving (15) gives Haldane’s map function (6). When
c = 1, recombination in the two intervals are independent; this assumption is
implicit in the Poisson distribution.

Letting c = 2rx gives the Kosambi map function

rx = 1
2

e4x − 1

e4x + 1
(16)

with inverse

x =
1

4
ln

1 + 2rx
1− 2rx

(17)

Several other map functions derived from (15) by assuming different assump-
tions about c are given in AHGL (pp 14–17). Map functions derived from (15)
with c 6= 1 are not suitable for linkage analysis with more than three loci (AHGL
pp 124–127).
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1.5 Computation of Recombination Probabilities

As mentioned earlier, probabilities of recombination events, denoted gεi , play a
key role in linkage analysis (e.g., AHGL pp 117-120). Here we describe the rela-
tionship between these recombination probabilities and map distances between
loci. Using this relationship, all recombination probabilities can be computed
given the map distances between loci.

To establish this relationship for k loci, we let Wδi denote a region of the
chromosome composed of inter-locus segments. Element j of the k − 1 × 1
vector δi is 1 if the segment between loci j and j + 1 is included in Wδi

and is
0 otherwise. The length of the region Wδi

is

x(δi) =
∑

δijxj

where xj is the map distance between loci j and j + 1.
The probability of an odd number of crossovers occurring in Wδi is denoted

R(δi) and is called the recombination value for δi. Given a map function rx =
M(x), the recombination value for δi can be computed as

R(δi) = M [x(δi)] (18)

The recombination value for δi can also be computed as the sum of those
gεi for which there is an odd number of recombinations in Wδi (This rule works
because the sum of an odd number of odd numbers is odd; the sum of an even
number of odd numbers is even; and the sum of even numbers is always even.).
For example, if k = 4 and δi = [1, 0, 1]′, R(δi) = g001 + g011 + g100 + g110.

The number sij of recombinations in the region Wδi given recombination
event εj is

sij = δi
′εj

So, recombination value for δi can be written as

R(δi) =
∑

j for sijodd

gεj

= 1
2 [1−

2k−1∑
j=1

(−1)sijgεj ]

(19)

In matrix notation, the above relationship between the R(δi)’s and the gεj ’s
can be written as

r = 1
2 [1−Ag] (20)

where r is a 2k−1 × 1 vector of recombination values, 1 is a 2k−1 × 1 vector
of 1’s, the matrix A = {(−1)sij}, and g is a 2k−1 × 1 vector of recombination
probabilities. Rearranging (20) gives

Ag = 1− 2r
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Table 1: Recombination rate rj and map length xj for inter-locus segment
j = 1, 2, 3. Map lengths are given for Haldane’s map function and for the
binomial map function with N = 2.

Segment rj xj
j Haldane Binomial
1 0.1 0.1116 0.1056
2 0.05 0.0527 0.0513
3 0.2 0.2554 0.2254

The following properties can be shown to be true for the matrix A: A = A′,
a′iai = 2n−1 for i = 1, . . . , 2k−1, and a′iaj = 0 for i 6= j. So, AA = I2k−1 and
A−1 = A 1

2k−1 . Now, g can be written in terms of r as

g = A−1(1− 2r)

=
A(1− 2r)

2k−1

(21)

In scalar notation, the recombination probability for εi can be written as

gεi =

2k−1∑
j

(−1)sij
1− 2R(δj)

2k−1
(22)

Equations (18) and (22) establish the relationship between map distances and
recombination probabilities.

Consider the numerical example in AHGL (pp 125–126). Here, k = 4 and the
recombination rates in the three intervals and the corresponding map distances
for the Haldane and the binomial (N = 2) map functions are given in table (1).

The set of vectors εi and δj are given by the rows of the matrix U :

U =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


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Thus, the matrix S of sij ’s is

S = UU ′ =



0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1
0 1 0 1 1 2 1 2
0 0 1 1 1 1 2 2
0 1 1 2 1 2 2 3


and the matrix A is

A = {(−1)sij} =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(23)

The map lengths for Wδi
and corresponding recombination values computed

from Haldane and binomial (N = 2) map functions are in table (2). To obtain
the recombination probabilities using the Haldane and binomial map functions,
r vectors from the fifth and seventh columns of table (2) were used with the A
matrix from (23) in equation (21). These probabilities are given in table (3).

The recombination probabilities under the Haldane map function can be
computed much more simply due to the lack of interference. For example, g110 =
r1r2(1 − r3) = (0.1)(0.05)(1 − 0.2) = 0.004. However, this approach cannot be
used when interference is present. Note that the Kosambi map function cannot
be used for mapping more than 3 loci. When the Kosambi map function was
used for this example, g111 was negative (AHGL p 126).

1.6 Linkage Disequilibrium in an Infinite Population

Gametic disequilibrium, which is more commonly referred to as linkage dise-
quilirium (LD), is the statistical dependence between alleles in a haplotype.
Under gametic equilibrium, alleles in a haplotype are independent. This is also
called linkage equilibrium. Note that it is possible for two loci that are linked
to be in gametic equilibrium; also, loci that are unlinked can be in gametic
disequilibrium.

Suppose that starting from generations 0, all individuals are produced by
random mating. Then, the probability of haplotype (Ai, Bj) in generation 1
can be written as

Pr1(Ai, Bj) = (1− r) Pr0(Ai, Bj) + rPr(Ai) Pr(Bj)
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Table 2: Map length x(δi) and recombination value R(δi) for each δi, computed
from Haldane and binomial (N = 2) map functions.

δi Haldane Binomial
x(δi) R(δi) x(δi) R(δi)

0 0 0 0 0 0 0
0 0 1 0.2554 0.2 0.2254 0.2
0 1 0 0.0527 0.05 0.0513 0.05
0 1 1 0.3081 0.23 0.2767 0.2384
1 0 0 0.1116 0.1 0.1056 0.1
1 0 1 0.3670 0.26 0.3310 0.2762
1 1 0 0.1642 0.14 0.1569 0.1446
1 1 1 0.4197 0.284 0.3823 0.3092

Table 3: Probabilities of recombination events (gεi) computed from Haldane
and binomial (N = 2) map functions.

εi gεi
Haldane Binomial

0 0 0 0.684 0.6704
0 0 1 0.171 0.1823
0 1 0 0.036 0.0415
0 1 1 0.009 0.0058
1 0 0 0.076 0.0854
1 0 1 0.019 0.0119
1 1 0 0.004 0.0027
1 1 1 0.001 0
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where r is the recombination rate between loci A and B, and Pr0(Ai, Bj) is the
probability of (Ai, Bj) in generation 0. The disequilibrium in generation 1 is

∆1 = Pr1(Ai, Bj)− Pr(Ai) Pr(Bj)

= (1− r)Pr0(Ai, Bj) + rPr(Ai) Pr(Bj)− Pr(Ai) Pr(Bj)

= (1− r)Pr0(Ai, Bj)− (1− r) Pr(Ai) Pr(Bj)

= (1− r)∆0

where ∆0 is the disequilibrium in generation 0. Similarly, the probability of
haplotype (Ai, Bj) in generation 2 is

Pr2(Ai, Bj) = (1− r) Pr1(Ai, Bj) + rPr(Ai) Pr(Bj)

and the disequilibrium in generation 2 is

∆2 = Pr2(Ai, Bj)− Pr(Ai) Pr(Bj)

= (1− r)Pr1(Ai, Bj) + rPr(Ai) Pr(Bj)− Pr(Ai) Pr(Bj)

= (1− r)Pr1(Ai, Bj)− (1− r) Pr(Ai) Pr(Bj)

= (1− r)∆1

= (1− r)2∆0

It follows that in generation n, the disequilibrium is

∆n = (1− r)n∆0

Thus, with each generation of random mating the haplotype distribution moves
closer to equilibrium (statistical independence). For loci that are unlinked,
(1−r) = 1/2 and equilibrium is reached quickly; for example, (1/2)10 = 1/1024.
On the other hand, loci that are tightly linked will take much longer to reach
equilibrium; for example, (1 − r)10 > 1/3 for r = 0.1. In the limit, however,
equilibrium is reached in an infinite population.

1.7 Linkage Disequilibrium in a Finite Population

In a closed finite population, in the absence of mutation, after a sufficient number
of generations of random mating all alleles will become identical by descent; thus
all alleles also will become identical in state. In other words, all loci will become
“fixed”. In such a population genetic variability is absent and LD is not defined.

Loci that are moving toward fixation will pass through a phase where alleles
that are identical by state (IBS) will also be identical by descent (IBD). In other
words, all alleles that are IBS will trace back to a common ancestral mutant
allele. Thus, at a biallelic locus A with alleles A1 and A2, all the A1 alleles will
have a common ancestor and all the A2 alleles will have a different common
ancestor. In such loci, Sved [17] has shown algebraically that the expected
value of LD between loci A and B as measured by the squared correlation (ρ2)
between allele states is related to the probability of joint identity-by-descent
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at loci A and B for two randomly sampled gametes. At first, this relationship
may not be obvious. To get an intuitive feel for this relationship, consider a
population where alleles A1 and A2 are segregating at the A locus and alleles
B1 and B2 at the B locus. Suppose all haplotypes with A1 also have B1 and
those with A2 have B2. Then, ρ would be 1. If the allelic associations were
reversed, i.e., A1 goes with B2 and A2 goes with B1, then ρ would be -1. In
both cases ρ2 is 1. In such a population for two randomly sampled gametes, the
conditional probability would be one that alleles at the B locus are identical-by-
state (IBS) given they are IBS at the A locus. On the other hand, if there are a
few haplotypes where the association between alleles is different from the other
haplotypes, then ρ2 would be less than 1. Further, in this population for two
randomly sampled gametes, the conditional probability would be less than 1 that
alleles at the B locus are identical-by-state (IBS) given they are IBS at the A
locus. Hopefully, this discussion helps to see that LD as measured by ρ2 should
be related to the probability of joint IBS. Recall, however, that we assumed
that all A1 alleles have descended from a common ancestor and similarly all A2

alleles have descended from a different common ancestor. Thus, given alleles
at the A locus are IBS, they have descended from a common ancestor (IBD),
and provided that no recombination between the two loci has happened in the
two paths descending from the common ancestor to the two randomly sampled
haplotypes, the B alleles will also be IBD. Sved [17] denoted this conditional
probability by Q, and reasoned that in the pool of gametes where alleles at
the B locus are IBD given they are IBD at the A locus, LD as measured by
the squared correlation (ρ2) between allele states will be 1.0 [18]. On the other
hand, in the pool of gametes where recombination has taken place between loci
A and B, given random mating, ρ2 is expected to be null [18].

Let C = 1 denote the condition that for a randomly sampled pair of gametes
the alleles at locus B are IBD given that alleles are IBD at locus A, and C = 0
denote that this condition is not met. Then, the expected value of ρ2 can be
written as

E(ρ2) = E
C

[E(ρ2|C)]

= E(ρ2|C = 1) Pr(C = 1) + E(ρ2|C = 0) Pr(C = 0)

= 1Q+ 0(1−Q)

= Q.

Let Qt denote the probability of C = 1 in generation t. This probability can
be recursively written as

Qt = [
1

2N
+ (1− 1

2N
)Qt−1](1− r)2, (24)

where N is the effective population size, 1
2N is the probability that two randomly

sampled gametes in generation t are both inherited from the same gamete in
the previous generation, (1- 1

2N ) is the probability that they are inherited from
different gametes in the previous generation, and (1 − r)2 and the probability
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that loci A and B do not recombine in these gametes in the last generation. At
equilibrium, Qt = Qt−1 = QE . So, setting Qt and Qt−1 in (24) to QE gives

QE =
(1− r)2

2N − (2N − 1)(1− r)2

≈ 1

4Nr + 1

(25)

In the derivation of (25) we only considered pairs of loci where alleles are
segregating at each locus. Further, it was assumed that all haplotypes in the
current generation descend from two ancestral haplotypes. So, if we code the
four possible haplotypes at a pair of biallelic loci as: 00, 01, 10, an 11, the
ancestral pair of haplotypes must be either (00,11) or (01,10). Any other pair
would lead to one locus being fixed. For example, the pair (00,01) has locus one
fixed for the allele coded as 0. So, if 4Nr is close to zero, most haplotypes in
the current generations will be non-recombinants of the ancestral type and ρ2 is
close to 1. The consequences of a few recombinants are examined below using
the following R function.

RSq = function(nij) {
N = sum(nij)

Exy = nij[4]/N

Ex = (nij[3] + nij[4])/N

Ey = (nij[2] + nij[4])/N

Vx = Ex * (1 - Ex)

Vy = Ey * (1 - Ey)

Cxy = Exy - Ex * Ey

res = Cxy^2/(Vx * Vy)

return(res)

}

Here we only have non-recombinants:

nij = c(

80, # ancestral haplotype 00

0, # recombinant 01

0, # recombinant 10

20 # ancestral haplotype 11

)

RSq(nij)

## [1] 1

Now we introduce two recombinants:
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nij = c(

80, # ancestral haplotype 00

1, # recombinant 01

1, # recombinant 10

18 # ancestral haplotype 11

)

RSq(nij)

## [1] 0.8743

Here is another example, where one of the ancestral haplotypes has a very
low frequency:

nij = c(

98, # ancestral haplotype 00

1, # recombinant 01

0, # recombinant 10

1 # ancestral haplotype 11

)

RSq(nij)

## [1] 0.4949

In a finite population, however, most loci are fixed. Then, LD is not defined
for these loci. When mutation introduces variability into such a locus, LD is
defined but will be low. This is demonstrated in the following example:

# in this example the first locus is fixed until the mutant appears

nij = c(

80, # ancestral haplotype 00

19, # ancestral haplotype 01

1, # mutant haplotype 10

0 #

)

RSq(nij)

## [1] 0.002369

At mutation-drift equilibrium, most loci will be of this type, where muta-
tion has recently introduced variability. Thus, E(ρ2) can be much lower in a
population that has reached mutation-drift equilibrium than indicated by (25).
To examine this further, the exact distribution of is ρ2 is recursively computed
next.

1.8 Distribution of ρ2 in the Presence of Mutation

Computing the distribution of ρ2 involves computing the joint distribution for
allele frequencies at two loci. Thus, we will review first how to compute the
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distribution for allele frequency at a single locus.

1.8.1 Computing the distribution of allele frequency at a single locus

Consider a population of 2N gametes. Let Y be the number of A1 alleles at locus
A. The value of Y can take one of 2N+1 values ranging from 0 to 2N . Suppose
the distribution of allele frequency in generation t is given by the vector pt with
2N+1 probabilities corresponding to each of the 2N+1 possible values of Y . To
model random mating, assume 2N gametes are sampled with replacement from
the gametes of generation t. Then, ignoring mutation, migration and selection,
the distribution of allele frequency in generation t+ 1 can be calculated as

pt+1 = Bpt, (26)

where B is a (2N + 1) × (2N + 1) matrix with element i, j containing the
probability that a random variable from a Binomial(2N, j

2N ) distribution would
be equal to i for i, j = 0, 1, 2, . . . , 2N . If this is not obvious, section 3.10.2 of
the notes given here may be useful.

To model mutation, assume that an A1 allele mutates to an A2 with proba-
bility u and an A2 mutates to an A1 with probability v. Now, to accommodate
mutation in computing the distribution of allele frequency, B is modified such
that column j contains probabilities from the binomial distribution

Binomial[2N,
j

2N
(1− u) + (1− j

2N
)v].

Selection can be similarly accommodated by modifying the binomial probabili-
ties for each j. See example here

1.8.2 Computing the joint distribution of allele frequencies at a two
linked loci

Consider a locus A with alleles A1 and A2 and a linked locus B with alleles
B1 and B2. A population of 2N gametes is now characterized by a vector Y
with four elements containing the numbers of gametes with haplotypes: A1B1,
A1B2, A2B1, and A2B2. Note that these four numbers must sum to 2N . Let
X be a k × 4 matrix with each row representing a possible value of Y , where
the number k of rows in X is equal to

k =
(2N + 3)!

3!(2N)!
.

As before let pt denote the distribution of haplotype frequencies in generation
t. Then, ignoring recombination, mutation, migration and selection, the distri-
bution of haplotype frequencies in the next generation are given by

pt+1 = Mpt, (27)

http://taurus.ansci.iastate.edu/rohan/notes/PopQuantGen.pdf
http://taurus.ansci.iastate.edu/rohan/software/Qdist/index.html
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where M is a k × k matrix with element i, j containing the probability that

a random variable from a Multinomial(2N,
x′j
2N ) distribution would be equal to

x′i, for i, j = 1, 2, . . . , k.
To model recombination, consider a population with frequency for haplotype

AiBj given by fij . In gametes produced by this population, the probability of

a non-recombinant A1B1 is (1 − r) f112N . A recombinant A1B1 gamete can be
produced in one of four ways. They and their associated probabilities are:

1. alleles A1 and B1 originate from two different A1B1 haplotypes with as-

sociated probability r f112N ×
(f11−1)
2N−1 ;

2. allele A1 originates from an A1B1 haplotype and B1 originates from an
A2B1 with associated probability r f112N ×

f21
2N−1 ;

3. allele A1 originates from an A1B2 haplotype and B1 originates from an
A1B1 with associated probability r f122N ×

f11
2N−1 ; and

4. allele A1 originates from an A1B2 haplotype and B1 originates from an
A2B1 with associated probability r f122N ×

f21
2N−1 .

Combining these probabilities gives

Pr(A1B1) =(1− r) f11
2N

+

r
f11
2N

[
(f11 − 1)

2N − 1
+

f21
2N − 1

]+

r
f12
2N

[
f11

2N − 1
+

f21
2N − 1

].

(28)

Similarly, probabilities of the remaining three types of gametes are:

Pr(A1B2) =(1− r) f12
2N

+

r
f11
2N

[
f12

2N − 1
+

f22
2N − 1

]+

r
f12
2N

[
(f12 − 1)

2N − 1
+

f22
2N − 1

],

(29)

Pr(A2B1) =(1− r) f21
2N

+

r
f21
2N

[
f11

2N − 1
+

(f21 − 1)

2N − 1
]+

r
f22
2N

[
f11

2N − 1
+

f21
2N − 1

],

(30)
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and

Pr(A2B2) =(1− r) f22
2N

+

r
f21
2N

[
f12

2N − 1
+

f22
2N − 1

]+

r
f22
2N

[
f12

2N − 1
+

(f22 − 1)

2N − 1
].

(31)

Let θj be a vector with the four probabilities from equations (28) through
(31) computed for haplotype frequencies from x′j . Now, haplotype probabilities
following mutation can be modeled as

βj = Tθj , (32)

where

T =


(1− u)2 (1− u)v v(1− u) v2

(1− u)u (1− u)(1− v) vu v(1− v)
u(1− u) uv (1− v)(1− u) (1− v)v

u2 u(1− v) (1− v)u (1− v)2


To accommodate recombination and mutation in computing the distribution of
haplotype frequencies, M is modified such that column j contains probabilities
from the Multinomial(2N,β′j) distribution.

Starting with an allele frequency of 0.5 at each locus and gametic equilibrium
between the two loci, the expected value of ρ2 was computed for 2000 generations
given a mutation rate of u = v = 1e−9, a recombination rate of r = 0.002
between the loci and an effective population size of Ne = 5, 10, 25, or 50. The
results are shown in the figures 1 through 4. In addition to ρ2, the figures also
plot the frequencies of three groups of populations. In populations that belong
to group 1, ρ2 < 1. In populations that belong to group 2, two of the haplotypes
are lost such that ρ2 = 1 (for example, when haplotypes A1B2 and A2B1 are lost
and only haplotypes A1B1 and A2B2 are segregating, ρ = 1). In populations of
group 3, one of the loci is fixed, and therefore ρ is not defined.

In all these cases, group 1 starts out having frequency close to 1.0. Due
to drift, however, the frequency in group 1 drops rapidly and frequencies in
groups 2 and 3 rise. The expected value of ρ2 depends to a large extent on
the relative magnitudes of the frequencies of groups 1 and 2. Also, drift seems
to reduce the frequency of group 1 faster than that of group 2. Therefore, ρ2

rises rapidly and then stays high for a period. Once frequencies in groups 1 and
2 drop sufficiently low, changes in group frequencies due to mutation become
significant. Mutation in group 3, which has the highest frequency, adds to group
1 faster than to group 2. Further, recombination in group 2 also contributes
to group 1. The balance between these forces and drift back into group 3 from
groups 1 and 2 determines the equilibrium value for ρ2, which is reached by
generation 2000 in all four cases.
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Figure 1: Expected value of ρ2 by generation in population with effective pop-
ulation size Ne = 5, recombination rate r = 0.002, mutation rate u = v = 1e−9.
Frequencies in groups 1-3 are c1-c3.
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Figure 2: Expected value of ρ2 by generation in population with effective popu-
lation size Ne = 10, recombination rate r = 0.002, mutation rate u = v = 1e−9.
Frequencies in groups 1-3 are c1-c3.
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Figure 3: Expected value of ρ2 by generation in population with effective popu-
lation size Ne = 25, recombination rate r = 0.002, mutation rate u = v = 1e−9.
Frequencies in groups 1-3 are c1-c3.
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Figure 4: Expected value of ρ2 by generation in population with effective popu-
lation size Ne = 50, recombination rate r = 0.001, mutation rate u = v = 1e−9.
Frequencies in groups 1-3 are c1-c3.
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Figure 5: Equilibrium value of ρ2 by recombination rate in population with
effective population size Ne = 5 and mutation rate u = v = 1e−9 or 0.

The relationship between the equilibrium value of ρ2, the recombination rate,
mutation rate, and effective population size can be seen from figures 5 through
7, where for comparison deterministic formulas by Sved [?] and Hill [?] are
also plotted. When mutation rate is zero, there is good agreement with Sved’s
formula! When mutation is present, agreement is better with Hill’s formula.

2 Bayes Theorem

2.1 Motivation

In whole-genome analyses, the number k of marker covariates typically exceeds
the number of n of observations. In this situation, least squares methods cannot
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Figure 6: Equilibrium value of ρ2 by recombination rate in population with
effective population size Ne = 10 and mutation rate u = v = 1e−9 or 0.
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Figure 7: Equilibrium value of ρ2 by recombination rate in population with
effective population size Ne = 25 and mutation rate u = v = 1e−9 or 0.
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be used to simultaneously estimate the effects of all the k marker covariates. One
of the most widely used methods to overcome this problem is Bayesian inference,
where prior information about marker effects is combined with the data to make
inferences about the marker effects. In Bayesian inference, inferences are based
on conditional probabilities, and the Bayes theorem is a statement on conditional
probability.

2.2 Conditional Probability of X Given Y

Suppose X and Y are two random variables with joint probability distribution
Pr(X,Y ). Then, the conditional probability of X given Y is given by Bayes
theorem as

Pr(X|Y ) =
Pr(X,Y )

Pr(Y )
(33)

where Pr(Y ) is the probability distribution of Y . Similarly, the the conditional
probability of Y given X is

Pr(Y |X) =
Pr(X,Y )

Pr(X)
,

which upon rearranging gives

Pr(X,Y ) = Pr(Y |X) Pr(X). (34)

Then, substituting (34) in (33) gives

Pr(X|Y ) =
Pr(X,Y )

Pr(Y )

=
Pr(Y |X) Pr(X)

Pr(Y )
,

which is the form of the formula that is used for inference of X given Y.

2.3 Bayes Theorem by Example

Here we consider a simple example to justify the formula (33). The following
table gives the joint distribution of smoking and lung cancer in a hypothetical
population of 1,000,000 individuals.

Smoking
Cancer Yes No
Yes 42,500 7,500 50,000
No 207,500 742,500 950,000

250,000 750,000
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Given these numbers, consider how you would compute the relative fre-
quency of lung cancer among smokers. There are a total of 250,000 smokers in
this population, and among these 250,000 individuals, 42,500 have lung cancer.
So, relative frequency of lung cancer among smokers is 42,500

250,000 . As we reason
below, this relative frequency is also the conditional probability of lung cancer
given the individual is a smoker.

1. The frequentist definition of probability of an event is the limiting value
of its relative frequency in a “large” number of trials.

2. Suppose we sample with replacement individuals from the 250,000 smokers
and compute the relative frequency of the incidence of lung cancer.

3. It can be shown that as the sample size goes to infinity, this relative
frequency will approach 42,500

250,000 = 0.17.

4. This ratio can also be written as

42, 500/1, 000, 000

250, 000/1, 000, 000
= 0.17.

5. The ratio in the numerator is the joint probability of smoking and lung
cancer, and the ratio in the denominator is the marginal probability of
smoking.

3 Bayesian Inference

3.1 Meaning of Probability in Bayesian Inference

In the frequentist approach, probability is a limiting frequency. Thus, prob-
abilities are always associated with random events. In Bayesian inference, on
the other hand, probability is used to quantify your belief that an unobservable
variable has a particular value. For example a Bayesian can ask questions such
as:

• What is the probability that heritability for milk yield is larger than 0.5?

• What is the probability that variability in milk yield is due to more than
100 loci?

These Bayesian probabilities are not necessarily associated with a random ex-
periment that assigns values to the variables in question.

3.2 Essential Elements of Bayesian Inference

• Bayesian inference starts by specifying what you believe about the param-
eters or unknowns through prior probabilities. In whole-genome analyses,
we will use a prior probability density to quantify our belief that the effect
of most marker covariates is zero or close to zero and only a few covariates
have effects that deviate from zero.
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• These parameters are related to the data through the model or “likeli-
hood”, which are conditional probabilities for the data given the parame-
ters. In whole-genome analyses, this is usually a multiple regression model
with normally distributed residuals.

• The prior and the likelihood are combined using Bayes theorem to obtain
posterior probabilities, which are conditional probabilities for the param-
eters given the data.

• Inferences about the parameters are based on the posterior.

3.3 Use of Bayes Theorem

• Let f(θ) denote the prior probability density for θ.

• Let f(y|θ) denote the likelihood

• Then, the posterior probability of θ is:

f(θ|y) =
f(y|θ)f(θ)

f(y)

∝ f(y|θ)f(θ)

4 Markov Chain Monte-Carlo Methods

• Often no closed form for f(θ|y)

• Further, even if computing f(θ|y) is feasible, obtaining f(θi|y) would
require integrating over many dimensions

• Thus, in many situations, inferences are made using the empirical posterior
constructed by drawing samples from f(θ|y)

• Gibbs sampler is widely used for drawing samples from posteriors

4.1 Gibbs Sampler

• Want to draw samples from f(x1, x2, . . . , xn)

• Even though it may be possible to compute f(x1, x2, . . . , xn), it is difficult
to draw samples directly from f(x1, x2, . . . , xn)

• Gibbs:

– Get valid a starting point x0
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– Draw sample xt as:

xt1 from f(x1|xt−12 , xt−13 , . . . , xt−1n )
xt2 from f(x2|xt1, xt−13 , . . . , xt−1n )
xt3 from f(x3|xt1, xt2, . . . , xt−1n )
...

...
xtn from f(xn|xt1, xt2, . . . , xtn−1)

• The sequence x1,x2, . . . ,xn is a Markov chain with stationary distribution
f(x1, x2, . . . , xn)

4.2 Making Inferences from Markov Chain

Can show that samples obtained from a Markov chain can be used to draw
inferences from f(x1, x2, . . . , xn) provided the chain is:

• Irreducible: can move from any state i to any other state j

• Positive recurrent: return time to any state has finite expectation

• Markov Chains, J. R. Norris (1997)

5 Bayesian Inference by Application to Simple
Linear Regression

Simple linear regression is used to illustrate Bayesian inference, using the Gibbs
sampler. The Gibbs sampler is used to draw samples from the posterior distri-
bution of the intercept, the slope and the residual variance.

5.1 The Model

Consider the linear model:

yi = β0 + xiβ1 + ei. (35)

where for observation i, yi is the value of the dependent variable, β0 is the
intercept, xi is the value of the independent variable and ei is a residual. Flat
priors are used for the intercept and slope, and the residuals are assumed to be
identically and independently distributed normal random variables with mean
zero and variance σ2

e . A scaled inverted chi-square prior is used for σ2
e .

5.2 Simulation of Data
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n = 20 # number of observations

k = 1 # number of covariates

x = matrix(sample(c(0, 1, 2), n * k, replace = T), nrow = n, ncol = k)

X = cbind(1, x)

head(X)

## [,1] [,2]

## [1,] 1 1

## [2,] 1 1

## [3,] 1 0

## [4,] 1 0

## [5,] 1 1

## [6,] 1 1

betaTrue = c(1, 2)

y = X %*% betaTrue + rnorm(n, 0, 1)

head(y)

## [,1]

## [1,] 3.25781

## [2,] 2.98891

## [3,] 0.64307

## [4,] -0.01805

## [5,] 3.01461

## [6,] 3.55116

5.3 Least Squares Estimation

In matrix notation, the model (35) is

y = Xβ + e,

where

X =


1 x1
1 x2
...

...
1 xn

 .
Then, the least-squares estimator of β is

β̂ = (X′X)−1X′y,

and the variance of this estimator is

V ar(β̂) = (X′X)−1σ2
e .
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5.3.1 Calculations in R:

XPX = t(X) %*% X

rhs = t(X) %*% y

(XPXi = solve(XPX))

## [,1] [,2]

## [1,] 0.09848 -0.06061

## [2,] -0.06061 0.07576

(betaHat = XPXi %*% rhs)

## [,1]

## [1,] 0.417

## [2,] 2.366

eHat = y - X %*% betaHat

(resVar = t(eHat) %*% eHat/(n - 2))

## [,1]

## [1,] 1.122

5.4 Bayesian Inference

Consider making inferences about β from f(β|y, σ2
e). By using the Bayes theo-

rem, this conditional density is written as

f(β|y, σ2
e) =

f(y|β, σ2
e)f(β)f(σ2

e)

f(y, σ2
e)

∝ f(y|β, σ2
e)f(β)f(σ2

e)

∝ f(y|β, σ2
e)

= (2πσ2
e)−n/2 exp

{
−1

2

(y −Xβ)′(y −Xβ)

σ2
e

}
, (36)

which looks like the n-dimensional normal density of y with mean Xβ and
covariance matrix Iσ2

e . But, f(β|y, σ2
e) should be a two-dimensional density.

So, the quadratic Q = (y−Xβ)′(y−Xβ) in the exponent of (36) is rearranged
as

Q = (y −Xβ)′(y −Xβ)

= y′y − 2y′Xβ + β′(X′X)β

= y′y + (β − β̂)′(X′X)(β − β̂)− β̂
′
(X′X)β̂,

where β̂ is the solution to (X′X)β̂ = X′y, which is the least-squares estimator
of β. In this expression, only the second term depends on β. Thus, f(β|y, σ2

e)



Fernando, Iowa State University 32

can be written as

f(β|y, σ2
e) ∝ exp

{
−1

2

(β − β̂)′(X′X)(β − β̂)

σ2
e

}
,

which can be recognized as proportional to the density for a two-dimensional
normal distribution with mean β̂ and variance (X′X)−1σ2

e . Thus, in this simple
setting, the posterior mean of β is given by the least-squares estimate, and
drawing samples from the posterior are not needed. But, to illustrate the Gibbs
sampler, we will apply it to this simple example.

5.4.1 Gibbs Sampler for β

The simple regression model can be written as

y =1β0 + xβ1 + e.

In the Gibbs sampler, β0 is sampled from its full-conditional posterior: f(β0|y, β1, σ2
e).

This conditional distribution is computed for the current values of β1 and σ2
e .

So, we can write the model as

w0 = 1β0 + e,

where w0 = y − xβ1. Then, the least-squares estimator of β0 is

β̂0 =
1′w0

1′1
,

and the variance of this estimator is

V ar(β̂0) =
σ2
e

1′1
.

By applying the strategy used to derive f(β|y, σ2
e) above, the full-conditional

posterior for β0 can be shown to be a normal distribution with mean β̂0 and vari-

ance
σ2
e

1′1 . Similarly, the full-conditional posterior for β1 is a normal distribution
with mean

β̂1 =
x′w1

x′x

and variance
σ2
e

x′x , where w1 = y − 1β0. In the calculations below, we will use
the true value of σ2

e .

5.4.2 Calculations in R:

beta = c(0, 0) # starting values for beta

# loop for Gibbs sampler

niter = 10000 # number of samples
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meanBeta = c(0, 0)

for (iter in 1:niter) {
# sampling intercept

w = y - X[, 2] * beta[2]

x = X[, 1]

xpxi = 1/(t(x) %*% x)

betaHat = t(x) %*% w * xpxi

beta[1] = rnorm(1, betaHat, sqrt(xpxi)) # using residual var = 1

# sampling slope

w = y - X[, 1] * beta[1]

x = X[, 2]

xpxi = 1/(t(x) %*% x)

betaHat = t(x) %*% w * xpxi

beta[2] = rnorm(1, betaHat, sqrt(xpxi)) # using residual var = 1

meanBeta = meanBeta + beta

if ((iter%%1000) == 0) {
cat(sprintf("Intercept = %6.3f \n", meanBeta[1]/iter))

cat(sprintf("Slope = %6.3f \n", meanBeta[2]/iter))

}
}

## Intercept = 0.429

## Slope = 2.352

## Intercept = 0.408

## Slope = 2.371

## Intercept = 0.413

## Slope = 2.371

## Intercept = 0.413

## Slope = 2.371

## Intercept = 0.409

## Slope = 2.374

## Intercept = 0.409

## Slope = 2.375

## Intercept = 0.412

## Slope = 2.372

## Intercept = 0.413

## Slope = 2.370

## Intercept = 0.414

## Slope = 2.370

## Intercept = 0.414

## Slope = 2.369
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5.4.3 Full-conditional Posterior for σ2
e

Recall that we assumed a scaled inverted chi-square prior for σ2
e . The density

function for this is:

f(σ2
e) =

(S2
eνe/2)νe/2

Γ(νe/2)
(σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
, (37)

where S2
e and νe are the scale and the degrees of freedom parameters for this

distribution. Applying Bayes theorem to combine this prior with the “likeli-
hood” (given in (36)), the full-conditional posterior for the residual variance
can be written as

f(σ2
e |y,β) =

f(y|β, σ2
e)f(β)f(σ2

e)

f(y,β)

∝ f(y|β, σ2
e)f(β)f(σ2

e)

∝ (σ2
e)−n/2 exp

{
−1

2

(y −Xβ)′(y −Xβ)

σ2
e

}
× (σ2

e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
= (σ2

e)−(n+2+νe)/2 exp

{
− (y −Xβ)′(y −Xβ) + νeS

2
e

2σ2
e

}
.(38)

Comparing (38) with (37), can see that it is proportional to a scaled inverse chi-

squared density with ν̃e = n+νe degrees of freedom and S̃2
e =

(y−Xβ)′(y−Xβ)+νeS2
e

ν̃e

scale parameter. A sample from this density can be obtained as
(y−Xβ)′(y−Xβ)+νeS2

e

χ2
ν̃e

,

where χ2
ν̃e

is a chi-squared random variable with ν̃e degrees of freedom.

5.4.4 Exercise

In the R script given here, the simulated value of the residual variance was
used in the sampling of β. Extend this script to also sample σ2

e from its full-
conditional posterior given above. In R, rchisq(1,ν) gives a chi-squared random
variable with ν degrees of freedom.

5.5 Model with Normal Prior for Slope

Here we consider a model with a flat prior for β0 and a normal prior for the
slope:

β1 ∼ N(0, σ2
β),
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where σ2
β is assumed to be known. Then, the full-conditional posterior for

θ′ = [β, σ2
e ] is

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
− (y − 1β0 − xβ1)′(y − 1β0 − xβ1)

2σ2
e

}
×

(
σ2
β

)−1/2
exp

{
− β2

1

2σ2
β

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
.

5.5.1 Full-conditional for β1:

The full-conditional for β1 is obtained by dropping all terms and factors that
do not involve β1:

f(β1|ELSE) ∝ exp

{
− (y − 1β0 − xβ1)′(y − 1β0 − xβ1)

2σ2
e

}
× exp

{
− β2

1

2σ2
β

}

∝ exp

{
−

w′w − 2w′xβ1 + β2
1(x′x + σ2

e/σ
2
β)

2σ2
e

}

∝ exp

{
−

w′w − (β1 − β̂1)2(x′x + σ2
e/σ

2
β)− β̂2

1(x′x + σ2
e/σ

2
β)

2σ2
e

}

∝ exp

− (β1 − β̂1)2

2σ2
e

(x′x+σ2
e/σ

2
β)

 ,

where

β̂1 =
x′w

(x′x + σ2
e/σ

2
β)
,

and w = y−1β0. So, the full-conditional posterior for β1 is a normal distribution

with mean β̂1 and variance
σ2
e

(x′x+σ2
e/σ

2
β)
.

5.5.2 Exercise

1. Use R to simulate a vector of 1000 values for β1 from a normal distribution
with mean zero and variance 3. Use the rnorm command for this. Plot a
histogram of these values. Use the command hist for drawing a histogram.
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2. Using a value of 1 for β0 and one of the sampled values of β1, generate
a vector of observations, y, that follows a simple linear regression model.
Use σ2

e = 5 to simulate y.

3. Use the Gibbs sampler to draw 10,000 samples for β1 from its posterior
distribution.

(a) Compute the mean and variance of the sampled values.

(b) Draw a histogram of the sampled values. Compare with prior.

6 Extension to Multiple Linear Regression

Consider the multiple regression model

yi = β0 +
∑
j

xjβj + ei, (39)

which extends model (35) to include multiple covariates xj . In matrix notation,
this model can be written as

y = Xβ + e,

where β′ = [β0,β1, β2, . . . , βk] and the matrix X contains the corresponding
covariates.

6.1 Model with Normal Prior for Regression Coefficients

Here we consider a model with a flat prior for β0 and iid normal priors for the
slopes:

βj ∼ N(0, σ2
β) for j = 1, 2, . . . , k,

where σ2
β is assumed to be known. The residuals are assumed iid normal with

null mean and variance σ2
e , which itself is assigned a scaled inverted chi-square

prior. Then, the joint posterior for θ is

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
− (y −Xβ)′(y −Xβ)

2σ2
e

}
×

(
σ2
β

)−k/2
exp

{
−
∑k
j=1 β

2
j

2σ2
β

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
.
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The posterior distribution for β can be written as

f(β|y, σ2
β , σ

2
e) =

f(y|β, σ2
β , σ

2
e)f(β|σ2

β)f(σ2
e)

f(y, σ2
β , σ

2
e)

∝ f(y|β, σ2
β , σ

2
e)f(β|σ2

β)f(σ2
e)

∝ f(y|β, σ2
β , σ

2
e)f(β|σ2

β)

∝
(
σ2
e

)−n/2
exp

{
− (y −Xβ)′(y −Xβ)

2σ2
e

}
×

(
σ2
β

)−k/2
exp

{
−
∑k
j=1 β

2
j

2σ2
β

}

∝ exp

− (y −Xβ)′(y −Xβ) +
∑k
j=1 β

2
j
σ2
e

σ2
β

2σ2
e


∝ exp

−y′y − 2y′Xβ + β′(X′X + D
σ2
e

σ2
β

)β

2σ2
e


∝ exp

−
y′y − (β − β̂)

′
(X′X + D

σ2
e

σ2
β

)(β − β̂)− β̂
′
(X′X + D

σ2
e

σ2
β

)β̂

2σ2
e


∝ exp

−
(β − β̂)

′
(X′X + D

σ2
e

σ2
β

)(β − β̂)

2σ2
e

 ,

for

(X′X + D
σ2
e

σ2
β

)β̂ = X′y, (40)

where D is a diagonal matrix with zero on the first diagonal and ones on the
remaining diagonals. Thus, the full-conditional posterior for β is a normal

distribution with mean given by (40) and variance (X′X + D
σ2
e

σ2
β

)−1σ2
e .

6.1.1 Full-conditionals:

The full conditionals for β0 and σ2
e are identical to those in simple linear regres-

sion.
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Full-conditional for βj

The full-conditional for βj is obtained by dropping from the joint posterior all
terms and factors that do not involve βj :

f(β1|ELSE) ∝ exp

{
− (wj − xjβj)

′(wj − xjβj)

2σ2
e

}
× exp

{
−
β2
j

2σ2
β

}

∝ exp

{
−

w′jwj − 2w′jxjβj + β2
j (x′jxj + σ2

e/σ
2
β)

2σ2
e

}

∝ exp

{
−

w′jwj − (βj − β̂j)2(x′jxj + σ2
e/σ

2
β)− β̂2

j (x′jxj + σ2
e/σ

2
β)

2σ2
e

}

∝ exp

− (βj − β̂j)2
2σ2
e

(x′jxj+σ
2
e/σ

2
β)

 ,

where

β̂j =
x′jwj

(x′jxj + σ2
e/σ

2
β)
,

and wj = y −
∑
l 6=j xlβl. So, the full-conditional posterior for βj is a normal

distribution with mean β̂j and variance
σ2
e

(x′jxj+σ
2
e/σ

2
β)
.

6.2 Exercise

1. Generate data from model (39) with k = 10 covariates.

2. Setup and solve the mixed model equations given by (40).

3. Sample the elements of β using Gibbs.

4. Compute the posterior mean of β from the samples and compare with
mixed model solutions.

5. Compute the posterior covariance matrix from the sampled values. Com-
pare results with inverse of the mixed-model coefficient matrix.

6.3 Model with unknown σ2
β

In the previous section, we assumed that σ2
β in the prior of the slopes was known.

Here, we will consider this variance to be unknown with a scaled inverted chi-
square prior with scale parameter S2

β and degrees of freedom νβ . The joint
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posterior for this model is

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
− (y −Xβ)′(y −Xβ)

2σ2
e

}
×

(
σ2
β

)−k/2
exp

{
−
∑k
j=1 β

2
j

2σ2
β

}

×
(
σ2
β

)−(2+νβ)/2
exp

{
−
νβS

2
β

2σ2
β

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
.

Then, the full-conditional posterior for σ2
β is

f(σ2
β |y,β, σ2

e) ∝
(
σ2
β

)−k/2
exp

{
−
∑k
j=1 β

2
j

2σ2
β

}

×
(
σ2
β

)−(2+νβ)/2
exp

{
−
νβS

2
β

2σ2
β

}

∝
(
σ2
β

)−(2+k+νβ)/2
exp

{
−
∑k
j=1 β

2
j + νβS

2
β

2σ2
β

}
,

which can be recognized as a scaled inverted chi-square distribution with ν̃β =

k + νβ degrees of freedom and scale parameter S̃2
β = (

∑k
j=1 β

2
j + νβS

2
β)/ν̃β . A

sample from this posterior can be obtained as
∑k
j=1 β

2
j+νβS

2
β

χ−2
ν̃β

.

6.3.1 Exercise

Extend the sampler used in the previous section to treat σ2
β as an unknown.

Plot the posterior distribution for σ2
β .

6.4 Model with unknown covariate-specific variances

Here we consider a model where the prior for the slope corresponding to covariate
j is normal with mean 0 and variance σ2

j , where σ2
j has scaled inverted chi-square

prior with scale parameter S2
β and degrees of freedom νβ . The joint posterior

for this model is
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f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
− (y −Xβ)′(y −Xβ)

2σ2
e

}
×

k∏
j=1

(
σ2
j

)−1/2
exp

{
−
β2
j

2σ2
j

}

×
k∏
j=1

(
σ2
j

)−(2+νβ)/2
exp

{
−
νβS

2
β

2σ2
j

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
.

It can be shown that:

1. The full-conditional posterior for βj is normal with mean

β̂j =
x′jwj

(x′jxj + σ2
e/σ

2
j )
,

and variance
σ2
e

(x′jxj+σ
2
e/σ

2
j )

.

2. The full-conditional posterior for σ2
j is a scaled inverted chi-square distri-

bution with ν̃β = 1 + νβ degrees of freedom and scale parameter S̃2
β =

(β2
j +νβS

2
β)/ν̃β . A sample from this posterior can be obtained as

β2
j+νβS

2
β

χ−2
ν̃β

.

3. Marginally, the prior for βj is a scaled t distribution with νβ degrees of
freedom, mean 0 and scale parameter S2

β .

6.4.1 Exercise

1. Derive the full-conditional posterior for βj .

2. Derive the full-conditional posterior for σ2
j .

3. Use a Gibbs sampler to compute the posterior mean of β.

6.5 Model with Mixture Prior for Regression Coefficients

As before, a flat prior is used for the intercept, µ. The prior for slope j is a
mixture:

βj =

{
0 probabilityπ

∼ N(0, σ2
β) probability (1− π)

,
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where σ2
β has a scaled inverted chi-square prior with scale parameter S2

β and
degrees of freedom νβ . In order to use the Gibbs sampler, it is convenient to
write βj as

βj = δjγj ,

where δj is a Bernoulli variable with probability 1− π of being 1:

δj =

{
0 probabilityπ

1 probability (1− π)
,

and γj is normally distributed with mean zero and variance σ2
β . Then, the model

for the phenotypic values can be written as

yi = µ+
∑
j=1

Xijγjδj + ei.

6.5.1 Full-conditionals:

The joint posterior for all the parameters is proportional to

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjγjδj

2σ2
e

}
×

k∏
j=1

(
σ2
β

)−1/2
exp

{
−
γ2j

2σ2
β

}

×
k∏
j=1

π(1−δj)(1− π)δj

× (σ2
β)−(νβ+2)/2 exp

{
−
νβS

2
β

2σ2
β

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
,

where θ denotes all the unknowns.

6.5.2 Full-conditional for µ

The full-conditional for µ is a normal distribution with mean µ̂ and variance
σ2
e

n , where µ̂ is the least-squares estimate of µ in the model

y −
k∑

j=1

Xjγjδj = 1µ+ e,

and
σ2
e

n is the variance of this estimator (n is the number of observations).
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6.5.3 Full-conditional for γj

f(γj |ELSE) ∝ exp

{
− (wj −Xjγjδj)

′(wj −Xjγjδj)

2σ2
e

}
× exp

{
−
γ2j

2σ2
β

}

∝ exp

{
−

[w′jwj − 2w′jXjγjδj + γ2j (x′jxjδj + σ2
e/σ

2
β)]

2σ2
e

}

∝ exp

− (γj − γ̂j)2
2σ2
e

(x′jxjδj+σ
2
e/σ

2
β)

 ,

where
wj = y − 1µ−

∑
l 6=j

Xlγlδl.

So, the full-conditional for γj is a normal distribution with mean

γ̂j =
X′jwjδj

(x′jxjδj + σ2
e/σ

2
β)

and variance
σ2
e

(x′jxjδj+σ
2
e/σ

2
β)

.

6.5.4 Full-conditional for δj

Pr(δj = 1|ELSE) ∝ h(δj = 1)

h(δj = 1) + h(δj = 0)
,

where

h(δj) = π(1−δj)(1− π)δj exp

{
−wj −Xjγjδj

2σ2
e

}
.

6.5.5 Full-conditional for σ2
β

f(σ2
j |ELSE) ∝

(
σ2
β

)−k/2
exp

{
−
∑k
j=1 γ

2
j

2σ2
β

}

× (σ2
β)−(νβ+2)/2 exp

{
−
νβS

2
β

2σ2
β

}

∝ (σ2
β)−(k+νβ+2)/2 exp

{
−
∑k
j=1 γ

2
j + νβS

2
β

2σ2
j

}
,
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and this is proportional to a scaled inverted chi-square distribution with ν̃j =

νβ + k and scale parameter S̃2
j = (

∑k
j=1 γ

2
j + νβS

2
β)/ν̃j .

6.5.6 Full-conditional for π

f(π|ELSE) ∝ π(k−
∑k
j=1 δj)(1− π)

∑k
j=1 δj ,

which is proportional to a Beta distribution with parameters a = k−
∑k
j=1 δj+1

and b =
∑
δj + 1.

6.5.7 Full-conditional for σ2
e

f(σ2
e |ELSE) ∝

(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjγjδj

2σ2
e

}
× (σ2

e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
∝ (σ2

e)−(n+2+νe)/2 exp

{
− (y − 1µ−

∑
Xjγjδj)

′(y − 1µ−
∑

Xjγjδj) + νeS
2
e

2σ2
e

}
,

which is proportional to a scaled inverted chi-square density with ν̃e = n +

νe degrees of freedom and S̃2
e =

(y−1µ−
∑

Xjγjδj)
′(y−1µ−

∑
Xjγjδj)+νeS

2
e

ν̃e
scale

parameter.

7 Bayesian Regression Models for Whole-Genome
Analyses

Meuwissen et al. [12] introduced three regression models for whole-genome
prediction of breeding value of the form

yi = µ+

k∑
j=1

Xijαj + ei,

where yi is the phenotypic value, µ is the intercept, Xij is jth marker covariate
of animal i, αj is the partial regression coefficient of Xij , and ei are identically
and independently distributed residuals with mean zero and variance σ2

e . In
most current analyses, Xij are SNP genotype covariates that can be coded as
0, 1 and 2, depending on the number of B alleles at SNP locus j.

In all three of their models, a flat prior was used for the intercept and a
scaled inverted chi-square distribution for σ2

e . The three models introduced by
Meuwissen et al. [12] differ only in the prior used for αj .
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7.1 BLUP

In their first model, which they called BLUP, a normal distribution with mean
zero and known variance, σ2

α, is used as the prior for αj .

7.1.1 The meaning of σ2
α

Assume the QTL are in the marker panel. Then, the genotypic value gi for a
randomly sampled animal i can be written as

gi = µ+ x′iα,

where x′i is the vector of SNP genotype covariates and α is the vector of re-
gression coefficients. Note that randomly sampled animals differ only in x′i and
have α in common. Thus, genotypic variability is entirely due to variability in
the genotypes of animals. So, σ2

α is not the genetic variance at a locus [2, 4].

7.1.2 Relationship of σ2
α to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then, the additive
genetic variance is

VA =

k∑
j

2pjqjα
2
j ,

where pj = 1 − qj is gene frequency at SNP locus j. Letting Uj = 2pjqj and
Vj = α2

j ,

VA =

k∑
j

UjVj .

For a randomly sampled locus, covariance between Uj and Vj is

CUV =

∑
j UjVj

k
− (

∑
j Uj

k
)(

∑
j Vj

k
)

Rearranging this expression for CUV gives

∑
j

UjVj = kCUV + (
∑
j

Uj)(

∑
j Vj

k
)

So,

VA = kCUV + (
∑
j

2pjqj)(

∑
j α

2
j

k
).

Letting σ2
α =

∑
j α

2
j

k gives

VA = kCUV + (
∑
j

2pjqj)σ
2
α
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and

σ2
α =

VA − kCUV∑
j 2pjqj

,

which gives

σ2
α =

VA∑
j 2pjqj

,

if gene frequency is independent of the effect of the gene.

7.1.3 Full-conditionals:

The joint posterior for all the parameters is proportional to

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjαj

2σ2
e

}
×

k∏
j=1

(
σ2
α

)−1/2
exp

{
−
α2
j

2σ2
α

}

× (σ2
α)−(να+2)/2 exp

{
−ναS

2
α

2σ2
α

}
× (σ2

e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
,

where θ denotes all the unknowns.

7.1.4 Full-conditional for µ

The full-conditional for µ is a normal distribution with mean µ̂ and variance
σ2
e

n , where µ̂ is the least-squares estimate of µ in the model

y −
k∑

j=1

Xjαj = 1µ+ e,

and
σ2
e

n is the variance of this estimator (n is the number of observations).
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7.1.5 Full-conditional for αj

f(βj |ELSE) ∝ exp

{
− (wj −Xjαj)

′(wj −Xjαj)

2σ2
e

}
× exp

{
−
α2
j

2σ2
α

}

∝ exp

{
−

[w′jwj − 2w′jXjαj + α2
j (x
′
jxj + σ2

e/σ
2
α)]

2σ2
e

}

∝ exp

− (αj − α̂j)2
2σ2
e

(x′jxj+σ
2
e/σ

2
α)

 ,

where
wj = y − 1µ−

∑
l 6=j

Xlαl.

So, the full-conditional for αj is a normal distribution with mean

α̂j =
X′jwj

(x′jxj + σ2
e/σ

2
α)

and variance
σ2
e

(x′jxj+σ
2
e/σ

2
α)

.

7.1.6 Full-conditional for σ2
α

f(σ2
α|ELSE) ∝ ×

k∏
j=1

(
σ2
α

)−1/2
exp

{
−
α2
j

2σ2
α

}

× (σ2
α)−(να+2)/2 exp

{
−ναS

2
α

2σ2
α

}
∝ (σ2

α)−(k+να+2)/2 exp

{
−
∑k
j=1 α

2
j + ναS

2
βα

2σ2
α

}
,

and this is proportional to a scaled inverted chi-square distribution with ν̃j =

να + k and scale parameter S̃2
j = (

∑
k α

2
j + ναS

2
α)/ν̃j .
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7.1.7 Full-conditional for σ2
e

f(σ2
e |ELSE) ∝

(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjαj

2σ2
e

}
× (σ2

e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
∝ (σ2

e)−(n+2+νe)/2 exp

{
− (y − 1µ−

∑
Xjαj)

′(y − 1µ−
∑

Xjαj) + νeS
2
e

2σ2
e

}
,

which is proportional to a scaled inverted chi-square density with ν̃e = n + νe

degrees of freedom and S̃2
e =

(y−1µ−
∑

Xjαj)
′(y−1µ−

∑
Xjαj)+νeS

2
e

ν̃e
scale parame-

ter.

7.2 BayesB

7.2.1 Model

The usual model for BayesB is:

yi = µ+

k∑
j=1

Xijαj + ei,

where the prior µ is flat and the prior for αj is a mixture distribution:

αj =

{
0 probabilityπ

∼ N(0, σ2
j ) probability (1− π)

,

σ2
j has a scaled inverted chi-square prior with scale parameter S2

α and να degrees
of freedom. The residual is normally distributed with mean zero and variance
σ2
e , which has a scaled inverted chi-square prior with scale parameter S2

e and νe
degrees of freedom. Meuwissen et al. [12] gave a Metropolis-Hastings sampler
to jointly sample σ2

j and αj . Here, we will show how the Gibbs sampler can be
used in BayesB.

In order to use the Gibbs sampler, the model is written as

yi = µ+

k∑
j=1

Xijβjδj + ei,

where βj ∼ N(0, σ2
j ) and δj is Bernoulli(1− π):

δj =

{
0 probabilityπ

1 probability (1− π)
.
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Other priors are the same as in the usual model. Note that in this model,
αj = βjδj has a mixture distribution as in the usual BayesB model.

7.2.2 Full-conditionals:

The joint posterior for all the parameters is proportional to

f(θ|y) ∝ f(y|θ)f(θ)

∝
(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjβjδj

2σ2
e

}
×

k∏
j=1

(
σ2
j

)−1/2
exp

{
−
β2
j

2σ2
j

}

×
k∏
j=1

π(1−δj)(1− π)δj

×
k∏
j=1

(σ2
j )−(νβ+2)/2 exp

{
−
νβS

2
β

2σ2
j

}

× (σ2
e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
,

where θ denotes all the unknowns.

7.2.3 Full-conditional for µ

The full-conditional for µ is a normal distribution with mean µ̂ and variance
σ2
e

n , where µ̂ is the least-squares estimate of µ in the model

y −
k∑

j=1

Xjβjδj = 1µ+ e,

and
σ2
e

n is the variance of this estimator (n is the number of observations).
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7.2.4 Full-conditional for βj

f(βj |ELSE) ∝ exp

{
− (wj −Xjβjδj)

′(wj −Xjβjδj)

2σ2
e

}
× exp

{
−
β2
j

2σ2
j

}

∝ exp

{
−

[w′jwj − 2w′jXjβjδj + β2
j (x′jxjδj + σ2

e/σ
2
j )]

2σ2
e

}

∝ exp

− (βj − β̂j)2
2σ2
e

(x′jxjδj+σ
2
e/σ

2
j )

 ,

where
wj = y − 1µ−

∑
l 6=j

Xlβlδl.

So, the full-conditional for βj is a normal distribution with mean

β̂j =
X′jwjδj

(x′jxjδj + σ2
e/σ

2
j )

and variance
σ2
e

(x′jxjδj+σ
2
e/σ

2
j )

.

7.2.5 Full-conditional for δj

Pr(δj = 1|ELSE) ∝ h(δj = 1)

h(δj = 1) + h(δj = 0)
,

where

h(δj) = π(1−δj)(1− π)δj exp

{
−wj −Xjβjδj

2σ2
e

}
.

7.2.6 Full-conditional for σ2
j

f(σ2
j |ELSE) ∝

(
σ2
j

)−1/2
exp

{
−
β2
j

2σ2
j

}

× (σ2
j )−(νβ+2)/2 exp

{
−
νβS

2
β

2σ2
j

}

∝ (σ2
j )−(1+νβ+2)/2 exp

{
−
β2
j + νβS

2
β

2σ2
j

}
,

and this is proportional to a scaled inverted chi-square distribution with ν̃j =

νβ + 1 and scale parameter S̃2
j = (β2

j + νβS
2
β)/ν̃j .
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7.2.7 Full-conditional for σ2
e

f(σ2
e |ELSE) ∝

(
σ2
e

)−n/2
exp

{
−y − 1µ−

∑
Xjβjδj

2σ2
e

}
× (σ2

e)−(2+νe)/2 exp

{
−νeS

2
e

2σ2
e

}
∝ (σ2

e)−(n+2+νe)/2 exp

{
− (y − 1µ−

∑
Xjβjδj)

′(y − 1µ−
∑

Xjβjδj) + νeS
2
e

2σ2
e

}
,

which is proportional to a scaled inverted chi-square density with ν̃e = n +

νe degrees of freedom and S̃2
e =

(y−1µ−
∑

Xjβjδj)
′(y−1µ−

∑
Xjβjδj)+νeS

2
e

ν̃e
scale

parameter.

8 Single-Step GBLUP

Introduction

• Genotypes are available only on a few thousand (non-random) individuals

• Phenotype and pedigree information available on millions

• Often, phenotypes are not available on genotyped individuals (sires)

• Training (estimation of marker effects) based on deregressed EBV

• Marker-based EBV combined with pedigree-based EBV using selection
index theory

• An alternative, single-step approach proposed by Legarra et al. [11, 13, 1]

8.1 Theory

8.1.1 Marker Effect Model

y = Xβ + Mα+ e, (41)

• β are fixed effects

• X incidence matrix for fixed effects

• M marker covariates

• α ∼ N(0, Iσ2
α)

• e ∼ N(0, Iσ2
e )
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8.1.2 Breeding Value Models

• Two mixed linear models are linearly equivalent and will lead to the same
inferences if the vector y of observations has the same first and second
moments in both models [8].

• In this sense, a model that is equivalent to (41) can be written as

y = Xβ + g + e, (42)

• g = Mα has

– null means and

– covariance matrix

V ar(g|M) = V ar(Mα)

= MV ar(α)M′.

• Then, in both models (41) and (42), the mean of y is Xβ and

• the covariance matrix is

V ar(y|M) = MV ar(α)M′ + Iσ2
e .

Thus, these two models are linearly equivalent and will lead to the same
inferences.

• When the number of markers is large relative to the size of g, BLUP of g
can be obtained efficiently [19, 16] by solving the MME that correspond
to (42).

• Under some assumptions,

σ2
α =

σ2
g∑

j 2pj(1− pj)
(43)

• So,

V ar(g|M) =
MM′∑

j 2pj(1− pj)
σ2
g

= Gσ2
g . (44)

8.2 BLUP combining genotype and pedigree relationships

• Suppose g is partitioned as

g =

[
g1

g2

]
=

[
g1

M2α

]
,
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• g1 are the genomic BVs of the animals with missing genotypes M1

• g2 are the BVs of those with observed genotypes Z2.

• Following Legarra et al. [11], the vector g1 can be written as

g1 = A12A
−1
22 g2 + (g1 −A12A

−1
22 g2)

= ĝ1 + ε, (45)

• Aij are partitions of A that correspond to g1 and g2.

• The first term in (45) is the best linear predictor (BLP) of g1 given g2,

• the second is a residual.

• It is easy to see that ε in (45) is uncorrelated to g2,

• therefore if g1 and g2 are multivariate normal, ε and g2 are independent.

• Consider first the conditional distribution of g1 given P. Then, as ex-
pected, the

– variance of g1 is

V ar(g1|P) = [A12A
−1
22 A21 + (A11 −A12A

−1
22 A21)]σ2

g (46)

= A11σ
2
g , (47)

where the first term of (46) is the variance of the ĝ1 and the second
term is the variance of ε.

– Similarly, V ar(g2|P) = A22σ
2
g .

• Consider now the conditional distribution of g1 given M2.

• Note that, given the observed genotypes M2, the distribution of g2 changes
to a multivariate normal with

– mean 0 and

– covariance matrix M2M
′
2σ

2
α.

• As explained below, this change in the distribution of g2, produces an
associated change in the distribution of g1 to a normal with

– mean 0 and

– covariance matrix:

V ar(g1|M2) = A12A
−1
22 M2M

′
2A
−1
22 A21σ

2
α + (A11−A12A

−1
22 A21)σ2

g ,
(48)

∗ where now the vector ĝ1 = A12A
−1
22 g2 has covariance matrix

given by the first term of (48),
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∗ because ε is independent of g2, the second term of (48) remains
identical to that of (46).

– Similarly, the covariance between g1 and g2 conditional on M2 is

Cov(g1,g2) = A12A−122 M2M
′
2σ

2
α.

• Further, assuming (43), the above results can be combined to show that
conditional on Z2,

– g has a multivariate normal distribution with null mean and covari-
ance matrix:

V ar(g|Z2) = H =

[
A12A

−1
22 GA−122 A21 + (A11 −A12A

−1
22 A21) A12A−122 G

GA−122 A21 G

]
σ2
g ,

(49)
where G =M2M

′
2/[
∑

2pi(1− pi)].
– The inverse of this matrix is needed to setup the MME, and this is

computed as

H−1 = A−1 +

[
0 0
0 G−1 −A−122

]
.

• Note that this requires computing both G−1 and A−122 , which are dense
and not easy to compute.

• Due to the increased adoption of SNP genotyping in livestock, G−1 and
A−122 are becoming too large for SS-GBLUP to remain computationally
feasible (e.g. ¿100,000 animals).

• A second problem in SS-GBLUP is related to the scaling that is done
using the SNP frequencies.

• As mentioned earlier, when all data that were used for selection are avail-
able for computing the conditional mean, it can be computed as if selection
had not taken place [5, 9, 14].

• If selection has taken place, this requires using SNP frequencies from the
founders, as these frequencies are not changed by selection.

• In most situations, however, SNP genotypes are not available in the founders
and frequencies observed in the genotyped animals are used, which can
lead to biased evaluations, particularly in a multi-breed context.

• An approach very similar to that of using (45) to model missing genotypes
was proposed by Fernando (see equation (43) in[6]) in the context of ge-
nomic prediction using kernel regression, where missing genotypes were
replaced by their conditional expectation computed using all available in-
formation, in contrast to using BLP as in SS-GBLUP.
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• Also, a residual that is similar to ε was included in the model.

• When these residuals are modeled exactly, the inverse of their covariance
matrix is not sparse and SS-GBLUP would not be computationally feasi-
ble.

9 Single-Step Bayesian Regression

9.1 Theory

The mixed linear model for the phenotypic values can be expressed in terms of
a BVM (50) or an MEM (51) as

y = Xβ + Zg + e (50)

= Xβ + ZMα+ e, (51)

where we have introduced the incidence matrix Z to accommodate animals with
repeated records or animals without records. As in SSBV-BLUP, suppose M1

is not observed. Then it is not possible to use (51) as the basis for the MEM.
Note that M1α is equal to g1. So, using (45) for g1 and writing g2 = M2α,
the model for the phenotypic values becomes[

y1

y2

]
=

[
X1

X2

]
β +

[
Z1 0
0 Z2

] [
g1

g2

]
+ e (52)

=

[
X1

X2

]
β +

[
Z1 0
0 Z2

] [
A12A

−1
22 M2α+ ε

M2α

]
+ e (53)

=

[
X1

X2

]
β +

[
Z1 0
0 Z2

] [
M̂1α+ ε
M2α

]
+ e (54)

= Xβ + Wα+ Uε+ e, (55)

where

U =

[
Z1

0

]
, X =

[
X1

X2

]
and W=

[
W1

W2

]
=

[
Z1M̂1

Z2M2

]
.

The matrix M̂1 = A12A
−1
22 M2 of imputed SNP covariates can be obtained

efficiently, using partitioned inverse results, by solving the easily formed very
sparse system:

A11M̂1 = −A12M2, (56)

where Aij are partitions of A−1 that correspond to partitioning g into g1 and
g2.

The differences between this MEM (55) and the model that is currently
used for Bayesian regression (BR) are: 1) that some of the covariates in (55)
are imputed, and 2) a residual term ε has been introduced to account for the
deviations of the imputed genotype covariates from their unobserved, actual
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values. Regardless of the prior used for α, the distribution of the vector ε
of imputation residuals will be approximated by a multivariate normal vector
with null mean and covariance matrix (A11−A12A

−1
22 A21)σ2

g (see equation 48),
where σ2

g is assigned a scaled inverse chi-square distribution with scale parameter
S2
g and degrees of freedom νg. Imputing the covariates needs to be done only

once, and it can be done efficiently in parallel. Imputation of unobserved SNP
covariates will not add significantly to overall computing time.

The MME that correspond to (55) for BayesC with π = 0 are
X′X X′W X′1Z1

W′X W′W + I
σ2
e

σ2
α

W′
1Z1

Z′1X1 Z′1W1 Z′1Z1 + A11σ
2
e

σ2
g


 β̂
α̂
ε̂

 =

 X′y
W′y
Z′1y1

 . (57)

The submatrix of these MME that correspond to ε are identical to those for g1

from a pedigree-based analysis and are very sparse. Thus as explained in the
next section, conditional on β and α, ε can sampled efficiently by using either a
blocking-Gibbs sampler [3, 15] or a single-site, Gibbs sampler used in pedigree-
based analyses [15]. Note that these MME, which do not have G or its inverse,
may be used to overcome the computational problems facing SSBV-BLUP. The
predicted BVs can be written as

g̃ =

[
M̂1

M2

]
α̂+ Uε̂ =

[
M̂1

M2

]
α̂+

[
Z1

0

]
ε̂. (58)

A similar system of MME without ε was solved by iteration for a MEM [19] but
using only genotyped animals. The MME given by (57) has the advantage that
it will not grow in size as more animals are genotyped, in contrast to the MME
corresponding to (52) that is given by Aguilar et al. [1], but assuming (??) they
give identical EBV.

9.2 Numerical Example

# results from this script are stored in 'smallExWkSp.RData'

setwd("/Users/rohan/AeroFS/latex/courses/WinterWorkshp2013/R")

set.seed(12345)

library("RSim")

data(sim)

genParms = list(nChr = 1, chrLength = 0.1, nLoci = 11, mutRate = 1e-10)

# simulating from pedigree

ind = c(1, 2, 3, 4, 5, 6)

sire = c(0, 0, 0, 1, 1, 1)

dam = c(0, 0, 0, 2, 2, 3)

size = length(ind)

ped = cbind(ind, sire, dam)
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mySim = RSim(genParms)

mySim$pedSample(ped)

## [1] 6

snpMat = mySim$getGenotypes(1, size)

G = cor(t(snpMat))

Gi = solve(G)

Z = snpMat[1:3, ]

QPos = c(5)

QTL = snpMat[, QPos]

Z = Z[, -QPos]

G = Z %*% t(Z)/ncol(Z)

# round(G,3)

Gi = solve(G)

nMarkers = ncol(Z)

ped.df = data.frame(ped)

names(ped.df) = c("ind", "sire", "dam")

write.table(ped.df, file = "pedSmall.dat", row.names = F, col.names = F)

require(Matrix)

## Loading required package: Matrix

## Loading required package: methods

## Loading required package: lattice

require(RMatvec)

## Loading required package: RMatvec

## Loading required package: Rcpp

rPed = new(RPed, "pedSmall.dat", TRUE)

subA = function(ids) {
n = length(ids)

A = matrix(nrow = n, ncol = n)

for (i in 1:n) {
for (j in i:n) {

A[i, j] = rPed$getAij(ids[i], ids[j])

A[j, i] = A[i, j]

}
}
colnames(A) = ids

rownames(A) = ids

return(A)

}
ids = row.names(ped.df)

A = subA(ids)

# put parents at bottom
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x = c(4, 5, 6, 1, 2, 3)

A = A[x, x]

Ai = solve(A)

A11i = Ai[1:3, 1:3]

A12 = A[1:3, 4:6]

A22 = A[4:6, 4:6]

A22i = solve(A22)

require(foreach)

## Loading required package: foreach

require(doMC)

## Loading required package: doMC

## Loading required package: iterators

## Loading required package: parallel

registerDoMC()

res = foreach(i = 1:nMarkers, .combine = cbind) %dopar% {
g2 = Z[, i]

g1 = A12 %*% A22i %*% g2

}
WDat = c(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 1)

W = matrix(WDat, 5, 6, byrow = T)

Zh0 = rbind(res, Z)

Zh = W %*% Zh0

X = rep(1, 5)

r1 = ncol(Z)

r2 = 1

mmeRow1 = cbind(t(X) %*% X, t(X) %*% Zh, t(X[1:3]))

mmeRow2 = cbind(t(Zh) %*% X, t(Zh) %*% Zh + diag(nMarkers) * r1, t(Zh[1:3, ]))

mmeRow3 = cbind(X[1:3], Zh[1:3, ], diag(3) + A11i * r2)

mme = rbind(mmeRow1, mmeRow2, mmeRow3)

# generating phenotypes

y = QTL + rnorm(6)

y = y[x] # reordering (offspring first, then sire and dam)

y = y[-4] # removing sire phenotype

rhs = c(t(X) %*% y, t(Zh) %*% y, y[1:3])

sol = solve(mme, rhs)

ghat1 = sol[1] + Zh[1:3, ] %*% sol[2:(1 + nMarkers)] + sol[(2 + nMarkers):(2 +

nMarkers + 2)]

ghat2 = sol[1] + Z %*% sol[2:(1 + nMarkers)]

markerNames = c()

for (i in 1:nMarkers) {
name = paste("m", i, sep = "")

markerNames = c(markerNames, name)
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}
colNames = c("mu", markerNames, "e4", "e5", "e6")

colnames(mme) = colNames

rownames(mme) = colNames

# (round(mme,3))

ghat = rbind(ghat1, ghat2)

# SSBLUP

HTest = Zh0 %*% t(Zh0)/ncol(Z)

HTest[1:3, 1:3] = HTest[1:3, 1:3] + solve(A11i)

HRow1 = cbind(A12 %*% A22i %*% G %*% A22i %*% t(A12) + solve(A11i), A12 %*%

G)

Hrow2 = cbind(G %*% A22i %*% t(A12), G)

H = rbind(HRow1, Hrow2) # checked that the inverse of this matches Hi

Hi = Ai

Hi[4:6, 4:6] = Hi[4:6, 4:6] + Gi - A22i

ssbRow1 = cbind(t(X) %*% X, t(X) %*% W)

ssbRow2 = cbind(t(W) %*% X, t(W) %*% W + Hi)

mmeSSB = rbind(ssbRow1, ssbRow2)

rhsSSB = c(t(X) %*% y, t(W) %*% y)

solSSB = solve(mmeSSB, rhsSSB)

ghatSSB = solSSB[1] + solSSB[2:7]

ghats = cbind(ghat, ghatSSB)

colnames(ghats) = c("SSBReg", "SSBLUP")

(ghats)

## SSBReg SSBLUP

## 4 0.9812 0.9812

## 5 0.9075 0.9075

## 6 0.7959 0.7959

## 1 0.8997 0.8997

## 2 0.7883 0.7883

## 3 0.8137 0.8137

colnames(Z) = markerNames

colNamesSSB = c("mu", "4", "5", "6", "1", "2", "3")

colnames(mmeSSB) = colNamesSSB

rownames(mmeSSB) = colNamesSSB

save.image(file = "/Users/rohan/AeroFS/latex/courses/WinterWorkshp2013/R/smallExWkSp.RData")

Consider the pedigree in Table 4.
Suppose genotypes are available only on the parents, individuals 1, 2, and

3. Genotypes (M2) at 10 markers are given in Table 5.
Following Legarra et al. [11], the relationship matrix is rearranged such

that A11 are relationships among individuals 4, 5, and 6, which do not have
genotypes, and A22 are relationships among the parents, 1, 2, and 3, which
have genotypes given in Table 5. The inverse of the rearranged relationship
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individual sire dam phenotypes
1 0 0 -999.00
2 0 0 0.45
3 0 0 0.87
4 1 2 1.26
5 1 2 1.03
6 1 3 0.67

Table 4: Pedigree for numerical example. Genotypes are available only on
parents: 1, 2 and 3. Phenotypes are available on all except the sire.

individual m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
1 1 2 1 1 0 0 1 2 1 0
2 2 1 1 1 2 0 1 1 1 1
3 0 1 0 0 2 1 2 1 1 1

Table 5: Marker genotypes at ten markers on parents: 1, 2, and 3.

matrix is given in Table 6.
The imputed genotypes M̂1 could be obtained efficiently by solving the sys-

tem (56) and are given in Table 7. %

Now, to setup the MME we will assume that σ2
α =

σ2
g

10 , σ2
g = σ2

e , and that
µ, an effect common to all the observations, is the only fixed effect. Then,
the MME (57) and solutions corresponding to the marker effects model (55) is
given in Table 8. For comparison, the MME and solutions for the single-step
BV model are given in Table 9. The solutions for µ are identical from the two
sets of MME, and BLUP of g obtained as (58), using the solutions to (57), are
identical to the solutions to g given in Table 9.
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4 5 6 1 2 3
4 2.00 0.00 0.00 -1.00 -1.00 0.00
5 0.00 2.00 0.00 -1.00 -1.00 0.00
6 0.00 0.00 2.00 -1.00 0.00 -1.00
1 -1.00 -1.00 -1.00 2.50 1.00 0.50
2 -1.00 -1.00 0.00 1.00 2.00 0.00
3 0.00 0.00 -1.00 0.50 0.00 1.50

Table 6: Inverse of rearrannged relationship matrix. Row and column labels are
the individual IDs. The matrix has been rearanged such that the three individ-
uals without genotypes are in the first block, and the genotyped individuals are
in the next block.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
4 1.50 1.50 1.00 1.00 1.00 0.00 1.00 1.50 1.00 0.50
5 1.50 1.50 1.00 1.00 1.00 0.00 1.00 1.50 1.00 0.50
6 0.50 1.50 0.50 0.50 1.00 0.50 1.50 1.50 1.00 0.50

Table 7: Imputed genotypes at the ten markers for individuals 4, 5, and 6.
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µ g4 g5 g6 g1 g2 g3
µ 5.00 1.00 1.00 1.00 0.00 1.00 1.00
g4 1.00 3.00 0.00 0.00 -1.00 -1.00 0.00
g5 1.00 0.00 3.00 0.00 -1.00 -1.00 0.00
g6 1.00 0.00 0.00 3.00 -1.00 0.00 -1.00
g1 0.00 -1.00 -1.00 -1.00 3.08 0.00 0.42
g2 1.00 -1.00 -1.00 0.00 0.00 4.00 -1.00
g3 1.00 0.00 0.00 -1.00 0.42 -1.00 3.08

rhs 4.29 1.26 1.03 0.67 0.00 0.45 0.87
sol 0.86 0.12 0.05 -0.06 0.04 -0.07 -0.04

Table 9: Mixed equations for single-step BV model. The last two rows give the
right-hand-side and the solutions.
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