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Chapter 1

Classification of Linear
Models

1.1 Introductory concepts

Models are used to describe complex relatioships between variables in simple
mathematical terms. A linear model gives a simple description of the distribu-
tion of the data or observations y. It only describes the expected value (E(y))
and the variance (Var(y)) of the data.

Definition 1.1.1 The model for E(y) is said to be linear if

E(y) = Xβ (1.1)

where X is a known matrix and β is a vector of unknown parameters.The above
model for E(y) is linear in the parameters β.

Definition 1.1.2 The general linear model for y has the form:

y = Xβ + ε (1.2)

where E(ε) = 0, Var(ε) = V or

y = Xβ +Zu+ e (1.3)

where X and Z are known matrices,

E(u) = 0,E(e) = 0

Var(u) = G,Var(e) = Rσ2
e , Cov(u, e

′) = 0

Var(y) = ZGZ ′ +Rσ2
e = V

G and R will often be simplified further, eg. R = I.
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1.2 Classification based on the variable type

Linear models can be classified based on the type of variables used in the models
as:

1. Regression models that contain only quantitative independent variables;

2. ANOVA models that contain only qualitiative independent variables; or

3. Analysis of covariance models (ANCOVA) that contain qualitative and
quantitative independent variables.

1.3 Clasification based on the distribution of ef-
fects in the model

Linear models are also classified based on the distribution of the effects in the
model

1. Fixed linear models contain only fixed effects apart from a random resid-
ual.

2. Random linear models contain only random effects.

3. Mixed linear models contain fixed and random effects.



Chapter 2

Estimation of Fixed Effects
and Hypothesis Testing

2.1 Least Squares Estimation

Let us consider a fixed linear model

y = Xβ + e (2.1)

where X is a n×p known matrix with rank r ≤ p, with E(e) = 0 and Var(y) =
Var(e) = Iσ2

e . To estimate E(y) = η = Xβ∗ by least squares, where β∗ is the
unique not known β from the whole parameter space, minimize

Q =
n∑

i=1

(yi − η̃i)2 (2.2)

with respect to β̃j , where η̃i =
∑

j xij β̃j . Here β̃j are the possible values βj can
take. In matrix notation we can write

Q = (y −Xβ̃)′(y −Xβ̃)

= y′y − 2X′yβ̃ + β̃
′
(X′X)β̃

(2.3)

Using (6.28) and (6.30) to obtain the derivative of Q with respect to β̃ and
equating the derivative to 0 gives:

∂Q

∂β̃
= −2X′y + 2(X′X)β̂ = 0 (2.4)

where β̂ is the estimate that minimizes Q. Rearranging (2.4) gives the ordinary
least square equations (OLS) or the normal equations

(X′X)β̂ = X′y (2.5)

7
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In a geometric interpretation of least square theory we want to minimize Q =
|| y − η̃ ||2 with respect to η̃ ∈ Vr. Note that Vr is the space spanned by the
columns ofX. Theorem 6.1.2 shows that η̂, the projection of y on Vr, minimizes
Q. Note that because η̂ ∈ Vr we can write η̂ = Xβ̂. Also because (y −Xβ̂) is
orthogonal to the columns of X we can write

X′(y −Xβ̂) = 0 ⇒X′y = (X′X)β̂ (2.6)

So, the normal equations, can be derived by using this approach too.

2.2 Estimable functions

Definition 2.2.1 Let ψ = k′β be a linear function of the unknown parameters
β. ψ is estimable if it has an unbiased linear estimate i.e. if there exists a′

such that E(a′y) = ψ for all β.

For example if E(y) = µ+αi where

y =


y11

y12

y21

y22

 ;β =

 µα1

α2


and if ψ = α1 − α2 =

[
0 1 −1

]
β, can show that ψ is estimable. For

a′ =
[
1 0 −1 0

]
, we can write

E(a′y) = E(y11 − y21) = α1 −α2 (2.7)

and based on the definition (2.2.1) ψ is estimable.

Theorem 2.2.1 ψ = k′β is estimable if and only if k′ is a linear function of
the rows of X. That is ψ is estimable if and only if there exists a′ such that
k′ = a′X

Proof: If ψ is estimable, from definition (2.2.1), E(a′y) = ψ and as a result

E(a′y) = a′E(y) = a′Xβ = k′β = ψ ∀ β ⇒ a′X = k′ (2.8)

Now if k′ = a′X

ψ = k′β = a′Xβ = a′E(y) = E(a′y) ∀ β (2.9)

and as a result ψ = k′β is estimable.

Lemma 2.2.1 If ψ = k′β is estimable, then there exists a unique linear unbi-
ased estimate of ψ, a∗′

y for a∗ ∈ Vr. Further, a∗ is the projection of a on Vr

where E(a′y) = ψ.
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Proof: There exists a′ such that E(a′y) = ψ. Otherwise, ψ is not estimable.
Let a = a∗ + b where a∗ ∈ Vr and b ⊥ Vr. Then

ψ = E(a′y)

= E(a∗′
y) + E(b′y)

= E(a∗′
y) + b′Xβ

= E(a∗′
y)

(2.10)

because b′X = 0. We have shown that there exists an a∗ ∈ Vr, now we need
to show the uniqueness of a∗. Suppose α′ is also in Vr and E(α′y) = ψ. Then

0 = E(a∗′
y)− E(α′y)

= (a∗ −α)′Xβ ∀ β
(2.11)

Because this holds for all β-s, this implies that

(a∗ −α)′X = 0 ⇒ (a∗ −α)′ ⊥ Vr

But we know also that (a∗ − α)′ ∈ Vr. As a result (a∗ − α)′ = 0, so a∗ is
unique.

2.3 Gauss-Markoff theorem

Theorem 2.3.1 (Gauss-Markoff Theorem) Given E(y) = Xβ and Var(y) =
Iσ2

e every estimable function ψ has a unique unbiased linear estimator ψ̂ which
has minimum variance in the class of all linear unbiased estimators. This is
given by ψ̂ = k′β̂ where β̂ is a solution to the normal equations.

Proof: Let a∗′
y with a∗ ∈ Vr be the unbiased linear estimator of ψ, and let a′y

be any unbiased estimator. Note that a∗ is the projection of a on Vr. Because
(a− a∗) is orthogonal on a we can write

|| a ||2=|| a∗ ||2 + || a− a∗ ||2 (2.12)

Consider now

Var(a′y) = a′Var(y)a

= a′Iσ2
ea

=|| a ||2 σ2
e

(2.13)

then using (2.12) we can write

Var(a′y) =|| a∗ ||2 σ2
e+ || a− a∗ ||2 σ2

e (2.14)

Note the fact that

Var(a∗′y) = a∗′Iσ2
ea

∗ =|| a∗ ||2 σ2
e (2.15)
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Taking in account the results of (2.14) and (2.15) we conclude that

Var(a′y) ≥ Var(a∗′y) (2.16)

with equality at a∗ = a. As a result a∗′y is the unique linear unbiased estimator
with minimum variance. This estimator will be called the best linear unbiased
estimator ( BLUE ) of ψ.

We need to show also that a∗′y = k′β̂. Recall that a∗ ∈ Vr and (y − η̂) ⊥
Vrwhere η̂ = Xβ̂ is the projection of y on Vr. So

a∗′(y − η̂) = 0 ⇒ a∗′y = a∗′Xβ̂ (2.17)

But
k′β = E(a∗′y) = a∗′Xβ ∀ β ⇒ k′ = a∗′X (2.18)

and as a result (2.17) and (2.18) imply that a∗′y = k′β̂.

2.4 Solving normal equations

Gauss-Markoff theorem shows that the solutions of the normal equations provide
the unique unbiased linear estimator with minimum variance. Now we need to
solve the normal equations to obtain this solution. Let X be a n × p matrix
with rank r < p. Then there are infinitely many solutions to (X′X)β̂ = X′y.
We need to consider the following situations:

1. Let Xr be a set of linearly independent columns of X. Then

E(y) = Xrβr = η (2.19)

where η is unique and η̂ = Xrβ̂r where β̂r is the solution to (X′
rXr)β̂r =

X′
ry.

2. Consider now t = p− r side conditions. The side conditions are Hβ = 0.

Definition 2.4.1 Ht×p is defined as a matrix of rank t with rows linearly
independent of the rows of X.

Note thatHβ is not estimable. That is becauseH is linearly independent
of X. Note also that Xβ = η has an infinite number of solutions. Here
is where we will use the side conditions to obtain the desired solution.

Lemma 2.4.1 There will be a unique value for β that satisfies

(X′X)β = η and Hβ = 0 (2.20)

and a unique β̂ for

(X′X)β̂ = X′y and Hβ̂ = 0 or

Xβ̂ = η̂ and Hβ̂ = 0
(2.21)
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Proof: From the definition of H, it follows that

G =
[
X
H

]
(n+t)×p

(2.22)

has full column rank p. Therefore if

Gβ̂ =
[
η̂
0

]
(2.23)

has a solution, it will be unique. We still have to show that there is

a solution. Now if
[
G η̂

0

]
and G have the same rank then there is a

solution to (2.23).We can write[
G η̂

0

]
=
[
X η̂
H 0

]
⇒ rank of

[
G η̂

0

]
is p (2.24)

due to the fact that the rows of H are linearly independent of the rows
of X. Based on the results derived in ( 2.23 ), ( 2.22 ) and ( 2.24 ) we
conclude that there is a solution and because G is a full rank matrix the
solution is unique. In order to obtain β̂ premultiply

Gβ̂ =
[
Xβ̂
0

]
by G′ =

[
X′ H ′] and as a result

G′Gβ̂ = X′Xβ̂ (2.25)

Note that G′G = X′X +H ′H and as a result we can write

(X′X +H ′H)β̂ = X′Xβ̂ but also

X′Xβ̂ = X′y and as a result

(X′X +H ′H)β̂ = X′y

(2.26)

which has a unique solution becauseG′G is a full rank matrix. The unique
solution is given by

β̂ = (X′X +H ′H)−1X′y (2.27)

3. From (X′X)β̂ = X′y using the generalized inverse concept we obtain β̂ =
(X′X)−X′y.

Lemma 2.4.2 If ψ = K′β is estimable, then by Gauss-Markoff theorem BLUE
of (K′β) = K′β̂.
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Proof:

E(K′β̂) = E(K′(X′X)−X′y)

= K′(X′X)−X′E(y)

= K′(X′X)−X′Xβ

(2.28)

But because ψ = K′β is estimable, we have also

E(K′β̂) = K′β ∀ β (2.29)

As a result
K′(X′X)−X′Xβ = K′β ∀ β (2.30)

and this implies K′(X′X)−X′X = K′ if ψ is estimable. This is a necessary
condition, now we need also to show that it is sufficient. We need to show that
if K′(X′X)−X′X = K′ then ψ is estimable. As a result we need to find A′

such that E(A′y) = K′β. Take A′ = K′(X′X)−X′ then we can write

E(A′y) = E(K′(X′X)−X′y)

= K′(X′X)−X′E(y)

= K′(X′X)−X′Xβ

= K′β

(2.31)

Now we consider

Var(K′β̂) = K′Var(β̂)K

= K′(X′X)−X′Iσ2
eX(X′X)−K

= K′(X′X)−X′X(X′X)−Kσ2
e

(2.32)

where if K′β is estimable then K′(X′X)−X′X = K′ and as a result we can
write

Var(K′β̂) = K′(X′X)−Kσ2
e (2.33)

2.5 Generalized least squares

Consider the case where Var(y) = Rσ2
e 6= Iσ2

e and R is known. The underlying
assumptions are: E(y) = Xβ,Var(y) = Rσ2

e . There is a n× n matrix P with
P ′RP = I. Let

ỹ = P ′y

E(ỹ) = P ′Xβ = X̃β

Var(ỹ) = P ′RPσ2
e = Iσ2

e

(2.34)

so, β̂ can be obtained from:

X̃′X̃β̂ = X̃′ỹ

(X′PP ′X)β̂ = X′PP ′y
(2.35)
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and using the fact that PP ′ = R−1

(X′R−1X)β̂ = X′R−1y (2.36)

These are the generalized least squares (GLS) equations and by Gauss-Markoff
theorem, BLUE(K′β)= K′β̂. Note also that

E(K′β̂) = K′(X′R−1X)−X′R−1Xβ = K′β (2.37)

for all β. So K′(X′R−1X)−X′R−1X = K′ if K′β is estimable. The reverse
is also true, that is if K′(X′R−1X)−X′R−1X = K′ then K′β is estimable.
That is due to the fact that there is a linear function A′y that has E(A′y) =
K′β. Note that the above result is true for any covariance matrix R.

2.6 Canonical form of linear model

Let {α1,α2, . . . ,αr} be an orthonormal basis for Vr ⊆ Vn, the space spanned
by the columns of X. Let the basis be extended to {α1,α2, . . . ,αn} an or-
thonormal basis for for Vn. Note that this can be done for example by applying
the Gramm-Schmidt process to [X I] and taking the non-zero columns. Let
P ′

1 = [α1, . . . ,αr], P ′
2 = [αr+1, . . . ,αn], P ′ = [P ′

1,P
′
2]. Also, P ′P = I =

PP ′. Then
y = P ′z = P ′

1z1 + P ′
2z2

z = P ′y =
[
P 1

P 2

]
y =

[
z1

z2

]
(2.38)

where z′s are the coordinates of y in this new basis. Also

E(z) =
[
P 1

P 2

]
Xβ =

[
P 1Xβ
P 2Xβ

]
=
[
ξ1

ξ2

]
and because the rows of P 2 are perpendicular to Vr

E(z) =
[
ξ1

0

]
Also, Var(z) = PVar(y)P ′ = PP ′σ2

e = Iσ2
e . We can write y = P ′

1z1+P ′
2z2.

Now recall that columns of P ′
1 ∈ Vr and columns of P ′

2 ⊥ Vr. So, P ′
1z1 = η̂,

the projection of y onto Vr. So,

y − η̂ = (P ′
1z1 + P ′

2z2)− P ′
1z1

= P ′
2z2

and
Q = (y − η̂)′(y − η̂)

= z′
2P 2P

′
2z2

= z′
2z2

=
n∑

i=r+1

z2
i
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represents the residual sum of squares. Because E(z2) = 0,Var(z2) = Iσ2
e ⇒

E(z2
i ) = σ2

e . Here r is the rank of the X matrix. The estimate used for σ2
e is

given by

σ̂2
e =

∑n
i=r+1 z

2
i

n− r
=

(y − η̂)′(y − η̂)
n− r

E(σ̂2
e) = σ2

e

Theorem 2.6.1 z1 is called the estimation space, if for any estimable function
ψ, it’s least square (BLUE) estimate ψ̂, is a linear function of z1.

Proof: Recall that ψ̂ = a∗′y where a∗ ∈ Vr and we can also write

ψ̂ = a∗′P ′z

= a∗′(P ′
1z1 + P ′

2z2)
= a∗′P ′

1z1

(2.39)

because a∗ ⊥ on the columns of P ′
2. Also z2 is called the error space because

E(z2) = 0 and σ2
e is estimated for z2.

2.7 Hypothesis Testing

The following assumption is made

Ω : yn×1 ∼ ℵ
(
Xβ, Iσ2

e

)
(2.40)

where the rank of Xn×p = r.

Theorem 2.7.1 Under Ω

ψ̂ = K ′β̂ ∼ ℵ
(
K ′β,K ′(X′X)−KIσ2

e

)
(2.41)

and is independent of QΩ
σ2

e
∼ χ2

n−r.

Proof: From Gauss-Markoff we know that E(K ′β̂) = K ′β and that Var(K ′β̂) =
K ′(X′X)−KIσ2

e . Also a linear function of normal random variables is normal.
To show the independence recall that K ′β is a linear function of z1 and Q is
a function of z2. Under Ω, z1 and z2 are independent ( under normality, null
covariance implies independence ). Also zi

σ2
e
∼ ℵ(0, 1) for i > r. So

QΩ

σ2
e

=
n∑

i=r+1

(
zi

σe

)2

∼ χ2
n−r (2.42)

Notation 1 ω = H ∩ Ω is the set of assumptions obtained by imposing the
assumptions of hypothesis H in addition to the assumptions Ω.
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Definition 2.7.1 Let f(y;θ) denote the probability density function of y. Then
the likelihood ratio statistic for testing H is

λ =
maxωf(y;θ)
maxΩf(y;θ)

(2.43)

Two forms of Ω and ω assumptions

1. Ω1 : y ∼N
(
Xβ, Iσ2

e

)
rank Xn×p = r

H1 : ψ1 = ψ2 = . . . = ψq = 0 where ψi are linearly independent estimable
functions, or there exists K′

q×p such that ψi = K ′β = 0, meanining
that, K′ has q linearly independent rows.

2. Ω2 : y ∼N
(
η, Iσ2

e

)
η ∈ Vr ⊂ Vn

H2 : η ∈ Vr−q ⊂ Vr ⊂ Vn

Vr is the space spanned by the columns ofX and Vr−q is the subspace
to which η is restricted to by H : ψ1 = ψ2 = . . . = ψq = 0

It is obvious that Ω1 = Ω2 = Ω. Need to show that ω1 = H1 ∩ Ω is equivalent
to ω2 = H2 ∩Ω. Let BLUE(ψ = K ′β = A′y. Note that BLUE(K ′β) = K ′β̂ =
K′(X′X)−X′y, so A′ = K′(X′X)−X′. Also

E(A′y) = A′η = A′Xβ = K ′β

and because this holds for all β,⇒ A′X = K ′. Note that rank(K ′)= q =
rank(A′X) ≤ rank(A

′q×n) ≤ q ⇒ rank(A′) = q. Also from the Gauss-Markoff
Theorem, the ith row of A′,ai ∈ Vr. Under H1,ψ = A′η = 0 ⇒ η ⊥ VA, where
VA is the q dimensional subspace of Vr spanned by the rows of A′. The set of
all vectors in Vr that are orthogonal to VA is an (r − q) dimensional subspace
V ∗

(r−q) ⊂ Vr. Thus, ω1 ⇒ η ∈ V ∗
(r−q) or ω1 implies ω2 with V(r−q) = V ∗

(r−q).
Now to show that ω2 implies ω1, let V ∗

A be the orthocomplement of V(r−q) in
Vr. Let {a∗1, . . . ,a∗q} be a set of vectors that span V ∗

A and

A∗′ =

a
∗′
1
...
a∗

′

q


Let K∗′ = A∗′X, then

ψ∗ = K∗′β = A∗′Xβ = A∗′η = 0

because ω2 specifies η ⊥ V ∗
A. Need to show that there are q linearly independent

ψ∗ or that rank(K∗,q×n) = q. Suppose there is some c′ such that

c′K∗ = c′A∗′X = u′X = 0

where u = A∗c. This implies u ⊥ Vr but also u ∈ Vr so ⇒ u = 0 ⇒ A∗c = 0.
This fact implies that c = 0 and that means that K has q linearly independent
columns and so ω2 implies ω1. Now we can conclude that ω1 = ω2.



16

Consider now

f(y;θ) = (2πσ2
e)−

n
2 exp{− 1

2σ2
e

|| y − η ||2} (2.44)

Need to find the maximum of (2.44) for 0 < σ2
e < ∞ and η ∈ Vr for Ω and

η ∈ Vr−q for ω. First fix σ2
e and maximize with respect to ω. This is achived by

letting η be the projection of y on Vr (for Ω) or Vr−q (for ω). Thus, maximum
of (2.44) for fixed σ2

e is

(2πσ2
e)−

n
2 exp{− 1

2σ2
e

|| y − η̂ ||2} (2.45)

Taking the logarithm of (2.45) and then taking the derivative with respect to
σ2

e results in

∂

∂σ2
e

(
−n

2
log(2πσ2

e)− 1
2σ2

e

|| y − η̂ ||2
)

= − n

2σ2
e

+
|| y − η̂ ||2

2σ4
e

(2.46)

Setting (2.46) to 0 and then solving it gives

σ̂2
e =

|| y − η̂ ||2

n
(2.47)

So

maxΩf(y;θ) =
(

2π || y − η̂Ω ||2

n

)−n
2

exp
(
−n

2

)
maxωf(y;θ) =

(
2π || y − η̂ω ||2

n

)−n
2

exp
(
−n

2

) (2.48)

and

λ =
(
|| y − η̂ω ||2

|| y − η̂Ω ||2

)−n
2

=
(
Qω

QΩ

)−n
2

(2.49)

In practice,

F (x) = F =
n− r

q

(
λ−

2
n − 1

)
=
n− r

q

(
Qω −QΩ

QΩ

) (2.50)

is used. Note

λ < λ0 if and only if F > F0 when F0 = F0(λ0)

So rejecting H when λ < λ0 is equivalent to rejecting H when F > F0.

Definition 2.7.2 Let Vr−q ⊂ Vr be the subspace that η is restricted to by H.
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Under Ω, η ∈ Vr ⊂ Vn let {αq+1, . . . ,αr} be an orthonormal basis for Vr−q.
Extend this set to {α1, . . . ,αq,αq+1, . . . ,αr} to be an orthonormal basis for
Vr. Extend once more to {α1, . . . ,αq,αq+1, . . . ,αn} to be an orthonormal
basis for Vn.

α1, . . . ,αq, αq+1 . . . ,αr︸ ︷︷ ︸
O.N.B.forVr−q︸ ︷︷ ︸

O.N.B.forVr

,αr+1 . . . ,αn

︸ ︷︷ ︸
O.N.B.forVn

(2.51)

Let

P ′
1 =

[
α1, . . . ,αq

]
P ′

2 =
[
αq+1, . . . ,αr

]
P ′

3 =
[
αr+1, . . . ,αn

]
P ′ =

[
P ′

1P
′
2P

′
3

]
Then,

y = P ′z = P ′
1z1 + P ′

2z2︸ ︷︷ ︸
∈Vr

+P ′
3z3︸ ︷︷ ︸

⊥Vr

where z = Py, and also recall P = P ′−1. Also z ∼ N
(
ζ, Iσ2

e

)
where ζ =

PXβ = Pη. Note also that y = η̂Ω + P ′
3z3. Note that

under Ω : ζi = 0 for i > r η ∈ Vr, and

under ω : ζi = 0 for
{
i ≤ q
i > r

η ∈ Vr−q

From the Gauss-Markoff Theorem,

η̂Ω = P ′
1z1 + P ′

2z2

η̂ω = P ′
2z2

So

QΩ = || y − η̂Ω ||2= || P ′
3z3 ||2= z′

3P 3P
′
3z3 = z′

3z3

=
n∑

i=r+1

z2
i

Qω = || y − η̂ω ||2= || P ′
1z1 + P ′

3z3 ||2= z′
1P 1P

′
1z1 + z′

3P 3P
′
3z3

= z′
1z1 + z′

3z3

=
q∑

i=1

z2
i +

n∑
i=r+1

z2
i

and

Qω −QΩ =
q∑

i=1

z2
i
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Note that z1 and z3 are statistically independent. As a result Qω − QΩ and
QΩ are statistically independent.

Under ω:
zi

σe
iid N (0, 1)

{
i < q
i > r

So,
Qω −QΩ

σ2
e

=
q∑

i=1

(
zi

σe

)2

∼ χ2
q (2.52)

and
QΩ

σ2
e

=
n∑

i=r+1

(
zi

σe

)2

∼ χ2
n−r (2.53)

So,

F =
n− r

q

(
Qω −QΩ

QΩ

)
=

(Qω −QΩ) /q
σ2

e

∼
χ2

q/q

χ2
n−r/(n− r)

= F q,n−r

(2.54)

Under ω: Pr (F > F α;q,n−r) = α (2.55)

Under Ω:
zi

σe
∼N (ζi, σe) i < r

∼N (0, 1) i > r

So,
Qω −QΩ

σ2
e

=
q∑

i=1

(
zi

σe

)2

∼ χ2
q,δ (2.56)

where δ represents a non-centrality parameter and is equal to δ =
∑q

i=1
ζ2

i

σ2
e
. So

under Ω : F ∼ F q,n−r;δ.
Consider now another derivation of F and it’s distribution.

Under ω : K′β = 0

and K′β̂ ∼N
(
0,K′ (X′X)−Kσ2

e

)
So (

K′β̂
)′ [

K′ (X′X)−Kσ2
e

]−1 (
K′β̂

)
︸ ︷︷ ︸

SSH

∼ χ2
q
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Also we saw from cannonical form for Ω that any ψ̂ and QΩ are statistically

independent. Also we know that QΩ
σ2

e
∼ χ2

n−r. So

F =

(
K′β̂

)′ [
K′ (X′X)−Kσ2

e

]−1 (
K′β̂

)
/q

QΩ/σ
2
e/(n− r)

=

(
K′β̂

)′ [
K′ (X′X)−Kσ2

e

]−1 (
K′β̂

)
/q

σ̂2
e

∼ F q,n−r

Under Ω : F ∼ F q,n−r;δ (2.57)

where δ = (K′β)′
[
K′ (X′X)−Kσ2

e

]−1

(K′β). These two forms of the F

statistic are equivalent. The denominators in each is σ̂2
e . So, all we need to

show is that

Qω −QΩ =
(
K′β̂

)′ [
K′ (X′X)−Kσ2

e

]−1 (
K′β̂

)
(2.58)

Proposition 2.7.1 Let ψ∗(q×1) = D(q×q)ψ. Note that ψ = K′β and ψ∗ =
DK′β. For

H1 : ψ = 0

H2 : ψ∗ = 0

Then SSH1 = SSH2 if D is non-singular.

Proof:

SSH2 =
(
DK′β̂

)′ [
DK′ (X′X)−D′K

]−1 (
DK′β̂

)
= β̂

′
KD′ (D′)−1

[
K′ (X′X)−K

]−1

D−1DK′β̂

=
(
K′β̂

)′ [
K′ (X′X)−K

]−1 (
K′β̂

)
= SSH1

Now can show that

ψ∗ =

ζ1...
ζq

 = Dψ (2.59)

for non-singular D. So SSH1 = SSH2 . Can also show that SSH2 = Qω −QΩ.
To show 2.59 let ψ̂ = K′β̂ = A′y and by the Gauss-Markoff Theorem

E(A′y) = A′Xβ = A′η = ψ
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Define P ′
1 = AT , Gram-Schmidt process in matrix, A = P ′

1T
−1 ⇒ A′ =

(T−1)′P 1. D is a non-singular matrix. Now

A′η = ψ = A′ [P ′
1ζ1 + P ′

2ζ2] = (T−1)′P 1P
′
1ζ1 + (T−1)′P 1P

′
2︸ ︷︷ ︸

0

ζ2

So, SSH1 = SSH2 where

H1 : ψq×1 = 0

H2 : ζq×1
1 = 0

In order to calculate SSH2 first need to get the BLUE of ζ1. Working in can-
nonical scale we have

E(z) = P ′
1ζ1 + P ′

2ζ2

Var(z) = Iσ2
e

(2.60)

From the Gauss-Markoff Theorem, BLUE of ψ̂
∗

= ζ̂1 can be written as

• A′y where the columns of A ∈ Vr ⊂ Vn spanned by P ′
1 and P ′

2.

• Further, E(A′y) = ζ1

Both this conditions are satisfied for A = P ′
1. From the Gauss-Markoff Theo-

rem A′ is unique. So

ψ̂
∗

= ζ̂1 = P 1y = P 1P
′
1z1 = z1

Var(ψ̂
∗
) = Var(ζ̂1) = Var(z1) = Iσ2

e

As a result

SSH2 = z′
1 [Var(z1)]

−1
z1

1
σ2

e

= z′
1z1 = Qω −QΩ

So the test based on likelihood ratio

F =
(Qω −QΩ) /q

σ̂2
e

=

(
K′β̂

)′ [
K′ (X′X)−K

]−1 (
K′β̂

)
/q

σ̂2
e

(2.61)

In summary

• Ω : y ∼N
(
Xβ, Iσ2

e

)
Xβ = η ∈ Vr ⊂ Vn

• BLUE (K′β) = K′β̂ ( also, η̂ is MLE of η) if K′β is estimable, where
β̂ is the solution to (X′X) β̂ = X′y ⇒ β̂ = (X′X)−X′y
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• Var(K′β̂) = K′ (X′X)−Kσ2
e

Hypothesis testing:
H0 : ψ = K′q×p

β = 0

is equivalent to
H : η ∈ Vr−q ⊂ Vr

F =

(
K′β̂

)′ [
K′ (X′X)−K

]−1 (
K′β̂

)
/q

σ̂2
e

(2.62)

Reject H0 when F > F α;q,n−r. This is equivalent to likelihood ratio test.

2.8 Consequences of using wrong model

Suppose H : ψq×1 = 0 is true and η ∈ Vr−q ⊂ Vr ⊂ Vn. Then, writing the
model in the cannonical form

y = P ′
2ζ2 + e E(y) = η = P ′

2ζ2 (2.63)

Then BLUE of η is P ′
2ζ̂2. Also

ζ̂2 = (P 2P
′
2)
−1
P 2y = P 2y

η̂ω = P ′
2P 2y = P ′

2z2

Note that η̂ is the projection of y onto Vr−q. We consider now the consequences
of overfitting. Suppose H is true and η ∈ Vr−q ⊂ Vr ⊂ Vn. But use model

y = P ′
1ζ1 + P ′

2ζ2 + e (2.64)

Then η is estimated by

η̂Ω = P ′
1ζ̂1 + P ′

2ζ̂2

= P ′
1z1 + P ′

2z2

(2.65)

As a result

Eω(η̂Ω) = P ′
1E(z1) + P ′

2E(z2)
= 0 + P ′

2ζ2

= η

(2.66)

and
Varω(η̂Ω) = P ′

1P 1σ
2
e + P ′

2P 2σ
2
e (2.67)

whereas
Varω(η̂ω) = P ′

2P 2σ
2
e (2.68)
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Consider now the consequences of underfitting using the cannonical form. Sup-
pose H is not true but the model

y = P ′
2ζ2 + e (2.69)

is used to estimate η. As a result

EΩ(η̂ω) = E(P ′
2z2) = P ′

2ζ2 (2.70)

whereas η = P ′
1ζ1 + P ′

2ζ2. Also

VarΩ(η̂ω) = P ′
2P 2σ

2
e (2.71)

So, η̂ω is biased, but has lower variance than

VarΩ(η̂Ω) = P ′
1P 1σ

2
e + P ′

2P 2σ
2
e (2.72)

Consider now a different approach to these problems. Suppose the true model
is

y = X1β1 +X2β2 + e Ω (2.73)
but the model

y = X1β1 + e ω (2.74)

is fitted (underfitting), and the estimable functionK′β1 is estimated asK′β̂ω =
A′y where A′ = K′ (X′

1X1)
−
X′

1. Now consider

EΩ(η̂ω) = A′(X1β1 +X2β2)
= K′β1 +A′X2β2

because A′X1 = K′. Note that in general, A′X2 6= K′ does not even have
the same dimensions. Consider now the situation of overfitting. The model

y = X1β1 +X2β2 + e (2.75)

is used. Then

Eω(K′β̂Ω) = A′Eω(y)
= A′X1β1

= K′β1

if K′β1 is estimable under Ω.

2.9 Variance of estimates by iteration

When the system of equations is large, solve by Gauss-Seidel iteration.

Var(k′β̂) = k′(X′X)−kσ2
e (2.76)

The desired variance can be computed without computing (X′X)−. Note the
fact that (X′X)−k is a solution to (X′X)b = k. So first solve this equation
to obtain b by Gauss-Seidel iteration . Then

k′bσ2
e = Var(k′β̂) (2.77)

Also if there is no solution to (X′X)b = k, then k′β is not estimable.



Chapter 3

Prediction of Random
Effects

3.1 Best Prediction

Mean squared error of prediction: Let T be an unobservable random
variable (genotypic value) and y (phenotypic values) a vector of observations
that are related to T . In prediction, the goal is to define some function T̃ of y
such that

E(T − T̃ )2, (3.1)

the MSE of prediction, is minimum. Let T̂ = E(T |y), and write

E(T − T̃ )2 = E(T − T̂ + T̂ − T̃ )2

= E
[
(T − T̂ )2 + (T̂ − T̃ )2 + 2(T − T̂ )(T̂ − T̃ )

]
.

(3.2)

But,

E
[
(T − T̂ )(T̂ − T̃ )

]
= Ey

{
E
[
(T − T̂ )(T̂ − T̃ ) | y

]}
= Ey

[
(T̂ − T̂ )(T̂ − T̃ )

]
= 0.

(3.3)

So,

E(T − T̃ )2 = E
[
(T − T̂ )2 + (T̂ − T̃ )2

]
. (3.4)

The first term of (3.4) does not involve T̃ , and the second term is minimum
when T̃ = T̂ . So E(T − T̃ )2 is minimized by choosing T̃ to be T̂ = E(T |y).

Correlation between predictor and predictand:

23
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Proposition 3.1.1 Can show that

ρ(T, T̃ ) =
Cov(T, T̃ )√

Var(T )Var(T̃ )
(3.5)

is maximized by choosing T̃ = T̂ .

Proof: Let E(T̃ ) = θ. Then,

Cov(T, T̃ ) = E
[
T (T̃ − θ)

]
= E

{[
(T − T̂ ) + T̂

]
(T̃ − θ)

}
, (3.6)

but,
Ey
{

E
[
(T − T̂ )(T̃ − θ) | y

]}
= Ey

[
(T̂ − T̂ )(T̃ − θ)

]
= 0. (3.7)

So
Cov(T, T̃ ) = E

[
T̂ (T̃ − θ)

]
= Cov(T̂ , T̃ ), (3.8)

and Cov(T, T̂ ) = Cov(T̂ , T̂ ) = Var(T̂ ). Now,

ρ2(T, T̃ ) =
Cov2(T, T̃ )

Var(T )Var(T̃ )

=
Cov2(T̂ , T̃ )

Var(T )Var(T̃ )

=
Cov2(T̂ , T̃ )

Var(T̂ )Var(T̃ )

Var(T̂ )
Var(T )

= ρ2(T̂ , T̃ )
Var(T̂ )
Var(T )

(3.9)

This is maximum when T̃ = T̂ and ρ2(T̂ , T̃ ) = 1. Note that

Var(T̂ )
Var(T )

= ρ2(T, T̂ )

Mean of selected candidates: Consider now the problem of maximizing the
expected value of selected T ′is. Suppose there are n candidates and we want to
choose k such that

E

[∑k
i=1 Tsi

k

]
where s1, . . . , sk are the indices of the selected T ′is.

E

[∑k
i=1 Tsi

k

]
=

1
k

Ey

[
E

(
k∑

i=1

Tsi
| y

)]
=

1
k

Ey

[
k∑

i=1

T̂si

]
(3.10)

It is clear that selecting s1, . . . , sk to be the indices of highest ranking T̂i would
maximize 3.10. This is a very general result that not depend on the joint
distribution of T and y. Here, the proportion selected ( k

n ) is a constant.
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Truncation selection: Under truncation selection, the proportion selected is
not a constant. Cochran (1951) showed that under truncation selection the mean
of the selected candidates is maximized by selecting according to T̂ provided that
the candidates are identically and independently distributed and the information
used for prediction is also independently and identically distributed:

(yi, Ti)iid

Selecting based on conditional mean does not maximize probability of correct
ordering.

• Example :

Pr(T | y) = 0.1 Pr(T | y) = 0.9

T1 1 2

T2 20 1

E(T1|y) = 0.1 ∗ 1 + 0.9 ∗ 2 = 1.9
E(T2|y) = 0.1 ∗ 20 + 0.9 ∗ 1 = 2.9

Given this value of y, if you select T2, you would be wrong in 90% of the time.
Note E(T2|y) > E(T1|y).

Proposition 3.1.2 Suppose X and Y are multivariate normal (MVN). In
general [

X
Y

]
∼N

([
µX
µY

]
,

[ ∑
X

∑
XY∑

Y X
∑
Y

])
(3.11)

Can show that

E(X|Y ) = µX +
∑
XY

∑−1

Y (Y − µY ) = X̂

Proof: Write X = X̂ + (X − X̂). Observe that

• E(X − X̂) = 0

• Cov
[
(X − X̂),Y ′

]
=
∑
XY −

∑
XY = 0

Note that under multivariate normality a null correlation implies independence.
So,

E (X | Y ) = E
(
X̂ | Y

)
+ E

[
(X − X̂) | Y

]
= X̂ + E(X | Y )− X̂

= X̂ + 0

= X̂

(3.12)
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and as a result X̂ is a linear function of Y . Consider now

Var (X | Y ) = Var
(
X̂ | Y

)
︸ ︷︷ ︸

0

+Var
[
(X − X̂) | Y

]

= Var
(
X − X̂

) (3.13)

because (X − X̂) and Y are independent. Now

Var
(
X − X̂

)
= Cov

[
(X − X̂), (X − X̂)′

]
=
∑
X −

∑
XY

∑−1

Y
∑
Y X −

∑
XY

∑−1

Y
∑
Y X

+
∑
XY

∑−1

Y
∑
Y X

=
∑
X −

∑
XY

∑−1

Y
∑
Y X

(3.14)

Suppose [
T
y

]
∼N

([
µT

η

]
,

[
σ2

T c′

c V

])
(3.15)

Then
E (T | y) = µT + c′V −1(y − η) = T̂ (3.16)

Note T̂ = a+ b′y ( linear in y ) where a = µT − c′V −1η and b′ = c′V −1. We
have seen that in general, the best predictor does not maximize the probability
of correct ranking. However, under MVN , can show that the BP maximizes
the probability of correct pairwise ranking. Let

d = T1 − T2

d̂ = E(T1 | y)− E(T2 | y) = E(d | y)

Ranking is correct when d̂ has the same sign as d. Note:

E(d̂ | d) = E(d̂) +
Cov(d, d̂)
Var(d)

[d− E(d)]

If E(d) = E(d̂) = 0

E(d̂ | d) =
Cov(d, d̂)
Var(d)

d

= ρ(d, d̂)

√
Var(d̂)
Var(d)

d

(3.17)

Also

Var(d̂ | d) = Var(d̂)− Cov2(d, d̂)
Var(d)

= Var(d̂)− ρ2(d, d̂)Var(d̂)

= Var(d̂)
(
1− ρ2(d, d̂)

) (3.18)
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Pr(d̂ > 0 | d = k > 0) = 1− Φ

 −ρ(d, d̂)
√

Var(d̂)

Var(d)
k√

Var(d̂)[1− ρ2(d, d̂)]−1/2


= 1− Φ

−ρ(d, d̂) 1√
Var(d)

k

[1− ρ2(d, d̂)]−1/2


(3.19)

This is maximized by choosing d̂ to maximize ρ(d, d̂).

3.2 Best Linear Prediction

Calculating the BP requires knowing the joint distribution of (T,y). Further, it
requires computing E(T | y). This may be non-linear and difficult to compute.
Consider a predictor of the form:

T̃ = a∗ + b′∗y (linear in y)

where a and b′ are chosen such that E(T − T̂ )2 is minimum. So,

E(T − T̂ )2 = E(T − a∗ − b′∗y)2

= σ2
T + µ2

T − 2µTa
∗ − 2b′∗c− µT b

′∗η + a∗2 − 2ab′∗η + b′∗V b∗

+ b′∗ηη′b∗

(3.20)

This is the expression for MSEP(T̃ ) regardless of the exact form of the joint
distribution of T and y. Claim that a∗ = a = µt−c′V −1η and b′∗ = b = c′V −1.
Suppose a∗ 6= a and b∗ 6= b has lower MSEP than a + by. But under MVN ,
a+by gives the BP . So, a∗ and b∗ cannot give lower value for MSEP. To verify
let T̂ = a+ b′y and let T̃ = a∗ + b′∗y. Then

MSEP(T̃ ) = E(T − T̃ )2 = E
[
(T − T̂ ) + (T̂ − T̃ )

]2
(3.21)

Note E(T − T̂ ) = 0 and

E(T − T̂ )y′ = Cov
[
(T − T̂ ),y′

]
= c′ − c′ = 0′ (3.22)

So E(T − T̂ )(T̂ − T̃ ) = 0 and

MSEP(T̃ ) = E(T − T̂ )2 + E(T̂ − T̃ )2 (3.23)
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The first term does not involve T̃ and the second is minimum by choosing T̃ = T̂ .
Consider now the problem of maximizing the correlation between T and T̃ . Let
T̃ = a∗ + b′∗y be an arbitrary linear predictor.

ρ(T, T̃ ) =
b′∗c√

b′∗V b∗σ2
T

(3.24)

This is the expression for ρ(T, T̂ ) regardless of the exact form of the joint dis-
tribution between T and y. We know that choosing a∗ = a and b∗ = b maxi-
mizes ρ(T, T̃ ) under MVN . So among all linear predictors, the BLP maximizes
ρ(T, T̂ ).Consider now a different approach. Let T = T̂ +(T − T̂ ) where T̂ is the
BLP . Then,

Cov(T, T̃ ) = Cov
[
T̂ + (T − T̂ ), T̃

]
(3.25)

But, we have already seen that for any linear predictor T̃

Cov
[
(T − T̂ ), T̃

]
= 0 (3.26)

So,
Cov(T, T̃ ) = Cov(T̂ , T̃ ) (3.27)

and

ρ2(T, T̃ ) =
Cov2(T, T̃ )

Var(T )Var(T̃ )

=
Cov2(T̂ , T̃ )

Var(T )Var(T̃ )

=
Cov2(T̂ , T̃ )

Var(T̂ )VarT̃

Var(T̂ )
Var(T )

= ρ2(T̂ , T̃ )
Var(T̂ )
Var(T )

(3.28)

Note that Var(T̂ )

Var(T )
does not depend on the choice of T̃ . So, ρ2(T, T̃ ) is maximized

by the maximum ρ2(T̂ , T̃ ). This is maximum when T̃ = T̂ . Note that

Var(T̂ )
Var(T )

= ρ2(T, T̂ )

3.3 Best Linear Unbiased Prediction

If the true values of µT ,µy, c
′ and V are known,

T̂ = µT + c′V −1(y − η) (3.29)
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is the BLP . Suppose,
E(y) = η = Xβ (3.30)

where X is known and β is unknown. Further, suppose µT = λ′β is estimable.
That means, there exists an b′ such that

E(b′y) = b′Xβ = λ′β for allβ (3.31)

thus, b′X = λ′. Then can predict T with

T̂ = λ′β̂ + c′V −1(y −Xβ̂) (3.32)

where β̂ is a solution to

(X′V −1X)β̂ = X′V −1y (3.33)

Note that T̂ can be written as

T̂ = b′y (3.34)

where

b′ = λ′(X′V −1X)−X′V −1 − c′V −1
[
I −X(X′V −1X)−X′V −1

]
(3.35)

This predictor is called the BLUP of T . It can be shown that among all linear
unbiased predictors of the form T̃ = b′∗y, MSEP(T̃ ) = E(T − T̃ )2 is minimum
for T̃ = T̂ . A useful result to prove the above is:

Lemma 3.3.1 Cov
[
(T − T̂ ), b′∗y

]
is a constant with respect to b′∗.

Proof: Note that when E(b′∗y) = b′∗Xβ = λ′β for all β ⇒ b′∗X = λ′

Cov
[
(T − T̂ ), b′∗y

]
= Cov[(T − λ′(X′V

−1
X)−X′V

−1
y − c′V

−1
y

+ c′V
−1
X(X′V

−1
X)−X′V

−1
y), b′∗y]

= c′b′∗ − λ′(X′V
−1
X)−X′b′∗︸ ︷︷ ︸

λ

−c′b′∗ + c′V
−1
X(X′V

−1
X)−X′b′∗︸ ︷︷ ︸

λ

= −λ′(X′V
−1
X)−λ+ c′V

−1
X(X′V

−1
X)−λ

(3.36)

Let T̃ = b′∗y and T̂ = b′y where for both, b′∗X = b′X = λ′. So,

Cov
[
(T − T̂ ), (T̂ − T̃ )

]
= Cov

[
(T − T̂ ), T̂

]
− Cov

[
(T − T̂ ), T̃ )

]
= 0 (3.37)

Now we can prove that MSE(T̃ ) = E(T − T̃ )2 is minimum when T̃ = T̂ , for
T̃ = b′∗y and b′∗X = λ′.

MSE(T̃ ) = E(T − T̃ )2 = E
[
(T − T̂ ) + (T̂ − T̃ )

]2
(3.38)
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Note that E(T − T̂ ) = 0. So,

E(T − T̂ )(T̂ − T̃ ) = Cov
[
(T − T̂ ), (T̂ − T̃ )

]
= 0 (3.39)

and
MSEP(T̃ ) = E(T − T̂ )2 + E(T̂ − T̃ )2 (3.40)

The first term is free of T̃ and the second term is minimum when T̃ = T̂ . So
MSEP(T̃ ) is minimized by choosing T̃ = T̂ . Note that there is a linear unbiased
predictor that has lower MSEP than BLUP, namely BLP. In animal breeding
we model genotypic values as

T = E(T ) + T − E(T ) = λ′β + u (3.41)

where E(u) = 0. Now BLUP of u is

û = c′V
−1(y −Xβ̂) = b′y (3.42)

where b′ = c′V
−1
[
I −X(X′V

−1
X)−X′V

−1
]

and for E(û) = b′Xβ = 0 for

all β ⇒ b′X = 0. Let ũ = b′∗y be another predictor with E(ũ) = b′∗Xβ = 0
for all β. So, b′∗X = 0′. Then,

Cov [(u− û), ũ] = 0 (3.43)

Cov
[
u− c′V

−1
y + c′V

−1
X(X′V

−1
X)−X′V

−1
y, b′∗y

]
= c′b

∗ − c′b
∗ + c′V

−1
X(X′V

−1
X)−X′b∗︸ ︷︷ ︸

0
= 0

(3.44)

So,
Cov(u, ũ) = Cov [û+ (u− û), ũ] = Cov(û, ũ) (3.45)

It follows that
Cov(u, û) = Cov(û, û) = Var(û) (3.46)

and that

Var(u− û) = Var(u)− 2Cov(u, û) + Var(û) = Var(u)−Var(û) (3.47)

Consider

ρ2(u, ũ) =
Cov2(u, ũ)

Var(u)Var(ũ)

=
Cov2(û, ũ)

Var(û),Var(ũ)
Var(û)
Var(u)

= ρ2(û, ũ)
Var(û)
Var(u)

(3.48)
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So to maximize ρ2(u, ũ) chose ũ = û. Those among all predictors of the form
ũ = b′∗y with b′∗X = 0′ ũ = û = b′y has the highest ρ(u, û).

Consider a mixed linear model

y = Xβ +Zu+ e (3.49)

with

E(y) = Xβ, E(u) = 0, E(e) = 0

Var(u) = G, Var(e) = R, Cov(u, e) = 0, Var(y) = ZGZ′ +R = V

(3.50)

So,

Cov(u,y′) = C′ = GZ′ BLUP(u) = û = GZ′V
−1(y −Xβ̂) (3.51)

What if incorrect G and V are used. Still,

E(Xβ̂) = Xβ (3.52)

where β̂ was obtained using an incorrect V . For example, suppose β̂ is obtained
of OLS as β̂ = (X′X)−X′y. Then,

E(Xβ̂) = X(X′X)−X′X︸ ︷︷ ︸
X

β = Xβ (3.53)

because IX = X and Xβ is estimable. So,

E(û) = 0 (3.54)

even when the wrong values for G and V are used.

3.4 Henderson’s Mixed Model Equations

Can obtain BLUE and BLUP efficiently by solving Henderson’s Mixed Model
Equations (H.M.M.E). Suppose,

y = Xβ +Zu+ e =
[
X Z

] [β
u

]
+ e (3.55)

where both β and u are fixed effects, and Var(y) = Var(e) = R. Then the GLS
equations are

W ′R−1W

[
β̂
û

]
= W ′R−1y (3.56)

where W =
[
X Z

]
so,[
X′

Z′

]
R−1

[
X Z

] [β̂
û

]
=
[
X′R−1y
Z′R−1y

]
(3.57)
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[
X′R

−1
X X′R

−1
Z

Z′R
−1
X Z′R

−1
Z

] [
β̂
û

]
=
[
X′R−1y
Z′R−1y

]
(3.58)

When u is random with E(u) = 0 and Var(u) = G and Cov(u, e′) = 0, BLUE
of estimable functions of β and BLUP of u can be obtained from H.M.M.E[

X′R
−1
X X′R

−1
Z

Z′R
−1
X Z′R

−1
Z +G−1

] [
β̂
û

]
=
[
X′R

−1
y

Z′R
−1
y

]
(3.59)

BLUE of estimable k′β is k′β̂ and BLUP of u is û.
To see the above is true, we need to consider a very useful result in the inverse

of partitioned matrices. This result is useful in deriving A−1 also. Consider the
nonsingular matrix

A =
[
A11 A12

A21 A22

]
(3.60)

Then,

AA−1 =
[
A11 A12

A21 A22

] [
A11 A12

A21 A22

]
=
[
I 0
0 I

]
(3.61)

and consider now [
A11 A12

A21 A22

] [
A12

A22

]
=
[
0
I

]
(3.62)

Next we premultiply the first row of the above matrix equation by (A21A
−1
11 )

and then subtract it from the second row. As a result we can write

0A12 + (A22 −A21A
−1
11 A12)A22 = I

and
A22 = (A22 −A21A

−1
11 A12)−1 (3.63)

Now consider [
A11 A12

A21 A22

] [
A11

A21

]
=
[
I
0

]
(3.64)

and premultiply now the second row of this matrix equation by (A12A
−1
22 ) and

then subtract it from the first row. This results in

(A11 −A12A
−1
22 A21)A11 = I

and
A11 = (A11 −A12A

−1
22 A21)−1 (3.65)

In order to compute A12 make use of the fact that A−1A = I. Consider now
the partinoned result [

A11 A12

A21 A22

] [
A11 A12

A21 A22

]
=
[
I 0
0 I

]
(3.66)



Fernando, Iowa State University 33

After the multiplication of the two matrices in the left hand side we can write

A11A12 +A12A22 = 0 (3.67)

and consequently

A12 = −A11A12A
−1
22

= −(A11 −A12A
−1
22 A21)−1A12A

−1
22

(3.68)

Can also write A22 in the same way from A−1A = I,

A21A
12 +A22A

22 = I

and consequently

A22 = A−1
22 (I −A21A

12)

= A−1
22 +A−1

22 A21(A11 −A12A
−1
22 A21)−1A12A

−1
22

(3.69)

So,

A22 = (A22 −A21A
−1
11 A12)−1

= A−1
22 −A

−1
22 A21(A11 −A12A

−1
22 A21)−1A12A

−1
22

(3.70)

Now based on AA−1 = I can write

A11A
12 +A12A

22 = 0

and as a result
A12 = −A−1

11 A12A
22 (3.71)

Using again A−1A = I can write

A21A11 +A22A12 = 0

and consequently
A21 = −A22A12A

−1
11 (3.72)

Now from AA−1 = I
A11A

11 +A12A
21 = 0

and consequently

A11 = A−1
11 (I −A12A

21)

= A−1
11 +A−1

11 A12A
22A12A

−1
11

(3.73)

Based on the results discussed above can write[
A11 A12

A21 A22

]−1

=
[
A−1

11 +A−1
11 A12A

22A12A
−1
11 −A−1

11 A12A
22

−A22A12A
−1
11 (A22 −A21A

−1
11 A12)−1

]
(3.74)
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and conclude that[
A−1

11 0
0 0

]
+
[
−A−1

11 A12

I

]
A22

[
−A21A

−1
11 I

]
= A−1 (3.75)

with A22 = (A22 − A21A
−1
11 A12)−1. It is useful to observe that when A22 is

1× 1, 3.75 becomes[
A−1

11 0
0 0

]
︸ ︷︷ ︸

B

+
[
−A−1

11 a12

I

]
︸ ︷︷ ︸

r

a22

[
−a21A

−1
11 1

]︸ ︷︷ ︸
s

=
(
b1j +

risj

a22

)
(3.76)

with a22 = (a22 − a21A
−1
11 a12)−1. In calculating the inverse of the additive

relationship matrix A−1
11 a12 is easily determined and is very sparse.

Consider now the inverse of

V = ZGZ ′ +R =
(
R−Z(−G)Z ′) (3.77)

with R = A22,Z = A21,−G = A−1
11 and Z ′ = A12, then

V −1 =
(
R−Z(−G)Z ′)−1

= R−1 +R−1Z
(
−G−1 −Z ′R−1Z

)−1
Z ′R−1

= R−1 −R−1Z
(
Z ′R−1Z +G−1

)−1︸ ︷︷ ︸
P

Z ′R−1
(3.78)

Next a proof of the fact that Henderson’s mixed model equations (HMME) gives
BLUE and BLUP is provided. Consider

X ′R−1Xβ̂ +X ′R−1Zû = X ′R−1y

Z ′R−1Xβ̂ +
(
Z ′R−1Z +G−1

)
û = Z ′R−1y

from the second equation can obtain û = P
(
Z ′R−1y −Z ′R−1Xβ̂

)
and then

substitute û in the first equation. Then

X ′R−1Xβ̂ +X ′R−1ZP
(
Z ′R−1y −Z ′R−1Xβ̂

)
= X ′R−1y

X ′R−1Xβ̂ −X ′R−1ZPZ ′R−1Xβ̂ = X ′R−1y −X ′R−1ZPZ ′R−1y

X ′ (R−1 −R−1ZPZ ′R−1
)
Xβ̂ = X ′ (R−1 −R−1ZPZ ′R−1

)
y(

X ′V −1X
)
β̂ = X ′V −1y

the generalized least squares equations which give BLUE.BLUP of u is

GZ′V −1
(
y −Xβ̂

)
= GZ′ (R−1 −R−1ZPZ ′R−1

)
(y −Xβ̂)

=
(
GZ′R−1 −GZ′R−1ZPZ ′R−1

)
(y −Xβ̂)

=
(
G−GZ′R−1ZP

) (
Z ′R−1y −Z ′R−1Xβ̂

)
︸ ︷︷ ︸

Rhs of MME

(3.79)
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Note that
(G−1 +Z ′R−1Z)P = I

and as a result
Z ′R−1ZP = I −G−1P

So,

BLUP(u) =
[
G−G(I −G−1P )

] (
Z ′R−1y −Z ′R−1Xβ̂

)
= [G−G+ P ]

(
Z ′R−1y −Z ′R−1Xβ̂

)
= P

(
Z ′R−1y −Z ′R−1Xβ̂

)
= û

(3.80)

Consider now the variance of HMME estimates. X is assumed to have full
column rank. If X is not full column in the following results one has to use a
generalized inverse instead of the unique inverse. From HMME can write[

β̂
û

]
=
[
C11 C12

C21 C22

]
︸ ︷︷ ︸

C−1

[
X ′R−1y
Z ′R−1y

]
(3.81)

and the variance can be written as

Var
[
β̂
û

]
= C−1

[
X ′

Z ′

]
R−1(ZGZ ′ +R)R−1

[
X Z

]
C−1

= C−1

[
X ′

Z ′

]
(R−1Z)G(Z ′R−1)

[
X Z

]
C−1

+C−1

[
X ′

Z ′

]
R−1

[
X Z

]
C−1

= C−1

[
X ′R−1Z
Z ′R−1Z

]
G
[
Z ′R−1X Z ′R−1Z

]
C−1

+C−1

[
X ′R−1X X ′R−1Z
Z ′R−1X Z′R−1Z

]
C−1

(3.82)

Note that C−1C = I and,[
C11 C12

C21 C22

] [
X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z +G−1

]
=
[
I 0
0 I

]
(3.83)

So, [
C11 C12

C21 C22

] [
X ′R−1X X ′R−1Z
Z ′R−1X Z′R−1Z

]
=
[
I −C12G−1

0 I −C22G−1

]
(3.84)
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and

Var
[
β̂
û

]
=
[
−C12G−1

I −C22G−1

]
G
[
Z ′R−1X Z ′R−1Z

]
C−1

+
[
I C12G−1

0 I −C22G−1

]
C−1

Also note that CC−1 = I and,[
Z ′R−1X Z ′R−1Z

]
C−1 =

[
−G−1C21 I −G−1C22

]
(3.85)

and,

Var
[
β̂
û

]
=
[
−C12

G−C22

] [
−G−1C21 I −G−1C22

]
+
[
C11 −C12G−1C21 C12 −C12G−1C22

(I −C22G−1)C21 (I −C22G−1)C22

]
=
[
C11 0
0 (G−C22)

] (3.86)

So,

Var
[
β̂
û

]
=
[
C11 0
0 (G−C22)

]
(3.87)

Also consider,

Cov
[
β̂, (û− u)′

]
= −Cov(β̂,u′)

= −
[
C11 C12

] [X ′R−1Z
Z ′R−1Z

]
G

= C12G−1G

= C12

(3.88)

and,

Var(û− u) = Var(û) + Var(u)− 2Cov(u, û′)
= Var(û) + Var(u)− 2Var(û)
= Var(u)−Var(û)

= G− (G−C22)

= C22

(3.89)

Finally,

Var
[
β̂

û− u

]
=
[
C11 C12

C21 C22

]
(3.90)

Assume now [
u
e

]
∼N(

[
0
0

]
,

[
G 0
0 R

]
) (3.91)
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The joint density of u and y is given by

f(u,y;β,G,R) =(
1
2π

)n/2

| R |−1/2 exp
{
−1

2
(y −Xβ −Zu)′R−1(y −Xβ −Zu)

}
(

1
2π

)q/2

| G |−1/2 exp
{
u′G−1u

}
Henderson obtained the MME by maximizing the above relation with respect
to β and u. Note that this is not really maximum likelihood. But the mixed
model equations give,

BLUP(T ) = T̂ = λ′β̂ +C ′V −1(y −Xβ̂) (3.92)

where under MVN β̂ is the MLE of β and

λ′β +C ′V −1(y −Xβ) = E(T | y) (3.93)

So,BLUP(T) is the MLE of E(T | y).

Under MVN can show that

BLUP(u) = û = E(u | w) (3.94)

where

w = y −Xβ̂ =

M︷ ︸︸ ︷[
I −X(X ′V −1X)−X ′V −1

]
y (3.95)

and E(w) = 0. Let

P = (V −1 − V −1X(X ′V −1X)−X ′V −1) (3.96)

and note that PV P = P and M = V P . Then,

Var(w) = V PV PV = V PV (3.97)

Note also that

V PV V −1V PV = V PV PV = V PV (3.98)
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So, V −1 is a generalized inverse of Var(w) = V PV . Now we can show that

BLUP(u)
= Cov(u,w′)Var(w)w

= (GZ ′PV )V −1(y −Xβ̂)

= GZ′P (y −Xβ̂)

= GZ′(V −1 − V −1X(X ′V −1X)−X ′V −1)(y −Xβ̂)

= GZ′V −1(y −Xβ̂)−GZ ′V −1X(X ′V −1X)−X ′V −1)y

+GZ′V −1X(X ′V −1X)−X ′V −1)Xβ̂)

= C ′V −1(y −Xβ̂)−GZ′V −1X(X ′V −1X)− (X ′V −1y − (X ′V −1X)β̂)︸ ︷︷ ︸
0

= C ′V −1(y −Xβ̂)

Can show that under MVN C∗W−w = E(u | w) where Cov(u,w′) = C∗ and
Var(w) = W . Write u = û+ (u− û) and consequently

E(u | w) = E(û | w) + E [(u− û) | w]
= û+ E [(u− û) | w]

(3.99)

So, E(u | w) = û if E [(u− û) | w] = 0. But, E(u − û) = 0 and as a result
Cov [(u− û),w′] = 0. Note that we had shown earlier that any linear func-
tion that had E(.) = 0 has Cov() = 0 with (u − û). Note also that the joint
distribution of w and u is MVN so, (u− û) and w are independent and

E [(u− û) | w] = E(u− û) = 0 (3.100)

Both β and u MVN (fixed versus random)βu
e

 ∼N(

00
0

 ,
D 0 0

0 G 0
0 0 R

) (3.101)

where

θ =
[
β
u

]
and

∑
=
[
D 0
0 G

]
(3.102)

and consider the model

y = Xβ +Zu+ e
= wθ + e

(3.103)
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with w =
[
X Z

]
. Can write

f(θ,y,
∑
,R) = f(y | θ,

∑
,R)f(θ,

∑
,R)

'| R |−1/2 exp
{
−1

2
(y −wθ)′R−1(y −wθ)

}
|
∑
|−1/2 exp

{
−1

2
θ′
∑−1

θ

}

=
exp{− 1

2

Q︷ ︸︸ ︷[
(y −wθ)′R−1(y −wθ) + θ′

∑−1
θ
]
}

|
∑
|1/2| R |1/2

(3.104)

Consider now

Q = y′R−1y − 2θ′w′R−1y + θ′w′R−1wθ + θ′
∑−1

θ

= yR−1y + θ′
(
w′R−1w +

∑−1
)
θ − 2θ′w′R−1y

= yR−1y + (θ − θ̂)′
(
w′R−1w +

∑−1
)

(θ − θ̂)− θ̂
′ (
w′R−1w +

∑−1
)
θ̂

(3.105)

where
(
w′R−1w +

∑−1
)
θ̂ = w′R−1y. So,

f(θ,y,
∑
,R) ' exp

{
−1

2
(θ − θ̂)′(w′R−1w +

∑−1)(θ − θ̂)
}

exp
{
−1

2

[
y′R−1y − θ̂(w′R−1w +

∑−1)θ̂
]}

|
∑
|−1/2| R |−1/2

(3.106)

Also,

f(θ | y,
∑
,R) =

f(θ,y,
∑
,R)

f(y,
∑
,R)

(3.107)

where f(y,
∑
,R) =

∫
f(θ,y,

∑
,R)dθ;note that y is a constant with respect

to θ. So,

f(θ | y,
∑
,R) '

exp
{
− 1

2 (θ − θ̂)′(w′R−1w +
∑−1)(θ − θ̂)

}
|
∑
|−1/2| R |−1/2

(3.108)

and consequently

θ | y,
∑
,R ∼N

[
θ̂, (w′R−1w +

∑−1)−1
]

(3.109)

with E(θ | y) = θ̂ and Var(θ | y) = (w′R−1w +
∑−1)−1 where,

w′R−1w +
∑−1 =

[
X ′R−1X +D−1 X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1

]
w′R−1y =

[
X ′R−1y
Z ′R−1y

]
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Note that if the variance of β is considered to be very large, D−1 → 0 and θ̂
becomes the BLUP solution.

Uncertainty about parameters is expressed by a density function. So,

f(β,u,y,
∑
,R) = f(y | β,u,

∑
,R)f(β |

∑
)f(u |

∑
)f(
∑

)f(R) (3.110)

where f(β |
∑

) represents the “belief” density (normal) and f(
∑

) and f(R)
can be assumed 1 for particular values and 0 for all other values. In this way
can obtain BLUP. However need to keep in mind that when you pretend β ∼
N(0,D), or when you use Bayesian inference, can calculate E(T | y) but using
this will not give maximum expected genetic progress. That is because we are
not using the using the correct joint distribution of T and y. Note that here
expected genetic progress is a frequency (or sampling) definition. Also when we
talk about correct joint distribution that is from a sampling point of view.

3.5 Genetic evaluation in populations undergo-
ing selection

Selection results in:

• complex distribution of data and usual assumptions are violated.

• genetic parameters are changed, i.e. E(u) 6= 0

Example: Suppose y1, y2, y3, y4 are phenotypic records from four full sibs. Under
additive inheritance,

Cov(ui, uj) =
1
2
σ2

a

Let ys1 , and ys2 be the phenotypic values of the highest ranking animals. Then,

Cov(us1 , us2) >
1
2
σ2

a

Can show that if data used for selection are a subset of y, E(u | y) can be
computed ignoring selection.

Two approaches have been used to model selection. A simple cow culling
problem is used below to describe these two models of selection.

Model I:
year1 year2

cow1 y11 y12
cow2 y21 −

Also y11 > y21 so, a second observation is obtained on cow 1. Under MVN can
calculate distribution of y11y21

y12

 given y11 > y21



Fernando, Iowa State University 41

Henderson showed that given one-cycle of selection of this “type” BLUP can be
computed from usual MME. Note that with this model the distribution of[

y11
y21

]
is altered by selection.

Model II:
A

year1 year2
cow1 y11 y12
cow2 y21 −

B
year1 year2

cow1 y11 −
cow2 y21 y22

Let y′A = (y11, y21, y12) and y′B = (y11, y21, y22). Suppose yA is realized when
y11 > y21 and yB is realized when y11 ≤ y21. In this model the distribution of[

y11
y21

]
is not changed by selection. Note that in both models the distribution ofy11y21

ys2


is changed by selection.

3.5.1 Genetic evaluation

Consider genetic evaluation of N individuals from multiple, possibly overlap-
ping, generations. The pedigree for these N individuals can take a large but
finite number of possibilities: P1, P2, . . . , Pk.

Under random mating, the joint density of phenotypic (y) and genotypic
(u) values, conditional of pedigree P = Pi is denoted by f(u,y|P = Pi). Then,
genetic evaluations are based on

f(u|y, P = Pi) =
f(u,y|P = Pi)
f(y|P = Pi)

, (3.111)

where f(y|P = Pi) is the marginal density of the phenotypic values:

f(y|P = Pi) =
∫
f(u,y|P = Pi)du.

Under selection and non-random mating, the joint density of y, u, and P is
different from the joint density of these random variables under random mating.
Thus, (3.111) cannot be used for genetic evaluation.
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As described below, selection based on some variable z is modeled by using
a random variable s with sample space {1, 2, . . . , k} and distribution Ds(θ(z)).
Note that the distribution of s depends on z through the parameter vector θ(z).

Selection is now modeled by specifying that data from pedigree Pi is realized
only when s = i. Thus, the joint density of y, u, and P conditional on selection
can be written in terms of their random-mating density as

g(u,y, P = Pi) =
f(u,y, P = Pi) Pr(s = i|u,y, P = Pi)

Pr(s = i)
∝ Pr(P = Pi)f(u,y|P = Pi) Pr(s = i|u,y, P = Pi)

(3.112)

where Pr(P = Pi) is the marginal probability of pedigree Pi under random
mating. Now, genetic evaluations are based on

g(u|y, P = Pi, s = i) =
Pr(P = Pi)f(u,y|P = Pi) Pr(s = i|u,y, P = Pi)∫
Pr(P = Pi)f(u,y|P = Pi) Pr(s = i|u,y, P = Pi)du

=
Pr(P = Pi)f(u,y|P = Pi) Pr(s = i|u,y, P = Pi)

Pr(P = Pi)f(y|P = Pi) Pr(s = i|y, P = Pi)

=
f(u,y|P = Pi)
f(y|P = Pi)

Pr(s = i|u,y, P = Pi)
Pr(s = i|y, P = Pi)

.

(3.113)

In the above equation, when the ratio

Pr(s = i|u,y, P = Pi)
Pr(s = i|y, P = Pi)

(3.114)

is unity, (3.113) reduces to (3.111) and selection can be ignored. The numerator
and denominator of (3.114) are identical under the following conditions:

1. s is independent of y, u, and P :

Pr(s = i|u,y, P = Pi) = Pr(s = i)

and
Pr(s = i|y, P = Pi) = Pr(s = i)

2. conditional on y and P , s is independent of u:

Pr(s = i|u,y, P = Pi) = Pr(s = i|y, P = Pi)

The first condition is true when selection is based on some criterion unrelated to
y, u, and P . The second condition is true for selection based on y and any other
criterion that is conditionally independent of u, given y. This includes data
based selection. However, if selection partly depends on ymis, not contained in
y, and

f(ymis,u|y) 6= f(ymis|y)f(u|y),

neither of the conditions for ignoring selection is true.
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3.5.2 BLUP with selection

Under MVN
BLUP(u) = û = E(u | w) (3.115)

So, as long as selection was based on w = y −Xβ̂, BLUP(u) can be obtained
from HMME. Note that

fs(ui | wi) =
f(ui,wi)
f(wi)

Pr(s(z) = i | ui,wi)
Pr(s(z) = i | wi)

(3.116)

and that z = L′y and because

E(z) = L′Xβ = 0 for any β only if L′X = 0 (3.117)

if L′X 6= 0 ⇒ did not select on w and as a result cannot ignore the selection
process. So if selection is across fixed effects cannot ignore selection. However
for T = k′β + ui

BLUP(T ) = k′β̂ + ûi and is equal to the MLE of E(T | y)

Note that if β were known, under MVN, we can compute E(u | y) or E(T | y).
This is not affected by selection across fixed effects! But, if we have good
estimates “lots of data” to compute β, what we get is almost E(u | y) and E(T |
y). Remember that MLE are consistent! Note also that for the BLUP property
to hold true, we don’t need any assumptions, only need to know the second
moments. Normality is required just for BLUP to be equal to the conditional
mean.

3.6 Genetic evaluation under additive inheritance

In order to setup the MME need the inverse of Var(u) = G. Under additive
inheritance,

Var(u) = G = Aσ2
a (3.118)

where A is the additive relationship matrix with elements:

aij = 2Pr(a random allele from i is IBD to a random allele in j)

If i is not a descendant of j then,

aij =
1
2
(aisj

+ aidj
)

aii = 1 +
asidi

2

This leads to the tabular method to compute A. Following steps provide A:

1. Number individuals such that parents precede offspring.
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2. For founders ( individuals without parents ) enter 1 on diagonal and 0 on
off-diagonals.

3. For non-founder i calculate row elements 1 to i− 1 as the average of the
parental row elements.

4. Set the diagonal element i to 1 + asidi

2 .

5. Fill columns by symmetry.

Consider the following pedigree as an example:

��
��

��
��

��
��

1

2 3

4

For this pedigree the A matrix is given by:


1 0.5 0 0.25

0.5 1 0 0.5
0 0 1 0.5

0.25 0.5 0.5 1


In matrix notation the tabular method becomes

Ai =
[
Ai−1 Ai−1qi

q′iAi−1 1 + asidi

2

]
=
[
A11 a12

a21 a22

]

where Ai is the relationship matrix expanded up to individual i, qi has only at
most 2 non-zero elements ( = 1

2 ) corresponding to the parents of i. For our
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example

A1 = 1

A2 =
[
A1 A1q2

q′2A1 1

]
q′2 =

1
2
⇒ A2 =

[
1 1/2

1/2 1

]

A3 =
[
A2 A2q3

q′3A2 1

]
q′3 =

[
0 0

]
⇒ A3 =

 1 1/2 0
1/2 1 0
0 0 1



A4 =
[
A3 A3q4

q′4A3 1

]
q′4 =

[
0 1/2 1/2

]
⇒ A4 =


1 1/2 0 1/4

1/2 1 0 1/2
0 0 1 1/2

1/4 1/2 1/2 1



Recall the inverse of a partitioned matrix

A =
[
A11 a12

a21 a22

]
A−1 =

[
A−1

11 0
0 0

]
+
[
−A−1

11 a12

1

]
a22
[
−a21A

−1
11 1

]

where a22 = (a22 − a21A
−1
11 a12)−1. So,

A−1
i−1 =

[
A−1

i−1 0
0 0

]
+
[
−A−1

i−1Ai−1qi

1

]
a22
[
−q′iAi−1A

−1
i−1 1

]
=
[
A−1

i−1 0
0 0

]
+
[
−qi

1

]
a22
[
−q′i 1

]

where a22 = (a22 − a21A
−1
11 a12)−1 and in general

aii = (aii − q′iAi−1A
−1
i−1Ai−1qi)

−1 = (aii − q′iAi−1qi)
−1 (3.119)
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where aii = 1 + asidi

2 . Consider now the example previously discussed

A−1
1 = 1

q2 = 1/2 ⇒ (a22 − q′2A1q2)
−1 = (1− 0.25)−1 =

4
3

A−1
2 =

[
1 0
0 0

]
+
[
−1/2

1

]
4/3

[
−1/2 1

]
=
[
1 + 1/3 −2/3
−2/3 4/3

]

q′3 =
[
0 0

]
⇒ (a33 − q′3A2q3)

−1 = (1− 0)−1 = 1

A−1
3 =

1 + 1/3 −2/3 0
−2/3 4/3 0

0 0 0

+

0
0
1

 1
[
0 0 1

]

=

1 + 1/3 −2/3 0
−2/3 4/3 0

0 0 1


q′4 =

[
0 1/2 1/2

]
⇒ (a44 − q′4A3q4)

−1 = (1− 1/2)−1 = 2

A−1
4 =


1 + 1/3 −2/3 0 0
−2/3 4/3 0 0

0 0 1 0
0 0 0 0

+


0

−1/2
−1/2

1

 2
[
0 −1/2 −1/2 1

]

=


1 + 1/3 −2/3 0 0
−2/3 4/3 + 1/2 1/2 −1

0 1/2 1 + 1/2 −1
0 −1 −1 2


Note that the following rule can be used to compute aii for a pedigree without
inbreeding:

aii =
4

m+ 2
(3.120)

where m is the number of unknown parents. The following algorithm can be
used to obtain A−1:

1. Set A−1 = 0.

2. Compute aii for all animals first. Note that these values can be computed
without computing the whole A matrix.
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3. For each animal add the following to A−1

aii to (i, i)

− 1
2a

ii to (i, si), (si, i), (i, di), (di, i)

− 1
4a

ii to (si, si), (si, di), (di, si), (di, di)

4. Omit entries for missing parents.
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Chapter 4

Estimation of Variance
Components

4.1 Maximum Likelihood

Consider y, sampled from a distribution with density f(y;θ), for θ ∈ Ω. In this
density the argument is y. The likelihood is defined to be a function of θ:

L(θ;y) ∝ f(y;θ) (4.1)

Then MLE(θ) = θ̂ where

L(θ̂;y) = Maxθ∈ΩL(θ;y) (4.2)

This idea was made popular by Fisher, but may have been used earlier. Consider
now the following intuitive explanation. Suppose that have data of type:

y1 . . . yn i.i.d N(µT , σ
2
T )

Can draw histogram from data and find the expected distribution for θ̂ =[
µ̂ σ̂2

]
. Can “superimpose” expected distribution with empirical distribu-

tion by choosing µ = µ̂, σ2 = σ̂2. Can say that the maximum likelihood helps
choose which particular distribution fits “best” the data.

4.1.1 Cauchy - Schwartz Inequality

Lemma 4.1.1

Var(T ) ≥ Cov2(T, Y )
Var(Y )

(4.3)

Proof: Let,

T̂ = E(T ) +
Cov(T, Y )
Var(Y )

[Y − E(Y )]

49
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and write
T = T̂ + (T − T̂ )︸ ︷︷ ︸

Z

recall also that E(Z) = 0 and Cov(Y,Z) = 0 ⇒ Cov(T̂ , Z) = 0 So,

Var(T ) = Var(T̂ ) + Var(Z)

=
Cov2(T, Y )

Var(Y )
+ Var(Z)

So,

Var(T ) ≥ Cov2(T, Y )
Var(Y )

(4.4)

unless, T is a linear function of Y . Then, Z = 0 and Var(T ) = Cov2
(T,Y )

Var(Y )
.

More generally, let y be a vector and T̂ the BLP of T . Then consider
T = T̂ + Z where

T̂ = E(T ) + c′V −1(y −Xβ)

and E(Z) = 0 and Cov(y, Z) = 0 ⇒ Cov(T̂ , Z) = 0 So,

Var(T ) = Var(T̂ ) + Var(Z)

= c′V −1c+ Var(Z)

and consequently
Var(T ) ≥ c′V −1c (4.5)

4.1.2 Jensen’s Inequality

Lemma 4.1.2 If g(x) is a convex function and E(x) = µ,

E[g(x)] ≥ g(µ) (4.6)

with equality only when x is the constant µ.

Proof: Convex functions have the property:

g(x) ≥ g(x0) + g′(x0)(x− x0)

Now let x0 = µ. Then,

g(x) ≥ g(µ) + g′(µ)(x− µ)

and
E[g(x)] ≥ g(µ)

because E(x) = µ.
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4.1.3 Kullback-Leibler Inequality

Lemma 4.1.3 Suppose f(y;θ) is the density function for random variable y
with θ ∈ Ω.

Eθ∗ log
f(y;θ∗)
f(y;θ)

≥ 0 for θ ∈ Ω (4.7)

Proof:

Eθ∗ log
f(y;θ∗)
f(y;θ)

= Eθ∗

− log
f(y;θ)
f(y;θ∗)︸ ︷︷ ︸

convex function

 (4.8)

Now using Jensen’s Inequality,

Eθ∗

[
− log

f(y;θ)
f(y;θ∗)

]
≥ − log Eθ∗

[
f(y;θ)
f(y;θ∗)

]
= − log 1 = 0

because

Eθ∗

[
f(y;θ)
f(y;θ∗)

]
=
∫

f(y;θ)
f(y;θ∗)

f(y;θ∗)dy =
∫
f(y;θ)dy = 1

4.1.4 Consistency of Maximum Likelihood Estimates

Suppose the data y can be partitioned as y1,y2, . . . ,yn iid vectors. Then

log f(y;θ) =
n∑

i=1

log f(yi;θ) ∝ logL(θ;y) (4.9)

From the Kullback-Leibler Inequality,

Eθ∗ [log f(y;θ∗)− log f(y;θ∗ ± δ)] ≥ 0 (4.10)

But as n→∞
1
n

n∑
i=1

log f(yi;θ) → E log f(yi;θ) (4.11)

So as n→∞,
1
n

[logL(θ∗;y)− logL(θ∗ ± δ;y)] ≥ 0 (4.12)

Also as n→∞ the maximum of L(θ;y) is at θ∗. In words the previous results
are described as follows:

• 1
n logL(θ;y) converges to its expected value.

• The E logL(θ;y) is maximum at θ∗.

• In “large” samples 1
n logL(θ;y) as well as L(θ;y) are maximized at θ∗.
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4.1.5 Cramèr-Rao Lower Bond

Lemma 4.1.4 Let s(θ) = ∂

∂θ
log f(y;θ) Then

Eθ∗
[
|s(θ)|θ=θ∗

]
= 0 (4.13)

Proof:

Eθ∗
[
|s(θ)|θ=θ∗

]
=
∫ ∣∣∣∣ ∂∂θ log f(y;θ)

∣∣∣∣
θ=θ∗

f(y;θ∗) dy

=
∫

1
f(y;θ∗)

∣∣∣∣ ∂∂θ f(y;θ)
∣∣∣∣
θ=θ∗

f(y;θ∗) dy

=

∣∣∣∣∣∣∣∣
∂

∂θ

∫
f(y;θ) dy︸ ︷︷ ︸

1

∣∣∣∣∣∣∣∣
θ=θ∗

= 0

So, the expected log likelihood has a root at the true value. However this result
is not as powerful as earlier result.

Lemma 4.1.5 Suppose θ̂i is an unbiased estimator of θ∗i . Then,

Var(θ̂i) ≥ bii (4.14)

where B = Var [s(θ∗)].

Proof: θ̂i is an unbiased estimator of θ∗i so,

Eθ∗(θ̂i) = θ∗i =
∫
θ̂if(y;θ∗) dy

Note that [
∂

∂θi
E(θ̂i)

]
θi=θ∗i

= 1 (4.15)

but also
∂

∂θi
Eθ∗(θ̂i) =

∫
θ̂i

1
f(y;θ∗)

[
∂f(y;θ)
∂θi

]
θ=θ∗︸ ︷︷ ︸

∂
∂θi

log f(y;θ)

f(y;θ∗) dy

=
∫
θ̂i

[
∂

∂θi
log f(y;θ)

]
θ=θ∗︸ ︷︷ ︸

s(θ∗)

f(y;θ∗) dy

=
∫
θ̂isif(y;θ∗) dy

= Eθ∗

(
θ̂i, si

)
= Cov

(
θ̂i, si

)
= 1
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because Eθ∗ [s(θ∗)] = 0 ⇒ Eθ∗(si) = 0

∂

∂θj
Eθ∗(θ̂i) =

∂

∂θj
θi = 0 = Cov

(
θ̂i, sj

)
(4.16)

So,
Cov

(
θ̂i, s

′
)

=
[
0 . . . 0 1 0 . . . 0

]
= c′i (4.17)

From the generalized Cauchy-Schwarz inequality and nature of c′i,

Var(θ̂i) ≥ c′iB
−1ci

c′i =
[
0 . . . 0 1 0 . . . 0

]
and conclude that

Var(θ̂i) ≥ bii (4.18)

with equality achieved when θ̂i is a linear function of s.

4.1.6 Newton Raphson Algorithm

Newton Raphson Algorithm is used for finding the root of a function. The use
of this algorithm allows the examination of properties of MLE. Let g(x) be some
function of x. Want to find the value of x such that for x = x̂→ g(x̂) = 0. The
reasoning is based on the use of Taylor series to approximate g(x) as:

g(x) ≈ g(x0) + g′(x0)(x− x0) (4.19)

Now set (4.19) to zero and solve for x̂ as

g(x0) + g′(x0)(x̂− x0) = 0
g′(x0)(x̂− x0) = −g(x0)

x̂ = x0 −
g(x0)
g′(x0)

Consider now a vector of functions

g(x) ≈ g(x0) +
∂g(x0)
∂x′︸ ︷︷ ︸
B

(x− x0)

≈ g(x0) +B(x− x0)

(4.20)

The last result represents the Taylor series approximation of g(x). The next
step is to set (4.20) equal to zero and solve for x̂.

B(x− x0) = −g(x0)

x̂ = x0 −B−1g(x0)
(4.21)
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4.1.7 Application of Newton Raphson to MLE

Let U(θ) = logL(θ;y). Want to find θ̂ such that

∂

∂θ
[U(θ)]θ=θ̂ = s(θ̂) = 0 (4.22)

Applying Newton Raphson algorithm gives a way to obtain MLE,

θ[i] = θ[i−1] −B−1s (4.23)

where

B(θi−1) =
[
∂s(θ)
∂θ′

]
θ=θi−1

=
[
∂2U(θ)
∂θ∂θ′

]
θ=θi−1

(4.24)

4.1.8 Asymptotic distribution of MLE

Approx.distribution that gets “better” as n→∞.

Theorem 4.1.1 For

s(θ∗) =
∣∣∣∣ ∂∂θ log f(y;θ)

∣∣∣∣
θ=θ∗

(4.25)

and U(θ) = logL(θ;y), can show that

Var[s(θ∗)] =
{
−Eθ∗

[∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

]}
=
{∫

1
f(y;θ∗)

∣∣∣∣ ∂∂θj
f(y;θ)

∂

∂θk
f(y;θ)

∣∣∣∣
θ=θ∗

dy

}
=
{

Eθ∗
[∣∣∣∣∂U(θ)

∂θj

∂U(θ)
∂θk

∣∣∣∣
θ=θ∗

]} (4.26)

Proof: ∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

=
∂

∂θk

[
1

f(y;θ∗)

∣∣∣∣∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

]
=

1
f(y;θ∗)

∣∣∣∣∂2f(y;θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

− 1
[f(y;θ∗)]2

∣∣∣∣∂f(y;θ)
∂θk

∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

(4.27)
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Now,

Eθ∗
[∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

]
=
∫
f(y;θ∗)

∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

dy

=
∫ ∣∣∣∣∂2f(y;θ)

∂θj∂θk

∣∣∣∣
θ=θ∗

dy

−
∫

1
f(y;θ∗)

∣∣∣∣∂f(y;θ)
∂θk

∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

dy

= −
∫

1
f(y;θ∗)

∣∣∣∣∂f(y;θ)
∂θk

∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

dy

(4.28)

because the first term in the last equation is

∫ ∣∣∣∣∂2f(y;θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

dy =

∣∣∣∣∣∣∣∣
∂2

∂θj∂θk

∫
f(y;θ)dy︸ ︷︷ ︸

1

∣∣∣∣∣∣∣∣
θ=θ∗

= 0 (4.29)

Similarly,∣∣∣∣∂U(θ)
∂θj

∂U(θ)
∂θk

∣∣∣∣
θ=θ∗

=
1

[f(y;θ∗)]2

∣∣∣∣∂f(y;θ)
∂θk

∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

(4.30)

And as a result

Eθ∗
[∣∣∣∣∂U(θ)

∂θj

∂U(θ)
∂θk

∣∣∣∣
θ=θ∗

]
=
∫

1
f(y;θ∗)

∣∣∣∣∂f(y;θ)
∂θk

∂f(y;θ)
∂θj

∣∣∣∣
θ=θ∗

dy

= −Eθ∗
[∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

]
= Eθ∗ [sj(θ∗)sk(θ∗)]

(4.31)

Recall that E [s(θ∗)] = 0. So,

Var[s(θ∗)] = Eθ∗ [s(θ∗)s′(θ∗)] = −Eθ∗ [B(θ∗)] = −B∗ (4.32)

where

B(θ∗) =
∣∣∣∣∂2U(θ)
∂θj∂θk

∣∣∣∣
θ=θ∗

Proposition 4.1.1 For a data set consisting of iid vectors of observations,
y1,y1, . . . ,yn

B(θ∗) =
∑

Bi(θ∗) = nB̄(θ∗) (4.33)

where

Bi(θ∗) =
[
∂2 log f(yi;θ)

∂θ∂θ′

]
θ=θ∗

(4.34)

and as n→∞, B̄(θ∗) → E [Bi(θ∗)] = B∗
i .
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This holds because “arithmetic mean x̄ converges to E(xi)”. So for large n

B(θ∗) ≈ nE [Bi(θ∗)] = nB∗
i = B∗

or in words for large n the observed information matrix is approximately equal
to the expected information matrix.

Recall that MLE are consistent. So, for large n, θ̂ is close to θ∗ and

θ̂ ' θ∗ − (B∗)−1s(θ∗) (4.35)

The result in 4.35 can be obtained by the use of Taylor series approximation:

s(θ) = s(θ∗) +
∂

∂θ
s(θ∗)︸ ︷︷ ︸
B

(θ̂ − θ∗) = 0

s(θ∗)−Bθ∗ = −Bθ̂

B−1 | Bθ∗ − s(θ∗) = Bθ̂

θ∗ −B−1s(θ∗) = θ̂

(4.36)

Note also that the approximation in 4.35 gets better as n gets larger. Based on
4.35 it can be seen that,

E(θ̂) ' θ∗ − (B∗)−1 E[s(θ∗)]︸ ︷︷ ︸
0

= θ∗ (4.37)

θ̂ is asymptotically unbiased. Also,

Var(θ̂) ' Var
[
θ∗ − (B∗)−1s(θ∗)

]
= (B∗)−1Var[s(θ∗)](B∗)−1

= (B∗)−1(−B∗)(B∗)−1

= −(B∗)−1

= [Var[s(θ∗)]]−1

(4.38)

so we conlude that Var(θ̂) = [Var[s(θ∗)]]−1 which is the inverse of the Cramer
- Rao lower bound for unbiased estimators. Further, if yi iid s(θ∗) is the
sum of iid si(θ∗). So for large n, s(θ∗) ∼ ℵ(0,−B∗) and because of 4.35
θ̂ ∼ ℵ(θ∗,−(B∗)−1).

4.1.9 Asymptotic distribution of the likelihood ratio

λ =
maxωL(θ;y)
maxΩL(θ;y)

H0 : θ ∈ ω (4.39)

where,
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Ω is a p dimensional space

ω is a p− q dimensional supspace of Ω

Lemma 4.1.6 Can show that as n→∞ and if H0 is true,

−2 log λ ∼ χ2
q (4.40)

Proof: Consider the following notation,

maxθ∈Ω logL(θ;y) = u(θ̂Ω)

and after using a second order Taylor series approximation can write

u(θ̂Ω) ≈ u(θ∗) + (θ̂Ω − θ∗)′s(θ∗) +
1
2
(θ̂Ω − θ∗)′B∗(θ̂Ω − θ∗) (4.41)

Recall the fact that for large n,

(θ̂Ω − θ∗) ' −(B∗)−1s(θ∗) (4.42)

Now using 4.42 in 4.41 can write

u(θ̂Ω) ' u(θ∗)− s′(θ∗)(B∗)−1s(θ∗) +
1
2
s′(θ∗) (B∗)−1B∗︸ ︷︷ ︸

I

(B∗)−1s(θ∗)

= u(θ∗)− 1
2
s′(θ∗)(B∗)−1s(θ∗)

(4.43)

Note that under ω there are p − q free parameters and q fixed parameters and
consequently can write

(θ̂ω − θ∗) =



θ̂1 − θ∗1
...

θ̂p−q − θ∗p−q

θ∗p−q+1 − θ
∗
p−q+1

...
θ∗p − θ

∗
p


=
[
d1

0

]
(4.44)

Then,

maxθ∈ω logL(θ;y) = u(θ̂ω) = u(θ∗) + d′1s1(θ∗) +
1
2
d′1B

∗
11d1 (4.45)

but we know that d1 ' −(B∗
11)

−1s1(θ∗) so under ω,

u(θ̂ω) ' u(θ∗)− s′1(θ
∗)(B∗

11)
−1s1(θ∗) +

1
2
s′1(θ

∗) (B∗
11)

−1B∗
11︸ ︷︷ ︸

I

(B∗
11)

−1s1(θ∗)

= u(θ∗)− 1
2
s′1(θ

∗)(B∗
11)

−1s1(θ∗)

(4.46)
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Thus,
−2 log λ = s′(θ∗)(B∗)−1s(θ∗)− s′1(θ

∗)(B∗
11)

−1s1(θ∗) (4.47)

But for large n,

sp×1(θ∗) ∼ ℵ(0,B∗) and s
(p−q)×1
1 (θ∗) ∼ ℵ(0,B∗

11) (4.48)

and consequently,

−2 log λ = s′(θ∗)(B∗)−1s(θ∗)− s′1(θ
∗)(B∗

11)
−1s1(θ∗)

= χ2
q

(4.49)

The last result is obtained using the result 6.5.2 from appendix.

4.2 MLE of variance components

Consider the mixed model (animal model)

y = Xβ∗ +Zu+ e (4.50)

where

- u animal effect

- β∗ unknown true value

Assume also that
y ∼ ℵ(Xβ∗,V ∗) (4.51)

where V ∗ = ZAZ′σ2∗
a + Iσ2∗

e . Then we can write the likelihood as

L(β, σ2
a, σ

2
e ;y) =

exp
{

1
2 (y −Xβ)′V −1(y −Xβ)

}
(2π)n/2 | V |1/2

(4.52)

and the loglikelihood as

U = logL = K − 1
2

log | V | +1
2
(y −Xβ)′V −1(y −Xβ)

≈ −1
2

log | V | +1
2
(y −Xβ)′V −1(y −Xβ)

(4.53)

In order to be able to use the Newton-Raphson algorithm we need the first
and second derivatives of the loglikelihood. These expressions can be computed
using the results regarding derivatives of matrices and determinants described
in Appendix. Consequently,

∂U

∂β
=

1
2
∂

∂β

(
2y′V −1Xβ − β′X ′V −1Xβ

)
=

1
2
[
2X ′V −1y − 2

(
X ′V −1X

)
β
] (4.54)
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By setting the last equation to zero and solving for β we obtain

β̂ =
(
X ′V −1X

)−
X ′V −1y (4.55)

Similarly the second order derivative can be obtained as

∂2U

∂β∂β′
= −

(
X ′V −1X

)
(4.56)

Now consider

∂U

∂σ2
a

= −1
2
∂ log | V |

∂σ2
a

− 1
2
∂

∂σ2
a

[
(y −Xβ)′V −1(y −Xβ)

]
= −1

2
tr
[
V −1

(
∂V

∂σ2
a

)]
+

1
2
(y −Xβ)′V −1

(
∂V

∂σ2
a

)
V −1(y −Xβ)

= −1
2
tr
(
V −1V a

)
+

1
2
(y −Xβ)′V −1V aV

−1(y −Xβ)

(4.57)

where
V a =

∂V

∂σ2
a

=
∂

∂σ2
a

(
ZAZ′σ2

a + Iσ2
e

)
= ZAZ′ (4.58)

Also

∂2U

∂β∂σ2
a

=
∂

∂σ2
a

[
X ′V −1(y −Xβ)

]
= X ′V −1V aV

−1(y −Xβ)
(4.59)

and

∂2U

∂σ2
a∂σ

2
a

= −1
2
tr
[
∂(V −1V a)

∂σ2
a

]
+

1
2
∂

∂σ2
a

[
(y −Xβ)′V −1V aV

−1(y −Xβ)
]

=
1
2
tr
(
V −1V aV

−1V a

)
− 1

2
(y −Xβ)′V −1V aV

−1V aV
−1(y −Xβ)

− 1
2
(y −Xβ)′V −1V aV

−1V aV
−1(y −Xβ)

=
1
2
tr
(
V −1V aV

−1V a

)
− (y −Xβ)′V −1V aV

−1V aV
−1(y −Xβ)

(4.60)

Consider now the derivatives of the loglikelihood with respect to σ2
e

∂U

∂σ2
e

= −1
2
∂ log | V |

∂σ2
e

− 1
2
∂

∂σ2
e

[
(y −Xβ)′V −1(y −Xβ)

]
= −1

2
tr
[
V −1

(
∂V

∂σ2
e

)]
+

1
2
(y −Xβ)′V −1

(
∂V

∂σ2
e

)
V −1(y −Xβ)

= −1
2
tr
(
V −1V e

)
+

1
2
(y −Xβ)′V −1V eV

−1(y −Xβ)

(4.61)
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where

V e =
∂V

∂σ2
e

=
∂

∂σ2
a

(
ZAZ′σ2

a + Iσ2
e

)
= I (4.62)

So,

∂U

∂σ2
e

= −1
2
tr
(
V −1

)
+

1
2
(y −Xβ)′V −1V −1(y −Xβ) (4.63)

Also,

∂2U

∂β∂σ2
e

=
∂

∂σ2
e

[
X ′V −1(y −Xβ)

]
= X ′V −1V −1(y −Xβ)

(4.64)

∂2U

∂σ2
a∂σ

2
e

= −1
2
tr
[
∂(V −1V a)

∂σ2
e

]
+

1
2
∂

∂σ2
e

[
(y −Xβ)′V −1V aV

−1(y −Xβ)
]

=
1
2
tr
(
V −1V −1V a

)
− 1

2
(y −Xβ)′V −1V −1V aV

−1(y −Xβ)

− 1
2
(y −Xβ)′V −1V −1V aV

−1(y −Xβ)

=
1
2
tr
(
V −1V −1V a

)
− (y −Xβ)′V −1V −1V aV

−1(y −Xβ)

(4.65)

and

∂2U

∂σ2
e∂σ

2
e

=
∂

∂σ2
e

[
−1

2
tr
(
V −1

)
+

1
2
(y −Xβ)′V −1V −1(y −Xβ)

]
=

1
2
tr
(
V −1V −1

)
− 1

2
(y −Xβ)′V −1V −1V −1(y −Xβ)

− 1
2
(y −Xβ)′V −1V −1V −1(y −Xβ)

=
1
2
tr
(
V −1V −1

)
− (y −Xβ)′V −1V −1V −1(y −Xβ)

(4.66)

Now we can apply the Newton-Raphson algorithm

θ̂
[i]

= θ̂
[i−1]

−Bs (4.67)
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where

B =
[
∂U(θ)
∂θ∂θ′

]
θ=θ[i−1]

=



−X ′V −1X X ′V −1V aV
−1(y −Xβ) X ′V −1V −1(y −Xβ)

1
2 tr
(
V −1V aV

−1
)
−

(y −Xβ)′V −1V aV
−1V aV

−1

(y −Xβ)

1
2 tr
(
V −1V −1V a

)
−

(y −Xβ)′V −1V −1V aV
−1

(y −Xβ)

1
2 tr
(
V −1V −1

)
−

(y −Xβ)′V −1V −1V −1

(y −Xβ)


(4.68)

and

s =


X ′V −1(y −Xβ)

− 1
2 tr
(
V −1V a

)
+ 1

2 (y −Xβ)′V −1V aV
−1(y −Xβ)

− 1
2 tr
(
V −1V e

)
+ 1

2 (y −Xβ)′V −1V eV
−1(y −Xβ)

 (4.69)

note that here V e = I.

Consider a more general model where βp×1 and V is a function of k variance
and covariance components. Then the first derivatives are

∂U

∂β
= X ′V −1(y −Xβ)

...
∂U

∂θp+1
= −1

2
tr
(
V −1V 1

)
+

1
2
(y −Xβ)′V −1V 1V

−1(y −Xβ)

...
∂U

∂θp+i
= −1

2
tr
(
V −1V i

)
+

1
2
(y −Xβ)′V −1V iV

−1(y −Xβ)

...
∂U

∂θp+k
= −1

2
tr
(
V −1V k

)
+

1
2
(y −Xβ)′V −1V kV

−1(y −Xβ)

(4.70)
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where V i = ∂V
∂θp+i

and the second derivatives are

∂2U

∂β∂β′
= −

(
X ′V −1X

)
∂2U

∂β∂θp+i
= −X ′V −1V iV

−1(y −Xβ)

∂2U

∂θp+i∂θp+j
=

1
2
tr
(
V −1V iV

−1V j

)
− (y −Xβ)′V −1V iV

−1V jV
−1(y −Xβ)

(4.71)

Consider a two trait problem where

y1 = X1β1 +Z1u1 + e1

y2 = X2β2 +Z2u2 + e2

The previous equations can be written as

y = Xβ + e (4.72)

where

X =
[
X1 0
0 X2

]
, Z =

[
Z1 0
0 Z2

]
(4.73)

and

β =
[
β1

β2

]
, u =

[
u1

u2

]
, e =

[
e1

e2

]
(4.74)

with y ∼ ℵ (Xβ,V ), with V = ZVar(u)Z ′ + Var(e). Also

Var(u) =
[
Aσ2

a1
Aσa12

Aσa12 Aσ2
a2

]
Var(e) =

[
Iσ2

e1
R∗

12σe12

R∗
21σe12 Iσ2

e2

] (4.75)

Consequently,

V =
[
Z1AZ

′
1σ

2
a1

Z1AZ
′
2σa12

Z2AZ
′
1σa12 Z2AZ

′
2σ

2
a2

]
+
[
Iσ2

e1
R∗

12σe12

R∗
21σe12 Iσ2

e2

]
(4.76)

and the first derivatives of V with respect to the variance components are

∂V

∂σ2
a1

=
[
Z1AZ

′
1 0

0 0

]
...

∂V

∂σe12

=
[

0 R∗
12

R∗
21 0

] (4.77)
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Now in order to describe R∗
12 (note that (R∗

12)
′ = R∗

21) consider the following
data

Trait1 Trait2
1 x x
2 x x
3 x −
4 − x
5 x −

where x means that the observation is present and − that the observation is
missing. For this data

Var(e) =



σ2
e1

0 0 0 σe12 0 0
0 σ2

e1
0 0 0 σe12 0

0 0 σ2
e1

0 0 0 0
0 0 0 σ2

e1
0 0 0

σe12 0 0 0 σ2
e2

0 0
0 σe12 0 0 0 σ2

e2
0

0 0 0 0 0 0 σ2
e2


(4.78)

So

R∗
12 =


1 0 0
0 1 0
0 0 0
0 0 0

 (4.79)

Asymptotic Variance Matrix

Var
(
θ̂
)
≈ − (B∗)−1 = −E (B(θ∗))−1 (4.80)

The expected values of second derivatives (expectations taken with respect to
θ not θ∗) are

− E
[

∂U

∂β∂β′

]
= −E

[
X ′V −1X

]
= X ′V −1X

− E
[

∂U

∂β∂θp+i

]
= −E

[
X ′V −1V iV

−1 (y −Xβ)
]

= 0
(4.81)
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and

− E
[

∂U

∂θp+i∂θp+j

]
= −E

[
1
2
tr
(
V −1V iV

−1V j

)
− (y −Xβ)′ V −1V iV

−1V jV
−1 (y −Xβ)

]
= −1

2
tr
(
V −1V iV

−1V j

)
+ E

[
trV −1V iV

−1V jV
−1 (y −Xβ) (y −Xβ)′

]
= −1

2
tr
(
V −1V iV

−1V j

)
+ trV −1V iV

−1V jV
−1 E

[
(y −Xβ) (y −Xβ)′

]︸ ︷︷ ︸
V

= −1
2
tr
(
V −1V iV

−1V j

)
+ tr

(
V −1V iV

−1V jV
−1
)

=
1
2
tr
(
V −1V iV

−1V j

)
(4.82)

Then the asymptotic variance matrix becomes

Var
(
θ̂
)
≈
[
X ′V −1X 0

0
{

1
2 tr
(
V −1V iV

−1V j

)}]−1

= − (B∗)−1 (4.83)

Fisher method of scoring

θ̂i = θ̂i−1 −B∗(θ̂i)s(θ̂i) (4.84)

Note the difference between Newton-Raphson where

∂2U

∂θi∂θj
= −1

2
trV −1V iV

−1V j + (y −Xβ)′ V −1V iV
−1V jV

−1 (y −Xβ)

(4.85)
is used and Fisher method of scoring where

E
[
∂2U

∂θi∂θj

]
=

1
2
trV −1V iV

−1V j (4.86)

is used.

Functional iteration

Consider the function g(x), want x such that g(x) = 0. Then rewrite g(x) as
h(x)− x = 0. Then the functional iteration process is given by

x[i] = h
(
x[i−1]

)
We look now at how can functional iteration be used in the case of the gen-
eral problem disscused previously. Remember that the first derivatives of the
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loglikelihood were

∂U

∂β
= X ′V −1(y −Xβ)

...
∂U

∂θp+1
= −1

2
tr
(
V −1V 1

)
+

1
2
(y −Xβ)′V −1V 1V

−1(y −Xβ)

...
∂U

∂θp+i
= −1

2
tr
(
V −1V i

)
+

1
2
(y −Xβ)′V −1V iV

−1(y −Xβ)

...
∂U

∂θp+k
= −1

2
tr
(
V −1V k

)
+

1
2
(y −Xβ)′V −1V kV

−1(y −Xβ)

(4.87)

Now using the principle of functional iteration we can write

X ′V −1y −X ′V −1Xβ̂) = 0

− 1
2
tr
(
V −1V 1

)
+

1
2
(y −Xβ̂)′V −1V 1V

−1(y −Xβ̂) = 0

...

− 1
2
tr
(
V −1V k

)
+

1
2
(y −Xβ̂)′V −1V kV

−1(y −Xβ̂)

(4.88)

Note that

tr
(
V −1V i

)
= tr

(
V −1V iV

−1V
)

= tr

V −1V iV
−1 (

∑
j

V jθj)︸ ︷︷ ︸
V

 (4.89)

because any variance covariance matrix function of several parameters can be
written as

∑k
i=1 V iθi. As a result

tr
(
V −1V i

)
= tr

V −1V iV
−1 (

∑
j

V jθj)︸ ︷︷ ︸
V

 =
∑

j

tr
(
V −1V iV

−1V j

)
θj

(4.90)
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and now

∂U

∂θp+i
= −1

2
tr
(
V −1V i

)
+

1
2
(y −Xβ)′V −1V iV

−1(y −Xβ)

− 1
2

∑
j

tr
(
V −1V iV

−1V j

)
θj +

1
2
(y −Xβ)′V −1V iV

−1(y −Xβ)
(4.91)

Set 4.91 to zero and then use for functional iteration

{
tr
(
V −1V iV

−1V j

)}
θp+1

...

θp+k =
(
y −Xβ̂

)′
V −1V iV

−1
(
y −Xβ̂

)
 (4.92)

Note that V in the matrix of traces containes θ′s from round n − 1 while
θp+1, . . . , θp+k are from round n. Consider the case of three variance components
for ilustration
X ′V −1X 0 0 0

tr
(
V −1V 1V

−1V 1

)
tr
(
V −1V 1V

−1V 2

)
tr
(
V −1V 1V

−1V 3

)
tr
(
V −1V 2V

−1V 2

)
tr
(
V −1V 2V

−1V 3

)
tr
(
V −1V 3V

−1V 3

)


×


β
θp+1

θp+2

θp+3

 =


X ′V −1y(

y −Xβ̂
)′
V −1V 1V

−1
(
y −Xβ̂

)
(
y −Xβ̂

)′
V −1V 2V

−1
(
y −Xβ̂

)
(
y −Xβ̂

)′
V −1V 3V

−1
(
y −Xβ̂

)


(4.93)

Values for the desired parameters can be obtained through an iterative process
from the previous equation.

4.2.1 EM algorithm

Suppose that L(θ;y) is hard to compute, but L(θ;y,m) is easy to compute
where m is an additional variable. Further suppose

Q(θ;θ[i−1]) = E
[
U(θ;y,m) | y;θ[i−1]

]
(4.94)

is easy to compute. Note that in 4.94 θ is the argument of this likelihood and
θ[i−1] is the value of the parameter used in computing the expected value. Then,
can maximize L(θ;y) with respect to θ by the EM algorithm as follows

1. E step: Compute Q(θ;θ[i−1])

2. M step: Maximize Q(θ;θ[i−1]),

Maxθ∈ωQ(θ;θ[i−1]) = Q(θi;θ[i−1])
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Can show that every step of this algorithm will result in a higher value for
L(θ;y). Note that

y - observed data or incomplete data;

m - missing data;

form the complete data.

Proposition 4.2.1 Can show that

L
(
θi;y

)
≥ L

(
θ[i−1];y

)
(4.95)

Proof: Consider the density of complete data

f(y,m;θ) = f(y;θ)f(m | y;θ) (4.96)

Take the logarithm of the previous expression

log f(y,m;θ) = log f(y;θ) + log f(m | y;θ) (4.97)

Let
Q
(
θ;θ[i−1]

)
= E

[
log f(y,m;θ) | y;θ[i−1]

]
(4.98)

U (θ;y) = log f(y;θ) (4.99)

H
(
θ;θ[i−1]

)
= E

[
log f(m | y;θ) | y;θ[i−1]

]
(4.100)

Now using 4.97, 4.99, 4.100 in 4.98 can write

Q
(
θ;θ[i−1]

)
= U (θ;y) +H

(
θ;θ[i−1]

)
(4.101)

Note that

- Q
(
θ;θ[i−1]

)
is the conditional expectation of complete data loglikelihood,

given the incomplete data.

- U (θ;y) is the loglikelihood for the incomplete data.

- H
(
θ;θ[i−1]

)
is the conditional expectation of missing data loglikelihood given

the observed data (y).

Note also that
Q
(
θ[i];θ[i−1]

)
≥ Q

(
θ[i−1];θ[i−1]

)
(4.102)

because θ[i] is obtained by maximizing Q
(
θ;θ[i−1]

)
. Then using 4.101 in 4.102

can write

U
(
θ[i];y

)
+H

(
θ[i];θ[i−1]

)
≥ U

(
θ[i−1];y

)
+H

(
θ[i−1];θ[i−1]

)
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Then

U
(
θ[i];y

)
− U

(
θ[i−1];y

)
≥ H

(
θ[i−1];θ[i−1]

)
−H

(
θ[i];θ[i−1]

)
(4.103)

and using 4.100

U
(
θ[i];y

)
− U

(
θ[i−1];y

)
≥ E

[
log f(m | y;θ[i−1]) | y;θ[i−1]

]
− E

[
log f(m | y;θ[i]) | y;θ[i−1]

]
≥ E

[
log f(m | y;θ[i−1])− log f(m | y;θ[i]) | y;θ[i−1]

]
≥ E

[
log

f(m | y;θ[i−1])

f(m | y;θ[i])
| y;θ[i−1]

]
≥ 0

(4.104)

based on the Kullback-Leibler Inequality. So can conclude that

U
(
θ[i];y

)
≥ U

(
θ[i−1];y

)
(4.105)

and consequently
L
(
θi;y

)
≥ L

(
θ[i−1];y

)
(4.106)

Proposition 4.2.2 Can also show that at convergence of the EM algorithm i.e.
when θ[i−1] = θ[i]

∂

∂θ
U(θ;y) |θ[i]= 0 (4.107)

i.e. we have reached a root of U(θ;y).

Proof: At step i− 1, θ[i] is obtained by

Maxθ∈ωQ(θ;θ[i−1])

which implies that
∂

∂θ
Q(θ;θ[i−1]) |θ[i]= 0 (4.108)

Note also that from 4.101

U (θ;y) = Q
(
θ;θ[i−1]

)
−H

(
θ;θ[i−1]

)
(4.109)

Thus,

∂

∂θ
U(θ;y) |θ[i] = − ∂

∂θ
H(θ;θ[i−1]) |θ[i]

= − ∂

∂θ
E
[
log f(m | y;θ);θ[i−1]

]
|θ[i]

= −E
[
∂

∂θ
{log f(m | y;θ)} |θ[i] | y;θ[i−1]

] (4.110)
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But as convergence is reached, θ[i−1] = θ[i] and

∂

∂θ
U(θ;y) |θ[i] = −E

[
∂

∂θ
{log f(m | y;θ)} |θ[i] | y;θ[i]

]
= 0

(4.111)

4.2.2 Use of EM algorithm to estimate variance compo-
nents

Consider the following model

y = Xβ +Zu+ e (4.112)

with

E(y) = Xβ, E(u) = 0, E(e) = 0

Var(u) = ZAσ2
u︸︷︷︸

G

Z ′, Var(e) = Iσ2
e︸︷︷︸

R

, Cov(u, e′) = 0 (4.113)

To obtain estimates of β, σ2
u and σ2

e by MLE using the EM algorithm let

y be the incomplete data

u be the missing data

and y and u form the complete data. Then,

L(θ;y,u) ≈ f(y | u;θ)f(u;θ)

≈
exp

{
− 1

2 (y −Xβ −Zu)′R−1 (y −Xβ −Zu)
}∣∣R∣∣1/2

×
exp

{
− 1

2u
′G−1u

}∣∣G∣∣1/2

(4.114)

Let e = y −Xβ −Zu, then

U(θ;y,u) ≈ −1
2

log
∣∣R∣∣− 1

2
log
∣∣G∣∣− 1

2
e′R−1e− u′G−1u (4.115)

and

Q
(
θ;θ[i−1]

)
= −1

2
log
∣∣R∣∣− 1

2
log
∣∣G∣∣− 1

2

[
tr
(
R−1Var

(
e | y;θ[i−1]

))
+ ê′R−1ê

]
− 1

2

[
tr
(
G−1Var

(
u | y;θ[i−1]

))
+ û′G−1û

]
(4.116)

where
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ê = E
(
e | y;θ[i−1]

)
û = E

(
u | y;θ[i−1]

)
Now consider

E
(
u | y;θ[i−1]

)
= û

= Cov (u,y′) Var−1(y)
(
y −Xβ[i−1]

)
= G[i−1]Z ′

(
ZG[i−1]Z ′ +R[i−1]

)−1 (
y −Xβ[i−1]

)
=
(
Z ′ (R−1

)[i−1]
Z +

(
G−1

)[i−1]
)−1

Z ′R−1
(
y −Xβ[i−1]

)
(4.117)

and

Var
(
u | y;θ[i−1]

)
= Var(u)− Cov (u,y′)Var−1(y)Cov (y,u′)

= G[i−1] −G[i−1]Z ′
(
ZG[i−1]Z ′ +R[i−1]

)−1

Z ′G[i−1]

=
(
ZG[i−1]Z ′ +R[i−1]

)−1

= C−1
uu

(4.118)

here we have used the following result from partition matrices

A22 =
(
A22 −A21A

−1
11 A12

)−1

= A−1
22 +A−1

22 A21

(
A11 −A12A

−1
22 A21

)−1
A12A

−1
22

(4.119)

Now consider

E
(
e | y;θ[i−1]

)
= ê

= E
[
(y −Xβ −Zu) | y;θ[i−1]

]
= y −Xβ −Zû

(4.120)

and

Var
(
e | y;θ[i−1]

)
= ZVar

(
u | y;θ[i−1]

)
Z ′

= ZC−1
uuZ

′
(4.121)

Now we proced with the E-step in equation 4.116

Q
(
θ;θ[i−1]

)
= −1

2
log
∣∣R∣∣− 1

2
log
∣∣G∣∣− 1

2
[
tr
(
R−1ZC−1

uuZ
′)+ ê′R−1ê

]
− 1

2
[
tr
(
G−1C−1

uu

)
+ û′G−1û

]
(4.122)
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And for the case considered G = Aσ2
u and R = Iσ2

e so

Q
(
θ;θ[i−1]

)
= −1

2
n log

(
σ2

e

)[i] − 1
2

∣∣∣A (σ2
u

)[i]∣∣∣
− 1

2

[
tr

(
I

(
1
σ2

e

)[i]

ZC−1
uuZ

′

)
+ ê′ê

(
1
σ2

e

)[i]
]

− 1
2

[
tr

(
A−1C−1

uu

(
1
σ2

u

)[i]
)

+
(

1
σ2

u

)[i]

û′A−1û

] (4.123)

For the M-step take the first derivatives with respect to β, σ2
u and σ2

e and then
set to zero and solve for the parameters.So

∂Q

∂β
= −1

2
∂

∂β
(y −Xβ −Zû)′R−1 (y −Xβ −Zû)

= X ′R−1y −X ′R−1Zû−X ′R−1Xβ

= 0

(4.124)

Now we can solve for β

(β)[i] =
(
X ′R−1X

)−
X ′R−1 (y −Zû) (4.125)

Next consider

∂Q

∂σ2
u

= −1
2
q

σ2
u

+
1
2

1
(σ2

u)2
tr
(
A−1C−1

uu

)
+

1
2

1
(σ2

u)2
û′A−1û

= 0
(4.126)

and solve for σ2
u (

σ2
u

)[i]
=

1
q

[
tr
(
A−1C−1

uu

)
+ û′A−1û

]
(4.127)

And finally consider

∂Q

∂σ2
e

= −1
2
n

σ2
e

+
1
2
ê′ê

(σ2
e)2

+
1
2

1
(σ2

e)2
tr
(
ZC−1

uuZ
′) (4.128)

and solve for σ2
e (

σ2
e

)[i]
=

1
n

[
ê′ê+ tr

(
ZC−1

uuZ
′)] (4.129)

Simplification for Exponential family of distributions

Let x =
[
y
m

]
be the complete data. Suppose

f(x;θ) =
b(x)
a(θ)

exp {t′θ} (4.130)
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where t is a sufficient statistic, and

a(θ) =
∫
b(x)exp {t′θ} dx (4.131)

Then,

∂ log a(θ)
∂θ

=
1

a(θ)
∂a(θ)
∂θ

=
∫
tb(x)exp {t′θ}

a(θ)
dx =

∫
tf(x;θ)dx = E(t;θ)

(4.132)
This result will be used in the M-step as follows

Q
(
θ;θ[i−1]

)
= c− log a(θ) + E

(
t′ | y;θ[i−1]

)
θ (4.133)

where c = E
(
log b(x) | y;θ[i−1]

)
is not a function of θ. So in the M-step

∂Q
(
θ;θ[i−1]

)
∂θ

= −∂ log a(θ)
∂θ

+ E
(
t′ | y;θ[i−1]

)
= −E (t;θ) + E

(
t′ | y;θ[i−1]

)
= 0

(4.134)

So Q is maximized by solving through iteration

E (t;θ) = E
(
t′ | y;θ[i−1]

)
(4.135)

in the case when we have incomplete data.
Note that when complete data is available, that is when x is observed,

log f(x;θ) ≈ t′θ − log a(θ) (4.136)

and as a result
∂

∂θ
log f(x;θ) = t− E (t;θ)

= t− Pθ
(4.137)

By setting the first derivative equal to zero and solving for θ we have

θ̂ = P−1t (4.138)

4.2.3 REML - residual maximum likelihood

Consider the case when we do not write the likelihood given y but given K ′y
where

E
(
K ′y

)
= K ′Xβ = 0 for all β

⇒K ′X = 0
(4.139)

with K a (n − r) × n matrix and rank(K ′) = n − r. Note that w = K ′y are
n − r linearly independent error contrasts because E

(
K ′y

)
= 0. Remember

that we have seen that for BLUP that
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E(u) = 0

BLUP(u) = E (u | w)

In order to do EM for REML estimates need to look at

E (u | w), Var (u | w)

and E (e | w), Var (e | w)

Recall that y ∈ Vn can be written as

y = ŷ + ê (4.140)

where ŷ ∈ Vr, the subspace spanned by the columns of X, and ê ⊥ Vr. Conse-
quently ŷ can be written as Ay and ê as (I −A)y where A = X

(
X ′X

)−
X ′.

Further we have shown that ŷ and ê are unique. It can be shown that this fact
implies that A and (I −A) are unique too. To see this fact suppose A and B
are both projections of y onto Vr. Then

(A−B)y = 0 for all y (4.141)

due to the fact that ŷ is unique, so Ay = By = ŷ. Note that this holds for all
y. Consider now

y =


1
0
...
0

 ⇒ A and B have the same first column

...

y =


0
...
0
1

 ⇒ A and B have the same last column

(4.142)

So we can conclude that A = B.

Theorem 4.2.1 For

y ∼ ℵ (Xβ,V ) , rank
(
Xn×p

)
= r; rank

(
K

′(n−r)×n
)

= (n− r) (4.143)

and K ′X = 0;w = K ′y,and for u and y MVN, can show that

E (u | w) = Cov (u,w′)Var−1(w)w

= Cov (u,y′)K
(
K ′V K

)−1
K ′y

(4.144)

is
BLUP(u) = û = Cov (u,y′)V −1

(
y −Xβ̂

)
(4.145)

where β̂ =
(
X ′V −1X

)−
X ′V −1y
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Proof: Note that by replacing β̂ into BLUP(u) can write

û = Cov (u,y′)
[
V −1 − V −1X

(
X ′V −1X

)−
X ′V −1

]
y (4.146)

First we will prove the following lemma:

Lemma 4.2.1 For y ∼ ℵ (Xβ,V ) , rank
(
Xn×p

)
= r; rank

(
K

′(n−r)×n
)

=

(n− r) and with the property that K ′X = 0 can show that

K
(
K ′V K

)−1
K ′ = V −1 − V −1X

(
X ′V −1X

)−
X ′V −1 (4.147)

Proof: Note that

K ′X = K ′V 1/2︸ ︷︷ ︸
K∗′

V −1/2X︸ ︷︷ ︸
X∗

= K∗′X∗ = 0 (4.148)

Let V ∗ be the space spanned by the columns of X∗. From 4.148 it follows that
the columns of K∗ span the orthocomplement of V ∗, denoted by V ∗⊥. So,

K∗
(
K∗′K∗

)−1

K∗′

is the projection matrix onto V ∗⊥. But,[
I −X∗

(
X∗′X∗

)−1

X∗′
]

is also a projection matrix onto V ∗⊥. Thus,

K∗
(
K∗′K∗

)−1

K∗′ =
[
I −X∗

(
X∗′X∗

)−
X∗′

]
and by pre and postmultiplying by V −1/2,

V −1/2K∗
(
K∗′K∗

)−1

K∗′V −1/2 = V −1/2V −1/2

− V −1/2X∗
(
X∗′X∗

)−
X∗′V −1/2

(4.149)

Now using the fact that K∗′ = K ′V 1/2 and X∗ = V −1/2X in 4.149 results in

V −1/2V 1/2︸ ︷︷ ︸
I

K
(
K ′V 1/2V 1/2K

)−1

K ′ V 1/2V −1/2︸ ︷︷ ︸
I

= V −1 − V −1/2V −1/2︸ ︷︷ ︸
V −1

X

X ′ V −1/2V −1/2︸ ︷︷ ︸
V −1

X


−

X ′ V −1/2V −1/2︸ ︷︷ ︸
V −1

(4.150)
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So,

K
(
K ′V K

)−1
K ′ = V −1 − V −1X

(
X ′V −1X

)−
X ′V −1 (4.151)

Now we return to the proof of the theorem. Note that using the result of the
lemma,

E (u | w) = Cov (u,y′)K
(
K ′V K

)−1
K ′y

= Cov (u,y′)V −1
(
y −Xβ̂

)
= BLUP(u)

(4.152)

where β̂ =
(
X ′V −1X

)−
X ′V −1 and consequently does not depend on K.

Consider now

BLUP(e) = ê = Cov (e,y′)V −1
(
y −Xβ̂

)
= RV −1

(
y −Xβ̂

) (4.153)

want to show that
BLUP(e) = ê = y −Xβ̂ −Zû (4.154)

where û = BLUP(u). Can write

y −Xβ̂ −Zû = y −Xβ̂ −ZGZ ′V −1
(
y −Xβ̂

)
(4.155)

Note that

Var(y) =
(
ZGZ ′ +R

)
= V

V V −1 = I

Then by postmultiplying by V −1 the variance of y can write(
ZGZ ′ +R

)
V −1 = I ⇒

ZGZ ′V −1 +RV −1 = I ⇒
ZGZ ′V −1 = I −RV −1

(4.156)

Now using 4.156 in 4.155 results in

y −Xβ̂ −Zû = y −Xβ̂ −
(
I −RV −1

) (
y −Xβ̂

)
= RV −1

(
y −Xβ̂

) (4.157)

Now can conclude that

y −Xβ̂ −Zû = RV −1
(
y −Xβ̂

)
= ê = BLUP(e) (4.158)
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Note that the ML estimate of σ2
e is equal to ê

′ê
n for a fixed linear model, but

the REML estimate of σ2
e will be equal to ê

′ê
n−r where r = rank(X). In REML,

w = K ′y ∼ ℵ
(
0,K ′V K

)
f(w) ≈ 1∣∣K ′V K

∣∣1/2
exp

{
−1

2

[
w′ (K ′V K

)−1
w
]}

U(w) = log f(w) ≈ −1
2

log
∣∣K ′V K

∣∣− 1
2
y′K

(
K ′V K

)−1
K ′y

Now consider the first derivative of the loglikelihood

∂U

∂θi
=

− 1
2
tr
(
K ′V K

)−1 ∂

∂θi

(
K ′V K

)
+

1
2
y′K

(
K ′V K

)−1 ∂

∂θi

(
K ′V K

) (
K ′V K

)−1
K ′y

= −1
2
tr
(
K ′V K

)−1
K ′V iK

+
1
2
y′K

(
K ′V K

)−1
K ′︸ ︷︷ ︸

P

V iK
(
K ′V K

)−1
K ′︸ ︷︷ ︸

P

y

(4.159)

where V i = ∂V
∂θi

. As a result can write

∂U

∂θi
= −1

2
trPV i +

1
2
y′PV iPy (4.160)

In order to look at the second derivatives of the loglikelihood first look at the
derivative of P .

∂P

∂θi
=

∂

∂θi
K
(
K ′V K

)−1
K ′

= −K
(
K ′V K

)−1
K ′V iK

(
K ′V K

)−1
K ′

= −PV iP

(4.161)

Now can write the second derivative of the loglikelihood

∂U

∂θi∂θj
=

1
2
trPV jPV i −

1
2
y′PV jPV iPy −

1
2
y′PV iPV jPy

=
1
2
trPV jPV i − y′PV jPV iPy

(4.162)

After computing the first and second derivatives the parameters desired can be
computed using one of the following procedures:
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1. Newton-Raphson

θ[i] = θ[i−1] −B−1s

where

B =
[

∂U

∂θi∂θj

]
θ=θ[i−1]

and s =
∂U

∂θi

2. Functional Iteration

Note that
∂U

∂θi
= −1

2
{trPV i − y′PV iPy}

and that PV P = P . In order to do functional iteration set to zero the first
derivative and then rearange the terms of the term that involves the trace

{trPV i} = {y′PV iPy}
{trPV PV i} = {y′PV iPy}
{trPV iPV } = {y′PV iPy}trPV iP

∑
V jθj︸ ︷︷ ︸
V

 = {y′PV iPy}

{∑
trPV iPV jθj

}
= {y′PV iPy}

(4.163)

Then the set of equations used for functional iteration will be

{trPV iPV j}︸ ︷︷ ︸
matrix

θ = {y′PV iPy}︸ ︷︷ ︸
vector

(4.164)

3. REML - EM

Consider the following model

y = Xβ +Zu+ e (4.165)

with u ∼ ℵ
(
0,Aσ2

u

)
and e ∼ ℵ

(
0, Iσ2

e

)
. Want to maximize

L
(
θ;K ′y

)
where E

(
K ′y

)
= 0 and θ′ =

[
σ2

u σ2
e

]
(4.166)

Let
w = K ′y = K ′X︸ ︷︷ ︸

0

β +K ′Zu+K ′e = K ′Zu+K ′e (4.167)

be the incomplete data, and let u and e form the complete data. Then the
complete data likelihood is

L(θ;u, e) ≈
exp

{
u′A−1u

2σ2
u

}
∣∣Aσ2

u

∣∣1/2
×

exp
{
e′e
2σ2

e

}
∣∣Iσ2

e

∣∣ (4.168)
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Note that ∣∣Aσ2
u

∣∣ = ∣∣A∣∣ (σ2
u

)q∣∣Iσ2
e

∣∣ = ∣∣I∣∣ (σ2
e

)n (4.169)

and then the loglikelihood becomes

U(θ;u, e) ≈ −q
2

log
(
σ2

u

)
− u

′A−1u

2σ2
u

− n

2
log
(
σ2

e

)
− e′e

2σ2
e

(4.170)

In the E-step of the EM algorithm we obtain

E(U) = Q
(
θ[i],θ[i−1]

)
=
q

2
log
(
σ2

u

)
− 1

2σ2
u

[
trA−1Var (u | w) + û′A−1û

]
− n

2
log
(
σ2

e

)
− 1

2σ2
e

[
trVar (e | w) + ê′ê

] (4.171)

where û = E(u | w) = BLUP(u) and Var (u | w) = Var (û− u) = C22. Note
that[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + A−1

σ2
u

]−1

=
[
C11 C12

C21 C22

]
with R = Iσ2

e (4.172)

Also, ê = E(e | w) = y −Xβ̂ −Zû and Var (e | w) = Var (ê− e) Now

ê− e = y −Xβ̂ −Zû− y +Xβ +Zu

= −X
(
β̂ − β

)
−Z (û− u)

= −
[
X Z

] [β̂ − β
û− u

] (4.173)

and as a result can write

Var (ê− e) =
[
X Z

]
Var

[
β̂ − β
û− u

] [
X ′

Z ′

]
=
[
X Z

] [C11 C12

C21 C22

]
︸ ︷︷ ︸

C−1

[
X ′

Z ′

]
(4.174)

Using these results can write

Q
(
θ[i],θ[i−1]

)
=
q

2
log
(
σ2

u

)
− 1

2σ2
u

[
trA−1C22 + û′A−1û

]
− n

2
log
(
σ2

e

)
− 1

2σ2
e

[
tr
[
X ′X X ′Z
Z ′X Z′Z

]
C−1 + ê′ê

] (4.175)
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Now in the M-step we take the first derivatives

∂Q

∂σ2
u

= − q

2σ2
u

+
1

2 (σ2
u)2

[
trA−1C22 + û′A−1û

]
∂Q

∂σ2
e

= − n

2σ2
e

+
1

2 (σ2
e)2

[
tr
[
X ′X X ′Z
Z ′X Z′Z

]
C−1 + ê′ê

] (4.176)

and then in order to maximize set them to zero and solve for σ2
u and σ2

e(
σ2

u

)[i]
=

trA−1C22 + û′A−1û

q

(
σ2

e

)[i]
=

tr
[
X ′X X ′Z
Z ′X Z′Z

]
C−1 + ê′ê

n

(4.177)

4.2.4 REML in terms of mixed model equations

In the previous section the desired parameters are estimated with respect to
V −1. It might be convenient to express them in terms of the mixed model
equations. For u ∼ ℵ

(
0,G = Aσ2

u

)
and K ′y | u ∼ ℵ

(
0,K ′RK

)
can write

f
(
u,K ′y

)
= f

(
K ′y | u

)
f (u)

≈
exp

{
− 1

2 (y −Zu)′K
(
K ′RK

)−1
K ′ (y −Zu)

}
∣∣K ′RK

∣∣1/2

×
exp

{
− 1

2u
′G−1u

}∣∣G∣∣1/2

(4.178)

We use the following notation

M = K
(
K ′RK

)−1
K ′ = R−1 −R−1X

(
X ′RX

)−1
X ′R−1

As a result we can write

f
(
u,K ′y

)
≈

exp
{
− 1

2

[
y′My − 2y′MZu+ u′Z ′MZu+ u′G−1u

]}∣∣K ′RK
∣∣1/2 ∣∣G∣∣1/2

(4.179)
By completing squares can write

f
(
u,K ′y

)
≈

exp
{
− 1

2

[
y′My + (u− û)′

[
Z ′MZ +G−1

]
(u− û)− û′

[
Z ′MZ +G−1

]
û
]}∣∣K ′RK

∣∣1/2 ∣∣G∣∣1/2

(4.180)

where
û =

[
Z ′MZ +G−1

]−1
Z ′My
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Now we can compute the marginal distribution

f
(
K ′y

)
=
∫
f
(
u,K ′y

)
du

≈
∣∣Z ′MZ +G−1

∣∣1/2 ∣∣K ′RK
∣∣1/2 ∣∣G∣∣1/2

× exp
{

1
2
[
y′My − û′

[
Z ′MZ +G−1

]
û
]} (4.181)

Now consider the following result

Proposition 4.2.3 For K
′(n−r)×n and Xn×p can show that∣∣K ′RK

∣∣∣∣K ′K
∣∣ =

∣∣R∣∣ ∣∣X ′R−1X
∣∣∣∣X ′X

∣∣ (4.182)

Proof: Consider the following equality[
K ′

X ′

]
R
[
K X

]
=
[
K ′RK K ′RX
X ′RK X ′RX

]
(4.183)

Now can write in terms of the determinants of both sides∣∣R∣∣ ∣∣∣∣K ′K K ′X
X ′K X ′X

∣∣∣∣ = ∣∣K ′RK
∣∣ ∣∣∣X ′RX −X ′RK

(
K ′RK

)−1
K ′RX

∣∣∣
(4.184)

But K ′X = 0 and so,∣∣R∣∣ ∣∣∣∣K ′K 0
0 X ′X

∣∣∣∣ = ∣∣K ′RK
∣∣ ∣∣∣X ′R

(
R−1 −K

(
K ′RK

)−1
K ′
)
RX

∣∣∣
(4.185)

Now can write∣∣R∣∣ ∣∣K ′K
∣∣ ∣∣X ′X

∣∣ = ∣∣K ′RK
∣∣ ∣∣X ′R

(
R−1 −M

)
RX

∣∣
=
∣∣K ′RK

∣∣ ∣∣∣X ′R
(
R−1 −R−1 +R−1X

(
X ′RX

)−1
X ′R−1

)
RX

∣∣∣
=
∣∣K ′RK

∣∣ ∣∣∣∣∣X ′RR−1︸ ︷︷ ︸
I

X
(
X ′RX

)−1
X ′R−1R︸ ︷︷ ︸

I

X
∣∣∣∣∣

=
∣∣K ′RK

∣∣ ∣∣∣X ′X
(
X ′RX

)−1
X ′X

∣∣∣
=
∣∣K ′RK

∣∣ ∣∣X ′X
∣∣2∣∣X ′RX
∣∣

(4.186)

Finally can conclude that∣∣K ′RK
∣∣∣∣K ′K
∣∣ =

∣∣R∣∣ ∣∣X ′R−1X
∣∣∣∣X ′X

∣∣ (4.187)
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Note that
∣∣K ′K

∣∣ and
∣∣X ′X

∣∣ are constants and as a result we can write∣∣K ′RK
∣∣ ≈ ∣∣R∣∣ ∣∣X ′R−1X

∣∣ (4.188)

Now multiplying both sides by
∣∣Z ′MZ +G−1

∣∣ can write∣∣K ′RK
∣∣ ∣∣Z ′MZ +G−1

∣∣ ≈ ∣∣R∣∣ ∣∣X ′R−1X
∣∣ ∣∣Z ′MZ +G−1

∣∣ (4.189)

But the determinant of C, the mixed model equation matrix, can be written as

∣∣C∣∣ = ∣∣X ′R−1X
∣∣ ∣∣Z ′MZ +G−1

∣∣ (4.190)

As a result can conclude that∣∣K ′RK
∣∣ ∣∣Z ′MZ +G−1

∣∣ ≈ ∣∣R∣∣ ∣∣C∣∣ (4.191)

Using the result of 4.191 in 4.181 can write

f
(
K ′y

)
≈
∣∣R∣∣1/2 ∣∣C∣∣1/2 ∣∣G∣∣1/2

× exp
{

1
2
[
y′My − û′

[
Z ′MZ +G−1

]
û
]} (4.192)

It can be also shown by elimination of rows in the following matrix y
′R−1y y′R−1X y′R−1Z

X ′R−1y X ′R−1X X ′R−1Z

Z ′R−1y Z ′R−1X Z ′R−1Z + A−1

σ2
u


that

y′My − û′
[
Z ′MZ +G−1

]
û = y′R−1y − θ̂W ′R−1y (4.193)

where

W =
[
X Z

]
and θ̂ =

[
β̂
û

]
=
[
X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1

]−1

W ′y

(4.194)
As a result can conclude that

f
(
K ′y

)
≈
∣∣R∣∣1/2 ∣∣C∣∣1/2 ∣∣G∣∣1/2

× exp
{

1
2

[
y′R−1y − θ̂W ′R−1y

]} (4.195)

and from here obtain the loglikelihood and proceed with REML.



82

4.2.5 Minimum variance unbiased estimators - MINVAR

Consider
s(θ) =

∂U

∂θ
= −1

2
{trPV i}︸ ︷︷ ︸
s1

+
1
2
{y′PV iPy}︸ ︷︷ ︸

s2

(4.196)

where P = V −1 − V −1X
(
X ′V −1X

)−
X ′V −1 and V i = ∂V

∂θ
. Note also that

E(y) = 0. Now consider

E(s2) = {E (try′PV iPy)}

= {E (trPV iPyy
′)} note E (yy′) = V ∗ − E(y′)E(y)

= {trPV iPV
∗} where V ∗ is the true Var-Cov matrix of y

=

trPV iP

∑
j

V jθ
∗
j



=

∑
j

trPV iPV jθ
∗
j


= {trPV iPV j}θ∗

= Fθ∗

(4.197)

where F is the same matrix as the one used in Functional Iteration. Now can
get an unbiased estimate of θ∗ as

θ̂∗ = F−1s2(θ)

= −F−1s1(θ) + F−1 [s1(θ) + s2(θ)]

= −F−1s1(θ) + F−1s(θ)

(4.198)

Note that by Cramer-Rao lower bound if θ = θ∗ then θ̂∗ is the minimum
variance unbiased estimator of θ∗.
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Chapter 6

Appendix

6.1 Some useful results in vector algebra

Definition 6.1.1 Vn will be used to denote the set of all n× 1 vectors.

Definition 6.1.2 Let {α1,α2, . . . ,αs} be a set of vectors in Vn. The vector
space V spanned by {α1,α2, . . . ,αs} is the set of all vectors that are linear
combinations of α1,α2, . . . ,αs and 0.

Note that V ⊆ Vn.

Proposition 6.1.1 If x and y are in V so is ax+ by for any scalars a and b.

Proof: Let A = [α1,α2, . . . ,αs]. Then, from definition (6.1.2), x and y can be
written as x = Ac1 and y = Ac2 for some vectors c1 and c2. Then,

ax+ by = A(ac1 + bc2) = Ac3 ∈ V (6.1)

Definition 6.1.3 Vectors {α1,α2, . . . ,αr} in Vn are linearly dependent if there
exists a set of scalars {a1, a2, . . . , ar} not all zero such that a1α1 +a2α2 + . . .+
arαr = 0. Otherwise {α1,α2, . . . ,αr} are said to be linearly independent.

Definition 6.1.4 A basis for a vector space V is a set of linearly independent
vectors that span V .

Lemma 6.1.1 Every vector space V has a basis.

Definition 6.1.5 The dimension of a vector space V is equal to the number of
columns in any basis of V .

Notation: The notation Vr ⊂ Vn is used to denote that Vr is a r dimensional
vector space in Vn.
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Lemma 6.1.2 Any set of r linearly independent vectors in Vr ⊂ Vn, is a basis
for Vr.

Definition 6.1.6 The length of a vector X is defined as ||X ||= (X′X)1/2.

Note that ||X + Y ||2= (X′X +X′Y + Y ′X + Y ′Y ).

Definition 6.1.7 Two vectors X and Y are said to be orthogonal, (X ⊥ Y ),
if and only if X′Y = 0.

Note that if X′Y = 0 then ||X + Y ||2=||X ||2 + || Y ||2

Lemma 6.1.3 Orthogonal vectors are linearly independent.

Proof: Let A be a orthonormal basis. Need to show that if Ax = 0 then x = 0.
Let

Ax = 0 (6.2)

by multipling both sides with the transpose of A we have

A′Ax = A′0 (6.3)

now because the vectors included in A are orthogonal A′A = I and as a result

Ix = 0 ⇒ x = 0 (6.4)

Definition 6.1.8 Any set of r orthogonal nonzero vectors in Vr ⊂ Vn is a basis
for Vr ⊂ Vn.

Definition 6.1.9 A basis {α1,α2, . . . ,αr} for Vr ⊆ Vn is called orthonormal
if the r vectors αi are pairwise orthogonal and have unit norm.

Lemma 6.1.4 Given an arbitrary basis {α1,α2, . . . ,αr} for Vr ⊆ Vn, there
exists an orthogonal basis {γ1,γ2, . . . ,γr} for Vr ⊆ Vn, where each γi is a
linear combination of {α1,α2, . . . ,αr}.

Such an orthogonal basis can be constructed using the Gram-Schmidt process.
Let

β1 = α1

β2 = α2 − c21β1

(6.5)

where we want to chose c21 such that

β1β2 = 0

β′
1(α2 − c21β1) = 0

β′
1α2 = c21β

′
1β1 ⇒ c21 =

β′
1α2

β′
1β1

(6.6)

Then
γi =

βi√
β′

iβi

(6.7)

Note that β2 cannot be 0. Otherwise α1 and α2 are not linearly independent.
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Theorem 6.1.1 For Vr ⊂ Vn, any vector in Vn can be uniquely written as

y = ŷ + ê (6.8)

where ŷ ∈ Vr and ê ⊥ Vr.

Proof: Let U be a matrix with r orthogonal column vectors in Vr ⊂ Vn. Let
also ŷ = Uc ∈ Vr where c = U ′y. We can write

ê = y − ŷ (6.9)

and by introducing these values in (6.9) and then multiplying both sides of the
resulting equation with U ′ we obtain

U ′ê = U ′[y −Uc]
= U ′y −U ′Uc

= U ′y − c
= 0

(6.10)

U ′ê = 0 ⇒ ê ⊥ Vr ⇒ ê is in the orthocomplement of Vr. We will show now
that this representation is unique. Suppose

y = ŷ∗ + ê∗ (6.11)

where ŷ∗ ∈ Vr and ê∗ ⊥ Vr. Using (6.11) in (6.8) results in

(ŷ − ŷ∗) + (ê− ê∗) = 0 (6.12)

where (ŷ − ŷ∗) ∈ Vr and (ê− ê∗) ⊥ Vr. But (6.12) implies that

(ŷ − ŷ∗) = −(ê− ê∗) ⊥ Vr (6.13)

As a result (ŷ − ŷ∗) ⊥ Vr but because (ŷ − ŷ∗) also ∈ Vr , (ŷ − ŷ∗) = 0 and
consequently ŷ is unique. We conclude that there is a unique decomposition of
y.

Theorem 6.1.2 Given Vr and y ∈ Vn, || y − ỹ ||2 is minimum for ỹ ∈ Vr at
ỹ = ŷ the projection of y on Vr.

Proof: Note that we can write

y − ỹ = (y − ŷ) + (ŷ − ỹ) (6.14)

as a result

|| y − ỹ ||2 = (y − ŷ)′(y − ŷ) + (y − ŷ)′(ŷ − ỹ)
+ (ŷ − ỹ)′(y − ŷ) + (ŷ − ỹ)′(ŷ − ỹ)

(6.15)
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Note the fact that

ŷ − ỹ ∈ Vr

y − ŷ ⊥ Vr

(6.16)

and as a result (y− ŷ)′(ŷ− ỹ) = 0 and (ŷ− ỹ)′(y− ŷ) = 0. In order to minimize
(6.15) with respect to ỹ we need to set ỹ = ŷ, because the choice of ỹ has no
effect on the first term of the relation and as a result it depends only on the last
term.

6.2 Some useful results for solving systems of
equations

Definition 6.2.1 The column ( row ) rank of a matrix is equal to the number
of linearly independent columns (rows ).

Proposition 6.2.1 Let A be a n × p matrix with rank r. Then the system of
linear equations

Ax = 0 (6.17)

has

1. the unique solution x = 0 if r = p

2. if r < p, the solutions are spanned by any set of t = (p − r) linearly
independent solutions.

Proof: Let {x1, x2, . . . , xt} be a set of linearly independent solutions of (6.17).
Then each xi is orthogonal to the rows of A. So, any linear combination of
{x1, x2, . . . , xt} will also be orthogonal to the rows of A. Note that t cannot be
larger than t = (p− r) otherwise the matrix

A
x′

1
...
x′

t


will have row rank > p wich is impossible.

Proposition 6.2.2 Let A be a n× p matrix with rank r and b an n× 1 vector.
Then the system of linear equations

Ax = b (6.18)

may not have a solution if n > r.
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Proof: For n > r, we can write

A =
[
A1

L′A1

]
(6.19)

As a result (6.18) will have a solution only if

b =
[
b1
L′b1

]
(6.20)

Example: 
3b1 + 0b2 + 3b3 = 6
0b1 + 2b2 + 2b3 = 10
6b1 + 2b2 + 8b3 = 22

(6.21)

Here the third equation can be written as twice the first equation added to the
second equation. Otherwise the system is not consistent.

Proposition 6.2.3 For Ax = b to be consistent A and [A b] must have the
same rank.

Note that if we augment A with a linearly independent row w, and b with
element k the matrix [

A
w

]
has rank r + 1 and the matrix [

A b
w k

]
also has rank r+ 1 regardless of the value of k. So, if Ax = b has a solution, so
does [

A
w

]
x =

[
b
k

]
(6.22)

for a linearly independent vector w and an arbitrary scalar k.

Proposition 6.2.4 The set of all solutions of the consistent system Ax = b
can be written as x = u+x0 where u is the set of all solutions to Au = 0 and
x0 is a particular solution to Ax = b.

Proof: Let xi be an arbitrary solution to Ax = b and x0 a particular solution.
Then, A(xi − x0) = 0 and (xi − x0) is a solution to Au = 0. Letting u =
(xi − x0) gives xi = u + x0. So any solution to Ax = b can be written this
way. Note that any xi = u+ x0 is a solution to Ax = b

Axi = A(u+ x0) = Au+Ax0 = 0 + b = b
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Definition 6.2.2 For any b that can be written as Ax = b a generalized inverse
A− is such that

A−b = x0

where x0 is a solution to Ax = b.

Note the fact that Ax0 = b ⇒ AA−b = b. Because every column of A is
spanned by A,⇒ AA−A = A. This is a necessary but not sufficient condition
for a generalized inverse. In order for AA−A = A to be sufficient we need to
show that it implies A−b = x0. In order to show this fact multiply both sides
of AA−A = A by x. Then we can write

AA−Ax = Ax

and because Ax = b we obtain

AA−b = b ∀ β ∈ Vr ⇒ A−b = x0 is a solution to Ax = b

and as a result we can conclude that AA−A = A is a necessary and sufficient
condition to define a generalized inverse. A complete solution to Ax = b is
given by

A−b+ (A−A− I)c where A−b = x0 and (A−A− I)c = u

where u is a solution to Au = 0. Note that

Au = A(A−A− I)c = (AA−A−A)c = (A−A)c = 0

Lemma 6.2.1 If a (n× r) matrix X has rank r, then (X′X) has also rank r.

Proof: Suppose there is a c′ such that c′X′X = u′X = 0 where u = Xc and
consequently u ∈ Vr. But u′X = 0 implies that u ⊥ Vr and as a result u = 0.
But because X is a full column rank matrix and u = Xc = 0 we conclude that
c = 0 and this implies that X′X is also full column rank.

Lemma 6.2.2 If a (n × p) matrix X has rank r < p, then (X′X) has also
rank r.

Proof: Because X is not a full rank matrix we can write

X =
[
X1 X1L

]
respectively X′ =

[
X′

1

L′X′
1

]
where rank(X1)= r and X1L is a linear combination of X1. Then

X′X =
[
X′

1X1 X′
1X1L

L′X′
1X1 X′

1X1L
′L

]
and due to the fact that X′

1X1L, L′X′
1X1 and X′

1X1L
′L are linear com-

binations of X′
1X1 we can conclude that the rank of X′X is equal to r.
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6.2.1 Iterative Methods for solving equations

Consider the following system of linear equations that are consistent

Ab = r

the following iterative methods can be used to solve this system.

Iterative Method 1 (Gauss-Seidel)

b
[n+1]
i =

ri −
∑i−1

j=1 aijb
[n+1]
j −

∑n
j=i+1 aijb

[n]
j

aii
(6.23)

By using the following equation the convergence of the process is improved.

b
[n+1]∗
i = b

[n+1]
i + α(b[n+1]

i − b
[n]
i ) (6.24)

Iterative Method 2 (Jacobi)

b[n+1] = D−1(r −Ab[n]) + b[n] (6.25)

where D is a diagonal matrix with the diagonal elements of A. Again the
convergence of the process can be improved by using the following relation.

b[n+1] = b[n] + α(b[n] − b[n−1]) +D−1(r −Ab[n]) (6.26)

6.3 Derivatives of matrix expressions

6.3.1 Derivative of y’b

Suppose the vector y is not a function of b. Note that y′b =
∑n

j yjbj . As a
result 

∂y′b
∂b1

= y1

∂y′b
∂b2

= y2
...

∂y′b
∂bn

= yn

In matrix notation, we have
∂y′b

∂b
= y′ (6.27)
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6.3.2 Derivative of Xb

Suppose X is not a function of b. Note that Xb =
∑

j xjbj , where xj is the
j-th column of X. As a result



∂Xb
∂b1

= x1

∂Xb
∂b2

= x2

...
∂Xb
∂bn

= xn

In matrix notation, we have

∂Xb

∂b
= X (6.28)

6.3.3 Derivative of b’Ab

Now consider the derivative of b′Ab =
∑n

i

∑n
j aijbibj where A is not a function

of b.



∂X′AX
∂x1

= a112x1 +
∑n

i 6=1 ai1xi +
∑n

j 6=1 a1jxj = c′1X + r1X

∂X′AX
∂x2

= a222x2 +
∑n

i 6=2 ai2xi +
∑n

j 6=2 a2jxj = c′2X + r2X

...
∂X′AX
∂xn

= ann2xn +
∑n

i 6=n ainxi +
∑n

j 6=n anjxj = c′nX + rnX

where cn is the n-th column of A and rn is the n-th row of A. As a result if we
use matrix notation we can write

∂X′AX

∂X
= (A′ +A)X (6.29)

Note that for

A′ = A ⇒ ∂X′AX

∂X
= 2AX (6.30)
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6.3.4 Product rule for matrices

Consider the case when matrices A and B are functions of x. Consider now

∂

∂x
AB =

∂

∂x

{∑
k

aikbkj

}

=

{∑
k

∂

∂x
(aikbkj)

}

=

{∑
k

[(
∂aik

∂x

)
bkj + aik

(
∂bkj

∂x

)]}

=
{(

∂a′i
∂x

)
bj + a′i

(
∂bj

∂x

)}
=
(
∂A

∂x

)
B +A

(
∂B

∂x

)

(6.31)

Note that when B is not a function of x then

∂

∂x
AB =

{
∂

∂x
a′ibj

}
=
(
∂a′i
∂x

)
bj

=
(
∂A

∂x

)
B

(6.32)

6.3.5 Derivative of a inverse

Consider a non-singular matrix A then AA−1 = I. Want ∂A−1

∂x and this can
be obtained using the following result

∂

∂x

(
AA−1

)
=

∂

∂x
(I) = 0 (6.33)

Now using the product rule described above can obtain

∂

∂x

(
AA−1

)
=
(
∂A

∂x

)
A−1 +A

(
∂A−1

∂x

)
= 0

A

(
∂A−1

∂x

)
= −

(
∂A

∂x

)
A−1

∂A−1

∂x
= −A−1

(
∂A

∂x

)
A−1
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6.3.6 Other usefull results regarding derivatives of matri-
ces

Consider the case when we are interested in ∂
∂x

(
A′BA

)
where B is not a

function of x. Then

∂

∂x

(
A′BA

)
=

∂

∂x
{a′iBaj}

=
∂

∂x
{trBaja

′
i}

=
{

trB
∂

∂x
(aja

′
i)
}

=
{

trB
[
(
∂aj

∂x
)a′i + aj(

∂a′i
∂x

)
]}

= trB
(
∂A

∂x
A+A

∂A

∂x

)
=
∂A

∂x
BA+AB

∂A

∂x

(6.34)

Look now at ∂
∂x

(
A−1BA−1

)
where B is not a function of x. Then using the

previous result can write

∂

∂x

(
A−1BA−1

)
=
(
∂A−1

∂x

)
BA−1 +A−1B

(
∂A−1

∂x

)
= −

(
A−1

(
∂A

∂x

)
A−1BA−1 +A−1BA−1

(
∂A

∂x

)
A−1

)
(6.35)

And finally consider the case when we are interested in ∂
∂x

(
y′A−1BA−1y

)
where y and B not functions of x. Then

∂

∂x

(
y′A−1BA−1y

)
=

∂

∂x
tr
[
A−1BA−1y′y

]
= −tr

[(
A−1

(
∂A

∂x

)
A−1BA−1 +A−1BA−1

(
∂A

∂x

)
A−1

)
yy′
]

= −y′
(
A−1

(
∂A

∂x

)
A−1BA−1 +A−1BA−1

(
∂A

∂x

)
A−1

)
y

(6.36)

6.3.7 Derivatives involving determinants

Recall that the determinant of a matrix A is given by∣∣A∣∣ =∑
j

aijAij (6.37)
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where Aij is the cofactor of aij . Recall also that the inverse of a matrix A can
be computed as

A−1 =
1∣∣A∣∣

A11 A21 . . .
A12 A22 . . .
...

...
...

A1n A2n . . .

 (6.38)

Now,

∂
∣∣A∣∣
∂aij

= Aij

∂
∣∣A∣∣
∂A

=


A11 A12 . . .
A21 A22 . . .
...

...
...

An1 An2 . . .

 =
(
A−1

)′ ∣∣A∣∣ (6.39)

and by using the chain rule can write

∂
∣∣A∣∣
∂x

=
∑
ij

∂
∣∣A∣∣
∂aij

∂aij

∂x

= tr
∂
∣∣A∣∣
∂A

∂A′

∂x

= tr
[(
A−1

)′ ∣∣A∣∣ ∂A′

∂x

]
= tr

[(
A−1

)′ ∂A′

∂x

∣∣A∣∣]
(6.40)

6.3.8 Derivatives of log. determinants

∂ log
∣∣A∣∣

∂x
=

1∣∣A∣∣ ∂
∣∣A∣∣
∂x

=
1∣∣A∣∣ tr

[(
A−1

)′ ∂A′

∂x

] ∣∣A∣∣
= tr

[(
A−1

)′ ∂A′

∂x

] (6.41)

6.4 Expectations and variances of vectors and
matrices

Proposition 6.4.1 Under normality can show that

Var (u | y) = Var (u− û) (6.42)

where û = E (u | y)
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Proof: We know that

E (u | y) = E(u) + Cov(u,y′)Var−1(y) (y − E(y)) (6.43)

and
Var (u | y) = Var (u)− Cov(u,y′)Var−1(y)Cov(y,u) (6.44)

Thus

Var (u− û) = E [Var (u− û) | y] + Var [E (u− û) | y]
= E [Var (u | y)] + 0

= Var (u | y)
(6.45)

Proposition 6.4.2
E (y′Qy) = trQV + µ′Qµ (6.46)

Proof:

E (y′Qy) = E [tr (y′Qy)]
= E [tr (Qyy′)]
= tr [E (Qyy′)]
= tr(Q)E (yy′)
= tr(Q) (V + µµ′)
= trQV + µ′Qµ

(6.47)

6.5 Some usefull results with respect to the χ2

distribution

Proposition 6.5.1 The χ2 distribution can be written as the squared length of
a N(0, 1) vector.

In order to show this fact consider a vector un×1 ∼N(0,Σ). We need to show
that u′Σ−1u ∼ χ2

n. We can write

Σ = Σ1/2Σ1/2 and Σ−1 = Σ−1/2Σ−1/2 where Σ−1/2 = (Σ1/2)−1

where Σ−1/2 is a symmetric matrix(?). Now consider z = Σ−1/2u. Then we
can write

E(z) = Σ−1/2E(u) = 0

Var(z) = Σ−1/2Var(u)Σ−1/2 = Σ−1/2ΣΣ−1/2 = Σ−1/2Σ1/2Σ1/2Σ−1/2 = I

So

z ∼N(0, I) ⇒ z′z ∼ χ2
n

z′z = u′Σ−1/2Σ−1/2u = u′Σ−1u ∼ χ2
n

Note also that if u ∼N(η,Σ) then u′Σ−1u ∼ χ2
n;δ where δ = η′Σ−1η.
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Proposition 6.5.2 If

yn×1 =

 yp×1
1

y
(n−p)×1
2

 ∼ ℵ
(
0,
[
V 11 V 12

V 21 V 22

])
(6.48)

then,

y′V −1y ∼ χ2
n

y′1V
−1
11 y1 ∼ χ2

p

(6.49)

and,
(y′V −1y − y′1V

−1
11 y1) ∼ χ2

(n−p) (6.50)

Proof: Let P n×n be a non-singular matrix. Can write z = Py then, Var(z) =
PV P ′. Consequently,

z′(Var(z))−1z = z′(PV P ′)−1z

= z′(P ′)−1V −1 P−1z︸ ︷︷ ︸
P−1Py=y

= y′V −1y

(6.51)

So z′(Var(z))−1z = y′V −1y. Now choose P such that[
z1

z2

]
=
[

y1

y2 − V 21V
−1
11 y1

]
(6.52)

To do that let

P =
[

I 0
−V 21V

−1
11 I

]
(6.53)

and consider

Py =
[

I 0
−V 21V

−1
11 I

] [
y1

y2

]
=
[

y1

y2 − V 21V
−1
11 y1

]
=
[
z1

z2

]
(6.54)

Note that z1 and z2 are independent. To see that consider

Cov(z1,z2) = Cov(y1,y2 − V 21V
−1
11 y1)

= V 21 − V 21V
−1
11 V 11

= V 21 − V 21

= 0

(6.55)

Note also that

Var(z) =
[
V 11 0
0 Var(z2)

]
(6.56)
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Because z1 and z2 are independent can write

z′(Var(z))−1z = y′1V
−1
11 y1 + z′2(Var(z2))−1z2

= y′V −1y
(6.57)

So now

y′V −1y − y′1V
−1
11 y1 = z′2(Var(z2))−1z2

∼ χ2
(n−p)

(6.58)
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