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1 Background

1.1 Mendel’s Laws

• The law of segregation. A trait is determined by pairs of factors,
but gametes contain only one of these chosen at random.

• The law of independent assortment. Factors from parents com-
bine independently in o↵spring.

2 Basic Concepts in Probability and Statistics

2.1 Random Variable

Definition 1 When the value of a variable, Y , is determined by
some random process, Y is called a random variable.

Example 1 Suppose the height, Y , of a plant is 100 units when
the genotype at a locus A is AA or Aa, and is 50 units when the
genotype is aa. Then, the height of a randomly sampled plant is a
random variable.

2.2 Sample Space

Definition 2 The set of possible values for a random variable is
called the sample space of the random variable.

Example 2 The random variable in example (1), has a sample s-
pace of (50,100).

2.3 Probability (by example)

Example 3 Consider determining the genotype, T , for each of N

randomly sampled plants.
NAA = plants with genotype AA

NAa = plants with genotype Aa

Naa = plants with genotype aa

As N becomes very large,

Pr(T = AA) =
NAA

N
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Pr(T = Aa) =
NAa

N

Pr(T = aa) =
Naa

N

Example 4 Suppose two coins are flipped N times. After each flip
the number of heads, Y , is determined

N0 = number of times Y = 0
N1 = number of times Y = 1
N2 = number of times Y = 2

As N becomes very large,

Pr(Y = 0) =
N0

N

Pr(Y = 1) =
N1

N

Pr(Y = 2) =
N2

N

2.4 Expected Value

Definition 3 Let the sample space for random variable Y be denot-
ed by y1, y2, . . . , yk and let

Pr(yi) = Pr(Y = yi)

Then, the expected value of Y is defined as

E(Y ) =
kX

i=1

yi Pr(yi)

The expected value is a measure of the location of the distribution.
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Example 5 Suppose the 305 day milk yield, Y , in cows is related
to the genotype at locus A as follows:

Genotype Probability Milk Yield
(arbitrary units)

aa 0.2 100
Aa 0.5 150
AA 0.3 200

Then, the expected value of Y is

E(Y ) = 100⇥ Pr(Y = 100) + 150⇥ Pr(Y = 150) + 200⇥ Pr(Y = 200)

= 100(0.2) + 150(0.5) + 200(0.3)

= 155

2.5 Variance

Definition 4 The variance of a random variable Y is defined as

Var(Y ) = E{[Y � E(Y )]2}

The above can also be written as

Var(Y ) = E(Y 2)� [E(Y )]2

The variance is a measure of the spread of the distribution.

Example 6 Consider computing the variance for milk yield given
in example (5). Using the definition of expected value,

E(Y 2) = (100)2(0.2) + (150)2(0.5) + (200)2(0.3)

= 25250

From example (5), E(Y ) = 155, so

Var(Y ) = 25250� (155)2

= 1225
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2.6 Joint Probability

Definition 5 The probability of two or more random variables.

Example 7

Joint Probabilities for Genotype and Milk Yield
Milk Yield
(arb. units)

Genotype 100 200 300
aa 0.175 0.05 0.025
Aa 0.1 0.3 0.1
AA 0.025 0.05 0.175

2.7 Conditional Probability

Definition 6

Pr(X = x|Y = y) =
Pr(X = x, Y = y)

Pr(Y = y)

Example 8

Conditional Probabilities for Milk Yield given Genotype
Milk Yield
(arb. units)

Genotype 100 200 300
aa 0.7 0.2 0.1
Aa 0.2 0.6 0.2
AA 0.1 0.2 0.7

2.8 Conditional Expectation

Definition 7

E(X|Y = y) =
X

i

xi Pr(X = xi|Y = y)
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Example 9 The expected value of milk yield (X) given genotype
Y = Aa is:

E(X|Y = Aa) = 100⇥ Pr(X = 100|Y = Aa) + 200⇥ Pr(X = 200|Y = Aa)

+ 300⇥ Pr(X = 300|Y = Aa)

= 100(0.2) + 200(0.6) + 300(0.2)

= 200

2.9 Double Expectation Theorem

E
Y
[E(X|Y )] = E(X)

2.10 Proof of Double Expectation Theorem

From page 9, the conditional mean of X given Y = yj is

E(X|Y = yj) =
X

i

xi Pr(X = xi|Y = yj).

Note that E(X|Y = yj) can be computed for every yj in the sample
space of Y . So, from the definition of expected value (page 7), the
expected value of E(X|Y ) is

E
Y
[E(X|Y )] =

X

j

E(X|Y = yj) Pr(Y = yj)

=
X

j

[
X

i

xi Pr(X = xi|Y = yj)] Pr(Y = yj)

=
X

j

X

i

xi Pr(X = xi, Y = yj)

=
X

i

xi

X

j

Pr(X = xi, Y = yj)

=
X

i

xi Pr(X = xi)

= E(X)

Example 10
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Genotype (Y ) E(X|Y ) Pr(Y )
aa 140 0.25
Aa 200 0.5
AA 260 0.25

E
Y
[E(X|Y )] = E(X|Y = aa)⇥ Pr(Y = aa) + E(X|Y = Aa)⇥ Pr(Y = Aa)

+ E(X|Y = AA)⇥ Pr(Y = AA)

140(0.25) + 200(0.5) + 260(0.25)

= 200

2.11 Useful Identity for Variance

Often, it is useful to write the variance as

Var(X) = E
Y
[Var(X|Y )] + Var

Y
[E(X|Y )] (1)

To prove the above identity, write the first term of (1) as

E
Y
[Var(X|Y )] = E

Y
{E(X2|Y )� [E(X|Y )]2}

= E
Y
{E(X2|Y )}� E

Y
{[E(X|Y )]2}

= E(X2)� E
Y
{[E(X|Y )]2}

(2)

and second term of (1) as

Var
Y

[E(X|Y )] = E
Y
{[E(X|Y )]2}� {E

Y
[E(X|Y )]}2

= E
Y
{[E(X|Y )]2}� [E(X)]2

(3)

The sum of (2) and (3) gives E(X2)� [E(X)]2, which is the variance
of X.

2.12 Statistical Independence

If random variables X and Y are independent,

Pr(X = x|Y = y) =
Pr(X = x, Y = y)

Pr(Y = y)

= Pr(X = x)
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Then it follows that

Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y)

2.13 Covariance

Definition 8

Cov(X, Y ) = E{[X � E(X)][Y � E(Y )]}
= E(XY )� E(X)E(Y )

where

E(XY ) =
X

i

X

j

xiyj Pr(X = xi, Y = yj)

2.13.1 Covariance Example

Example 11

Genotype Genotypic Phenotypic Probability
(T ) Value (G) Value (P )
aa 140 100 0.175
aa 140 200 0.05
aa 140 300 0.025
Aa 200 100 0.1
Aa 200 200 0.3
Aa 200 300 0.1
AA 260 100 0.025
AA 260 200 0.05
AA 260 300 0.175

2.13.2 Computing Cov(G, P )

E(GP ) = 140⇥ 100⇥ 0.175 + 140⇥ 200⇥ 0.05 + · · ·
+ 260⇥ 300⇥ 0.175

= 41800

E(G) = 140⇥ 0.175 + 140⇥ 0.05 + · · ·
+ 260⇥ 0.175

= 200
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E(P ) = 100⇥ 0.175 + 200⇥ 0.05 + · · ·
+ 300⇥ 0.175

= 200

Cov(GP ) = E(GP )� E(G)E(P )

= 41800� 200⇥ 200

= 1800

2.14 Covariance— Special Cases

Cov(X, X) = E(XX)� E(X)E(X)

= E(X2)� E(X)E(X)

= Var(X)

If X and Y are independent,

E(X, Y ) =
X

i

X

j

xiyj Pr(X = xi, Y = yj)

=
X

i

X

j

xiyj Pr(X = xi) Pr(Y = yj)

= [
X

i

xi Pr(X = xi)][
X

j

yj Pr(Y = yj)]

= E(X)E(Y )

Cov(X, Y ) = E(XY )� E(X)E(Y )

= E(X)E(Y )� E(X)E(Y )

= 0

2.15 Properties of Random Variables

For constants a and c and random variables X, Y , and Z:

E(a) = a

E(aX) = aE(X)

E(X + Y ) = E(X) + E(Y )
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E(a + cX) = E(a) + cE(X)

Var(a) = 0

Var(aX) = a
2Var(X)

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Var(X � Y ) = Var(X) + Var(Y )� 2Cov(X,Y )

Var(a + X) = Var(a) + Var(X) + 2Cov(a,X)

= Var(X)

Var(X + Y + Z) = Var(X) + Var(Y ) + Var(Z)

+ 2Cov(X, Y ) + 2Cov(X,Z) + 2Cov(Y, Z)

2.16 Regression

Definition 9 The regression of Y on X is:

Ŷ = E(Y |X)

This is also called the best predictor of Y given X.

Regression model for Y :

Y = Ŷ + e

where

e = Y � Ŷ

is called the residual

2.16.1 Regression— Property 1

From the double expectation theorem,

E(Ŷ ) = E
X
[E(Y |X)]

= E(Y )

The genotypic value (G) is the conditional expectation of the phe-
notypic value (P ), given the genotype (T ). So,

E(G) = E
T
[E(P |T )]

= E(P )
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2.16.2 Regression— Property 2

The residual (e) has null expectation:

E(e) = E(Y � Ŷ )

= E(Y )� E(Ŷ )

= E(Y )� E(Y )

= 0

2.16.3 Regression— Property 3

Can show that Ŷ and e have null covariance. Because E(e) = 0,

Cov(Ŷ , e) = E(Ŷ e)

= E
X
[E(Ŷ e|X)]

= E
X
[Ŷ E(e|X)]

= E
X
{Ŷ [E(Y |X)� E(Ŷ |X)]}

= E
X
{Ŷ [Ŷ � Ŷ ]}

= E
X
[Ŷ (0)]

= 0

2.17 Regression Example

Example 12

P = G + E

where G = E(P |T )

15



T G E = (P �G) Pr(T ) Pr(P |T ) Pr(T, P )
aa 140 (100 - 140) 0.25 0.7 0.175
aa 140 (200 - 140) 0.25 0.2 0.05
aa 140 (300 - 140) 0.25 0.1 0.025
Aa 200 (100 - 200) 0.5 0.2 0.1
Aa 200 (200 - 200) 0.5 0.6 0.3
Aa 200 (300 - 200) 0.5 0.2 0.1
AA 260 (100 - 260) 0.25 0.1 0.025
AA 260 (200 - 260) 0.25 0.2 0.05
AA 260 (300 - 260) 0.25 0.7 0.175

E(GE) = 140(100� 140)(0.25)(0.7)

+ 140(200� 140)(0.25)(0.2)

+ 140(300� 140)(0.25)(0.1)
...

= (0.25)140{[100(0.7) + 200(0.2) + 300(0.1)]

� [140(0.7 + 0.2 + 0.1)]}
...

= (0.25)140(140� 140)

+ (0.50)200(200� 200)

+ (0.25)160(160� 160)

= 0

2.18 Correlation

Definition 10

Cor(X,Y ) =
Cov(X,Y )p

Var(X)Var(Y )

�1  Cor(X,Y )  1
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3 Single-Locus Inheritance

Most traits of economic importance are determined by a large num-
ber of loci. Before we study the inheritance of such traits, we will
examine the inheritance at a single locus.The genetic constitution of
a population for a single locus is completely described by the geno-
typic frequencies at that locus. However, genotypes are not directly
transmitted from parents to o↵spring; rather, it is the genes that are
transmitted. Therefore, it is useful to look at the the relationship
between genotype frequencies and gene frequencies.

3.1 Genotype and Gene Frequencies

Consider a locus with two alleles A1 and A2. Let Nij be the frequen-
cy of individuals with genotype AiAj. Then, the relative frequencies
of the genotypes are

P11 =
N11

N
,

P12 =
N12

N
,

and

P22 =
N22

N
,

where N = N11 + N12 + N22 is the total number of individuals. The
relative frequencies of A1 and A2 are

p1 =
2N11 + N12

2N

= P11 +
1

2
P12

(4)

and

p2 =
2N22 + N12

2N

= P22 +
1

2
P12

(5)

Suppose that all individuals are equally likely to produce gametes
(no selection) and that there is no mutation or migration. Then,

17



if a su�ciently large number of o↵spring are produced, the gene
frequency in the o↵spring would be the same as the gene frequency
in the parents. Further, if parents are sampled independently (this
is often called random mating), then the genotypic frequencies are
given by the Hardy-Weinberg Law.

3.2 Hardy-Weinberg Law

If:

1. mating is at random in large population

2. no selection, mutation, or migration

Then:

1. frequencies of genes and genotypes stay constant from genera-
tion to generation

2. simple relationship between gene frequencies in parents and
genotype frequencies in o↵spring: if frequencies for two alleles
A1 and A2 in parents are p1 and p2, then the frequencies for
genotypes A1A1, A1A2 and A2A2 in the progeny are p

2
1, 2p1p2,

and p
2
2.

Thus, regardless of the genotypic frequencies in the parents, if a
large number of progeny are produced, and there is no selection,
mutation, or migration, the frequencies for genotypes A1A1, A1A2

and A2A2 in the progeny are p
2
1, 2p1p2, and p

2
2. As we will see

below, genotype and gamete frequencies for two loci do not reach
equilibrium frequencies in one generation.

3.3 Two-Locus Gamete Frequencies

Consider locus A with alleles A1, A2, A3, . . . and locus B with alleles
B1, B2, B3, . . . . Let p

A
i be the frequency of allele Ai and p

B
j the

frequency of Bj. In generation t, the probability that an individual
x produces a gamete gx = AxBx with alleles Ax = Ai and Bx = Bj

is denoted by p
t
ij. The gamete that x received from its mother is

denoted AmBm and that it received from its father is denoted AfBf .
We will now derive an expression for the gamete frequency in gener-
ation t in terms of the gamete frequency in generation t�1, the gene
frequencies, and the recombination rate r between the two loci. The

18



gamete gx can get alleles Ai and Bj in one of four mutually exclusive
ways:

1. gx is the maternal gamete AmBm of x and Am = Ai, Bm = Bj,

2. gx is the paternal gamete AfBf of x and Af = Ai, Bf = Bj,

3. gx is the recombinant AmBf and Am = Ai, Bf = Bj, or

4. gx is the recombinant AfBm and Af = Ai, Bm = Bj

The probability for the first of these four events can be written as

Pr(gx = AmBm, Am = Ai, Bm = Bj) = Pr(gx = AmBm) Pr(Am = Ai, Bm = Bj)

because we assume that Pr(gx = AmBm) does not depend on the
maternal haplotype. For example,

Pr(gx = AmBm) = 1/2(1� r)

for maternal haplotype (Am = A1, Bm = B1) or (Am = A1, Bm =
B2) or any other maternal haplotype. Substituting Pr(gx = AmBm) =
1/2(1� r) and Pr(Am = Ai, Bm = Bj) = p

t�1
ij in the above gives

Pr(gx = AmBm, Am = Ai, Bm = Bj) = 1/2(1� r)pt�1
ij .

Similarly,

Pr(gx = AfBf , Af = Ai, Bf = Bj) = 1/2(1� r)pt�1
ij ,

Pr(gx = AmBf , Am = Ai, Bf = Bj) = 1/2rpA
i p

B
j ,

and

Pr(gx = AfBm, Af = Ai, Bm = Bj) = 1/2rpA
i p

B
j .

Finally, the sum of these four probabilities gives

p
t
ij = Pr(gx = AiBj) = (1� r)pt�1

ij + rp
A
i p

B
j
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3.4 Gametic Disequilibrium

�t = p
t
ij � p

A
i p

B
j

= (1� r)pt�1
ij + rp

A
i p

B
j � p

A
i p

B
j

= (1� r)pt�1
ij � (pA

i p
B
j � rp

A
i p

B
j )

= (1� r)pt�1
ij � (1� r)pA

i p
B
j

= (1� r)(pt�1
ij � p

A
i p

B
j )

= (1� r)�t�1

= (1� r)2�t�2

...

= (1� r)t�0

Example 13 Suppose r = 0.5, then

�10 = (1� r)10�0

=
1

1024
�0

Example 14 Suppose r = 0.1, then

�10 = (1� r)10�0

=
910

1010
�0

= 0.349�0

3.5 Change in Gene Frequency Due to Migration

Consider a large population with a proportion m of immigrants. Let
frequency of A2 be q0 in the natives and qm in the immigrants. Then
the frequency q1 of A2 in the mixed population is

q1 = mqm + (1�m)q0

= m(qm � q0) + q0

20



3.6 Change in Gene Frequency Due to Mutation

Consider a locus where A1 is the normal allele and A2 is the mutant.
Suppose A1 mutates to A2 with probability u and A2 mutates to A1

with probability v. In generation 0, the frequency of A1 is denoted
p0 and the frequency of A2 is denoted q0. Then, in the absence of
migration, selection and drift, the frequency of A2 in generation 1 is

q1 = (1� v)q0 + up0,

and the change in frequency of A2 is

�q = up0 � vq0

At equilibrium, the probability of A1 mutating to A2 will be equal
to the probability of A2 mutating to A1. Thus, for the equilibrium
frequency p of A1 and q of A2,

pu = qv.

Substituting (1� q) for p gives

(1� q)u = qv,

and solving for q gives

q =
u

u + v

Mutation rate v from the mutant to the normal has been observed
to be much lower than the rate u from the normal to the mutant.
Suppose that

v =
u

10
.

Then, the equilibrium frequency of A2 is

q =
u

u + v

=
u

u + u
10

=
10

11
.

However, mutant alleles are very rare. As we will see later, this is
due to selection.
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3.7 Change in Gene Frequency Due to Selection

We will consider a locus with two alleles A1 and A2, and assume
there is no migration, mutation or drift. In generation 0, the allele
frequencies at conception are

p = Pr(A1)

and

q = Pr(A2)

Suppose N zygotes are produced by random mating. The genotypic
numbers at conception are

N11 = Np
2
,

N12 = N2pq,

and

N22 = Nq
2

Now we will allow these zygotes to have di↵erent levels of fertility.

Definition 11 Fitness Wij of genotype AiAj is the average num-
ber of gametes transmitted to the next generation by zygotes with
genotype AiAj.

So, the average number of gametes transmitted to the next genera-
tion is

Np
2
W11

for zygotes of genotype A1A1,

N2pqW12

for zygotes of genotype A1A2, and

Nq
2
W22

for zygotes for genotype A2A2.
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The frequency of allele A1 among these gametes, which are trans-
mitted to generation 1, is

p1 =
2Np

2
W11 + N2pqW12

2Np2W11 + 2N2pqW12 + 2Nq2W22

=
p

2
W11 + pqW12

p2W11 + 2pqW12 + q2W22

=
p

2
W11 + pqW12

W̄ ⇤

=
p

2 + pq
W12
W11

W̄
,

(6)

where

W̄
⇤ = p

2
W11 + 2pqW12 + q

2
W22

is the average fitness, W12
W11

is the fitness of genotype A1A2 relative to

the fitness of A1A1, and W̄ = W̄ ⇤

W11
is the average fitness relative to

the fitness of A1A1. Similarly, the frequency of allele A2 is

q1 =
q
2 W22

W11
+ pq

W12
W11

W̄
, (7)

where W22
W11

is the relative fitness of genotype A2A2.
The relative fitness for A1A2 can be expressed as

W12

W11
= 1� hs,

and for A2A2 as

W22

W11
= 1� s,

where hs is the coe�cient of selection for A1A2 and s is the co-
e�cient of selection for A2A2. Now, equation (6) can be written

23



as

p1 =
p

2 + pq(1� hs)

W̄

=
p

2 + pq � pqhs

W̄

=
p(p + q � qhs)

W̄

=
p(1� qhs)

W̄
.

(8)

Similarly, the frequency of allele A2 in generation 1 zygotes is

q1 =
q � sq

2 � hspq

W̄
(9)

The change in frequency for allele A1 is

�p = p1 � p

=
p(1� qhs)

W̄
� p

=
p[(1� qhs)� W̄ ]

W̄
.

(10)

Note that W̄ can be written as

W̄ = p
2 + 2pq(1� hs) + q

2(1� s)

= 1� 2hspq � sq
2
.

(11)

Substituting (11) in the numerator of (10) and rearranging gives

�p =
pqs

W̄
[q + h(p� q)]. (12)

Because p + q = 1, the change in frequency for allele A2 is

�q = ��p

= �pqs

W̄
[q + h(p� q)].

(13)

For the overdominant case, the relative fitness of each homozygote
is written as

W11

W12
= 1� s1
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and
W22

W12
= 1� s2.

Then, the frequency of A1 is

p1 =
p� s1p

2

1� s1p
2 � s2q

2
, (14)

and the frequency of A2 is

q1 =
q � s2q

2

1� s1p
2 � s2q

2
. (15)

The change in frequency for the A2 allele is

�q = q1 � q

=
pq(s1p� s2q)

1� s1p
2 � s2q

2

(16)

The above formulae can be used to examine the e↵ectiveness of
selection for di↵erent modes of inheritance. For example, if allele
A2 is a dominant lethal, the frequency of A2 in the next generation
can be computed from (9) by putting s = 1 and h = 1, which gives

q1 =
q � q

2 � pq

W̄

=
q � q(q + p)

W̄

=
q � q

W̄

= 0.

(17)

This is because none of the A2 alleles is transmitted to the next
generation. However, if A2 is a recessive lethal, putting s = 1 and
h = 0 in (9) gives

q1 =
q � q

2

W̄

=
q(1� q)

1� q2

=
q

1 + q

� 0.

(18)
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This is because all the A2 alleles in the heterozygotes are transmitted
to the next generation. Plotting response to selection as a function
of gene frequency shows that

1. response to selection is greatest when gene frequencies are in-
termediate, and

2. response to selection for a rare recessive lethal allele is very low.

The number of generations required to change the frequency of a rare
recessive lethal by a specified amount can be computed as follows.
Using (18), the frequency in generation 2 can be written as

q2 =
q1

1 + q1

=
q

1+q

1 + q
1+q

=
q

1+q
1+q+q
1+q

=
q

1 + 2q
,

(19)

and the frequency in generation 3 can be written as

q3 =
q2

1 + q2

=
q1

1 + 2q1

=
q

1+q

1 + 2q
1+q

=
q

1+q
1+q+2q

1+q

=
q

1 + 3q
.

(20)

Continuing this process, the frequency at generation t is

qt =
q

1 + tq
(21)
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Now, solving for t from (21) gives

1 + tq =
q

qt

t =
1

qt
� 1

q

(22)

Example 2.2 from Falconer and Mackay Suppose Albinism is due
to a single recessive locus. The present frequency of Albinism is

Pr(A2A2) =
1

20, 000

Assuming Hardy-Weinberg equilibrium, the frequency q of A2 is

q =

r
1

20, 000

=
1

141

To reduce the frequency of Albinism to 1
40,000 , the frequency of A2

must be reduced to qt

qt =

r
1

40, 000

=
1

200

Suppose this is to be achieved by preventing Albino’s to reproduce.
Then, from (22), the number of generations required to achieve this
is

t =
1

qt
� 1

q

= 200� 141

= 59

At 25 years per generation this would take 1475 years.

3.8 Equilibrium Between Mutation and Selection

Suppose A2 is the mutant allele. Then, selection against A2 will tend
to reduce its frequency. But, mutation from A1 to A2 (at rate u) will
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keep it from being completely lost. Since mutations are rare, we can
expect the frequency of A2 to be low. So, reverse mutations from
A2 to A1 will be very rare and will be ignored in the following. The
frequency of A1 in the zygotes of the present generation is denoted
by p. Then, from (8), in the absence of mutation, the frequency of
A1 in the zygotes of the next generation is

p(1� qhs)

1� 2pqhs� sq2

However, between generations, a fraction u of the A1 alleles will
mutate to A2. So, with mutation, the frequency p1 of A1 in the
zygotes of the next generations is

p1 =
p(1� qhs)

1� 2pqhs� sq2
(1� u) (23)

At equilibrium, p1 = p. So, we get

p =
p(1� qhs)

1� 2pqhs� sq2
(1� u)

1� 2(1� q)qhs� sq
2 = (1� qhs)(1� u)

1� 2qhs + 2q2
hs� sq

2 = 1� u� qhs(1� u)

s(2h� 1)q2 � hs(1 + u)q + u = 0

(24)

Case: A1 is dominant Then, h = 0 and (24) reduces to

�sq
2 + u = 0

u = sq
2
.

(25)

Solving for q from (25) gives the equilibrium frequency for A2

q =

r
u

s
(26)

Case: no dominance Here, h = 1
2 and (24) becomes

�s(1 + u)q

2
+ u = 0

q =
2u

s(1 + u)

⇡ 2u

s

(27)
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Case: A2 dominant Then h = 1, and because (1 + u) ⇡ 1, (24)
reduces to

sq
2 � sq + u = 0

sq(q � 1) = �u

sq(1� q) = u

spq = u

pq =
u

s

(28)

Under Hardy-Weinberg frequencies, the mutant phenotype has fre-
quency

H = 2pq + q
2

If q is very small, H ⇡ 2pq. Thus, the frequency of the mutant
phenotype is approximately 2u

s .

Estimation of mutation rate— Example 2.3 from F&M Dominant
dwarfism is a dominant abnormality. So, A2 is dominant and h = 1.
The frequency of this type of dwarfism in Denmark is 10.7 ⇥ 10�5.
Their relative fitness is

(1� s) =
average number of children from dwarfs

average number of children from normal sibs

= 0.196,

and so

s = 1� 0.196

= 0.804

Now, if we use the frequency of dwarfs for H in (28), the mutation
rate can be estimated as

u =
sH

2

=
0.804⇥ 10.7⇥ 10�5

2
= 4.3⇥ 10�5
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Equilibrium frequencies Given that mutation rates are about 10�5,
only mild selection is needed to keep the frequency of the mutant
from very low. For example, suppose A2 is recessive,

u = 10�5
,

and

s = 0.1.

Then, from (26), the equilibrium frequency is

q =

r
u

s

=

r
10�5

0.1

=
1

100

3.9 Equilibrium Under Overdominance

At equilibrium, �q = 0. Thus, from (16),

s1p = s2q

s1(1� q) = s2q

q(s1 + s2) = s1

q =
s1

s1 + s2

(29)

Note that the equilibrium frequency does not depend on the degree
of overdominance. It depends on the fitness of one homozygote
relative to the other.

3.10 Change in Gene Frequency Due to Drift

When a finite number of gametes is sampled from the parental pop-
ulation, the gene frequency in the gametes will “randomly” deviate
from the frequency in the parents. This process is referred to as
genetic drift. We will now examine the consequences of drift and
the relationship between “sample size” and the magnitude of drift.
An ideal population with simplified structure is employed to model
the process of drift. In the ideal population, we assume:
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1. no mutation, migration, or selection,

2. generations do not overlap

3. population size N is constant across generations

4. mating is at random including self-fertilization

Further, in the following we will assume all loci have two alleles.

3.10.1 Mean and Variance of Gene Frequency

Consider all loci that have frequency q0 for allele 2 in generation
0. Suppose 2N gametes are randomly sampled from generation 0
to produce N individuals in generation 1. At any one of these loci,
let Y be the number of “2” alleles in generation 1. Because each
allele can be “2” with probability q0 and because the 2N gametes
are sampled independently, Y ⇠ Binomial(2N, q0) (see example 19).
The frequency q1 of allele 2 in generation 1 is

q1 =
Y

2N
.

The expected value of q1 is

E(q1) =
E(Y )

2N

=
2Nq0

2N
= q0,

and the variance of q1 is

Var(q1) =
Var(Y )

(2N)2

=
2Nq0(1� q0)

(2N)2

=
q0(1� q0)

2N
.

(30)

So, among all loci that had frequency q0 for allele 2 in generation
0, some would have a higher frequency and others would have a
lower frequency in generation 1. But, the distribution of frequencies
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across loci in generation 1 would be centered at q0. Further, from
(30), the spread of this distribution would be inversely related to
the population size N .
Now, 2N alleles are randomly sampled from generation 1 to produce
N individuals in generation 2. Among all loci that had frequency
q1 for allele 2 in generation 1 parents, the frequency q2 of allele 2 in
generation 2 is distributed as

q2 ⇠
Binomial(2N, q1)

2N
.

Among these loci that had frequency q1 for allele 2 in generation 1,
the expected value for q2 is

E(q2|q1) = q1,

and the variance for q2 is

Var(q2|q1) =
q1(1� q1)

2N
.

Now, the expected value of q2 among all loci that had frequency q0

for allele 2 in generation 0 is given by

E(q2) = E
q1

[E(q2|q1)]

= E(q1)

= q0,

and the variance of q2 among these loci is

Var(q2) = E
q1

Var(q2|q1) + Var
q1

E(q2|q1)

= E[
q1(1� q1)

2N
] + Var(q1)

=
1

2N
E(q1 � q

2
1) + Var(q1)

=
1

2N
[q0 � q

2
0 � Var(q1)] + Var(q1)

= Var(q1) + Var(q1)(1�
1

2N
)

= Var(q1)[1 + (1� 1

2N
)]
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Similarly, among all loci that had frequency q2 for allele 2 in gen-
eration 2, the frequency q3 of allele 2 in generation 3 is distributed
as

q3 ⇠
Binomial(2N, q2)

2N
.

Among these loci that had frequency q2 for allele 2 in generation 2,
the expected value for q3 is

E(q3|q2) = q2,

and the variance for q3 is

Var(q3|q2) =
q2(1� q2)

2N
.

The expected value of q3 among all loci that had frequency q0 for
allele 2 in generation 0 is given by

E(q3) = E
q2

[E(q3|q2)]

= E(q2)

= q0,

and the variance of q3 among these loci is

Var(q3) = E
q2

Var(q3|q2) + Var
q2

E(q3|q2)

= E[
q2(1� q2)

2N
] + Var(q2)

=
1

2N
E(q2 � q

2
2) + Var(q2)

=
1

2N
[q0 � q

2
0 � Var(q2)] + Var(q2)

= Var(q1) + Var(q2)(1�
1

2N
)

= Var(q1) + Var(q1)[1 + (1� 1

2N
)](1� 1

2N
)

= Var(q1)[1 + (1� 1

2N
) + (1� 1

2N
)2]

Similarly, the expected value of q4 in generation 4 among all loci
that had frequency q0 for allele 2 in generation 0 is

E(q4) = q0
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and variance of q4 is

Var(q4) = Var(q1) + Var(q3)(1�
1

2N
)

= Var(q1) + Var(q1)[1 + (1� 1

2N
) + (1� 1

2N
)2](1� 1

2N
)

= Var(q1)[1 + (1� 1

2N
) + (1� 1

2N
)2 + (1� 1

2N
)3]

In generation t, the expected value of qt is

E(qt) = q0

and variance of qt is

Var(qt) = Var(q1)[1 + (1� 1

2N
) + (1� 1

2N
)2 + · · · + (1� 1

2N
)t�1]

=
q0(1� q0)

2N
[1 + (1� 1

2N
) + (1� 1

2N
)2 + · · · + (1� 1

2N
)t�1]

Using (118) in the above equation gives

Var(qt) =
q0(1� q0)

2N
[
1� (1� 1

2N )t

1� (1� 1
2N )

]

= q0(1� q0)[1� (1� 1

2N
)t]

(31)

It can be shown that as t goes to infinity, qt is either one or zero,
i.e., qt becomes a Bernoulli random variable. But, we also know
that at any generation the expected value of qt is q0. The expected
value of a Bernoulli random variable is equal to the probability that
it is equal to one. Thus, the probability that qt = 1, which is the
probability of fixation of allele 2, is equal to q0. So, among all loci
that started out at a frequency of q0 for allele 2, after a very large
number of generations, a proportion q0 of loci will have a frequency
of 1 for allele 2 and a proportion (1 � q) will have a frequency of
0 for this allele. Note that as t goes to infinity, the variance of qt

computed from (31) is q0(1�q0), which is the variance of a Bernoulli
random variable that is equal to one with probability q0.
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3.10.2 Distribution of Gene Frequency

Let Yt be the number of “2” alleles in generation t. So,

Y1 ⇠ Binomial(2N, q0)

and

q1 =
Y1

2N
So, for example,

Pr(q1) = Pr(Y1 = 2Nq1).

Thus, the distribution of qt is easily obtained from the distribution
of Yt.
Recall that

(Y2|Y1 = y1) ⇠ Binomial(2N, q1 =
y1

2N
).

Thus, the joint distribution of Y1 and Y2 can be written as

Pr(Y1 = y1, Y2 = y2) = Pr(Y1 = y1) Pr(Y2 = y2|Y1 = y1),

and the marginal distribution of Y2 is

Pr(Y2 = y2) =
2NX

y1=0

Pr(Y1 = y1, Y2 = y2)

=
2NX

y1=0

Pr(Y1 = y1) Pr(Y2 = y2|Y1 = y1)

(32)

At generation t,

(Yt|Yt�1 = yt�1) ⇠ Binomial(2N, qt�1 =
yt�1

2N
).

So, the joint distribution of Yt and Yt�1 can be written as

Pr(Yt�1 = yt�1, Yt = yt) = Pr(Yt�1 = yt�1) Pr(Yt = yt|Yy�1 = yt�1),

and the marginal distribution of Yt is

Pr(Yt = yt) =
2NX

yt�1=0

Pr(Yt�1 = yt�1, Yt = yt)

=
2NX

yt�1=0

Pr(Yt�1 = yt�1) Pr(Yt = yt|Yt�1 = yt�1)

(33)
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3.10.3 Mean of Genotype Frequencies

We have seen that the expected value of gene frequency qt at gen-
eration t is q0. Thus, expected gene frequency is constant across
generations. As shown below, with random mating in a finite pop-
ulation, genotypic frequencies do not stay constant.
Under random mating, the frequency of the homozygous genotype
for allele “2” at a random locus is given by q

2
t . The mean (expected

value) of this frequency is

E(q2
t ) = [E(qt)]

2 + Var(qt)

= q
2
0 + Var(qt)

(34)

Similarly, the expected frequency of the homozygous genotype for
allele “1” in generation t is

E(p2
t ) = [E(pt)]

2 + Var(pt)

= p
2
0 + Var(qt)

(35)

because pt = 1 � qt, and so Var(pt) = Var(qt). The frequency of
the heterozygous genotype at a random locus is 2(1� qt)qt, and the
expected value of this frequency is

E[2(1� qt)qt] = 2q0 � 2E(q2
t )

= 2q0 � 2q2
0 � 2Var(qt)

= 2q0(1� q0)� 2Var(qt)

(36)

From (31) we see that Var(qt) increases each generation. Thus, from
(34) and (35), with each generation of random mating, the expected
frequency of homozygotes increases, and from (36), the expected
frequency of heterzygotes decreases. As t goes to infinity, Var(qt)
becomes q0(1� q0). Using this limiting value of the variance in (36)
shows that in the limit each locus becomes homozygous for either
the “1” or “2” allele. As shown below, these changes in genotype
frequencies can be expressed in terms of inbreeding.

3.10.4 Inbreeding

Definition 12 Mating individuals that are related results in inbreed-
ing.

Random mating in a finite population results in inbreeding.
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Definition 13 Two alleles at a locus are identical by descent (IBD)
if they are both copies of a single ancestral allele. Alleles that are
not IBD are said to be independent in descent.

The coe�cient of inbreeding denoted by F is the probability that
the two alleles at a locus are identical by descent. In computing
F , all founders are assumed to be unrelated and their alleles are
assumed to be independent in descent.

3.10.5 Inbreeding in Ideal Population

Consider an ideal population of size N . It is assumed that all alleles
in generation 0 are independent in descent. Each allele in genera-
tion 1 is a copy of one of the 2N alleles in generation 0. Thus, the
probability that two randomly sampled alleles in generation 1 are
both copies of the same allele from generation 0 is 1

2N . This is the
probability that two randomly sampled alleles in generation 1 are
IBD, because all alleles in generation 0 are assumed to be indepen-
dent in descent. Thus, the coe�cient of inbreeding in generation 1
is

F1 =
1

2N

In generation 2, the probability that two randomly sampled alleles
are both copies of the same allele of the previous generation is 1

2N ,
and the probability that they are copies of di↵erent alleles of gen-
eration 1 is (1 � 1

2N ). However, two random alleles of generation 1
may be IBD with probability F1. So, the coe�cient of inbreeding in
generation 2 is

F2 =
1

2N
+ (1� 1

2N
)F1

In general, there are two ways in which two alleles in generation t

can be identical by descent:

1. both are copies of the same allele of generation t� 1, or

2. they are copies of di↵erent alleles of generation t � 1 that are
IBD.

The probability for the first of these is 1
2N and the probability for the

second is (1� 1
2N )Ft�1. Thus, the inbreeding coe�cient in generation
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t is

Ft =
1

2N
+ (1� 1

2N
)Ft�1 (37)

As shown below, the coe�cient of inbreeding can also be written as

Ft = 1� (1��F )t
, (38)

where

�F =
Ft � Ft�1

1� Ft�1

=
1

2N
.

(39)

This is the change in F in generation t relative to the remaining
possible change. Rearranging (39) gives

1��F =
1� Ft

1� Ft�1
,

and so

(
1� F1

1� F0
)(

1� F2

1� F1
) · · · ( 1� Ft

1� Ft�1
) = (1��F )t

1� Ft

1� F0
= (1��F )t

Because all alleles in generation 0 are independent in descent, F0 is
null. Thus, the above euqation gives

Ft = 1� (1��F )t

= 1� (1� 1

2N
)t

(40)

Now, from (31) and (38) the variance of gene frequencies can be
written as

Var(qt) = q0(1� q0)[1� (1� 1

2N
)t]

= q0(1� q0)Ft

(41)

The expected frequency of genotypes can be expressed in terms of
F as follows. Let the maternal allele at locus A be denoted A

M and
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the paternal allele A
P . These two alleles are IBD with probability

Ft or independent in descent with probability (1 � Ft). If they are
independent in descent, the expected frequencies of A1A1, A1A2 and
A2A2 are given by the Hardy-Weinberg principle as: p

2
0, 2p0q0, and

q
2
0. If the maternal and paternal alleles are IBD, the probability of

A1A1 can be written as

Pr(AM = A1, A
P = A1|IBD) = Pr(AM = A1) Pr(AP = A1|AM = A1, IBD)

= p0

(42)

So, the unconditional probability of A1A1 is

Pr(A1A1) = p
2
0(1� Ft) + p0Ft.

Similarly, the probability of A2A2 is

Pr(A2A2) = q
2
0(1� Ft) + q0Ft

Note that if the maternal and paternal alleles are IBD they cannot be
heterozygous. Thus, the probability of the heterozugous genotype
is

Pr(A1A2) = 2p0q0(1� Ft).

3.11 Drift Under Less Simplified Conditions

Consider a breeding population P that does not conform to the
assumptions of the “ideal” population. Suppose we can compute
the rate of inbreeding �FP for population P .

Definition 14 The size Ne of an ideal population that has the same
rate of inbreeding as population P is the e↵ective population size for
P .

Thus, the changes in gene and genotype frequencies in P due to
drift will be equivalent to these changes in an ideal population of
size Ne. From (39), the e↵ective population size for a population P

is given by

Ne =
1

2�FP

. (43)
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3.11.1 No Self-fertilization

We will now compute the rate of inbreeding for a random mating
population that excludes self-fertilization. To do so, the concept of
coancestry is used.

Definition 15 The coe�cient of coancestry between individuals X

and Y is the probability that a randomly sampled allele from X is
IBD to a randomly sampled allele from Y .

Let gt denote the coe�cient of coancestry between two randomly
sampled individuals of generation t. Then, under random mating,
the inbreeding coe�cient in generation t is

Ft = gt�1. (44)

Let Qt denote the probability that two alleles sampled from di↵erent
individuals in generation t originate in the same parent in generation
t� 1. Given that the alleles are from the same parent of generation
t � 1, the probability that they are IBD is 1+Ft�1

2 . The probability
that two alleles sampled from di↵erent individuals originate in dif-
ferent parents of generation t� 1 is (1�Qt). Given that the alleles
are from di↵erent parents of generation t � 1, the probability that
they are IBD is gt�1. Thus, the unconditional probability that two
alleles sampled from di↵erent individuals are IBD is

gt = Qt
(1 + Ft�1)

2
+ (1�Qt)gt�1 (45)

Using (44) in (45), the coe�cient of inbreeding in generation t is
written as

Ft = Qt�1
(1 + Ft�2)

2
+ (1�Qt�1)Ft�1

= Ft�1 + (1� 2Ft�1 + Ft�2)
Qt�1

2
.

(46)

Now, the rate of inbreeding can be written as

�FP =
Ft � Ft�1

1� Ft�1

= [
1� Ft�1 � (Ft�1 � Ft�2)

1� Ft�1
]
Qt�1

2
,

(47)
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and using the approximation

Ft�1 � Ft�2 ⇡ �FP (1� Ft�1)

gives

�FP ⇡ [
(1� Ft�1)��FP (1� Ft�1)

(1� Ft�1)
]
Qt�1

2

⇡ (1��FP )
Qt�1

2

(48)

Rearranging (48) gives

�FP ⇡
1

2
Qt�1

+ 1 (49)

Now from (43), the e↵ective population size when selfing is excluded
becomes

Ne =
1

2�FP

⇡ 1

Qt�1
+

1

2

(50)

Under random mating,

Qt =
1

N
,

and thus the e↵ective population size when selfing is excluded be-
comes

Ne ⇡ N +
1

2

3.11.2 Unequal Numbers of Males and Females

Consider a population where Nm males are randomly mated to Nf

females. The e↵ective population size for such a population can be
computed using (50). However, because Nm 6= Nf , Qt 6= 1

Nm+Nf
.

Recall that Qt is the probability that two alleles, say x and y, sam-
pled from di↵erent individuals in generation t originate in the same
parent in generation t � 1. Note that even though Nm 6= Nf , half
the alleles in generation t originate from males in generation t� 1.
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Therefore, the probability that x and y are both from males of the
previous generation is 1

4 . Now, given that x and y are both from
males, the probability that they are from the same individual is 1

Nm
.

Thus, the unconditional probability that x and y are both from the
same male is 1

4Nm
. Similarly, the probability that x and y are from

the same female is 1
4Nf

. So, the probability that x and y are from

the same parent is

Qt =
1

4Nm
+

1

4Nf
(51)

Substituting (51) in (50) gives

Ne =
1

1
4Nm

+ 1
4Nf

+
1

2
(52)

Example 15 Suppose Nm = 5 and Nf = 95. So, the population size
is N = Nm + Nf = 100. But, from (52), the e↵ective population
size is

Ne =
1

1
4⇥5 + 1

4⇥95

+
1

2

= 18.9899 +
1

2
= 19.4899

3.11.3 Distribution of Family Size

Let ki be the number of gametes sampled from parent i. In the ideal
population, each of the N parents is equally likely to contribute
gametes to the next generation, and 2N gametes are sampled from
the parents. So, in the ideal population, ki is distributed as

ki ⇠ Binomial(2N,
1

N
).

In most breeding populations, however, each parent is not equally
likely to contribute gametes to the next generation. So, ki will
not have a Binomial distribution. We will now examine how the
distribution of ki a↵ects the e↵ective population size.
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Let Pt denote the probability of self-fertilization. Then, the inbreed-
ing coe�cient in generation t can be written as

Ft = Pt
(1 + Ft�1)

2
+ (1� Pt)Ft�1

= Ft�1 +
Pt

2
(1� Ft�1),

(53)

and the rate of inbreeding becomes

�F =
Ft � Ft�1

1� Ft�1

=
Pt

2
.

(54)

Thus from (43), the e↵ective population size is the reciprocal of the
probability that both alleles at a locus in generation t come from
the same parent in generation t� 1.

Ne =
1

2�FP

=
1

Pt
.

(55)

Note that in the ideal population, Pt = 1
N . Thus, as expected, for

the ideal population,

Ne = N.

We will now relate Pt to the distribution of ki. Recall that Pt is the
probability that both alleles at a locus in generation t come from
the same parent in generation t� 1. Given that parent i transmits
ki gametes to the next generation, the number of ways in which you
could choose two alleles from parent i is

ki(ki � 1)

2
,

and so the number of ways in which you could choose two alleles
from the same parent is

X

i

ki(ki � 1)

2
.
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The number of ways in which you could choose two alleles from 2N
gametes is

2N(2N � 1)

2
.

So, conditional on a particular realization of the ki’s, the probability
of self-fertilization is

Pr(selfing|k) =

P
i ki(ki � 1)

2N(2N � 1)

=

P
i k

2
i �

P
i ki

2N(2N � 1)
,

(56)

and the unconditional probability Pt of self-fertilization is

Pt =

P
i E(k2

i )�
P

i E(ki)

2N(2N � 1)
, (57)

Note that in a population of constant size, E(ki) = 2. Now, using
the notation

k̄ = E(ki)

and

Vk = Var(ki),

the first summation in the numerator of (57) is
X

i

E(k2
i ) = N(Vk + k̄

2),

and the second summation in the numerator is
X

i

E(ki) = 2N.

Now, Pt can be written as

Pt =
N(Vk + 4)� 2N

2N(2N � 1)

=
Vk + 2

4N � 2
.

(58)
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Finally, using (55), the e↵ective population size can be written in
terms of Vk as

Ne =
1

Pt

=
4N � 2

Vk + 2

(59)

Recall that in the ideal population

ki ⇠ Binomial(2N,
1

N
).

Thus, the variance of ki is

Vk = 2N
1

N
(1� 1

N
)

= 2(1� 1

N
),

and substituting this Vk in (59), the e↵ective population size for the
ideal population is

Ne =
4N � 2

Vk + 2

=
4N � 2

2(1� 1
N ) + 2

=
2N � 1

2� 1
N

=
N(2N � 1)

2N � 1
= N.

Suppose all parents contribute two gametes to the next generation,
i.e., ki = 2 for all i. Then, the variance of ki is

Vk = 0,

45



and the efective population size becomes

Ne =
4N � 2

Vk + 2

=
4N � 2

2
= 2N � 1

⇡ 2N

So, by making ki a constant, the e↵ective population size can be
made almost twice the actual population size.
Now consider a population of bisexual organisms where the distri-
bution of family size is not the same for males and females. Suppose
the population consists of

Nm =
N

2
males and

Nf =
N

2
females. The e↵ective population size for this population can be
computed as

Ne ⇡
1

Qt�1
+

1

2
,

which was derived in section 3.11.1. Here, Qt�1 is the probability
that two alleles, say x and y, sampled from di↵erent individuals in
generation t � 1 originated in the same parent. Regardless of the
distribution of family size, half the alleles in any generation originate
in males. Thus, the probability that both x and y originate in males
is 1

4 . The probability that both x and y originate in the same male
parent can be computed as described below. Suppose the familiy
size for male i is ki, and

N
2X

i=1

ki = N

Then, for a particular realization of the ki’s

Pr(x, y are from same male|k) =

PN
2
i=1 ki(ki � 1)

4N(N � 1)
,
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and the unconditional probability is

Pr(x, y are from same male) ⇡
N
2 (Vm + 4)�N

4N2

⇡ Vm + 2

8N
,

where Vm is the variance of ki and E(ki) = 2. Similarly, the proba-
bility that x and y are from the same male is

Pr(x, y are from same female) ⇡ Vf + 2

8N
,

where Vf is the variance of family size for females. Now, the proba-
bility that x and y are from the same parent is

Qt�1 ⇡
Vm + 2

8N
+

Vf + 2

8N
,

and the e↵ective population size is

Ne ⇡
1

Vm+2
8N + Vf+2

8N

⇡ 8N

Vm + Vf + 4

(60)

3.12 Equilibrium Between Drift and Mutation

Using the concept of e↵ective population size in (37), in the absence
of selection, mutation, or migration, the inbreeding coe�cient in
generation t can be written as

Ft =
1

2Ne
+ (1� 1

2Ne
)Ft�1. (61)

This is the probability that the two alleles at a locus are IBD. How-
ever, if one of these alleles mutates, they will no longer be IBD.
Therefore, the inbreeding coe�cient when mutation is present is

Ft = [
1

2Ne
+ (1� 1

2Ne
)Ft�1](1� u)2 (62)

At equilibrium,

FE = Ft = Ft�1,
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and

FE = [
1

2Ne
+ (1� 1

2Ne
)FE](1� u)2

.

Solving for FE in the above equation gives

FE =
(1� u)2

2Ne � (2Ne � 1)(1� u)2

=
1� 2u + u

2

4Neu + 1� 2u� 2Neu
2 + u2

⇡ 1

4Neu + 1

(63)

3.13 Equilibrium Between Drift and Migration

Using the same approach as for mutation, ignoring the possibility of
getting two migrant alleles that are IBD, the coe�cient of inbreeding
with migration is

Ft = [
1

2Ne
+ (1� 1

2Ne
)Ft�1](1�m)2

. (64)

If m is very small, the equilibrium value of the inbreeding coe�cient
is

FE ⇡
1

4Nem + 1
(65)

3.14 Selection with Drift

3.14.1 Distribution of Gene Frequency

In section 3.10.2 we derived the distribution of gene frequency in
a finite population, assuming no mutation, migration, or selection.
Now we will see how this should be modified to account for selection.
Recall that Yt was defined as the number of “2”alleles in generation
t. Then, frequency qt of the “2” allele was defined as

qt =
Yt

2N
.

Because of this relationship, qt and Yt have the same shape. Thus,
we will derive the distribution for Yt.
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At generation t, 2N alleles are sampled. Conditional on the fre-
quency qt�1 in the previous generation, in the absence of selection,
mutation, or migration, each sampled allele has a probability qt�1 of
being a “2” allele. Thus, in generation t, the conditional distribution
of the number of “2” alleles is:

(Yt|Yt�1 = yt�1) ⇠ Binomial(2N, qt�1 =
yt�1

2N
).

However, if selection is present, an allele sampled in generation t

will not have probability equal to the gene frequency in the previous
generation. Selection will change this probability. Suppose qt�1 is
the frequency in generation t � 1. Then, as in (9), with selection,
the probability of sampling a “2” allele in generation t is

q
0 =

qt�1 � sq
2
t�1 � hs(1� qt�1)qt�1

1� 2hs(1� qt�1)qt�1 � sq
2
t�1

,

and thus with selection, in generation t, the conditional distribution
of the number of “2” alleles is:

(Yt|Yt�1 = yt�1) ⇠ Binomial(2N, q
0).

The unconditional distribution of the number of “2” alleles is given
by (click here for plot)

Pr(Yt = yt) =
2NX

yt�1=0

Pr(Yt�1 = yt�1) Pr(Yt = yt|Yt�1 = yt�1). (66)

3.14.2 Approximation to Probability of Fixation

Consider selection for an additive trait in an ideal population of
size N . Denote the di↵erence between gene frequencies between
generations t and t + 1 by

�t = pt+1 � pt.

Formula (12) in section 3.7 gives the change in gene frequency due
to selection in an infinite population. In a finite population, this
formula gives the expected change in gene frequency due to selection.
Approximating W̄ by 1.0 and taking h = 1

2 , in 12, the conditional
expectation of �t given pt becomes

E(�t|pt) ⇡
1

2
spt(1� pt),
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and the unconditional expectation is

E(�t) ⇡
1

2
sE[pt(1� pt)]. (67)

The expected value on the right can be written as

E[pt(1� pt)] = E(pt)� [E(pt)]
2 � Var(pt). (68)

When Ns is small, ignoring selection, this can be approximated in
terms of the gene frequency p in generation 0 as

E[pt(1� pt)] = p� p
2 � Var(pt)

= p(1� p)� Var(pt)

= p(1� p)(1� 1

2N
)t

,

(69)

because from (31),

Var(pt) = p(1� p)[1� (1� 1

2N
)t]

Substituting (69) in (67) gives

E(�t) ⇡
1

2
sp(1� p)(1� 1

2N
)t (70)

As t goes to infinity, the frequency of the favorable allele is 0 or
1, and thus, the expected limiting gene frequency is equal to the
probability of fixation. Given frequency p for the favorable allele in
generation 0, the expected value of the limiting gene frequency is:

u(p) = p +
1X

t=0

E(�t)

⇡ p +
1

2
sp(1� p)

1X

t=0

(1� 1

2N
)t

⇡ p + Nsp(1� p),

(71)

which is also the probability of fixation. For an arbitrary population,
the probability of fixation is

u(p) ⇡ p + Nesp(1� p), (72)
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where Ne is the e↵ective population size. Thus when Nes is small,
the limiting response to selection is

�p1 = u(p)� p

⇡ Nesp(1� p),
(73)

which is 2Ne times 1
2sp(1� p), the initial response to selection.

3.15 Inbreeding with Pedigree

When the pedigree for an individual is available, the inbreeding spe-
cific to that individual can be computed. The coe�cient of coances-
try will be used to this. Suppose X and Y are the parents of Z.
Then, the inbreeding coe�cient FZ for individual Z is

FZ = rXY ,

where rXY is the coe�cient of coancestry between X and Y . We
will now develop a recursive formula to compute rXY , using pedigree
information.
Suppose X is not a direct descendant of Y , and let S and D be the
father and mother of Y . The alleles of S, D, X, and Y are labelled
as shown in the following diagram.
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S D
m n o p
\ /
\ /
\ /
\ /
Y X
i j i’ j’

Recall that rXY is the probability that a random allele from X is
IBD to a random allele from Y . The random allele from Y can be
i or j with equal probability, and the random allele from X can be
i
0 or j

0 with equal probability. So,

rXY =
1

4
[Pr(i ⌘ i

0) + Pr(i ⌘ j
0) + Pr(j ⌘ i

0) + Pr(j ⌘ j
0)] (74)

Let i be the paternal allele of Y . Then, i is either m or n with equal
probability. So,

Pr(i ⌘ i
0) =

1

2
[Pr(m ⌘ i

0) + Pr(n ⌘ i
0)]

Similarly,

Pr(i ⌘ j
0) =

1

2
[Pr(m ⌘ j

0) + Pr(n ⌘ j
0)],

Pr(j ⌘ i
0) =

1

2
[Pr(o ⌘ i

0) + Pr(p ⌘ i
0)],

and

Pr(j ⌘ j
0) =

1

2
[Pr(o ⌘ j

0) + Pr(p ⌘ j
0)]

Substituting the above in (74) gives

rXY =
1

4
{

1

2
[Pr(m ⌘ i

0) + Pr(n ⌘ i
0) + Pr(m ⌘ j

0) + Pr(n ⌘ j
0)]

+
1

2
[Pr(o ⌘ i

0) + Pr(p ⌘ i
0) + Pr(o ⌘ j

0) + Pr(p ⌘ j
0)]

}

(75)
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This can be written as

rXY =
1

2
{

1

4
[Pr(m ⌘ i

0) + Pr(n ⌘ i
0) + Pr(m ⌘ j

0) + Pr(n ⌘ j
0)]

+
1

4
[Pr(o ⌘ i

0) + Pr(p ⌘ i
0) + Pr(o ⌘ j

0) + Pr(p ⌘ j
0)]

}

=
1

2
(rXS + rXD)

(76)

Thus, the coe�cient of coancestry between X and Y is the average
coancestry between X and the parents of Y . Note that in order
to compute coancestry by (76), the condition that X cannot be a
descendant of Y must be true. Choosing Y to be the younger of the
two individuals will ensure that this condition is always true.

3.16 Tabular Method to Compute Coancestry

The following rules can be used to compute the coancestry between
each pair of individuals in a pedigree.

1. Number individuals such that parents precede o↵spring.

2. For founders, enter 1
2 on the diagonals and 0 on the o↵-diagonals.

3. For non-founder individual i,

(a) calculate row element 1 to i � 1 as the average of the
parental row elements,

(b) set diagonal element to

1

2
(1 + rSD),

where S and D are the parents of i.

4. Complete column i by symmetry
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3.17 Regular Systems of Inbreeding

3.17.1 Self-Fertilization

A
|
|
|
X

FX = rAA

=
1

2
(1 + FA)

At generation t, the inbreeding coeficient is

Ft =
1

2
(1 + Ft�1)
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3.17.2 Parent-O↵spring Mating

B
|\
| \
| \
| A
| /|
| / |
P |
\ |
\|
X

Fx = rAP

=
1

2
(rAA + rAB)

=
1

2
[
1

2
(1 + FA) + FP ]

=
1

4
(1 + FA + 2FP )

At generation t,

Ft =
1

4
(1 + 2Ft�1 + Ft�2)

3.17.3 Fullsib Mating

A B
|\ /|
| \ / |
| \ / |
| \ |
| / \ |
| / \ |
|/ \|
P Q
\ /
\ /
\ /
X
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FX = rPQ

=
1

2
(rPA + rPB)

=
1

2
[
1

2
(rAA + rAB) +

1

2
(rAB + rBB)]

=
1

4
[
1

2
(1 + FA) +

1

2
(1 + FB) + 2FP ]

At generation t,

Ft =
1

4
(1 + 2Ft�1 + Ft�2)

t F �F

1 0.250 0.250
2 0.375 0.167
3 0.500 0.200
4 0.594 0.188
...

...
...

20 0.986 0.191

4 Multi-Locus Inheritance

4.1 Genotypic Value

Genotypic value for genotype T is defined as

G = E(P |T )

where P is the phenotype. So, can write P as

P = G + E

where E = P �G.
From property 1 of regression (page 14), E(G) = E(P ),
From property 2 of regression (page 15) , E(E) = 0
From property 3 of regression (page 15), Cov(G,E) = 0.
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4.2 Resemblance between Relatives

Resemblance between x and y measured by:

Cov(Px, Py)

To measure genetic resemblance, phenotypic value is modeled as:

P = G + E

Then,

Cov(Px, Py) = Cov(Gx, Gy) + Cov(Ex, Ey)

= Cov(Gx, Gy)

if Cov(Ex, Ey) = 0

4.3 Multifactorial Model

The covariance between relatives is due to IBD the alleles they share.
Thus, to derive the covariance between relatives, it is convenient to
model the genotypic value as the sum of the e↵ects due to the alleles
and their interactions.

4.3.1 Notation and Assumptions

one locus with two alleles a1 and a2

paternal allele = Ai

maternal allele = Aj

Pr(Ai = a1) = p

Pr(Ai = a2) = 1� p = q

Hardy-Weinberg equilibrium

Genotype Genotypic Pr(T )
(T ) Value (G)

a1a1 a p
2

a1a2 d 2pq
a2a2 �a q

2

a is the genotypic value for genotypes a1a1

d is the genotypic value for genotypes a1a2

Both, a and d are relative to the midpoint between the genotypic
values for two homozygous genotypes.
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4.3.2 Genotypic Mean

µ = E(G)

= a(p2 � q
2) + 2dpq

= a(p� q)(p + q) + 2dpq

= a(p� q) + 2dpq

4.3.3 Model for Genotypic value: Step 1

G = µ + (G� µ)

µ does not contribute to the covariance between relatives
Easier to work with (G� µ) because it has null mean

4.3.4 Model for Genotypic value: Step 2

(G� µ) = E[(G� µ)|Ai] + ✏

= ↵i + ✏

where

✏ = (G� µ)� ↵i

From property 2 of regression (page 15),

E(✏) = 0

↵i is the regression of (G� µ) on Ai

It is the component of the genotypic value associated with Ai and
is called the average e↵ect of allele ai

From property 1 of regression (page 14),

E(↵i) = E(G� µ)

= 0
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4.3.5 Average E↵ect of Allele a1

↵1 = E[(G� µ)|Ai = a1]

= E(G|Ai = a1)� µ

= pa + qd� [a(p� q) + 2dpq]

= pa + qd� pa + qa� 2pqd

= qa + qd(1� 2p)

= q[a + d(1� 2p)]

= q[a + d(p + q � 2p)]

= q[a + d(q � p)]

4.3.6 Average E↵ect of Allele a2

↵2 = E[(G� µ)|Ai = a2]

= E(G|Ai = a2)� µ

= pd� qa� [a(p� q) + 2dpq]

= pd� qa� pa + qa� 2pqd

= �pa + pd(1� 2q)

= �p[a + d(2q � 1)]

= �p[a + d(2q � p� q)]

= �p[a + d(q � p)]

4.3.7 Model for Genotypic value: Step 3

✏ = E(✏|Aj) + �ij

= E[(G� µ� ↵i)|Aj] + �ij

= E[(G� µ)|Aj]� E(↵i|Aj) + �ij

Under Hardy-Weinberg equilibrium, Ai and Aj are sampled inde-
pendently. So,

✏ = E[(G� µ)|Aj]� E(↵i) + �ij

= E[(G� µ)|Aj] + �ij

= ↵j + �ij

From property 2 of regression (page 15),

E(�ij) = 0
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↵j is the regression of (G� µ) on Aj

It is the component of the genotypic value associated with Aj.
Because Ai and Aj are sampled from the same population,

E[(G� µ)|Aj = a1] = ↵1

and

E[(G� µ)|Aj = a2] = ↵2

Further,

E(↵j) = 0

It can also be shown that E(�ij|Ai) = 0.

4.3.8 Model for Genotypic value

G = µ + ↵i + ↵j + �ij

Recall that from regression theory,

Cov(↵i, ✏) = Cov(↵i, ↵j + �ij)

= Cov(↵i, ↵j) + Cov(↵i, �ij)

= 0

and

Cov(↵j, �ij) = 0

Further, from Hardy-Weinberg equilibrium,

Cov(↵i, ↵j) = 0

So,

Cov(↵i, �ij) = 0

4.4 Genotypic Variance

Var(G) = Var(↵i) + Var(↵j) + Var(�ij)

where
Var(↵i) + Var(↵j) is the additive variance: VA

Var(�ij) is the dominance variance: VD
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4.5 Covariance between Relatives

Let

Gx = µ + ↵i + ↵j + �ij

and

Gy = µ + ↵i0 + ↵j0 + �i0j0

Then,

Cov(Gx, Gy) = Cov(↵i,↵i0) + Cov(↵i, ↵j0)

+ Cov(↵j,↵i0) + Cov(↵j,↵j0)

+ Cov(�ij, �i0j0)

4.5.1 IBD Alleles

Two alleles are said to be identical by descent (IBD) if one is a copy
of the other or both are copies of a common allele.
Ai ⌘ Aj denotes that Ai and Aj are IBD
Ai ⌘/ Aj denotes that Ai and Aj are not IBD.
Resemblance between relatives results from relatives sharing alleles
that are IBD

4.5.2 Additive Covariance

Let Z denote the IBD state of alleles Ai and Ai0 .
Thus, Z has two states: Ai ⌘ Ai

0 and Ai ⌘/ Ai0

Then,

Cov(↵i, ↵i0) = E(↵i↵i0)� E(↵i)E(↵i0)

= E
Z
[E(↵i↵i0 |Z)]

= E(↵i↵i0|Ai ⌘ Ai0) Pr(Ai ⌘ Ai
0)

+ E(↵i↵i0|Ai ⌘/ Ai0) Pr(Ai ⌘/ Ai0)

= E(↵2
i ) Pr(Ai ⌘ Ai0)

+ E(↵i)E(↵i0) Pr(Ai ⌘/ Ai0)

= Var(↵i) Pr(Ai ⌘ Ai0)

Similarly,
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Cov(↵i, ↵j0) = Var(↵i) Pr(Ai ⌘ Aj0)

Cov(↵j, ↵i0) = Var(↵j) Pr(Aj ⌘ Ai0)

Cov(↵j,↵j0) = Var(↵j) Pr(Aj ⌘ Aj0)

Now,

Cov(Gx, Gy) = Var(↵i)(�ii0 + �ij0)

+ Var(↵j)(�ji0 + �jj0)

+ Cov(�ij, �i0j0)

where �ii0 , for example, denotes Pr(Ai ⌘ Ai0).
But, Var(↵i) = Var(↵j) = VA/2. So,

Cov(Gx, Gy) = axyVA + Cov(�ij, �i0j0)

where

axy =
(�ii0 + �ij0 + �ji0 + �jj0)

2

axy is called the additive relationship coe�cient

4.5.3 Computing axy

Suppose:
y is not a descendant of x

s is the father of i with alleles Am and An

d is the mother of i with alleles Ao and Ap

Then,

�ii0 =
1

2
(�mi0 + �ni0)

�ij0 =
1

2
(�mj0 + �nj0)

�ji0 =
1

2
(�oi0 + �pi0)
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�jj0 =
1

2
(�oj0 + �pj0)

and,

axy =
1

2
(�ii0 + �ij0 + �ji0 + �jj0)

=
1

2
[
1

2
(�mi0 + �ni0 + �mj0 + �nj0)

+
1

2
(�oi0 + �pi0 + �oj0 + �pj0)]

=
1

2
(asy + ady)

4.5.4 Additive Relationship Matrix

Example 16

Pedigree:

Individual Father Mother

1 0 0
2 0 0
3 1 2
4 1 2
5 0 0
6 4 5
7 4 5

Relationship Matrix:

1 0 0.5 0.5 0 0.25 0.25
0 1 0.5 0.5 0 0.25 0.25

0.5 0.5 1 0.5 0 0.25 0.25
0.5 0.5 0.5 1 0 0.5 0.5

0 0 0 0 1 0.5 0.5
0.25 0.25 0.25 0.5 0.5 1 0.5
0.25 0.25 0.25 0.5 0.5 0.5 1

4.5.5 Tabular Method

Number individuals by birth order
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For a base individual, i, set to zero row elements 1 to i-1
For a non-base individual, i, calculate row elements 1 to i-1 as the
average of the parental row elements
Set diagonal to 1
Complete column by symmetry

4.5.6 Dominance Covariance

Let

W = 1 if

8
><

>:

Ai ⌘ Ai0 , Aj ⌘ Aj0

or

Ai ⌘ Aj0 , Aj ⌘ Ai0

and otherwise

W = 2

Then,

Cov(�ij, �i0j0) = E(�ij�i0j0)� E(�ij)E�i0j0)

= E
W

[E(�ij�i0j0)|W ]

= E(�ij�i0j0)|W = 1) Pr(W = 1)

+ E(�ij�i0j0)|W = 2) Pr(W = 2)

= E(�2
ij) Pr(W = 1)

= Var(�ij) Pr(W = 1)

4.5.7 Genotypic Covariance

Finally,

Cov(Gx, Gy) = axyVA + uxyVD

where

uxy = Pr(W = 1)

In general,
VA: sum of the additive variances over all loci
VD: sum of the dominance variances over all loci
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4.5.8 Computing uxy

Let s and d be the parents of x and s
0 and d

0 be the parents of y.
In the absence of inbreeding,

uxy = (�ii0�jj0 + �ij0�ji0)

Note that i is a random allele from s and i
0 is a random allele from

s
0. So,

�ii0 = rss0

where rss0 is the coe�cient of coancestry between s and s
0.

Similarly,

�jj0 = rdd0

�ij0 = rsd0

and

�ji0 = rds0

Finally,

uxy =
1

4
(ass0add0 + asd0ads0)

because, rij = 1
2aij

4.5.9 Relationship Coe�cients

Relationship axy uxy

Identical twins 1 1
Parent-o↵spring 0.5 0
Grandparent-o↵spring 0.25 0
Full sibs 0.5 0.25
Half sibs 0.25 0
Uncle(Aunt)-nephew(niece) 0.25 0
First cousins 1

8 0
Double first cousins 1

4
1
16
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4.6 Covariance Between Traits

Assume covariance between traits is due to pleiotropy
Notation:

G
1
x is the genotypic value for trait 1 in x

G
2
x is the genotypic value for trait 2 in x

A
1
x is the sum of the additive e↵ects for trait 1 in x

A
2
x is the sum of the additive e↵ects for trait 2 in x

D
1
x is the dominance e↵ect for trait 1 in x

D
2
x is the dominance e↵ect for trait 2 in x

Cov(A1
x, A

2
x) = C

12
A

Cov(D1
x, D

2
x) = C

12
D

Then,

Cov(G1
x, G

2
x) = C

12
A + C

12
D

and

Cov(G1
x, G

2
y) = axyC

12
A + uxyC

12
D

4.7 Response to Selection

We will use linear regression to study response to selection.

4.7.1 Linear Regression

The linear regression of X on Y is:

X̂ = E(X) + �[Y � E(Y )]

where

� =
Cov(X,Y )

Var(Y )

It is easy to see that E(X̂) = E(X):

E(X̂) = E(X) + �[E(Y )� E(Y )]

= E(X)

Further, if X and Y have a bivariate normal distribution, can show
that

E(X|Y ) = X̂
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To show this, write

X = X̂ + ✏

where

✏ = X � X̂

= X � {E(X) + �[Y � E(Y )]}

Then,

E(✏) = E(X)� E(X̂)

= E(X)� E(X)

= 0

and

Cov(✏, Y ) = Cov(X � {E(X) + �[Y � E(Y )]}, Y )

= Cov(X, Y )� �Cov(Y, Y )

= Cov(X, Y )� �Var(Y )

= 0

because �Var(Y ) = Cov(X,Y ). Further, because Y and ✏ are nor-
mally distributed, the null covariance implies they are also indepen-
dent. Thus, under normality,

E(X|Y ) = E(X̂|Y ) + E(✏|Y )

= X̂ + E(✏)

= X̂

Further, under normality,

Var(X|Y ) = Var(X̂|Y ) + Var(✏|Y )

= Var(✏)

= Var(X � {E(X) + �[Y � E(Y )]})
= Var(X � �Y )

= Var(X)� 2�Cov(X,Y ) + �
2Var(Y )

= Var(X)� Cov(X,Y )2

Var(Y )

because �Var(Y ) = Cov(X,Y ).
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4.7.2 Truncation Selection

Suppose Y ⇠ N(µY , VY ) The mean and variance of Y given trunca-
tion selection are:

E(Y |Y > t) = µY + V
1/2
Y i (77)

where

i =
f(s)

p

f(s) is the standard normal density function

s =
t� µY

V
1/2
Y

p = Pr(Y > t)

and

Var(Y |Y > t) = VY [1� i(i� s)] (78)

To prove the above, we first derive the mean and variance for a
standard normal variable given truncation selection.
Let Z ⇠ N(0, 1). The density function of Z is:

f(z) =

r
1

2⇡
e
� 1

2 z2

The density function for Z given truncation selection is

f(z|z > s) = f(z)/p

From the definition of the mean,

E(Z|Z > s) =
1

p

Z 1

s

zf(z)dz

=
1

p
[�f(z)]1s

=
f(s)

p

= i
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because the first derivative of f(z) with respect to z is:

d

dz
f(z) =

r
1

2⇡
e
� 1

2 z2
(�z)

= �zf(z)

Now, to compute the variance of Z given selection, consider the
following identity:

d

dz
zf(z) = f(z) + z

d

dz
f(z)

= f(z)� z
2
f(z)

Integrating both sides from s to 1 gives

zf(z)]1s =

Z 1

s

f(z)dz �
Z 1

s

z
2
f(z)dz

Upon rearranging this gives:
Z 1

s

z
2
f(z)dz =

Z 1

s

f(z)dz � zf(z)]1s

1

p

Z 1

s

z
2
f(z)dz =

1

p

Z 1

s

f(z)dz +
f(s)

p
s

= 1 + is

So,

Var(Z|Z > s) = 1 + is� i
2

= 1� i(i� s)
(79)

As shown below, the results for Y follow from the fact that

µY + V
1/2
Y Z ⇠ N(µY , VY )

Let

Y = µY + V
1/2
Y Z,

Then, the condition

Y > t
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is equivalent to

µY + V
1/2
Y Z > t

V
1/2
Y Z > t� µY

Z >
t� µY

V
1/2
Y

Z > s

Now,

E(Y |Y > t) = E(µY + V
1/2
Y Z|Z > s)

= µY + V
1/2
Y i,

and

Var(Y |Y > t) = Var(µY + V
1/2
Y Z|Z > s)

= VY [1� i(i� s)]

4.7.3 Correlated Response to Selection

Suppose:
X and Y are bivariate normal
E(X) = µX

E(Y ) = µY

Var(X) = VX

Var(Y ) = VY

Cov(X, Y ) = CXY

Using the double expectation theorem,

E(X|Y > t) = E[E(X|Y )|Y > t]

= E[µX + �(Y � µY )|Y > t]

= µX + �[E(Y |Y > t)� µY ]

= µX + �V
1/2
Y i

because E(Y |Y > t) = µY + V
1/2
Y i (page 68).
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Using the identity for the variance given on page 11,

Var(X|Y > t) = E[Var(X|Y )|Y > t] + Var[E(X|Y )|Y > t]

= E[(VX � �CXY )|Y > t] + Var{[µX + �(Y � µY )|Y > t]}
= VX � �CXY + �

2Var(Y |Y > t)

= VX � �
2
VY + �

2Var(Y |Y > t)

= VX � �
2[VY � Var(Y |Y > t)]

= VX � �
2
VY i(i� s)

because Var(Y |Y > t) = VY [1� i(i� s)] (page 68).

4.7.4 Regression of O↵spring on Mid-parent

Let Px, Ps and Pd denote the phenotypic values of an individual and
its parents. Then,

Cov(Px,
Ps + Pd

2
) =

1

2
[Cov(Px, Ps) + Cov(Px, Pd)]

=
1

2
[
1

2
VA +

1

2
VA]

=
1

2
VA

and the variance of the mid-parent value is:

Var(
Ps + Pd

2
) =

1

2
VP

Thus, under normality, the regression of o↵spring on mid-parent is

E(Px|
Ps + Pd

2
) = µ +

VA

VP
(
Ps + Pd

2
� µ)

The slope of this regression line is:

h
2 =

VA

VP

and is called the heritability.
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4.7.5 Response To Selection: Mean and Variance

Generation 0: E(P ) = µP0

E(A) = µA0 = 0

E(D) = µD0 = 0

Var(P ) = VP0

Var(A) = VA0

Var(D) = VD0

Generation 1: Note that the phenotypic value of a parent is un-
correlated with the dominance e↵ect and environmental deviation
of an o↵spring. Thus, under normality, the phenotypic value of the
parent is independent of the dominance e↵ect and the environmen-
tal deviation of the o↵spring. So, selection of parents has an e↵ect
only on the additive e↵ect of the o↵spring. To study the e↵ect of
truncation selection on Ps and Pd, we model Ax as

Ax = 1
2As + 1

2Ad + ✏x

Computing the covariance of Ps with both sides of the model for Ax

gives

Cov(Ps, Ax) = 1
2Cov(Ps, As) + 1

2Cov(Ps, Ad) + Cov(Ps, ✏x)
1
2VA = 1

2VA + Cov(Ps, ✏x)

because we assume parents are unrelated. This implies that Cov(Ps, ✏x) =
0. Under normality, Cov(Ps, ✏x) = 0 implies that Ps is independent
of ✏x. Similarly, Pd is also independent of ✏x.
Now, the mean of Ax given selection of parents in generation 0 is

E(Ax|Sel0) = 1
2E(As|Ps > t) + 1

2E(Ad|Pd > t)

=
VA0

VP0

V
1/2
P0

i

= h
2
0V

1/2
P0

i

where

h
2
0 =

VA0

VP0
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The variance of Ax given selection of parents in generation 0 is

Var(Ax|Sel0) =
1

4
Var(As|Ps > t) +

1

4
Var(Ad|Pd > t) + Var(✏x)

= 1
2 [VA0 �

V
2
A0

V
2
P0

VP0i(i� s)] + 1
2VA0

= 1
2VA0 [1� h

2
0i(i� s)] + 1

2VA0

Generation 2: The mean of Ax given selection of parents in gener-
ations 0 and 1 is

E(Ax|Sel1) = h
2
0V

1/2
P0

i + h
2
1V

1/2
P1

i

and the variance of Ax given selection of parents in generations 0
and 1 is

Var(Ax|Sel1) = 1
2VA1 [1� h

2
1i(i� s)] + 1

2VA0

Generation t: In generation t, the mean of Ax given selection of
parents for t generations is

E(Ax|Selt�1) = h
2
0V

1/2
P0

i + h
2
1V

1/2
P1

i + · · · + h
2
t�1V

1/2
Pt�1

i

and the variance of Ax is

Var(Ax|Selt�1) = 1
2VAt�1 [1� h

2
t�1i(i� s)] + 1

2VA0

4.7.6 Additive Variance at Equilibrium

At equilibrium, VAt�1 = VAt . So, if VAe is the equilibrium variance,

VAe = 1
2VAe [1� h

2
ei(i� s)] + 1

2VA0

where

h
2
e =

VAe

VAe + VD + VE

Solving for VAe gives

VAe =
�(VD + VE � VA0) ±

p
(VD + VE � VA0)2 + 4(1 + k)VA0(VD + VE)

2(1 + k)

where k = i(i� s).
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4.7.7 Numerical Example

Assumptions:
VA = VD + VE = 100
proportion selected = 0.05
Parents selected by truncation from generation 0-4.

Generation VA E(A)

0 100 0
1 78 14
2 74 26.7
3 74 38.3
4 73 49.8
5 73 61.3

Selection relaxed
6 87 61.3
7 93 61.3
8 97 61.3
9 98 61.3
10 99 61.3

4.7.8 Genetic Interpretation of Results

There are two contributions to the change in genetic variance by
selection:

1. due to change in gene frequency

2. due to covariances between between additive e↵ects within ga-
metes

It can be shown that the contribution to the change in genetic vari-
ance due to change in gene frequency goes to zero as the number of
loci goes to infinity.
Assume:

n loci with the same allelic e↵ects and frequencies
two alleles a1 and a2 with e↵ects ↵1 and ↵2 at each locus
frequency of a1 is p and frequency of a2 is (1� p)

Mean of allelic e↵ects before selection:

µ↵ = p↵1 + (1� p)↵2

= 0
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Variance of allelic e↵ects before selection:

V↵ = p(1� p)(↵1 � ↵2)
2

= p(1� p)↵2

where ↵ = ↵1 � ↵2.
Let the change in gene frequency due selection be denoted by �p.
Now, the change in µ↵ due to selection is

�µ↵ = (p + �p)↵1 + (1� p��p)↵2 � 0

= p↵1 + (1� p)↵2 + (↵1 � ↵2)�p

= ↵�p

(80)

So, �p can be written as

�p =
�µ↵

↵
(81)

Because all n loci have the same allelic e↵ects and frequencies, the
change in the mean of A can be written as

�µA = 2n�µ↵ (82)

So, �µ↵ can be written as

�µ↵ =
�µA

2n

=
ih

2
V

1/2
P

2n

(83)

Substituting (83) in (81) gives

�p =
ih

2
V

1/2
P

2n↵
(84)

Further, because all n loci have the same allelic e↵ects and frequen-
cies, the variance before selection can be written as

VA = 2nV↵

= 2np(1� p)↵2

So,

↵ =

s
VA

2np(1� p)
(85)
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Substituting (85) in (84) gives

�p = ih

r
p(1� p)

2n

So, as n!1 �p ! 0.
Finally, the e↵ect of change in gene frequency on the variance is

�VI = 2n(p + �p)(1� p��p)↵
2 � 2np(1� p)↵2

= 2n↵
2[�p(1� p)� p�p ��2

p]

= 2n↵
2�p(1� 2p��p)

(86)

Substituting (85) for ↵ in (86) gives

�VI =
VA�p(1� 2p��p)

p(1� p)

But, as n!1, �p ! 0. So, as n!1, �VI ! 0.

4.8 Response to Selection in a Finite Population

As we have seen in section 4.7.5, in an infinite population, under
normality, response to selection continues indefinitely. In a finite
population, however, due to loss of alleles, response to selection is
finite. Below, we derive this selection limit for a normally distributed
trait that is additively inherited.
Suppose that two alleles are segregating at each locus. To simplify
the notation, the di↵erence between the homozygotes at each locus
is denoted by 2↵. From (80) and (82), the limiting change in the
additive genetic mean at some locus is

�µA =
X

j

2↵�p1 , (87)

where the summation is over all loci, and �p1 is the limiting re-
sponse to selection in gene frequency at locus j. Substituting (73)
in (87) gives

�µA =
X

j

2↵Nesp(1� p), (88)

where Ne is the e↵ective population size, s is the coe�cient of selec-
tion for the unfavorable homozygote at locus j, and p is the initial

76



gene frequency at locus j. From figure 11.6 in the Falconer and
Mackay, the coe�cient of selection can be approximated by

s ⇡ i2↵

V
1/2
p

. (89)

Using this in (88) gives

�µA =
X

j

2↵Ne
i2↵

V
1/2
p

p(1� p)

= 2Nei

P
j 2↵2

p(1� p)

V
1/2
p

= 2Nei
VA

V
1/2
p

,

(90)

which is 2Ne times the initial response. This formula shows that the
limiting response can be increased by increasing Ne or by increasing
i. But, Ne and i are inversely related. It is shown below that the
product Nei is maximum when the top half of the individuals are
selected as parents.
If the following, let T be the size of the population, p the proportion
of individuals selected to be parents, and Ne the number of parents,
which can be written as

Ne = Tp.

If the trait is normally distributed,

i =
z

p
,

where z is the ordinate of the standard normal curve at the stan-
dardized truncation point s. Thus, Nei can be written as

Nei = Tpi

= Tz.

In the above, T is a constant, and Nei can be maximized by maxi-
mizing z. The maximum value of z is obtained by selecting the top
half of the population to be the parents, and this maximizes the
limiting response to selection.
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5 Genetic Evaluation

5.1 Minimize Mean Squared Error of Prediction

The genotypic value G is unobservable, and observable phenotypic
values y are used to predict G. The predictor G̃ should be some
function of y, such that

E(G� G̃)2

is minimum. Let

Ĝ = E(G|y).

Now write,

E(G� G̃)2 = E(G� Ĝ + Ĝ� G̃)2

= E[(G� Ĝ)2 + (Ĝ� G̃)2

+ 2(G� Ĝ)(Ĝ� G̃)]

But,

E(G� Ĝ)(Ĝ� G̃) = E
y
[E(G� Ĝ)(Ĝ� G̃)|y]

= E
y
{(Ĝ� G̃)E[(G� Ĝ)|y]}

= E
y
[(Ĝ� G̃)(Ĝ� Ĝ)]

= 0

Then,

E(G� G̃)2 = E(G� Ĝ)2 + E(Ĝ� G̃)2

The first term does not depend on G̃

The second term is minimized by choosing

G̃ = Ĝ

So, Ĝ is the best predictor of G
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5.2 Conditional Mean Under Normality

Consider a vector y with three phenotypic values. Can show that
under normality,

Ĝ = µ + b1(y1 � µ) + b2(y2 � µ) + b3(y3 � µ)

The bi are obtained by solving:

b1V11 + b2V12 + b3V13 = C1

b1V21 + b2V22 + b3V23 = C2

b1V31 + b2V32 + b3V33 = C3

where Vij = Cov(yi, yj) and Ci = Cov(yi, G).

G = Ĝ + ✏

where ✏ = (G� Ĝ). Observe that

E(✏) = 0

Cov[✏, yi] = Ci � (b1Vi1 + b2Vi2 + b3Vi3)

= 0

Thus, under normality,

E(G|y) = E(Ĝ|y) + E(✏|y)

= Ĝ + E(✏)

= Ĝ

5.3 Maximize Correlation between G and G̃

It is shown below that

⇢(G, G̃) =
Cov(G, G̃)q

Var(G)Var(G̃)
(91)

is maximized by choosing G̃ = bG. Let E(G̃) = ✓. Then,

Cov(G, G̃) = E
h
G(G̃� ✓)

i

= E
nh

(G� bG) + bG
i
(G̃� ✓)

o (92)
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But,

Ey
n

E
h
(G� bG)(G̃� ✓) | y

io
= Ey

n
(G̃� ✓)E

h
(G� bG) | y

io

= Ey
h
(G̃� ✓)( bG� bG)

i
= 0

(93)

So

Cov(G, G̃) = E
h
bG(G̃� ✓)

i
= Cov( bG, G̃) (94)

Also, Cov(G, bG) = Cov( bG, bG) = Var( bG). Now,

⇢
2(G, G̃) =

Cov2(G, G̃)

Var(G)Var(G̃)

=
Cov2( bG, G̃)

Var(G)Var(G̃)

=
Cov2( bG, G̃)

Var( bG)Var(G̃)

Var( bG)

Var(G)

= ⇢
2( bG, G̃)

Var( bG)

Var(G)

(95)

This is maximum when G̃ = bG and ⇢
2( bG, G̃) = 1. Note that

Var( bG)

Var(G)
= ⇢

2(G, bG)

5.4 Maximize Mean of Selected Candidates

Consider now the problem of maximizing the expected value of se-
lected G

0
is. Suppose there are n candidates and we want to choose

k such that

E

"Pk
i=1 Gsi

k

#

where s1, . . . , sk are the indices of the selected G
0
is.

E

"Pk
i=1 Gsi

k

#
=

1

k
Ey

"
E

 
kX

i=1

Gsi | y

!#
=

1

k
Ey

"
kX

i=1

bGsi

#
(96)
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It is clear that selecting s1, . . . , sk to be the indices of highest rank-
ing bGi would maximize 96. This result is very general. It does not
depend on the joint distribution of G and y. Here, the proportion
selected is a constant.

5.5 Accuracy of Prediction

Accuracy of prediction is given by:

Cor(G, Ĝ) =
Cov(G, Ĝ)q

Var(G)Var(Ĝ)
,

where

Cov(G, Ĝ) = Cov(Ĝ + ✏, Ĝ)

= Cov(Ĝ, Ĝ)

= Var(Ĝ).

So,

Cor(G, Ĝ) =
Var(Ĝ)q

Var(G)Var(Ĝ)

=

s
Var(Ĝ)

Var(G)
.

Under normality,

Ĝ = µ + b1(y1 � µ) + b2(y2 � µ) + b3(y3 � µ),

Var(Ĝ) = b
2
1V11 + b1b2V12 + b1b3V13

+ b2b1V21 + b
2
2V22 + b2b3V13

+ b3b1V31 + b3b2V32 + b
2
3V33

= b1C1 + b2C2 + b3C3

5.6 Example

Example 17
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Consider an additive trait with VA = 1 and VP = 4
Want to predict Gx given Px, Ps, and Pd

The index equations are:

b14.0 + b20.5 + b30.5 = 1.0
b10.5 + b24.0 + b30.0 = 0.5
b10.5 + b20.0 + b34.0 = 0.5

The solution is: b1 = 0.2258, b2 = b3 = 0.0968
Var(Ĝ) = 0.3226 and Cor(G, Ĝ) = 0.5680

Example 18

Suppose in addition to Px, Ps, and Pd, the mean (P̄o) of n o↵spring
records are available.
The covariance of P̄o with the other phenotypic records does not
depend on n. For example:

Cov(Px, P̄o) = Cov(Px,
Po1 + Po2 + · · · + Pon

n
)

=
0.5VA + 0.5VA + · · · + 0.5VA

n

= 0.5VA

The variance of P̄o, however, depends on n.
Suppose the n o↵spring are half-sibs. Then:

Var(P̄o) = Var(
Po1 + Po2 + · · · + Pon

n
)

=
1

n2
(n4.0 + n(n� 1)0.25)

=
4.0 + (n� 1)0.25

n

The index equations are:

b14.0 + b20.5 + b30.5 + b40.5 = 1.0
b10.5 + b24.0 + b30.0 + b40.25 = 0.5
b10.5 + b20.0 + b34.0 + b40.25 = 0.5
b10.5 + b20.25 + b30.25 + b4Var(P̄o) = 0.5
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Q1A2 with probability r/2, Q2A1 with probability r/2, or Q2A2 with
probability 1

2(1� r), from the F1 parent. The BC1 individuals can
be divided into two groups: those with marker genotype A1

A1
and

those with genotype A1
A2

. A BC1 individual with genotype A1
A1

will

have QTL genotype Q1

Q1
with probability (1 � r) or genotype Q1

Q2

with probability r. Similarly, a BC1 individual with genotype A1
A2

will have QTL genotype Q1

Q1
with probability r or genotype Q1

Q2
with

probability (1� r). Thus, the expected value of the trait for a BC1

individual with genotype A1
A1

is

µA1A1 = (1� r)µ11 + rµ12

where µ11 is the expected trait value for an individual with QTL
genotype Q1

Q1
and µ12 is the expected trait value for an individu-

al with QTL genotype Q1

Q2
. The expected value of the trait for a

BC1individual with genotype A1
A2

is

µA1A2 = rµ11 + (1� r)µ12

The di↵erence between these expected values is

µA1A1 � µA1A2 = (µ11 � µ12)(1� 2r) = �(1� 2r) (97)

If the QTL is not linked to the marker, r = 1
2 and µA1A1�µA1A2 = 0.

So, a t-test can be used to test the hypothesis: H0 µA1A1�µA1A2 = 0
vs. Ha µA1A1 � µA1A2 6= 0. This test will be approximate because
the trait has a mixture distribution. Further, there is more than one
value of � and r that will result in the the same value for µA1A1 �
µA1A2 . Thus, with this analysis, � and r are confounded.
To calculate the power of this test, we assume that given QTL
genotype Q1

Q1
, y ⇠ N(µ11,�

2), and given QTL genotype Q1

Q2
, y ⇠

N(µ12, �
2). Let y1j be the trait value of individual j with mark-

er genotype A1
A1

and y2j the trait value of individual j with marker

genotype A1
A2

. Then, variance of y1j can be written as

Var(y1j) = E[Var(y1j | QTL genotype)]

+ Var[E(y1j | QTL genotype)]
(98)

The first term of (98) is

E[Var(y1j | QTL genotype] = �
2(1� r) + �

2
r = �

2
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and the second term of (98) is

Var[E(y1j | QTL genotype] = (µ11 � µ12)
2(1� r)r = �

2(1� r)r

So, variance of y1j is

Var(y1j) = �
2 + �

2(1� r)r (99)

Similarly, it can be shown that variance of y2j is identical to (99).
Now, the distribution of the di↵erence between the class means can
be approximated as

ȳ1. � ȳ2. ⇠ N(�(1� 2r), 2[�2 + �
2(1� r)r]/n)

where n is the number of individuals in each marker class. If n

is large, the t distribution approaches a normal distribution. So,
power will be computed for a normal test. For a normal test the
test statistic is

Z =
(ȳ1. � ȳ2.)p

2[�2 + �2(1� r)r]/n

Now, the power of the test is

Pr(Z > Z↵/2)

where Z↵ is the point for which Pr(Z > Z↵) = ↵. Under Ha the
expected value of Z is

E(Z) =
�(1� 2r)p

2[�2 + �2(1� r)r]/n
(100)

Subtracting E(Z) from Z and Z↵/2 gives

Power = Pr[Z � E(Z) > Z↵/2 � E(Z)]

Note that Z � E(Z) has a standard normal distribution. Thus, for
the power to be 1 � �, Z↵/2 � E(Z) = Z1�� = �Z�. Substituting
(100) in this expression for E(Z) and solving for n gives the required
sample size for the power to be 1� �:

n = (Z↵/2 + Z�)2 2[�2 + �
2(1� r)r]

�2(1� 2r)2
(101)

85



Example: Consider an additive trait with additive variance �
2
a in

the F2 generation. Let p be the proportion of the additive variance
in the F2 due to the QTL. Thus,

p = 1
2�

2
/�

2
a

and

�
2
a = 1

2�
2
/p

Let h
2 be the heritability in the F2 generation defined as

h
2 =

�
2
a

�2
a + �2

e

where �
2
e = �

2
a(1 � h

2)/h2 is the environmental variance. The ad-
ditive variance in the backcross is half that in the F2. So, the total
variance in the backcross generation, given the genotype at the QTL
is

�
2 = �

2
e + 1

2(�
2
a � 1

2�
2)

= 1
2�

2 (1� h
2)

ph
2 +

1

4
�
2(

1

p
� 1)

= �
2[12

(1� h
2)

ph
2 +

1

4
(
1

p
� 1)]

(102)

Substituting (102) for �
2 in (101) gives

n = 2
(Z↵/2 + Z�)2

(1� 2r)2
{1

2

(1� h
2)

ph
2 +

1

4
(
1

p
� 1) + r(1� r)}

For a trait with h
2 = 0.25, the sample sizes required for power of

test to be 0.9 are given in table (1).

8.1.2 Regression

As we have seen from (97) the di↵erence between marker genotype
classes cannot be used to estimate the recombination rate or the
QTL e↵ects. These parameters can be estimated by a regression
method that will be outlined here. The method will be described
for use with backcross data.
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Table 1: Sample size (2n) required for power of test to be 0.90 in a backcross
experiment to detect a QTL that contributes a proportion p to additive genetic
variance. The recombination rate between the QTL and marker is r and the
significance level is ↵ = 0.05

p
r 0.04 0.08 0.16
0 1,828 909 449

0.05 2,260 1,125 557
0.1 2,863 1,426 708
0.2 5,097 2,543 1,266
0.4 45,959 22,974 11,482

Assumptions and notation: Individuals in inbred line P1 have geno-
type A1Q1B1

A1Q1B1
, and those in line P2 have genotype A2Q2B2

A2Q2B2
. Recombi-

nation fraction between marker locus A and QTL Q is rA, between
Q and marker locus B is rB, and between A and B is rAB; rAB is
assumed to be known. In the backcross generation, the expected
value of the phenotypic value (y), given QTL genotypes are

E(y | Q1Q1) = µ1

E(y | Q1Q2) = µ2

The variance is assumed to be the same in both QTL genotype
classes.

Theory: In the F1 all individuals have genotype A1Q1B1

A2Q2B2
. Individu-

als in backcross B1 produced by mating F1 with P1 will have four
marker genotypes and two QTL genotypes. Assuming the Haldane
mapping function, conditional probabilities for these QTL genotypes
given the marker genotypes are given in table (2).
Now, the expected value of the trait phenotypic values can be writ-
ten as

E(y) = X�

where y is the n⇥1 vector of phenotypic values, X is an n⇥2 matrix
of probabilities from table (2), and � has the unknown genotypic
means: µ1, and µ2. If individual i has marker genotype j, the ith
row of X will contain the probabilities from the jth row of table
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Table 2: Conditional probabilities of the QTL genotypes given marker genotypes
in backcross generation.

QTL Genotype
Marker Genotype Q1

Q1

Q1
Q2

A1B1
A1B1

(1�rA)(1�rB)
(1�rAB)

rArB
(1�rAB)

A1B1
A1B2

(1�rA)rB

rAB

rA(1�rB)
rAB

A1B1
A2B1

rA(1�rB)
rAB

(1�rA)rB

rAB
A1B1
A2B2

rArB
(1�rAB)

(1�rA)(1�rB)
(1�rAB)

(2). Given the QTL position, X can be computed and � estimated
by least squares as

�̂ = (X 0X)�1X 0y

The residual sum of squares is given by

RSS = y0y � �̂0X 0y

The position that minimizes the residual sum of squares gives the
estimated position of the QTL.

Example: Regression sums of squares were computed for 100 evenly
spaced locations of a QTL between two markers 10 cM apart (Figure
2). The trait means and sample sizes for the four marker genotype
classes were set to their expected values for µ1 = 20, µ2 = 30 and a
map distance of 3 cM from marker A to the QTL.

9 QTL Mapping in Outbred Populations

We have already seen that even loci that are linked can be in equi-
librium due to random mating. When a marker is in equilibrium
with the QTL, the conditional distribution of the QTL given the
marker is identical to its unconditional distribution. Thus, methods
used for mapping QTL with line cross data, which rely on marker
genotype classes having di↵erent means, are not suitable for map-
ping QTL in outbred populations, unless the data are from a single
family.
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9.1 Halfsib data with one marker

Consider halfsib data from unrelated sires that are heterozygous for
a marker locus A. Suppose a sire has genotype AjAj0 . If an o↵spring
from this sire can be classified as receiving allele Aj or allele Aj0 from
the sire, it is said to be informative. The following model will be
used for analyzing data from informative o↵spring:

yijk = µ + si + mij + eijk (103)

where yijk is the trait phenotype of o↵spring k that received marker
j from sire i, µ = E(yijk), si is a random e↵ect with null mean and
variance �

2
s , mij is a random e↵ect with null mean and variance �

2
m,

and eijk is a random residual with null mean and variance �
2
e . The

random e↵ects are assumed to be independent.
Given this model, it follows that the covariance between two halfsibs
that received the same marker allele from their sire would be

Cov(yijk, yijk0) = �
2
s + �

2
m (104)

Suppose marker A is linked to a QTL that contributes �
2
Q to the

additive genetic variance. Then the above covariance (104) can also
be written as

Cov(yijk, yijk0) = [(1� r)2 + r
2]�2

Q/2 + �
2
u/4 (105)

where r is the probability of recombination between the marker lo-
cus and the QTL. Further, from (103), the covariance between two
halfsibs that received di↵erent marker alleles from their sire would
be

Cov(yijk, yij0k0) = �
2
s (106)

and assuming A is linked to the QTL, this covariance (106) can be
written as

Cov(yijk, yij0k0) = 2r(1� r)�2
Q/2 + �

2
u/4 (107)

From (104), (105), (106) and (107), it follows that

�
2
m = [(1� r)2 + r

2 � 2r(1� r)]�2
Q/2

= (1� 2r)2
�

2
Q/2
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and �
2
m will not be null unless r = 1

2 . To test the if �
2
m > 0, we

compute

Fcal =
MSm

MSe
(108)

where MSm is the mean squares for marker within sire and MSe

the mean square for error. Under the H0: �
2
m = 0, Fcal has a

central F⌫1,⌫2 distribution, where ⌫1 = ns, ⌫2 = 2ns

P
(nij � 1),

ns is the number of sires, and nij is the number of o↵spring that
received marker j from sire i. Under the alternative hypothesis, Fcal

is distributed as

Fcal ⇠ F⌫1,⌫2

E(MSm)

E(MSe)

Suppose nij = nw, then E(MSm) = �
2
e + nw�

2
m, and E(MSe) = �

2
e .

Thus, the power of the test is

Pr(F⌫1,⌫2 > F↵,⌫1,⌫2

�
2
e

�2
e + nw�2

m

)

where F↵,⌫1,⌫2 is the value for which Pr(F⌫1,⌫2 > F↵,⌫1,⌫2) = ↵.

10 Marker Assisted Selection
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11 Appendix

11.1 Binomial Distribution

Consider a random variable X with:

Pr(X = 1) = q,

and

Pr(X = 0) = 1� q.

This is called a Bernoulli random variable. The expected value of
X is

E(X) = 0(1� q) + 1q

= q.
(109)

The variance of X is

Var(X) = E(X2)� [E(X)]2,

where

E(X2) = 02(1� q) + 12
q

= q

So, the variance of X is

Var(X) = q � q
2

= q(1� q)
(110)

Now let

Y =
nX

i=1

Xi,

where Xi are identically and independently distributed Bernoulli
random variables. Then, Y is said to have a Binomial distribution
with parameters n and q, and denoted

Y ⇠ Binomial(n, q)

The expected value of Y is

E(Y ) = E(X1 + X2 + · · · + Xn)

= q + q + · · · + q

= nq,

(111)
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and the variance of Y is

Var(Y ) = Var(X1 + X2 + · · · + Xn)

= Var(X1) + Var(X2) + · · ·Var(Xn)

= nq(1� q)

(112)

The probability distribution for a Binomial random variable is

Pr(Y = y) =
n!

(n� y)!y!
q

y(1� q)n�y (113)

Example 19 Consider a population where the frequency of allele
A2 is 0.2. Suppose 20 gametes are sampled from this population.
When gamete i is sampled, put Xi = 1 if the allele at locus A is A2

and put Xi = 0 if it is A1. Then,

Y =
20X

i=1

Xi

is the number of A2 alleles sampled. Further, Y ⇠ Binomial(20, 0.2).
So,

E(Y ) = 20⇥ 0.2

= 4,
(114)

and

Var(Y ) = 20⇥ 0.2(1� 0.2)

= 3.2
(115)

11.2 Geometric Series

Let Sn be the geometric series:

Sn = 1 + x + x
2 + x

3 + · · · + x
n�1 (116)

Then, xSn is

xSn = x + x
2 + x

3 + · · · + x
n�1 + x

n (117)

Subtracting (117) from (116) gives

Sn(1� x) = 1� x
n

Sn =
1� x

n

1� x

(118)
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