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Chapter 1 

Introduction      (Based on Bijma and van Arendonk, 2004) 

 
There are two fundamental questions faced by animal breeders. The first asks: “What is the best 
animal?” Is the best Labrador the one with show-winning conformation or the one with 
exceptional retrieving instinct? Is the best dairy cow the one that gives the most milk; the one 
with the best feet, legs and udder support; or the one that combines performance in these traits in 
some optimal way? These are matters of intense debate among breeders, and, in truth, no one has 
all the answers. The question is an important one, however, because the answers determine the 
desired direction of genetic change for breeding organisations and people keeping farm or 
companion animals. The second question asks, “How do you breed animals so that their 
descendants will be, if not “best”, at least better than today’s animals?”. In other words, how 
can we genetically improve animal populations? This question involves genetic principles and 
animal breeding technology, and is the subject of this course. 
 
1. What is the best animal 
“Best” is a relative term. There is no best animal for all situations. The kind of animal that works 
best in one environment may be quite different from the best animal under another set of 
circumstances. 
 
When we describe animals, we usually characterise them either in terms of appearance or 
performance or some combination of both. In any case, we talk about traits. A trait is any 
observable or measurable characteristic of an animal. 
 
Some examples of observable traits –traits we would normally mention in describing the 
appearance of an animal- are coat colour, size, muscling, leg set, udder conformation, and so on. 
Some examples of measurable traits –traits we would likely refer to in describing how an animal 
has performed- are body weight, daily milk production, time to run a mile, etc. There are 
hundreds of traits of interest in domesticated animals. Note that in none of the examples of traits 
mentioned above is the appearance or performance of a particular animal described. An animal 
may be red and weigh 343 kilograms at 1 years of age, but red coat colour and 343 kg yearling 
weight are not the traits- the traits are simply coat colour and weaning weight. Red and 343 kg are 
the observed categories or measured levels of performance for the traits of coat colour and 
yearling weight. They are the phenotypes for these traits. 
 
In animal breeding, we are mainly concerned with changing animal populations genetically. From 
a genetic point of view, therefore, we want to know not only the most desirable phenotypes, but 
the most desirable genotypes as well. That is because an animal’s genotype provides the genetic 
background for its phenotypes and it is the genetic material that is passed on from parents to its 
offspring. Summarised in an equation: 

P = G + E 
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where P represents an individual’s phenotype, G represents its genotype, and E represents the 
environmental effects- the effects that external (nongenetic) factors have on an animal’s 
performance1. In other words, its genotype and the environment it experiences determine an 
animal’s phenotype. 
 
The word genotype is used in several ways. We can speak of an animal’s genotype in general, 
referring to all the genes and gene combinations that affect the array of traits of interest to us. An 
example used later on in this section involves a “tropically adapted” genotype. In this case, the 
genotype includes all the genes and gene combinations affecting heat resistance, parasite 
resistance, and other traits that make up tropical adaptation. This sense of the word genotype is 
generally implied in this chapter. We can also speak of an animal’s genotype for a particular trait, 
referring to just those genes and gene combinations that affect that trait (e.g., heat resistance). Or, 
as we will see later in this course, we can limit the definition of genotype even further in which 
case it refers to a particular gene only (e.g., an animal has genotype AA for the kappa-casein 
gene). In any case, the genotypes of our animals’ descendants are what we can change with 
breeding methods. Favourable changes in genotypes result in improved phenotypes. 
 
To answer the question “What is the best animal?” we need to determine what traits are of 
primary importance and what genotypes are most desirable for those traits. Most breeders, if they 
have some experience, have an opinion about the key traits and better genotypes. A 
Thoroughbred breeder, for example, might describe the perfect animal as “…. fast, but with 
enough endurance and heart for the longer distances, and easily rated”. A pig breeder version 
might be “…. a healthy pig with a good growth and good carcass quality.” There are probably as 
many opinions of this sort as there are breeders and for the most part they are quite subjective. In 
order to develop a sense of the important traits and best genotypes in a more objective way it is 
important to understand the role of the genotype in the system of the farm. This means that the 
importance of traits will depend on the physical environment under which animals are kept, the 
management system as well as economic factors. If you think about it, it will become clear that a 
number of the components of the system will interact with each other. For example, the best 
preventive health program (management) depends on the kinds of pathogens in the area (physical 
environment) and the costs of vaccines, dewormers, etc. (economics). To determine which health 
program is the most cost-effective, you must have knowledge of alternative programs, local 
pathogens, and treatment costs and understand how treatment programs interact with these other 
factors to affect profitability. Similarly, the best genotype depends on the local environment, the 
management practises in use, and the costs of inputs and prices of animal products. To determine 
the best genotype, you must have knowledge of environmental, management, and economic 
components and understand how they interact with the genotype to affect profitability.  

 
Knowledge of the function of the animal and the interactions between the genotype and other 
components of the system is necessary if we want to develop sensible goals for breeding 
programs, in other words, if we want to develop appropriate breeding objectives. Knowing, for 

                                                           
1 This mathematical expression is oversimplified but it will do fine for the purposes of this discussion. Later on we 
will see that there might also be an interaction between the G and E. 

The genotype of domestic animals determines the degree to which the animals are suited for their function in society. The 
key to determining the traits of importance and optimal genotypes for those traits is a thorough analysis of the function of 
the animal in the entire system and an understanding of the many interactions among components of the system.
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example, that parasite resistance is critically important in tropical climates, breeding objectives in 
the Tropics emphasise traits such as tick count (a measure of tick resistance). In temperate 
regions, on the other hand, less emphasis is placed on parasite resistance and more emphasis is 
placed on other traits. 
 
2. Population structure and breeding objective 
In the process of determining the best animal, you might ask, “Best for whom?”. The answer to 
this question depends on the function of the animal, the structure of the population and the role of 
the “breeder”2 within that structure. Most populations can be thought of as having a pyramidal 
structure: a relatively small number of breeders at the top selling breeding stock to a larger 
number of multipliers who in turn sell animals to a great number of end users. 
 
The pyramid suggests a flow of germ plasm – genetic material in the form of live animals, 
semen, or embryos – from the top down, the elite breeders producing the most advanced animals, 
breeders at the multiplier level replicating those animals, and end users benefiting from the 
genetic improvement occurring at the higher levels. Ideally, breeders at each level try to produce 
animals that will be in the greatest demand by their customers at the next level down, with the 
ultimate result that the best animal is the animal that is the most useful or profitable for the end 
user. End users can thus be defined as the individuals whose particular needs should form the 
basis for determining breeding objectives. 
 
In food and fibre producing species (sheep, cattle, swine, and poultry), the end users are 
commercial producers. These are the persons whose primary products are commodities for public 
consumption. Commercial dairy farmers produce milk; commercial swine producers produce 
pork; commercial poultry farmers produce eggs, chicken and turkey. Commercial producers are 
in most cases not the end of the production chain; beyond them are the processors (dairy plant, 
slaughterhouses), the retailers and consumers. But the commercial producers are end users 
because their particular needs reflect the requirements of the entire production chain. They need 
animals that are physically and reproductively sound, healthy and perform efficiently in their 
environment. They also need animals that possess the product and performance characteristics 
required by the retailers and consumers. The importance of these latter characteristics should be 
reflected – when the market systems functions well - in the prices paid to the commercial 
producers for their products. In the Western world, the interest of consumers in the system of 
production has increased over time. This increased awareness of consumers has resulted in an 
increased emphasis on health and welfare traits in the breeding objective of farm animals and 
reduced emphasis on primary production traits (e.g. amount of milk, growth rate and litter size). 
 
The breeding industries for recreational and companion animal species (horses, dogs, cats, etc.) 
differ somewhat in structure from the livestock industries. The pyramid arrangement is still 
present, and markets for specialised types of animals exist, but seedstock/commercial divisions 
are usually less clear and the end users may not be breeders at all. Consider, for example, 
Labrador retrievers. The end users of Labs are hunters and pet owners. These persons may or may 
not choose to breed their animals, and the qualities that are important to them are those that 
contribute to retrieving ability, companionship, health, aesthetics, or some combination of these 

                                                           
2 Person answering the question 
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traits. Among Labrador breeders there are elite breeders and multipliers, but the term commercial 
producers does not really fit here because no consumable commodity like meat, eggs or milk is 
being produced. The various horse industries provide similar examples. End users of horses range 
from owners of the most valuable racing animals to causal riders to those that keep miniature 
horses as pets. 
 
3. How are animal populations improved? 
The purpose of animal breeding is not to genetically improve individual animals- once an 
individual is conceived, it is too late to change the genotype of that animal- but to improve animal 
populations, to improve future generations of animals. To this task breeders bring two basic 
tools: selection and mating. Both involve decision-making. In selection, it is decided which 
individuals become parents, how many offspring they may produce, and how long they remain in 
the breeding population. In mating, it is decided which of the males we have selected will be bred 
to which of the females we have selected. 
 
Selection  
 

Selection is used to make long-term genetic change in animals. It is the process that determines 
which individuals become parents, how many offspring they may produce, and how long they 
remain in the breeding population. Most of us are familiar with the term natural selection. 
Natural selection is the great evolutionary force that fuels genetic change in all living organisms. 
We commonly think of natural selection as affecting wild animals and plants, but in fact it affects 
both the wild and domestic species. All animals with lethal genetic defects, for example, are 
naturally selected against- they never live to become parents. Natural selection cannot be ignored 
but the kind of selection of primary interest in animal breeding is artificial selection. The idea 
behind selection is simply this: to let individuals with the best sets of genes reproduce so that the 
next generation has, on average, more desirable genes than the current generation of animals. The 
animals with the best sets of genes are said to have the best breeding values. They are –from a 
genetic point of view- the individuals with the greatest value as parents. In selection, we try to 
choose those animals with the best breeding values: the animals that will contribute the best genes 
to the next generation. The result of successful selection is then to genetically improve future 
generations of a population by increasing over time the proportion of desirable genes.  
 
To see how selection works, consider the simplest form of selection: phenotypic selection or 
mass selection. In this type of selection, the performance of the individual is the only information 
used in making selection decisions. No attention is paid to the pedigree of the animal or the 
performance of its sibs (brothers and sisters) or of any progeny it may have produced. For 
example, if you were using phenotypic selection for weaning weight to determine whether a 
particular ewe lamb was to be kept for breeding, you would base your decision strictly on her 
own weaning weight. In practise (meaning outside of scientific laboratories), phenotypic selection 
in its pure form is increasingly rare, but it makes a good example, as we will also see later on 
during this course. 
 
Figure 1.1 depicts phenotypic selection for increased body size in mice. The largest mice in each 
generation are chosen to become parents of the next generation, and the result over time is an 
increase over time in average body size. The idea of using the phenotype for body size as the 
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selection criteria is based on the expectation that phenotype for size is a reasonable indicator of 
the genes affecting body size. It is the genes, after all, which are transmitted from parent to 
offspring. In other words, it is assumed that phenotype for body size in mice is somehow related 
to breeding value for body size. If that were not the case, phenotypic selection for this trait would 
be a waste of time. The relationship between phenotype and breeding value is therefore a very 
important one, and this relationship is reflected by the heritability. When heritability of a trait is 
high, phenotypes are generally good indicators of underlying breeding values, and phenotypic 
selection will be effective in changing the level of the trait. When heritability is low, phenotypes 
reveal little about breeding values, and phenotypic selection will be ineffective. Judging by the 
rapid increase in body size of the mice in Figure 1.1, body size must be quite heritable. Not all 
traits are as heritable. The heritability of fertility in mammals, for example, is generally quite low. 
Estimating the heritability of a trait involves statistical techniques to estimate the extent to which 
relatives resemble each other for the trait of interest, compared with unrelated animals. The actual 
methodology involved and a description of the methods is beyond the scope of this course. 
 
Most animal breeders are unlikely to limit themselves to individual performance information 
alone in making selection decisions. They will use information on relatives as well. For example, 
when a dog breeder purchases an eight-week old puppy from another breeder, she probably does 
not base here choice on just the conformation and personality characteristics evident in such a 
young puppy. She wants to evaluate those same traits in the littermates, the dam and the sire. She 
might want to see a copy of the puppy’s extended pedigree to learn more about its ancestors. 
Similarly, when beef cattle breeders evaluate a sire to use via artificial insemination (A.I.) they 
look further than the sire’s own performance for growth rate. They want to know something 
about the growth performance of his progeny.  

Figure 1.1. Illustration of phenotypic selection for increased body size in mice 
 
The above examples illustrate that selection decisions are based on a combination of information. 
In this course we will outline how the different sources of information can be combined into a 
single prediction of the breeding value of the animal. The strength of the relationship between the 
true breeding value and its prediction is measured by the accuracy. When accuracy is high, 
predictions of breeding values will normally be good ones – they will closely reflect the 
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differences in true breeding values of the animals being evaluated. And because the predictions of 
breeding values are accurate, we can do a good job in selection. 
 
The traits mentioned so far in this chapter – such as weaning weight in sheep, body size in mice, 
fertility, conformation and personality in dogs, milk production in dairy cattle- have all been 
polygenic traits. Many genes affect polygenic traits, and no single gene is thought to have an 
overriding influence. The genetic variation in these traits is due to segregation at many loci. Until 
recently, we knew little about the specific genes affecting these traits – we just know there were 
lots of them. As long as we cannot identify specific genes, we have to rely on phenotypic 
performances, predictions of breeding value to characterise the genotypes of animals. There are 
good grounds for believing that there is a range in the size of effects of genes for any trait, from a 
few with large effect, down to a large number having very small effects. We will see in this 
course that the developments in molecular biology now make it feasible to identify individual 
genes that affect quantitative trait. Information on genetic markers linked to individual genes can 
be used in selection programmes to improve the accuracy of selection (so-called marker-assisted 
selection). Once an individual gene has been identified, its biochemical and physiological roles 
can be studied. The results of these studies will greatly increase our understanding of the nature 
of genetic variation in traits. 
 
Most traits in animals are polygenic in nature. Some traits, however, are simply-inherited – they 
are affected by a single or only a few genes. A good example is the horned/polled character in 
cattle of European origin (Polled means naturally without horns). A single gene determines 
whether a cow is horned or polled. There are also a large number of single-gene disorders that are 
considered to be serious problems but do not prevent affected individuals from reproducing. Well 
known examples include the inherited eye disorder is dogs, the malignant hyperthermia syndrome 
(“halothane gene”) in pigs. Because only a few genes influence simply-inherited traits, selection 
for simply-inherited traits is different from selection for typical polygenic traits. With simply-
inherited traits, we do not deal with breeding values and their predictions, or even with the 
concept of heritability. Rather, we are interested only in knowing whether an individual possesses 
the specific allele or alleles of interest, and we select animals based on that knowledge. If the 
disorder can be detected either by clinical examination or by DNA-testing prior to reproductive 
age, it is possible to select against the disorder effectively. The detection of the gene for 
malignant hyperthermia syndrome in pigs and the subsequent development of a DNA-test have 
greatly increased the opportunity for pig breeders to eliminate the disorder from the population. 
Malignant hyperthermia in pigs is an autosomal recessive disorder which means that it is not 
possible to discriminate between a phenotype of animals with two normal alleles (homozygous 
animals) and animals carrying one defect allele (heterozygous animals, so-called carriers). The 
power of the DNA-test lies in the fact that it facilitates the detection of carriers- animals that are 
heterozygous at the gene causing the genetic disorder- prior to reproductive age.  
 
When we think of selection, we normally envision selection of individual animals within a breed. 
It is also possible to select between breeds. In setting-up a farm or breeding program, we need to 
choose a breed to work with. Between-breed selection provides a way of using breed differences 
to make very rapid genetic change. For many traits, breed differences can be very large. By 
taking advantage of such large differences, between-breed selection can produce genetic change 
much faster than the gradual change possible from selection within a breed. For example, the 
milk production of Black and White cattle in The Netherlands has increased enormously in the 
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1970’s – not through selection within the Dutch Friesian population, but through importation of 
semen from the more productive Holstein-Friesian in the United States and Canada. 

 
 
Mating 
 

Selection is the first of the two basic tools used by animal breeders to make genetic change. The 
second tool is mating. Mating is the process that determines which (selected) males are bred to 
which (selected) females. It is distinctly different from selection. In selection, you choose the 
group of animals you want to be parents; in mating, you match males and females from the 
selected group. 
 
There are many different methods for mating animals, and each method can be defined by a set of 
mating rules: a mating system. There are three reasons for using mating systems: (1) to produce 
offspring with extreme breeding value, (2) to make use of complementarity, and (3) to obtain 
hybrid vigour. Extreme phenotypes can be obtained by mating parents with extreme breeding 
values (high*high and low*low). If an animal of intermediate size is desired, mating large 
animals to small animals is one way to produce it. The parental genotypes are quite different, and 
neither one is optimal, but the mating is complementary because the offspring is optimal. Mating 
a Charolais to an Angus is an example of crossbreeding; the mating of sires of one breed to dams 
of another. In crossbreeding often used to produce breed complementarity, and in fact, the 
Charolais x Angus mating is a complementary one. Charolais are large French cattle known for 
their fast growth and heavy muscling, Angus are smaller British cattle known for their maternal 
ability, and the crossbred offspring benefit for having both kinds of parents. Another reason for 
crossing these two breeds is to produce hybrid vigour or heterosis. Hybrid vigour is an increase 
in performance of crossbred or hybrid animals over that of the pure-breds.  Hybrid vigour occurs 
to a greater or lesser degree in many traits, but it is most noticeable in traits like fertility and 
survivability.  
 
 
4. Multiple trait selection 
In this course, a lot of the discussion of selection and the examples used for illustration will be 
limited to single-trait selection, selection for just one trait. That is because single-trait selection 
provides a simple framework within which to learn the principles of animal breeding. But in the 
real world of animal breeding, selection for a single trait is rare. Breeders are typically interested 
in improving a number of traits. They practise multiple-trait selection. Dairy farmers select for 
traits related to milk production, health, reproduction, type and longevity. 
 
Selection for one trait rarely affects just that one trait. Usually other traits are affected as well. 
Genetic change in a trait resulting from selection on another trait is termed correlated response 
to selection. Correlated response to selection is probably caused by a number of genetic 
mechanisms and results in so-called genetic correlation between traits. 
 
Genetic correlations between traits and the correlated response to selection brought about by them 
can be beneficial. However, if we are unaware of or choose to ignore unfavourable genetic 
correlations, selection for one trait can lead to undesirable response in others. In cattle, for 
example, blind selection for growth rate leads to larger birth weights and more dystocia. If we 
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want faster growth, but cannot tolerate increased dystocia, we must avoid simply selecting for 
growth or against dystocia. We need a way to select for growth rate and against dystocia at the 
same time. We need a method for multiple-trait selection as introduced in this course. 
 
5. Inbreeding 
Inbreeding is the mating of related individuals. That is the simplest definition anyway. Because 
all animals within a population are related to some degree, a more technically correct definition 
of inbreeding is the mating of individuals more closely related than average for the population. 
Inbreeding has a number of effects, but the chief one and the one from which all the others stem 
is an increase in homozygosity- an increase in the number of homozygous loci in inbred animals 
and an increase in the frequency of homozygote genotypes in an inbred population. Because 
inbred individuals have fewer heterozygous loci than non-inbreds, they cannot produce as many 
different kinds of gametes. The result is fewer different kinds of zygotes and therefore less 
variation in the offspring. This illustrates, as we will see in more detail furtheron in this course, 
that inbreeding (more precisely the level of inbreeding in the population) is related to the amount 
of genetic variation. A second consequence of inbreeding is the expression of deleterious 
recessive alleles with major effects, and it is this aspect of inbreeding, more than any other, that 
gives inbreeding a bad reputation. People associate inbreeding with genetic defects. It is true that 
defects caused by recessive alleles often surface in inbred populations. But inbreeding does not 
create deleterious recessive alleles; they must already have been present in a population. 
Inbreeding by itself simply increases homozygosity, and it does so without regard to whether the 
newly formed homozygous combinations contain dominant or recessive alleles. It therefore 
increases the chance of deleterious alleles becoming homozygous and expressing themselves. 
Expression of deleterious recessive alleles with major effects, particularly lethal genes, is a very 
visible consequence of inbreeding. It is an example of the effect of inbreeding can have on certain 
simply-inherited traits. Less obvious is the expression of unfavourable recessive alleles 
influencing polygenic traits. The individual effects of these genes are small but, taken together, 
can significantly decrease performance- a phenomenon known as inbreeding depression. 
 
6. Biodiversity 
An important issue arises in situations where a breed that is native to a particular area appears to 
have lost its function in that area or elsewhere, and consequently is in danger of becoming 
extinct. The question to be raised in this situation is whether such a breed should be preserved. 
The arguments in favour of preservation are that we do not know what type of animals will be 
required in the future, and that we should therefore preserve the available genetic variation 
between breeds (bio-diversity) as an insurance against the unknown future. On the other hand, it 
is argued that people who aim to earn a living from animals cannot afford to look too far into the 
future; they appreciate the arguments in favour of preservation, but are unable to meet the 
relatively high cost of preserving populations that they are unlikely ever to utilise during their 
own lifetimes. At both the national and international level, e.g. FAO and Rare Breeds 
International, concerted efforts are being made to gather relevant data on breeds that seem 
threatened by extinction, and to act, where possible, to save them. Interestingly, the two areas that 
are probably of greatest concern are at the either end of the spectrum of animal improvement. At 
one end we have a large variety of locally adapted native populations (often in developing 
countries) that are under threat from the influx of “improved” breeds and strains from developed 
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countries. And at the other end we have an increasing number of poultry selection lines that are 
discarded when yet another independent poultry breeding company is taken over by a larger and 
often multinational breeding company. 
 
7. Technology and animal breeding 
The face of animal breeding has changed significantly over the past decades. Animal breeding 
used to be in the hands of a few distinguished “breeders”, individuals who seem to have specific 
arts and skills to “breed good animals”. Nowadays, breeding in particular in livestock species is 
dominated by science and technology. In some livestock species, animal breeding is in the hands 
of a few large companies, and the role of the individual breeders seems to have decreased. There 
are several reasons for this change. Firstly, the breeding industry has adopted scientific principles. 
Looking was replaced by measuring, and an intuition was partly replaced by calculations and 
scientific prediction. Other major developments grew from the introduction of biotechnology. 
 
Biotechnology can be broadly defined as the application of biological knowledge to practical 
needs. These technologies fall generally into two categories, reproductive and molecular. Not all 
of this is new. Artificial insemination was introduced in cattle in the fifties. There is no doubt that 
technology had a major impact on rates of genetic improvement in dairy cattle and is just as 
important to the structure of animal breeding programs. Nowadays, technologies like ovum pick 
up, in vitro fertilisation, embryo transfer, cloning of individuals, and selection with the use of 
DNA-information is all on the ground. Some of the technologies are already applied, others are 
further developed, or waiting application. Finally, rapid development of computer and 
information technology has greatly influenced data collection and genetic evaluation procedures 
in animal populations, now allowing comparison of predicted breeding values across farms, 
breeds or countries. 
 
It is important to recognise that the introduction and exploitation of new technologies have large 
social impacts. The introduction of breeding methods typically needs to find the right balance 
between what is possible from a technological point of view and what is accepted by the decision 
makers and users within the socio-economic context of the production system. Ultimately it is the 
consumer who decides which technology is desirable and which is not. In most western societies, 
consumers are increasingly aware of health, environmental and animal welfare issues. Food 
safety and methods of food production are part of their buying behaviour. However, price and 
production efficiency are still major factors determining the sustainability of a livestock sector. 
Successful animal breeding programs need to find and apply the accepted technologies that help 
them remain competitive. This course is mostly concerned with the technical issues involved in 
the application of new technologies in animal breeding.  
 
8.  Components of breeding programs 
Very generally, the aim of animal breeding is to genetically improve populations of livestock so 
that they produce more efficiently under the expected future production circumstances. Genetic 
improvement is achieved by selecting the best individuals of the current generation and by using 
them as parents of the next generation. A breeding program is the organized structure that is put 
into place to genetically improve livestock populations. This chapter deals with the set-up and 
evaluation of animal breeding programs. 
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Message 
A breeding program is the organized structure that is set up in order to realize the desired genetic 

improvement of the population. 
 
Successful genetic improvement requires breeding programs to have (at least) the following 
components: i) A system to record data on selection candidates. Without data on selection 
candidates it is impossible to identify the best individuals. ii) Methods and tools to estimate the 
genetic merit (breeding value) of selection candidates. This step is referred to as "breeding value 
estimation" or “genetic evaluation system”. iii) A system to select the animals that become 
parents of the next generation, and mate them to produce the next generation. iv) A structure to 
disseminate the genetic improvement of the breeding program into the production population. In 
most cases, the breeding population and the production population are (partly) separated. Since 
the aim is to improve livestock production, genetic improvement created in the breeding 
population should be disseminated into the production population. 
 
Data recording and collection: Estimation of breeding values requires phenotypic data on 
selection candidates. Thus a system has to be set up to routinely record data on selection 
candidates. The way data is collected depends on the species and the traits in the breeding goal. 
For example, the product of a dairy cattle breeding company is a straw of semen from a bull. 
However, milk yield cannot be recorded on bulls. Thus to identify bulls of high genetic merit for 
milk yield, one has to collect data on daughters of bulls. Dairy cattle breeding schemes therefore 
have a system to record data on daughters of test bulls. Milk yield of those daughters is recorded 
on common dairy herds, meaning that farmers are involved in the data recording. In beef cattle 
breeding, growth performance of bulls can be recorded on the selection candidates themselves, 
meaning that progeny testing is not necessary. In beef cattle breeding, data collection therefore 
takes place at testing stations where the performance of selection candidates is recorded. The 
quality of the data is fundamental to the success of breeding programs. Without high quality data, 
it is impossible to accurately estimate genetic parameters and breeding values.  
 
Breeding value estimation: After data are recorded, breeding values have to be estimated. The 
common procedure to estimate breeding values in applied livestock breeding is called "BLUP". 
BLUP and selection index theory have the same theoretical basis; both are based on regression of 
breeding values on phenotypes. Compared to selection index theory however BLUP has the 
following advantages; i) It accounts for systematic environmental effects. ii) BLUP is more 
flexible than selection index theory and therefore more suitable as an operational tool. iii) BLUP 
takes account of selection.  
 
Selection and mating: Selection and mating takes place after breeding values are estimated. 
Selection refers to the process of choosing parents to produce the next generation, whereas 
mating refers to the pairing of selected individuals. Thus selection precedes mating. The selection 
process determines the genetic improvement of the population over time, whereas the mating 
process determines how maternal and paternally derived alleles are combined within individuals. 
This chapter will introduce a number of selection and mating procedures and present theory to 
understand the effects of the different procedures.  
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Dissemination of genetic progress: In most species, the breeding and production populations are 
distinct. Genetic progress is created in the breeding population, but the final aim is to improve 
livestock production in the entire population. Thus genetic improvement created in the breeding 
population has to be disseminated into the production population.  
In dairy cattle, the breeding and production populations are not strictly separated. Superior cows 
from the production population can enter the breeding population, meaning that they are selected 
as bull dams. Genetic progress created in the breeding program is transferred to the dairy farms 
by the sale of semen of progeny tested bulls to the farmers. The sale of semen is the primary 
source of income for dairy cattle breeding companies. In addition, a limited number of embryos 
from the breeding population are sold to the dairy farmers. 
 
The situation is different in pig and poultry breeding. Pig and poultry production are based on 
crossbreeding systems. The breeding populations consist of purebred lines, which are mated 
together to produce crossbred offspring. Crossbred offspring are sold to fattening farms or egg 
producers. The breeding and production populations are therefore completely separated; 
crossbred production animals cannot enter the purebred breeding populations. Dissemination of 
genetic superiority of the purebred breeding populations takes place by the sale of crossbred 
offspring.  

 
Message 

A breeding program has the following components: i) a data recording system, ii) methods and 
tools for breeding value estimation, iii) a selection and mating system and iv) a structure to 

disseminate the genetic improvement into the production population. 
 
9. Design and evaluation of breeding programs 
Design of breeding programs: The structure of breeding programs depends on both the species 
and the breeding goal. The optimum design of a breeding program will differ between species 
with large reproductive capacity and species with small reproductive capacity, between breeding 
programs that aim to improve production or reproduction traits, and low heritable traits versus 
high heritable traits.  
 
Judging the quality of breeding programs: Choosing the best breeding scheme among a 
number of alternatives requires yardsticks to measure the quality of breeding schemes. Such 
yardsticks can be developed only when there is a well-defined breeding goal. Given that the 
breeding goal is clearly defined, there are three criteria that summarize the quality of a breeding 
program. These are: 
1. Selection response for the breeding goal traits. 
2. Maintenance of genetic diversity as measured by the rate of inbreeding. 
3. Costs of the breeding program. 

Selection response for the breeding goal traits is the revenue of a breeding program, whereas loss 
of genetic diversity and financial costs are the expenses of a breeding program. Selection 
response, loss of genetic diversity and financial costs are expressed in different units. The 
problem therefore is to combine them into a single criterion for the quality of a breeding program.  
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A comparison of breeding schemes based on selection response and the rate of inbreeding can be 
done as follows. To avoid long-term loss of genetic diversity an upper limit can be set to the rate 
of inbreeding. Next, alternative breeding schemes can be judged by comparing their selection 
response at the same rate of inbreeding. The scheme with the highest selection response at the 
same rate of inbreeding (e.g. 1%/generation) is the best scheme.  
It is more difficult to combine selection response and cost into a single criterion. The question is 
whether the revenues from an increase in selection response, for example in the form of increased 
market share, makes up for the cost of increased selection response. Hence, this is not a genetic 
issue but primarily a commercial and business issue.  
 
Evaluation of breeding programs: Once a breeding program is operational it is essential to 
routinely evaluate the results. Evaluation may consist of comparing realized genetic improvement 
and rates of inbreeding with values expected when designing the breeding program. When there 
are clear differences between expected and realized selection response and inbreeding, then one 
needs to find the causes of those discrepancies and if possible improve the breeding program. 
Reasons that breeding programs do not yield the expected genetic improvement are: i) the use of 
inappropriate models for breeding value estimation, for example when the models do not include 
systematic environmental effects that are present in the data; ii) overestimation of the genetic 
parameters (e.g. h2) resulting in biased EBVs and overprediction of the expected response; iii) 
preferential treatment among selection candidates resulting in selection of individuals that 
received "good treatment" instead of genetically superior individuals, and iv) unexpected 
correlated response in other traits. 
 

Message 
The quality of alternative breeding schemes can be judged by comparing selection response, rate 

of inbreeding and costs of the alternatives. 
 
Methods to design and evaluate breeding programs: To compare alternative breeding 
programs we need methods to quantify expected rates genetic improvement and inbreeding of the 
alternatives. In other words, we need methods to predict rates of gain and inbreeding of breeding 
programs. From a methodological point of view, quantifying the expected rates of gain and 
inbreeding can be done in two manners, either stochastically or deterministically. Stochastic 
simulation is often the easiest way, but in most cases deterministic simulation gives more insight.  
With stochastic simulation, the breeding program is simulated in detail on a computer. Stochastic 
simulation consists of the following cycle. 1. Breeding values and phenotypes of individuals in 
the base generation are simulated. 2. Breeding values are estimated for the base generation 
animals by performing BLUP analyses on their simulated phenotypes. 3. Based on the estimated 
breeding values coming from the BLUP analyses, a number of animals is selected to become 
parents of the next generation. 4. The selected animals are mated and offspring from the matings 
are simulated. Next, steps 2, 3 and 4 are repeated until the desired number of generations is 
simulated. Because in stochastic simulation we simulate an entire population of "real" animals, 
the rates of gain and inbreeding can simply be estimated from the simulated data. Hence, after 
simulating the breeding scheme, the next step is to analyze the simulated data to quantify the rate 
of gain and inbreeding of the breeding scheme. Multiple replicates of the population are 
simulated, and the rates of gain and inbreeding are averaged over replicates. 
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The advantage of stochastic simulation is that one can mimic the true breeding program in detail, 
because the individual animal is simulated. Hence, stochastic simulation can be very precise. 
However, there are two disadvantages related to the use of stochastic simulation to evaluate 
breeding schemes. First, stochastic simulation is time consuming, particularly when large 
populations are simulated. Even with modern computers, simulation of a sufficient number of 
replicates of a large breeding scheme may take several hours or even days. Hence, stochastic 
simulation is less suited as an operational tool to quickly evaluate a number of alternatives. 
Second, with stochastic simulation the user often does not gain as much insight into the breeding 
scheme as with deterministic simulation. For example, with stochastic simulation the user will 
observe that shorter generation intervals generally go together with higher gain, but the 
deterministic equation 'G = irIHVH/L directly shows that gain is inversely proportional to the 
generation interval. Hence, because stochastic simulation does not explicitly model mechanisms 
like accuracy, generation interval, etc, it can be difficult to extend the result to other breeding 
schemes that were not simulated themselves.   
 
Instead of using stochastic simulation, one can use deterministic methods to quantify expected 
gain and inbreeding from alternative breeding schemes. Deterministic methods do not mimic the 
breeding program on the individual animal level, but use (deterministic) equations to predict gain 
and inbreeding. For example, prediction of the rate of gain by using the expression that 'G = 
irIHVH/L is a deterministic methods. Hence, modeling the mechanisms that determine gain and 
inbreeding as mathematical equations allows us to quantify the expected outcome of a breeding 
program. To use deterministic methods one needs to know/derive the mechanisms determining 
gain and inbreeding; it requires more insight into quantitative population genetics than stochastic 
simulation. 
 
Advantages of deterministic methods are 1). It takes limited computation time, so that many 
alternatives can be compared within limited time, and 2). Because the mechanisms are modeled 
explicitly, it gives a lot of insight into gain and inbreeding in breeding programs. In some cases, 
however, it may be difficult to derive accurate deterministic methods. Hence, there is a risk that 
deterministic methods are not precise if they do not properly model the mechanisms determining 
gain and inbreeding in populations. In complicated cases, stochastic simulation may be used to 
check the accuracy and validity of the deterministic equations. Hence, stochastic simulation may 
be helpful to validate and improve deterministic models, and in this way we improve our 
understanding of the mechanisms determining genetic improvement and rates of inbreeding in 
populations. 
 
In this course we will mainly deal with deterministic models. The reason is that for many 
important situations deterministic methods are available and they provide more insight than 
stochastic models.  

Message 
The expected selection response and inbreeding of breeding schemes can be determined by using 

either stochastic simulation or deterministic methods. Deterministic methods provide more 
insight and are computationally fast. Stochastic simulation is precise and useful to validate 

deterministic methods.  
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10. This course 
The course "Animal breeding strategies" introduces the quantitative genetic principles underlying 
the design and implementation of genetic improvement programs in livestock species. Those 
principals will also apply to companion animals, populations of endangered breeds and zoo 
populations. The basic quantitative genetic principles used in this course are handled in Falconer 
and Mackay (1996)3. 
 
The lectures start with a general overview of the field. This course focuses on the definition of 
breeding objectives and the genetic evaluation of breeding strategies. To achieve this, much of 
the course is devoted to the general principles involved in deriving economic weights of the 
various traits that might be genetically improved, making selection decisions between animals, 
designing breeding strategies and determining which strategies will make optimum progress. 
What is presented is a selection of some of the more common tools used in defining breeding 
objectives and designing and evaluating breeding strategies. These tools should be adequate to 
tackle many basic practical problems in animal breeding and provide background to using more 
complex methods. 
 
Estimation of breeding values using best linear unbiased prediction (BLUP) is an important 
element in animal breeding but this lies outside the scope of this course (see AnS562). Attention 
will be paid to selection index theory but the emphasis lies on prediction of genetic gain and not 
on genetic evaluation of animals. 
 
Lecture notes provide students with detailed knowledge on issues related to the design of breeding 
programmes for farm animals. Lectures will 'guide' the student through these notes. In addition 
problems will be supplied. 

                                                           
3 Falconer D.S. and T.F.C. Mackay, 1996. Introduction to quantitative genetics. Longman fourth edition. 
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Chapter 2 
 

Stochastic Methods to Model Breeding 
Programs 
 
2.1 Introduction 
 
The objective of genetic improvement of livestock is to enhance the genetic level for traits of 
interest in a population through genetic selection such that some overall goal is achieved or 
enhanced. The overall goal can usually be described in economic terms (e.g. maximize profit per 
animal per year) and will be discussed further in chapter 7.  
 
There are many factors that determine the success of a breeding program. These include design 
and implementation issues. In this course, we will primarily focus on factors related to the design 
of genetic improvement programs, which include factors such as population size, numbers of 
animals to select, criteria for selection, etc.. Because of the number of factors involved, the 
number of alternative programs is numerous. However, ultimately only one program can be 
implemented; animal breeders don’t have the luxury of trying out different options and then 
deciding which one to go with. Thus, we need some other means of deciding a priori which 
breeding program will maximize our overall objective. This requires the ability to model 
breeding programs and to predict outcomes from alternative breeding programs. Furthermore, if 
a good understanding can be developed of the impact alternative design factors have on program 
outcomes, this will lead to the development and choice of better breeding programs. The 
development of this knowledge and associated methods and tools are the focus of this course. 
 
 
2.2 Quantitative Genetic Model 
 
Because most traits of interest in livestock are multifactorial in nature, i.e. affected by a 
potentially large number of individual genes along with environmental factors, quantitative 
genetic theory has become the primary basis for the development of methods to develop, model, 
and evaluate alternative breeding programs. The basis of this theory is the infinitesimal genetic 
model (Falconer and Mackay, 1996). The purpose of this section is to briefly review this theory 
as a basis for developing methods to model breeding programs. 
 
The quantitative genetic model for the phenotype of animal i is: yi = µ + gi + ei  (2.1) 
 

where µ is an overall mean (or sum of fixed effects), gi is the animal’s genetic value, and ei it’s 
random environmental effect. For the purposes of the majority of this course, we will assume we 
are dealing with additive traits such that gi refers to the additive genetic or breeding value.  
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Variables gi and ei are assumed normally distributed with means zero and standard deviations σg 
and σe. Strictly, these assumptions hold for gi only for an unselected (base) population and both 
the mean and variance will change as a result of selection, as will be described later on in the 
course. 
 
With the exception of the sex chromosomes, which we will ignore for the moment, all animals 
carry two copies of every gene.  One copy is inherited by random sampling from the two copies 
carried by the male parent (sire) and the other copy is inherited by random sampling from the 
two copies carried by the female parent (dam).  It follows that the additive genetic value of an 
offspring, go, can be partitioned into three sources, and modeled as follows:  
 

go = ½ gs + ½ gd + gm     (2.2) 
 

where gs and gd are the additive genetic values of the sire and dam and gm is the Mendelian 
sampling contribution.  The Mendelian sampling contribution reflects the random selection of 
copies of parental genes.  Since genes are inherited at random from the parents, the average 
values of gm over a large number of progeny is expected to be zero. 
 
Mathematically, it is said that the expectation of gm, E(gm), is zero. But for any particular 
individual, gm has a real value which varies between individuals.  The range of values of gm is 
determined by its variance, which in the absence of inbreeding, is expected to be 

E( 2
mg

σ ) = ½ 2
0g

σ      (2.3) 

where 2
0g

σ  is the initial genetic variance in the population prior to any selection.  The reason 
for noting the requirement that there be no prior selection in the population will become clear 
later in the course. 
 
With inbreeding, the expected variance of Mendelian sampling terms is reduced by a factor  
[1- ½(Fs+Fd)], where Fs and Fd are the inbreeding coefficients of the sire and dam. Thus:  

     E( 2
mg

σ ) = ½ [1- ½(Fs+Fd)]
2
0g

σ     (2.4) 

 
 
2.3 Stochastic Models for Evaluation of Breeding Programs 
 
The simple quantitative genetic models described in the previous paragraph can be used to 
simulate a breeding program and evaluate its outcomes. Simulations in animal breeding can be 
divided into three types: 

1) stochastic simulation (or sometimes called Monte Carlo simulation) 
2) deterministic simulation  
3) combination of stochastic and deterministic simulation. 

 
Stochastic simulations use random number generators to simulate variability. The two most 
common types of random generators needed are those for the uniform and the normal 
distribution. Most statistical software programs have functions that can generate these. Excel has 
a uniform random number generator: RAND(), which returns a uniform number between 0 an 1. 
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Using the Inverse Transform method (http://www.mathwave.com/articles/random-numbers-
excel-worksheets.html) this function can be used in combination with inverse cumulative 
distribution functions to generate numbers from other distributions in Excel. For example, to 
generate a random number from a standard normal distribution, use:  NORMINV(RAND(),0,1). 
The function NORMINV(p, mean, st.dev.) returns the truncation point for a normal distribution 
that has a fraction p below it. So by drawing p from a random uniform distribution (0,1), a 
random truncation point is generated based on the cumulative distribution function. 
 
With stochastic simulations in animal breeding, which will be described here, a population of 
animals is simulated by generating records for each animal in the population by random 
sampling from pre-defined distributions which are determined by the rules of inheritance and 
origins of environmental effects imposed on the model. A model for stochastic simulation of a 
breeding program is schematically represented in Figure 2.1. The steps involved are described in 
further detail in what follows. 
 
Figure 2.1  General schematic of a stochastic simulation of a breeding program with t time 

periods and m replicates. 
1.  Generate a base population of parents. 
  ↓  
2.  Generate progeny of defined family structure. 
  ↓  
3.  Perform genetic evaluation to obtain selection criteria.  
  ↓  
4.  Rank animals on selection criteria. 
  ↓  
5.  Select animals, following defined rules. 
  ↓         
6.  Mate parents and generate individual progeny. If time < t 
  ↓ if time = t 
7.  Output or store results.   if replicate < m Go to next replicate. 
                                                      ↓  if replicate = m 
8.  Output mean and variances of results and/or stop program. 
 
2.3.1 Generating Base Population Parents 
 
A base population is generated according to the rules of inheritance and structure of the 
population defined by the program control variables.  For example, if the phenotype of a single 
trait, explained by the simple additive inheritance model plus a random environment effect, is 
 

yi = µ + gi + ei 
 
and there are nm males and nf females in the base assumed to be randomly selected, unrelated, 
and non-inbred, then the effects for an animal in the base population could be defined by the 
following programming steps: 
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Do for each animal i: 
 

1. r = random number from normal distribution with mean 0 and variance 1 
 

2. gi = r ∗ ogσ  where 
og

σ  is the additive genetic st. deviation in the base population. 
 

3. r = new random number from normal distribution with mean 0 and variance 1 
 

4. ei = r ∗ eσ  where eσ  is the standard deviation of environmental effects. 
 

5. pi = µ + gi + ei  , where µ is the pre-defined population mean, i.e. a constant. 
 

6. Store pi, gi; and ei 
 
This can be repeated for all animals in the base population.  In order to enable the construction of 
a pedigree file, animals should be given a unique identification number.  The simulation can be 
extended to include other genetic effects, such as dominance or systematic environmental effects 
such as age, herd or year.  Virtually all programming languages have a random number generator 
or an associated library of subroutines containing a routine for random number generation.   
 
2.3.2 Generating Progeny 
 
Once parents are generated, mating pairs are allocated and progeny generated.  Recalling from 
equation 2.1 that the phenotype of progeny k of male parent i and female parent j is  
 

yijk = µ + ½
is

g  + ½
jd

g + 
ijkm

g + ijke     (2.5) 
 
where 

is
g and 

jd
g  are the known additive genetic values of the sire and dam, 

ijkm
g  is the 

Mendelian sampling contribution for individual k and ijke  is the environmental effect.  The 
contributions of 

ijkm
g  and ijke  are obtained for each progeny in turn by sampling from a random 

normal distribution with mean 0 and variance 1 and multiplying the random number by 
mg

σ  or 
eσ , where  2

mg
σ   =  ½ 2

og
σ       in the absence of inbreeding,  

or   2
mg

σ   =  ½( 1 – ½
is

F - ½
jd

F ) 2
og

σ  in the presence of inbreeding,  
where 

is
F  and 

jd
F  are the inbreeding coefficients of the two parents.  Fixed effects can then be 

added to pijk according to the structure specified by the design. 
 
2.3.3 Deriving the Selection Criterion 
 
The selection criterion, such as the phenotypic record, a selection index, or BLUP evaluation, 
would be estimated for each simulated animal as if in real life.  A subroutine of the program 
would be written to perform the evaluations.  The nature of the selection criterion will determine 
the amount of data to be stored.  For example, a selection index involving only collateral 
relatives would not require the parental records to have been stored, whereas animal model 
BLUP evaluation would require all animals and relationships back to the base population to be 
stored.  In contrast to selection indexes, BLUP evaluation will be expensive for computing time 
because of the iterative nature. 
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Selection index or BLUP requires defined variances of traits for single trait evaluation and 
variance/covariance matrixes for multiple traits. Usually these would be set to the base 
population values, though false values may be given deliberately if estimation of sensitivity to 
parameter for BLUP is under investigation.  If relationships back to the base generation are 
included, BLUP automatically allows for change in genetic variance due to selection (see 
Chapter 5). 
 
With selection indexes, the appropriate variance/covariance among traits and relatives at each 
generation are required.  A decision will therefore have to be taken as to whether to use constant 
parameters over time or to allow them to change.  When the same set of parameters is used over 
time it seems logical to use the parameters from the base population, which were also used in 
simulating the data.  In real life, the base population parameters can only be estimated and it 
might therefore be interesting to investigate the consequences of using other than the true 
parameters.  Population parameters will change over time as a result of selection.  These changes 
can be allowed for in constructing the selection index.  In that case a method is needed to obtain 
the parameters at each point in time.  The parameters could be estimated from the phenotypic 
and the true additive genetic values (gijk, gsi, gdj).  This, however, would not be possible in real 
life and hence would not give realistic results.  Alternatively, parameters could be estimated 
using phenotypic records or changes in parameters could be predicted from the selection 
strategy.  Interpretation of the results will obviously depend on the assumptions made. 

 
 
2.3.4 Selecting and Mating Animals for Breeding 
 
In order to produce the next generation of offspring, one needs to define the method of selecting 
the animals to be used as parents and the procedure used in mating the selected parents.  In the 
previous step, the selection criterion has been estimated for all candidates for selection.  
Truncation selection is commonly used for selection, in which the animals with the highest value 
for the selection criteria are selected.  This requires that males and females are separately ranked 
in order of merit for the selection criteria.  Efficient ranking routines are available in most 
language libraries.  Apart from the method of selection, the user has to specify the number of 
animals to be selected and the category of animals, which are eligible for selection.  One might, 
for example, restrict the selection to animals of one particular age class only or have no 
restriction other than that animals need to be old enough to be able to reproduce.  In the latter 
case, selection will be across age groups and it is important to specify up to what age animals are 
eligible for selection. 
 
In the absence of restrictions on selection, selection is simply a process of designating the 
required number of top ranking animals as parents.  With complete assortative mating, the top 
ranked male is allocated to the n top ranked females, the second ranked male to the next n 
females and so on; where n is the number of females per male.  With random mating, each 
selected female is allocated a random deviate, and the females are then ranked on the random 
deviate and mating proceeds as above. 
 
An advantage of stochastic simulation is that restrictions can be imposed on selection and 
mating.  Common examples would be restrictions defining the maximum number of full and half 



6 

sibs that can be selected as parents, and restrictions that full and half sibs may not be mated 
together.  The imposition of restrictions may make some animals ineligible for mating so that 
more animals must be available for mating than indicated by the defined proportions to be 
selected. 
 
2.3.5 Inbreeding Coefficients 
 
Traditional methods of estimating inbreeding coefficients of individual animals by tracing path 
coefficients, or directly from a complete relationship matrix rapidly become time consuming and 
expensive of storage space as population sizes and number of generation's increase.  With this 
method it was often impractical to estimate inbreeding coefficients in stochastic simulations.  
Several algorithms have been developed, however, for efficiently deriving inbreeding 
coefficients from a pedigree file (e.g. Tier, 1990).  Use of these algorithms reduces computer 
time 10-100 fold compared to traditional methods.  An additional trick is to recognize that all full 
sibs have the same inbreeding coefficient so that only one member of the family needs to have 
the coefficient estimated.  Even so, calculation of inbreeding coefficients can still be expensive 
of computing time when simulating several thousand animals in each of several generations. 
 
2.3.6 Completing the Cycle 
 
Once mating pairs are allocated, progeny can be produced and the cycles repeated until the 
desired number of time periods has been achieved.  At this point, summary statistics can be 
printed or stored, and the next replicate started.  The number of replicates required will depend 
principally on the required accuracy of estimates of response and variance of response, which are 
largely dependent on the size of the population and the number of generations simulated.  Large 
populations have low variance of response and therefore require fewer replicates for a given 
level of accuracy. 
 
Stochastic simulations are often used to validate deterministic simulations.  In this case it is 
desirable to have very accurate estimates of output parameters to estimate biases in the 
deterministic program.  Typically, with smaller populations, several hundreds to 1000 replicates 
are run.  But when using stochastic simulations to evaluate alternative breeding programs, very 
small differences between alternatives are rarely of practical interest so that often fewer, say 100, 
replicates can suffice.  In practice the number of replicates required can be determined once a 
few initial runs have indicated the variance to be expected between runs for a particular size and 
type of population. 
 
 
2.3.7 Multiple Trait Simulations 
 
Multiple trait simulations are a little more difficult because they require simulation of correlated 
random variables. For Excel, a user-defined function is available from 
http://homepage2.nifty.com/hashimoto-t/misc/mnormrand-e.html#download that allows you to 
generate correlated random variables based on a defined vector of means and a variance-
covariance matrix. See Excel file mnormrand.xls .  
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Alternatively, simulation of correlated random variables can be achieved by deriving the n 
uncorrelated principal components of the genetic and environmental variance covariance matrix 
among the n traits, generating random deviates for each principal component in turn and then 
back-transforming these to obtain random deviates for the original traits.  Alternatively, an 
approach using Cholesky decomposition of the original variance covariance matrixes can be used 
which has advantages in terms of computing ease and time.  The Cholesky decomposition 
approach is explained in Appendix C and some examples of simulating correlated traits and 
records for related individuals are given by Van Vleck (1993).  These same methods can deal 
with simulations involving other covariances among random variables, such as g x e covariance 
and additive x dominance genetic covariances. 
 
 
2.3.8 Genome-level models 
 
In the previous, the genetic component was modeled as a normally distributed variable, using the 
infinitesimal genetic model. This model assumes that the trait is affected by a large number of 
unlinked loci, each of small effect. Stochastic models also allow the modeling of a more realistic 
genetic architecture of the trait by simulating individual loci and their placement on 
chromosomes within the genome, along with genetic markers. These models require 
specification of the number of loci, the number and length of chromosomes that these loci are 
located on, and their position (in centi-Morgans, cM) on these chromosomes. Then, the 
following parameters must be specified for each locus: 

1) Locus position - loci could be positioned on chromosomes at random by sampling from a 
uniform distribution, or evenly distributed across the genome. 

2) Number of alleles. 
3) Allele frequencies in the base population – these could be set to be equal or sampled from 

some distribution 
4) Genotypic effects associated with each genotype - these can, for example, for a locus 

with two alleles B, b, be based on the standard single locus genetic model with genotypic 
values of +al, dl, and –al for genotypes BB, Bb, and bb at locus l (Falconer and MacKay, 
1996). Genotypic values assigned to each locus could be sampled from an assumed 
distribution of gene effects, such as from a gamma distribution (e.g. Hayes and Goddard, 
2003), in an attempt to reflect reality. In addition, epistatic effects could be allowed for 
by assigning genotypic effects to combinations of genotypes at multiple loci. 

 
For the base population, alleles at locus l for individual i can then be assigned by drawing two 
random numbers u from a uniform (0,1) distribution. For example, for a locus l with allele 

frequency l
jf  for alleles Bj (j=1, . . , ml), allele j is assigned if ∑∑
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sampling of alleles assumes the base population is in Hardy-Weinberg and gametic phase 
equilibrium (Falconer and MacKay, 1996). 
 
The genetic value of individual i then is the sum of genetic effects at each of the q loci:   
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Once a pair of recombinant gametes has been created, a random one of the two is sampled to 
generate the progeny. A similar procedure is used to generate the other parental chromosome. 
 
Note that this method assumes that recombination events in adjacent intervals are independent 
(no interference – Haldane mapping function). If there is interference, probabilities of 
recombination in interval i must be adapted, depending on presence or absence of a 
recombination event in interval i-1.  
 
Simulation of genomic selection programs or data for genome-wide association analysis also 
requires simulation of historical generations of the population, in order to generate linkage 
disequilibrium between loci. A useful freely available software program for this purpose is 
QMSim (http://www.aps.uoguelph.ca/~msargol/qmsim/QMSim_documentation.pdf Sarargolzaei 
and Schenkel, 2009, University of Guelph). After download, you can run this program from 
command line, using ./QMSim [parameterfile] -o   The download provides several example input 
parameter files. 
 
 
2.4 Advantages and Disadvantages of Stochastic Models 
 
Stochastic simulation depends on relatively simple rules determining inheritance from one 
generation to the next, along with description of the criteria on which all animals will be selected 
for breeding.  Thus, for a given degree of complexity of the breeding program, stochastic 
simulations are often relatively easy to write compared to the deterministic models that will be 
described later.  In addition, stochastic models allow alternative genetic models to be evaluated, 
while deterministic models are primarily restricted to the infinitesimal genetic model. However, 
see Chapter 12 for deterministic models with individual genes along with an infinitesimal 
polygenic component. 
 
With stochastic simulation, the result of any one run reflects random sampling events so that to 
obtain the mean expected response, many replicate runs must be made; but this also allows the 
variance of the response to be estimated.  Because each animal in the population is individually 
identified, stochastic programs can take up a large amount of storage space and involve a very 
large number of mathematical operations for every run.  This, combined with the need to 
replicate, means that stochastic programs take much longer, often very much longer, to run than 
deterministic programs. 
 
Stochastic simulation also does not provide much insight into the impact of various factors on 
response to selection and does not lend itself easily to optimization of breeding programs. Hence, 
in the remainder of this course, the main focus will be on deterministic models, to facilitate an 
understanding of the factors that affect the outcomes of breeding programs. With the tremendous 
increases in computing power, however, stochastic models have become more and more 
attractive and used for the evaluation and analysis of breeding programs in both research and 
practice. 
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Chapter 3

Basic Principles of Response to Selection
3.1 Introduction
When comparing different breeding programs the first question usually asked is "what are the
expected responses to selection of the various plans".  A considerable part of this course will
focus on methods of designing breeding programs, which maximize response to selection.
Although breeding plans are often quite complex, most can usually be understood in terms of a
few simple principles of response to selection.  In this chapter we briefly review these principles
as a foundation for what follows in the rest of the course.

As in many fields of science, there are often many different ways of deriving a particular result.
If you are familiar with the basic principles of quantitative genetics (e.g. as in Falconer and
Mackay, 1996), the results given here should be familiar to you.  However, the approach used
here is slightly different to that given in other texts.  You should be familiar with the derivations
given in texts such as Falconer and Mackay (1996), as those derivations are generally more
rigorous and go back to first principles.  However, the derivations given in this course will often
be more useful when it comes to designing breeding strategies and deriving statistics necessary
for such designs.

3.2 Predicting Genetic Merit of Progeny
The basic guiding principle behind genetic improvement and predicting response to selection is
that parents with high additive genetic values (breeding values) tend to have progeny with high
additive genetic values (and therefore high phenotypes). This follows from the quantitative
genetic model for the additive genetic value of progeny:

go = ½gs + ½gd + gm (3.1)

where gs and gd are the additive genetic values of the sire and dam and gm is the Mendelian
sampling contribution, as described in the previous chapter.

Since E(gm) = 0, the expectation of the progeny additive genetic value, E(gi), from a given pair of
parents is given by

E(go) = ½gs + ½gd

i.e., the expected additive genetic value of the progeny is equal to the mean additive genetic
value of the two parents.



13

For determining response to selection, we are interested in the mean of the genetic value of the
progeny generation, E( g o). This can be obtained from the average genetic value of the selected

parents
*

sg  and 
*

dg , where * indicates that the variable refers to selected individuals:

E( g o) =  ½ *
sg  + ½ *

dg (3.2)

For the purpose of understanding and predicting response to selection, it is useful to express the
mean genetic value of selected parents in terms of a deviation from the mean genetic value of all
individuals from which they were selected ( g s and g d):

Thus: E( g o) = ½( *
sg - g s + g s) + ½( *

dg - g d + g d)

= ½( g s +
*
sg - g s) + ½( g d + *

dg - g d)

= ½( g s  + Ss) + ½( g d  + S d)

= ½( g s  + g d) + ½( Ss + S d) (3.3)

Here, S is the genetic superiority of the selected parents, which is defined as the difference
between the mean genetic value of the selected individuals from the mean of the group they were
selected from, e.g.:

Ss = *
sg - g s (3.4)

Response to selection is defined as the difference of the mean genetic value of progeny of
selected parents from the mean genetic value of progeny of all possible parents.  Response is
often denoted as R or !g.  Using the R notation, the expectation of R is given by:

E(R) = g o - g p (3.5)

Where g p = ½( g s + g d)

Using this and the expression of g o in terms of means of the parental generation and genetic
superiorities of the selected parents (equation 3.3), expected response from the current to the next
generation simplifies to:

E(R) = ½( g s  + g d) + ½ (Ss + Sd) - ½( g s + g d)

= ½(Ss + Sd) (3.6)

Thus, expected response from the current to the next generation is determined entirely by genetic
superiority of the selected parents.

Note that for the simple case of equal selection in males and females, Ss = Sd = S and E(R) = S.
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In general we do not know the genetic value of parents.  But we may have a prediction of their

genetic value through an estimated breeding value (EBV), ^g . Usually this prediction is based on
a recognized method of genetic evaluation using different sources of phenotypic information.
Examples are simple phenotypic selection, family index selection, pedigree index selection,
BLUP, and so on.  Whatever the method used, provided the estimate is unbiased, i.e. that

^^
)|( gggE

then the expectation of the genetic value of an individual progeny is equal to the mean of the
parental predictions, i.e.

E(go) =  ½ sg +½ dg  = pg

where pg  is the mean estimated genetic value of the two parents.

Then, the expected mean genetic value of the progeny generation can be written in terms of the
mean EBV of the selected and all parents by replacing g  in (3.2) and (3.3) by ĝ as:

E( g o) = ½ *ˆ sg  + ½ *ˆ dg

= ½( sĝ   + S s) + ½( dĝ   + S d) (3.7)

Where S  is the estimated genetic superiority of the selected parents, which can be obtained from
(3.4) as:

S = *ĝ - ĝ (3.8)
Similarly, knowing the EBV of the parents, response from the current to the next generation can
be predicted based on (3.5) and (3.6) as:

E(R) po gg^ = ½( S s + S d) (3.9)

It should be noted that equation (3.1) can be extended back so that the sire and dam terms are
replaced by their respective sire and dam terms (i.e. grandsires and grandams of individual i) and
so on back through the ancestor pathways, e.g.

go = ½ (½gss + ½gds + gms) + ½ (½gsd + ½gdd + gmd) + gm (3.10)

where ss is sire of the sire, ds is dam of the sire, etc., and gms and gmd are the sire and dam

Mendelian sampling terms.

However, the expectation of go in terms of sg  and dg  in cannot easily be pushed back to include

grandparental ( g ) terms since the expectation of these terms depends on the degree of selection
of the parents.  However, solutions to most problems of design of breeding programs can be
found using the parent-offspring relationships.
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3.3 Predicting Response per Generation
The previous section allows us to predict response to selection if we have a particular group of
chosen parents.  This can be useful where we have an existing population of real animals and we
want to predict the effects of choosing different combinations of animals as parents from that
population.  For example, in dairy cattle we might have several hundred bulls available for use,
each with an estimated breeding value for milk yield.  Assuming that the genetic evaluation
procedure is unbiased, we could ask the consequences of using different numbers of bulls.
Should we use the best 10 available or the best 20?  Semen price is often (but not always!)
related to quality, so that the top 10 bulls will often be more expensive than the next best 10
bulls.  We could then ask how much genetic improvement would we expect when using the
cheaper second set of 10 bulls rather than using the more expensive 10 best bulls.  We will return
to this problem later.

In many cases we are not interested in a particular group of existing animals but in predicting
response to selection in future generations or in the consequences of different designs of animal
breeding programs.  We might ask, if we had a population of 100 bulls (which do not yet exist),
what would be the expected response to selection if we use only the best 10 in comparison to
using the best 20 every generation?  The problem is then to predict the genetic superiority (S) of
different types of possible parents in a hypothetical population as a result of a particular selection
program.

A selection program typically is described by the fraction or number of males and females that
are selected and by the criterion on which they are selected. Our objective here is to develop
theory that can be used to predict the genetic superiority of selected parents based on this
information.

We can assume that in this hypothetical population we have an estimate of each animal’s genetic
value, which we will call an index value that is used as the selection criterion.  We do not need to
know at this stage how this index is derived.  But we will assume that there is a linear
relationship between the index value and the true genetic value.  We can then derive predictions
of genetic superiorities of selected parents based on standard regression theory.

A standard equation for the regression of a dependent variable, y, on an independent variable, x,
takes the form

           yi = a + byx xi + ei (3.11)

and a prediction of y given x is

      iy  = y  + byx(xi - x ) (3.12)

where y is the mean value of y over all values of x, x  is the mean value of x in the population of
all possible values, and xi is the observed value of x for the ith individual for whom we wish to
predict a value of y.  From standard regression theory, the regression coefficient, byx, of y on x is
given by
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byx = 2
x

xy

!
!   = rxy 

x

y

!
!

(3.13)

where $xy is the covariance of x and y, $ 2
x is the variance of x, and rxy is the correlation between y

and x, which is given by

rxy = 
22
xy

xy

!!

!
 (3.14)

In our breeding problem, we want to predict the genetic value of an individual (that will become
a parent) given a recorded or estimated index value, Ii.  Hence from (3.12),

ig  = g  + bgI  (Ii - I ) (3.15)

where Ii is the index value of individual i, g  is the mean genetic value of individuals in the
population, I  is the mean index value of individuals in the population, and bgI is the regression
of genetic values on index values.

If we are predicting the average genetic value of a group of selected (chosen) animals, we get:

 *ĝ  = g  + bgI  ( *I - I ) (3.16)

To obtain a prediction of the genetic superiority of the selected parents, we can substitute (3.16)
into (3.8), recalling that it is the genetic value of parents we are predicting, to get:

S = *ĝ - g  = bgI  ( *I - I ) (3.17)

The right-hand side of equation (3.17) in parentheses, ( *I - I ), is the deviation of index values
of selected animals from the mean index value of all animals in the population.  We can define
the intensity of selection, i, as the deviation of selected from average animals in standard
deviation units, i.e.

i = ( *I - I ) /!I (3.18)

where !I  is the standard deviation of index values.  It then follows from (3.18) that
( *I - I ) = i!I (3.19)

and substituting (3.18) into (3.17) we get

S  = bg.I  i !I (3.20)

From standard regression theory (equation 3.13), we recall that

bg.I   =  rgI 
I

g

!
!

(3.21)
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hence, S  = rgI 
I

g

!
!

 (i !I) = i rgI !g (3.22)

Equation (3.22) gives a general formula to predict genetic superiorities of selected parents, which
are needed to predict the response to selection.  This formula applies whenever the value on
which animals are selected, I, is linearly related to their additive genetic value.  Predicted
superiorities can be used to model the genetic level of future generations in a recursive manner
using equation (3.7):

E( g o) = ½( sg  + S s) + ½( dg   + S d) =

= ½( sg  + is rg,Is !g) + ½( dg   + id rg,Id !g) (3.23)

or model response per generation using equation (3.9):

R = ½(Ss + Sd) = ½(is rg,Is !g + id rg,Id !g) (3.24)

Methods to derive the accuracy of selection, rgI , based on various sources of information will be
reviewed and developed in Chapter 4.  To illustrate, its derivation for the simplest case,
phenotypic selection based on own phenotype, will be given in section 3.4.  The intensity of
selection, i, can be obtained from Normal distribution theory and will be further discussed in
section 3.6.  For the moment, we will assume that the genetic standard deviation, !g, is known
and remains constant over generations.  The latter assumption will be relaxed in Chapter 5.

In the remainder of this chapter, we will first illustrate equation (3.22) for phenotypic selection,
then present how equation (3.23) fits in a general diagram for a deterministic simulation model,
followed by a discussion of approximations for intensity of selection, and finally develop
extensions of this equation to prediction of response with selection across multiple age groups,
response per unit of time, and correlated response to selection.

3.4 Example of Phenotypic Selection
The generality of equation (3.22) can be seen by considering the specific and familiar case of
phenotypic selection.  In this case, the index value, I, is simply the phenotype of the animal.
Assuming only additive genetic and random environmental effects, and assuming phenotype is
adjusted for fixed effects (e.g. the mean), we can write the phenotypic value of an animal, yi as

yi = gi + ei

where ei is the environmental effect, assumed uncorrelated with the additive genetic effect, gi.
Then, gI!  = gy!   = egg,!  = 2

g!

Thus gIr  = gyr  = 
22

2

pg

g

!!

!
 = 

p

g

!
!

 = h (3.25)
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Where h is the square root of heritability.

Thus, from (3.22), S  = i h g! (3.26)

Recalling that heritability is h2 = 2

2

p

g

!

!
,    we get S  = i h2!p (3.27)

Equation (3.27) should be familiar as the standard form for prediction of response to phenotypic
selection.  What we have shown here is that this standard response to phenotypic selection is just
a special case of the general form of response to selection given by equation (3.22).

3.5 Simple Deterministic Model for Predicting Response to
Selection with Multiple Age Groups

A general schematic for a simple deterministic simulation of a breeding program is given in
Figure 3.1. Comparing to Figure 2.1 for a stochastic simulation, it should be clear that while the
general flow of deterministic and stochastic simulations are similar, their fundamental nature is
quite different. Whereas stochastic simulations model individual animals and their genetic and
phenotypic characteristics, deterministic simulations model means and variances of genetic and
phenotypic characteristics of groups of individuals. Recurrence equations such as equation (3.23)
for computing the mean genetic value of progeny are used to compute characteristics of progeny.
Other recursive equations, such as those for variances, will be presented in later Chapters.
Another important component of deterministic simulations is the derivation of the means and
variances of the selection criterion that is used. Variance of the selection criterion depends on the
accuracy of selection. Methods to derive accuracy of selection are presented in Chapter 4.

Figure 3.1  General schematic of a deterministic simulation of a breeding program.

1.  Define means and variances of base population.
%

2.  Derive means and variances of selection criteria.
%

3.  Derive proportions selected from each available group of animals.
%

4.  Derive means and variances of selection criteria of all groups of selected parents.
%

5.  Derive means and variances of underlying traits of selected parents.
%

6.  Derive means and variances of resulting progeny  &  if time < t
%

if time = t
%

7.  Output results and stop program.
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It is clear that, by modeling means and variances, deterministic simulations are computationally
less demanding than stochastic models, besides the fact that deterministic models give expected
responses and are not subject to stochastic variation in response. However, to accurately model
all aspects of a breeding program deterministically does require more complicated models. Some
of these will be described in the remainder of this chapter, while others follow in later chapters.

3.6 Selection Intensity with Truncation Selection
The prediction of response to selection given by (3.24) does not require that we know how
animals are selected, merely that we know the mean index value of selected animals and hence
are able to derive the intensity of selection, i.

Generally in animal breeding we consider the special case of truncation selection.  In this form of
selection, all animals above a certain index value, x, are chose for breeding and all animals below
this value are discarded.  Usually the truncation point is determined by the proportion, p, of
animals to be used for breeding.  In many cases, index values will be normally distributed.  If so,
and under the assumption of large population size, the relationships between p, x (measured in
s.d. units), and i can be derived from the properties of the normal distribution to be equal to:

i = z/p (3.28)

where z is the height of the normal distribution at the truncation point x and is given by

z = 
"2

2x1/2e and ', to 9 decimal places, is 3.141592654.

For individual cases it is often convenient to look up the intensity of selection corresponding to a
particular proportion selected from tables, such as those supplied by Falconer and MacKay
(1996).  When simulating breeding programs on the computer, many computer languages supply
a routine that returns the truncation point, x, corresponding to a particular proportion selected, p.

Realized selection intensity in small populations will be less than predicted by i=z/p as a result of
order statistics (Hill 1976).  Special tables are provided in Falconer and MacKay (1996) for
specific population sizes.  Analytically, intensities for finite population size can be approximated
by adjusting p to p* as follows:

p  = 

n
s

n

s

2
  

)/  ( 2
1

(

(
(3.29)

where s is the number selected and n is the population size (i.e. uncorrected p = s/n), and then
estimating the adjusted i, i  as

i   = 
)

)

p

z
(3.30)

where z* is the height of the normal distribution at the truncation point x* corresponding to p*.
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The second assumption that is made in the standard equation for selection intensity (3.28) is that
there is no correlation between the selection criterion (EBV) of the different candidates of
selection.  Correlations between the selection criterion of different candidates are generally due
to: 1) genetic relationships between candidates of selection; and 2) the use of the same
information in calculating the EBV for different animals.

The most extreme example of such a correlation occurs when the population consist of nfs full sib

families with nw individuals per family and selection based on pedigree information ( g o = ½ sg +

½ g d). Note that the same pedigree information is used for all member of the family and, because
this is the only information used, the correlation between their EBV is equal to 1.

The impact of a correlation between the selection criterion of candidates on intensity is related to
the impact of population size on intensity.  This is easy to see from the above example by noting
that the number of alternative values the selection criterion has among all candidates is not n =
nfsnw but only nfs.  Thus, if nc individuals are to be selected, selection is of nc/nw families out of
nfs, rather than of nc individuals out of nfsnw.

Rawlings (1976) proposed a method of adjusting intensity for correlations between EBV, as well
as finite population size based on:

i* = avt1  i (3.31)

where tav is the average correlation between the selection criterion across all possible pairs of
selection candidates. For a population with unrelated full sib families, tav can be derived based on
the correlation of the EBV of full sibs, tfs, and the correlation of the EBV of unrelated individuals
(=0), each weighted by the number of full-sib pairs and unrelated pairs that exist in the
population (Rawlings, 1976). The result is:

tav = 
1

1

fsw

w
fs nn

n
t (3.32)

The correlation between the selection criterion of full sibs (tfs) that is required for these
computations can be derived based on the information that contributes to the selection criterion
of each full sib.  Computation of these correlations for more complex selection criteria will be
covered in section 6.1, once selection index methods to derive EBV have been developed.

Meuwissen (1991) extended the method of Rawlings (1976) for populations where full sib
families are nested within half sib families. This situation is more common in livestock
populations and originates from mating each of nhs sires to nfs dams and where each dam
produces nw offspring.  The resulting population consists of nhs half-sib families with nfs full sib
families of nw progeny per half-sib family.  The selection intensity adjusted for finite population
size and correlated EBV can then be approximated as a weighted average of the correlation
between EBV of full-sibs (tfs), the correlation between EBV of half-sibs (ths), and the correlation
between EBV of unrelated individuals (0).  Weighting each correlation by the number of pairs
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that have that specific relationship results in the following equation for the average correlation
between all possible pairs of individuals:

tav = 
1

)1()1( (

hsfsw

fswhswfs

nnn

nntnt
(3.33)

Meuwissen (1991) compared this approximation with Monte Carlo simulation for a range of
correlations and population sizes and found that the approximation worked well when low
correlations between EBV were present or when the number of half-sib families was greater than
10.  The approximation, however, overestimated the Monte Carlo results by up to 32% for a
scheme with high correlations.  A modified approximation for situations with high correlations
between EBV was suggested by Meuwissen (1991).

Modern sire and dam evaluation methods use all available information for the prediction of
breeding values.  The use of more family information increases correlations between EBV of
family members.  In some breeding schemes, selection focuses on young animals because older
animals tend to lag behind genetically.  However, young animals have little information on
individual or on progeny performance.  In that case, family information dominates the prediction
of EBV and correlations between EBV of relatives are expected to be high.  For a correct
comparison of schemes, it is therefore important to consider the effect of correlations between
EBV, especially when the number of families is limited.  In some animal selection experiments
or in the nucleus herd of an animal breeding program, the population is often reproduced by
rather few families, perhaps as few as 10, of at least half sibs.  Even when the total size is larger,
breeding may be carried out through the year with selection only among contemporaries at any
time, and these may represent few families.  In calculating the selection intensity in those cases,
the correlation between family members should not be ignored (Hill, 1976).

3.7 Modeling Selection Across Multiple Age Groups
In many breeding populations, candidates for selection may come from several distinct groups,
each with a different genetic mean and a different variance for the selection criterion.  Examples
might be: 1) dairy sires of various ages, where older sires have lower average genetic merit but
will be more accurately evaluated and hence have higher variance for the selection criterion
when their second crop of daughters become available; 2) selection of boars of different ages,
where older boars will have lower average genetic merit; 3) selection of cows, where older cows
have more lactations and therefore more accurate evaluations.

Genetic means of progeny generations and responses to selection can in these cases be derived
by extending the principle obtained before.  Considering sires and dams separately, assume that
sires can be selected from three age groups, with the relative number of selection candidates in
each age group equal to ws1, ws2, and ws3 (*wi = 1).  Fractions selected from each age group are
ps1, ps2, and ps3, for a total proportion selected of

Ps = ps1 ws1 + ps2 ws2 + ps3 ws3 (3.34)
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Let the genetic mean in age group i be denoted by g si and the accuracy of the selection criterion
by rsi.  For the moment we will assume the genetic standard deviation is the same in each age
group and equal to !g.  This assumption we be relaxed in later chapters.

Then, the genetic mean of selected sires in age group i is equal to:
*
sig  = g si + Ssi (3.35)

where Ssi is the genetic superiority of the selected sires from age group i over the mean of all
males in that age group, and can be predicted as before based on

S si = isi rsi !g (3.36)

where isi is the intensity that corresponds to a fraction selected psi.

Using a weighted average based on the relative number of sires from each age group, the mean
genetic value of selected sires can be computed as:

*
sg = 

sP
1

{ps1 ws1 
*
1sg  + ps2 ws2 *

2sg  + ps3 ws3
*
3sg }

     = 
sP

1 *psi wsi ( g si+Ssi) (3.37)

Similarly, the mean genetic value of dams can be derived as:
*
dg = 

dP
1 *pdi wdi ( g di+Sdi) (3.38)

and the average genetic value of the progeny as

E( g o) =  ½ *
sg  + ½ *

dg

= ½
sP

1 *psi wsi ( g si+Ssi) + ½
dP

1 *pdi wdi ( g di+Sdi) (3.39)

These equations allow for recursive prediction of the genetic mean of the population in
successive time periods.  In Chapter 8, we will formalize these recursive equations in the form of
gene flow.

In the previous, the proportions selected from each age group were pre-determined.  These
proportions may, however, not maximize the average genetic value of the selected parents and,
thereby, the genetic value of progeny.  Thus, referring to sires, the problem is to determine the
proportions to select from each age group such that the average genetic value of the selected
group is maximized, but subject to the constraint that the total proportion selected is equal to Ps.

To address this problem, we’ll assume that the selection criterion Ii for each age group i is
unbiased.  This implies that E(gi|Ii) = Ii and also that the selection criterion can be compared
across age groups.  Thus, individuals with the same value v of the selection criterion in different
age groups are expected to have the same genetic value v.
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The general problem is illustrated in Figure 3.2.  Given the assumptions for the selection
criterion, individuals should be selected by truncating across the distributions of the selection
criterion; replacing an individual in age group 1 that falls just above the truncation point with an
individual from age group 2 that falls just below the truncation point will reduce the expected
genetic value of selected parents.  Thus, the same truncation point should be used for all
distributions.  In practice, this would be equivalent to ranking all individuals based on their EBV
regardless of the age group they belong to, and selecting the top ones.

G ro up  1
P ro p o rtio n =  w 1 

p 1

p 2

p 3

G ro up  3
P ro p o rtio n =  w 3 

G ro up  2
P rop o rtio n =  w 2 

  g 1 g 2 g 3

P  =  p 1w 1 +  p 2w 2 +  p 3w 3

 T

Figure 3.2 Schematic representation of truncation selection of a total 
proportion P across multiple overlapping distributions

$1

$2

$3

Thus, to maximize the genetic value of selected parents, the objective is to find the truncation
point T where selection of sires across all available distributions yields a total proportion selected
of Ps.  There is no algebraic solution to this problem and the answer must be found iteratively.
Bisection is a general, simple, and effective optimization method that can be used for this
problem.  A schematic of a simple computer subroutine to do this is illustrated below.

1. Find for all i the (unstandardized) truncation point, Ti, of the ith distribution that corresponds
to a proportion P selected from that distribution (Ti = g i + xi!i , where xi is the standardized
truncation point and !i the standard deviation of the ith distribution (!i =  rsi!g for our case))
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2. Choose the lowest   Ti  as a lower bound for T ! T1
Choose the highest  Ti  as a upper bound for T ! Tu.    (T must lie between T1 and Tu.)

3. Compute the mean of the upper and lower bound !  Tm = ½ (Tu + Tl)

4. For each distribution i, find the proportion selected, pi, that corresponds to truncation at Tm.

5. Find the total proportion selected for truncation at Tm:  Pm = *piwi

6. If   |Pm – P| < #, where # is a pre-set convergence criterion, exit the routine and return Tm as
the optimized truncation point.

7. If   Pm < P    then Tm becomes the new upper bound ! set Tu = Tm
If   Pm > P    then Tm becomes the new lower bound ! set T1 = Tm

8. Return to step 3.

Even with a large number of distributions, this program will iterate to a solution with high
accuracy fairly rapidly.  For most applications no more than 5 or 6 rounds of iteration should be
required.

The proportion of animals in each distribution, wi, might reflect structural differences in numbers
(different numbers produced in different groups as designed in the breeding program) and losses
from groups over time due to death, disease, sales, etc.  Differences between groups in
reproductive capacity (fertility) could be incorporated directly into wi, or treated as a separate
factor affecting the effective numbers (in terms of contributions to progeny) in each group after
selection.

3.8 Asymptotic Response per Unit Time
Response defined by equations (3.22) and (3.24) is the response from one generation to the next.
If conditions remain constant over generations, it is also the response per generation.
Generation interval is generally defined as the average age of the parents when their progeny are
born or as the average time between birth of parents and birth of progeny.

Generation intervals vary widely across species.  For example, a generation interval for poultry
and swine can be as short as 1 year, whereas for progeny testing schemes in cattle, generation
intervals for sires are often 7 years or more.  Generation intervals can also be altered within
species by changing the age at which animals are selected and bred.

In general, it is more useful to estimate response per unit time, usually response per year.
Response per year is often given the same notation as response per generation, R.
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When selection is equal in males and females and, therefore, response per generation is equal to
R = S = irgI!g, response per year is obtained by dividing equation (3.22) by the generation
interval, L, to get

R = 
L

ir gIg !, (3.40)

(Note, in general, as here, we must be careful to know whether response, R, is expressed per
generation, per year, or in some other unit of time).

Equation (3.40) holds the key to designing breeding programs.  Response per unit of time is
proportional to the intensity of selection, the accuracy of genetic evaluation, and the square root
of the genetic variance, and is inversely proportional to the generation interval.

3.8.1 Multiple Pathways of Selection

The derivations leading to equation (3.40) assumed that males and females are treated alike.  In
practice this is often not the case.  For example, in most species, males have a higher
reproductive rate than females, thus we need fewer males for breeding and consequently can
have a higher intensity of selection in males than females.  In some species, traits of interest are
recorded only in one sex, obvious examples being milk yield in dairy cattle, litter size in swine,
and rate of egg production in poultry.  This can lead to different accuracies of evaluation in the
two sexes, since one sex has it’s own performance contributing to it’s evaluation while in the
other sex genetic evaluation must be based entirely on information from relatives.  Similarly,
different sexes can have different generation intervals for a variety of reasons, e.g. the sex with
the highest reproductive rate (usually males) may take less time to produce replacement
offspring and hence potentially have the shortest generation interval.

In these cases, response per unit of time can be derived by deriving the sum of genetic
superiorities in males and females (Ss and Sd) by the sum of their generation intervals (Ls and Ld):

R = 
ds

ds

LL
SS

(
(

(3.41)

This is referred to as the ‘steady state’ or ‘asymptotic’ response to selection, which is the
expected response per unit of time after the breeding program has been in operation for several
years.  The reason for this assumption will be made clear in the derivation of the equation, which
follows.

In practice it may take several generations to approach this steady state, and in some cases a true
steady state may never be reached.  It is therefore generally safer to think of R predicted by
equation (3.41) as the prediction of the average rate of response per year, recognizing that
predicted response may well vary from one year to the next.  Even where a steady state response
rate is eventually achieved, genetic response will usually be variable from one year to the next in
the early generations of the breeding program.
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replacement before she leaves the herd.  There is thus very little room for selection of
dams of cows, with perhaps 90% of all cows required for breeding.  Accuracy of
selection would be very similar to that for dams of sires.  However, generation interval is
generally increased by a year or two, since the average cow takes close to three calving to
produce a replacement.

The parameters applying to each pathway are summarized in Table 3.1.

Table 3.1. Intensity and accuracy of selection and generation interval in a highly efficient
hypothetical progeny-testing program for improving milk yield in dairy cattle.

Proportion Genetic Generation
Selected Intensity Accuracy Superiority Interval (yr)

Pathway (pi) (ii) (ri) (Si = i ri!g ) (Li)
Sires of males   2 % 2.42 0.90 2.178 !g 6
Sires of females 10 % 1.75 0.90 1.575 !g 7
Dams of males 0.5 % 2.89 0.60 1.743 !g 5
Dams of females 90 % 0.19 0.60 0.114 !g 6
TOTAL *S = 5.601!g *L = 24

If we assume that genetic variance is the same for all pathways (a common assumption but not
always strictly true; see Chapter 5), then we can use the parameter values in Table 3.1 to obtain
an estimated annual rate of response for this particular breeding program, of

R = 
24

5.601
!g  = 0.233 !g per yr

Response could of course be expressed in many units, but the three most common and probably
most useful are in genetic standard deviations, !g, per year (as above), absolute units per year
(e.g. kg milk per year), or as a percentage of the mean per year.

Imagine that the dairy cattle population above has a mean yield of 6000 kg, that the heritability
(h2) of milk yield is 0.25, and that coefficient of variation (CV) is 0.18, all fairly typical values
for intensive dairy production.  Since

! 2
g = h2 ! 2

p

and ! 2
p  = (cv x x )2,

then ! 2
p  =(0.18 x 6000)2 = (1080)2.

Hence ! 2
g = 0.25(1080)2

And !g = 2
g!  = 0.5 x 1080 = 540 kg.

Hence R = 0.233 x 540 = 125.82 kg per year

or, alternatively, R = 125.82/6000 = 2.1% per year.
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The choice of units will depend on how the results are to be used.  Use of genetic standard
deviation units may be useful to geneticists who think in such terms and allow results to be
readily converted from one population to the next if it is believed that the major variation
between populations is in the absolute amount of genetic variance.  For example, this would be
true if h2 and cv were the same for different populations but the mean level of performance
differed.

Absolute units, such as kg milk per year, are often the most intelligible to people familiar with
the species and trait(s) in question.  For example, there would probably be little point in
presenting results in $g per year if the audience is made up of non-geneticists, such as dairy
farmers, industry, or government officials.

Expressing results in terms of percentage change per year is likely to be understood by a wide
audience.  It also has the advantage of allowing relatively meaningful comparisons of response
for different traits across species.  A good example is given by Smith (1984), who compared the
theoretical response rate for typical breeding programs for sex-limited traits in poultry, swine,
sheep, and cattle.  The traits were egg production in poultry, litter size in swine, litter size in
sheep, and milk production in cattle.  His estimates of absolute response rates were 5.46 eggs per
year, 0.3 piglets per year, 0.04 lambs per year, and 75 kg milk per year.  Expressed in absolute
units, it is clearly very difficult to interpret these results or make any comparison across species.
However, expressed as percentage change per year, the same results were 2.1, 3.0, 2.1, and 1.5%
per year for poultry, swine, sheep, and dairy cattle.  Although not perfect, this does allow us to
draw such general conclusions, as that selection for sex-limited traits should give roughly similar
relative rates of response in different species.  It may come as a surprise to those working with
dairy cattle, that the relative rates of response are lowest for milk production in cattle.

Accounting for use of young bulls
In the previous, the sire to female path only accounted for the use of progeny-tested sires to
breed cows to produce herd replacements. However, young bulls also contribute to the next
generation of females; in a practical breeding program, semen from young bulls can represent as
much as 20% of all inseminations. To account for this, the genetic superiority and generation
interval for sires of females must be computed as a weighted average. Assuming y is the
proportion of females produced from young bulls, genetic superiority of the sire to female path is
computed as:

Ssf = y Syb,f + (1-y) Spb,f

where Syb,f and Spb,f are genetic superiorities of young and progeny-tested bulls that are used to
breed female replacements. In most cases, Syb,f = 0 because pyb,f = 1 and thus iyb,f = 0, unless there
is additional selection of young bulls that are entered into the progeny tests, above and beyond
selection of their parents (which is already covered through the sm and dm pathways). An
example where Syb,f > 0 is preselection of young bulls based on genetic markers (see Chapter 12).

Similarly, the generation interval for the sf pathway is computed as a weighted average of the
generation intervals for the yb,f and pb,f pathways:

Lsf = y Lyb,f + (1-y) Lpb,f
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3.10 Design of Breeding Programs
The prediction of rate of response to selection given by equation (3.40) and in its more complete
form by equation (3.42) holds the key to understanding many of the basic principles of design of
breeding programs.  In general, response is positively related to intensity and accuracy of
selection and to amount of genetic variation, and is negatively related to generation interval.
Altering a breeding program will often affect several parameters simultaneously and it is the net
effect of all these changes that determines the predicted response to selection.

Consider the dairy cattle progeny testing scheme outlined in section 3.8.1.  We could, for
example, ask the consequence of waiting until potential dams of sires were older and thus had
more lactation records than in the scheme originally outlined.  This would increase accuracy of
evaluation in this pathway somewhat, because of the increase in information available, but would
also increase the generation interval.  Later in this course you will have the tools to predict the
expected change in accuracy, but at this stage we will simply state that by waiting for an extra
year, the accuracy of evaluation in the dams of sires pathway would increase from 0.6 to 0.64
while the generation interval increases from 5 to 6 years.  Thus the predicted rate of response is

now R = 
6  6  7  6

0.6 x 0.19  0.64 x 2.89  0.9 x 1.75  0.9 x (2.42
(((

(((
!g   = 0.229 !g per year

which is less than the predicted response of 0.233 !g per year when selecting younger dams of
sires.  Assuming our parameters are appropriate, we would conclude that we should not wait for
extra lactation records on our potential dams of sires.

As another example, we could go on to ask what would happen if we tested more young bulls in
our progeny test program each generation.  If testing resources were limited by having more
young bulls to test, we would have to produce fewer daughters per bull.  Thus accuracy of
selection would decrease (due to having fewer daughters) and intensity of selection would
increase (due to having more young bulls to choose among) in both sire pathways.  But also, if
we had more young bulls tested, we would need more dams to produce these bulls, which would
increase the proportion selected and reduce intensity of selection in the dams of sons pathway.
In such a situation we could vary the number of young bulls tested per generation, calculating the
appropriate selection intensities and accuracies in each pathway and hence derive the expected
rate of response to selection for each number tested.  The number of bulls tested that maximized
response rate could then be identified.

As we will see later in this course, the above approach is only an approximation to the real
world.  But in many cases this approximation can be quite reliable in its own right.  Adapting this
approximation to more complex (realistic?) situations is not necessarily particularly difficult.

Another consideration is that the design that maximizes genetic response is not necessarily the
design that maximizes economic progress.  To evaluate the optimum design from an economic
perspective requires that the economic costs be weighed against the economic benefits of the
designs considered.  In some cases a wide range of designs can give similar rates of genetic
progress, but often at widely differing costs.  In such cases the economically optimum design
may give slightly less than maximum genetic response.
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Chapter 4 
 

Deterministic Models for Estimated Breeding 
Values 
 
The previous chapter established the main factors that affect response to selection, i.e. intensity 
of selection (i), accuracy of selection (r), genetic standard deviation (σg), and generation interval 
(L). The objective of this chapter is to develop methods to model and evaluate accuracy of 
selection, and to evaluate the main factors that determine this parameter. The latter will help us 
with the design of breeding programs. 
  
Accuracy of selection is defined as the correlation between the criterion on which selection is 
based (I) and the objective of selection. For the moment, we will consider the breeding value of a 
single trait to be the selection objective but this will be extended to more complicated economic 
selection objectives in Chapter 6. 
 
The previous chapter showed that when selection is on the individual’s own phenotype, the 
accuracy of selection is equal to the correlation between phenotype and breeding value, which is 
equal to the square root of heritability (h). In practical animal breeding, selection is often not 
solely on own phenotype but on estimates of breeding values (EBV) that are derived from 
records on the animal itself and records on its relatives using Best Linear Unbiased Prediction 
(BLUP) for an animal model (Lynch and Walsh, 1998). An important property of EBV derived 
from an animal model is that all records that are available on the individual and its relatives are 
optimally used, while simultaneously adjusting for systematic environmental effects (e.g. herd-
year-season), such that the accuracy of the EBV is maximized. Given the equation for predicting 
genetic superiority of selected animals, i.e. S = irσg, it is clear that maximizing accuracy is 
crucial to maximizing genetic gain. 
 

  
 
Stochastic simulation models of breeding programs can directly incorporate genetic evaluations 
based on animal models because the data that provide the input for such models are individually 



 39 

simulated. This is not possible for deterministic models. Thus, when developing deterministic 
models for genetic improvement, other methods to model selection and accuracy of EBV from 
BLUP animal models must be used. In addition to allowing deterministic modeling of selection 
on EBV, these methods are also required to develop a basic understanding of factors that affect 
accuracy of selection, which are important for the design of breeding programs, including the 
contribution that different types of records make to accuracy of EBV.  
 
In our development of methods to model accuracy of EBV, we will slowly build our 
methodology up using the following steps: 
 
1. EBV from own records – simple regression 
2. EBV from records on a single type of relatives – simple regression 
3. EBV from multiple sources of information – multiple regression – selection index theory 
4. EBV from BLUP animal models (module B) 
 
As noted above, the common theme through these methods is the use of linear regression for the 
prediction of EBV from phenotypic records. 
 
Before going into these developments, we will first describe some general properties of EBV. 
These properties hold regardless which of the methods listed above is used to estimate the EBV, 
provided the model used for evaluation is correct and systematic environmental factors are 
properly accounted for. 
 
 
4.1 Some general properties of EBV     
 
As indicated above, all methods for prediction of breeding values are based on the principles of 
linear regression: regression of breeding values on phenotypic records. As a result, properties of 
linear regression can be used to derive general properties of EBV. 
 
One important property of EBV is unbiasedness. This means that the expected magnitude of the 
true breeding value of an animal is equal to its estimated breeding value:  

E(gi|
∧

ig ) = 
∧

ig  

This implies that selection on 
∧

g  will maximize the expected value of g for the group of selected 
individuals. A related property is that the regression of true on estimated breeding values is equal 

to 1:   ggb ˆ, = 1 

Given unbiasedness, the accuracy of EBV can be derived as the correlation between true and 

estimated BV as: r = ggr ˆ, = ggb ,
g

g

σ

σ ˆ  =  
g

g

σ

σ ˆ       (4.1) 

and the covariance between true and estimated BV as: 

   =gg ,σ ggr , gσ gσ = 2
gσ        (4.2) 

The variance of EBV is then equal to: 2
gσ = r2 2

gσ      (4.3) 
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Thus, the variance of EBV is equal to the square of accuracy (also referred to as ‘reliability’) 
multiplied by genetic variance. This shows the importance of accuracy: the larger the accuracy, 
the larger the variance and spread of EBV of animals in the population, the better we will able to 
distinguish between genetically superior and average or inferior animals, and the greater the 
genetic superiority of selected animals will be. This is illustrated in Figure 4.1. 
 

 
 

Like any prediction, EBV also have a prediction error, which is the deviation of true BV from 

the EBV:  εi = gi-
∧

ig  

The variance of prediction errors (prediction error variance, PEV) can be derived as: 

   2
εσ = var(gi-

∧

ig )= 2
gσ + 2

gσ - 2 =gg ˆ,σ 2
gσ + 2

gσ - 2 2
gσ  

      = 2
gσ - 2

gσ = 2
gσ -r2 2

gσ  

         = (1-r2) 2
gσ         (4.4) 

Note that  2
gσ = 2

gσ + 2
εσ  

Thus, additive genetic variance is partitioned into variance that is explained by the EBV and 
unexplained error variance. The higher the accuracy is, the greater the proportion of genetic 
variance that is explained by the EBV. Also note that the covariance between EBV and 

prediction errors is equal to zero: == −gggg ˆ,ˆ,ˆ σσ ε
2
gσ - =gg ˆ,σ 2

gσ - 2
gσ = 0 

This makes sense because a non-zero covariance would imply that the prediction error contains 
some information that can be used to improve the EBV. 
 
Given an animal’s EBV and assuming normality, the animal’s true BV is expected to follow a 

Normal distribution with mean equal to the EBV and variance equal to (1-r2) 2
gσ : 

   gi|
∧

ig  ~ N(
∧

ig ,(1-r2) 2
gσ )      (4.5) 

 
This distribution is illustrated in Figure 4.2. 
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associated with each animal.  Thus, assuming no correlations between the genetic, permanent 
environment, and temporary environment effects, affecting a single observation, 

 

t = 2

22   

p

peg

σ

σσ +
   or    222

22

    
  

tepeg

peg

σσσ

σσ

++

+
    (4.12) 

 
Imagine that a cow, i, has two lactation records, xi1 and xi2, which can be denoted as 

xi1 = gi + pei + tei1 
xi2 = gi + pei + tei2 

The correlation between two records on an individual is rx1x2 = 
 22

2

21

x
   

x

xx

1
σσ

σ
 

where    σx1x2 =  σ(gi+ pei+ tei1, gi+ pei+ tei2) 

      = σ 2
g  + 2

peσ  
 

Hence,    rx1x2 = 
 

  
2

22

p

peg

σ

σσ +
 = t 

 
Thus, the repeatability of a trait is also the correlation between two records for that trait on the 
same individual; literally a measure of how "repeatable'' that trait is over several records. 
 
EBV from Repeated Records on a Single Trait 
 
Imagine a situation where m records are collected on each individual and we wish to select on 
the mean of those m records.  Then, 

∧

ig = xgb ix        (4.13) 

where    ix  = ∑
=

m

ij mx
1j

/        (4.14) 

and xij is the jth record for the chosen trait on individual i.  Thus 

ix = ∑
=

++
m

ijii mtepeg
1j

/)(      (4.15) 

Then,    xgb  = xgσ  /σ
2
x  

The variance of ix is:  σ 2
x  = σ 2

g  + σ 2
pe  + 

m
te
2σ   = tσ 2

p  + 
( )

m
t - p

2 1 σ
  = 

( )
m

t -tm p
2 1  σ+

 
 

  = 
( )

m
tm p

21  1) - ( σ+
      (4.16) 

The covariance is:  xgσ =σ 2
g        (4.17) 
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where xi represents the ith source of records, which could be an individual record or the mean of 
records on a given type of relative, and bi are partial regression coefficients. Equation (4.26) is 
called a selection index and the coefficients bi are called index weights. The methodology that is 
used to derive the optimal index weights, i.e. those that maximize the accuracy of the EBV, is 
called selection index theory.  
 
The selection index was first proposed by Smith (1936) for use in plant breeding for 
simultaneous selection on multiple traits, and seven years later, but apparently independently, by 
Hazel (1943) for animal breeding.  In this Chapter we shall first discuss the basic problem, then 
go on to derive selection index equations, and then illustrate their use with some examples. 
 
Selection index theory deals with the general problem of combining information from a variety 
of sources in such a way that the most accurate predictor of the overall genetic merit for a pre-
defined combination of traits is obtained.  Two separate types of selection indexes can be 
distinguished: 1) the economic selection index, where information from several recorded traits is 
used to predict genetic merit for overall economic value, and 2) the family selection index, 
where information from a single trait on various relatives is combined to predict the genetic 
merit of an individual for that trait. 
 

 

 

 

 
 
The economic selection index and family selection index are special cases of the general 
selection index, where the selection index is defined as a linear function of a series of 
observations which when selected upon maximizes response of an aggregate genotype, which is 
a linear function of the additive genetic values of a defined set of traits. Although the focus in 
this Chapter is prediction of breeding values for a single trait, we will develop the theory of 
selection indexes within the context of the economic index because it is more general. We will 
then discuss the family index as a special case of the economic selection index and go into more 
detail into family indexes and their extension to modeling BLUP EBV. We will come back to 
various applications related to economic indexes in Chapter 5. 

 
4.4.1 Selection Index theory 
 
In economically oriented breeding programs, the trait that we want to improve could be called 
economic merit.  The breeding objective of our program is then to maximize improvement of 



 48 

economic merit.  Economic merit might be defined in different ways, e.g. as profit per animal, 
profit per enterprise, economic efficiency, or something else.  We will return to this problem in 
later Chapters.  For the present, it is only necessary to recognize that the breeding objective is a 
general statement of the economic genetic goal of the breeding program. 
 
For a given definition of the breeding objective, there will likely be several or many traits, which 
would contribute to the objective.  The aggregate genotype is then defined as a function of the 
additive genetic values of the traits of interest of an individual, which if selected upon would 
achieve the breeding objective.  The function need not necessarily be linear, but in many cases an 
approximate linear relationship can be found that adequately defines aggregate genotype over the 
range of genetic values encountered (see later chapters).  If the function is a linear function, then 
the aggregate genotype, H, can be written as 

 
H = v1g1 + v2g2 +… + vngn = v’g    (4.27) 

 
where gi is the additive genetic value of trait i, expressed as a deviation from the population 
mean, and vi is a weighting factor (usually, but not necessarily, an economic weight) for trait i. In 
vector notation, v’ = [ v1 , v2 , … , vn] and g’ = [ g1 , g2 , … , gn] . 
 
In practice, the additive genetic values (i.e. true BV) of the various traits for an individual are not 
known.  However we can record each individual's performance for a number of traits.  The 
observations on these traits can then be combined into a selection index, I of the form,  

 
I = b1x1 + b2x2 + … +  bmxm = b’x    (4.28) 

 
where xj is the jth phenotypic observation, as a deviation from the population mean, and bi is a 
selection index coefficient (weight) for that observation. In vector notation, b’ = [ b1 , b2 ,… , bm] 
and x’ = [ x1 , x2 , … , xm]. In principle, observations xj do not necessarily have to be on the traits 
that are in the aggregate genotype or on the animal that is being evaluated; observations can be 
on any trait and from the animal itself or its relatives. 
 
The problem is then to estimate the selection index weights, bi, such that selection of individuals 
on their selection index value, I, maximizes response in the aggregate genotype, H. 
Equivalently, we want to find bi such that the correlation between I and H is maximized, or that 
the variance of prediction errors (Var(H-I)) is minimized.  
 
With family selection indexes, the problem is to combine information from different types of 
relatives to provide the most accurate estimate of the additive genetic value of a given trait (g) 
for a given individual.  In this case, the aggregate genotype is given by H = g and, thus v = [1]. 
In this case the selection index is equal to the EBV for the trait evaluated: 

I  =
∧

g = b1x1 + b2x2 + … +  bmxm    (4.29) 
 
Similar to an economic index, a family index can include information on the animal itself and its 
relatives for the trait being evaluated, as well as records on other traits. Thus, the derivations that 
follow for an economic index also apply to family indexes by setting H = g and v = [1]. 
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4.4.1.1 Derivation of index coefficients 
 
We wish to define I such that selection of animals on I maximizes response in H.  From standard 
regression theory (see also Chapter 3) expected response (genetic superiority) of selected 
individuals in H, SH, is given by 

SH = bH.I (I - I )      (4.30) 
 
where b is the regression of aggregate genotype on index values, I is the index value of the 
selected animal or group of animals, and I  is the mean index value of all selection candidates.  
Since I - I  can be written as iσI, where i is the intensity of selection (see Chapter 3), 

SH = bHI iσI  = 
2
I

HI

σ
σ iσI = iσHI /σI    (4.31) 

Thus for any given intensity of selection, i, response in H is maximized when σHI/σI  is 
maximized. 
 
Apart from maximizing response in H to selection on I, it would also be useful if the index value, 
I, was an unbiased predictor of the aggregate genotypic value H.  This means that the true 
aggregate genotype of an individual is, on average, no more likely to be greater than its index 
value than it is to be less than its index value, or  

E(H -H ) = I - I       (4.32) 
 

Under the assumption of multivariate normality, this is achieved when the regression of H on I, 
bHI = 1.  Thus we wish to find the index coefficients b1, b2 … bn that maximize σHI /σI, subject to 
bHI = 1. 
 
Considering first the maximization of σHI /σI.  Let σg ki  be the genetic covariance between the kth 
observation in the index and the ith trait in the aggregate genotype.  Similarly, let σp ki  be the 
phenotypic covariance between the kth and lth observations in the selection index.  Recalling the 
definition of I given by equation (4.28), it follows that 

σ 2
I  = p11b σ21  + p22b σ22  + … + 2b1b2 p12σ  + 2b1b3 p13σ  … = 

kipl

m

l
k bb σ∑∑

== 1

m

1k

 (4.33) 

Similarly, the covariance between H and I, recalling the definitions given at (4.27) and (4.28), is 

  σHI = b1v1 g11σ  + b1v2 g12σ + … + bmvnσg mn   = ∑∑
==

m

l
kb

1

m

1k

viσg ki    (4.34) 

If we write the term to be maximized as,    M = σHI /σI 
 
then    log M = log σHI - log σI 

 
or    log M = log σHI - ½ log σ 2

I  
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and substituting from (4.33) and (4.34): 
 

log M = log(∑∑bkviσg ki ) - ½log (∑∑bkblσp ki )  (4.35) 
 
Since M will be maximal when logM is maximal, we can maximize M by differentiating logM 
with respect to each of the b in turn and setting each partial differential to zero:  

kb
M

 
 log 

δ
δ  = 0  for k = 1 to m.   

From standard differential algebra, with logM defined at (4.35), it follows that 
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     (4.36) 

But from standard regression theory:  
HIHI

I

b
1  

2

=
σ
σ  

and if the index I is to give unbiased estimates of the aggregate genotype H, we recall that bHI 
must equal 1.  Hence (4.36) becomes,  

kikl gp

m

l
lb σσ ∑∑

==

=
n

1i
i

1
v         (4.37) 

Since there are m observations in the index, there are m equations of the general form of (4.37), 

i.e.    
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If we write these equations in their expanded form, i.e. 
 

b1
1.1p

σ   + b2
2.1p

σ   …   +  bm
mp .1

σ  =  v1
1.1g

σ   + v2
2.1g

σ  …  + vn
ng .1

σ  
b1

1.2p
σ   + b2

2.2p
σ   …   +  bm

mp .2
σ    =  v1

1.2g
σ   + v2

2.2g
σ  …  + vn

ng .2
σ  

      .   .       .   .       .   . 
b1

1.mp
σ   + b2

2.mp
σ   …  +  bm

mmp .
σ    =  v1

1.mg
σ   + v2

2.mg
σ  … + vn

nmg .
σ  

 
it is clear that they can be written in matrix notation as: 
 

Pb = Gv       (4.38) 
 

where: b = column vector of m selection index coefficients 
P = m x m matrix of phenotypic covariances among the observations in the index, 
G = m x n matrix of genetic covariances among the m index observations and the n traits 

in the aggregate genotype 
v = column vector of economic weights of the n traits in the aggregate genotype. 

 
Recalling that pre-multiplying a matrix by itself yields an identity matrix, i.e. that, P-1 P = I , the 
solution to obtaining b can be obtained by pre-multiplying both sides of (4.38) by P-1 to obtain, 
 

b = P-1Gv       (4.39) 
 
These are the so-called selection index equations that must be solved to find the optimal index 
weights. 
 
 
4.4.1.2 Alternative derivation using matrix notation 
 
The object is to minimize the variance of the difference between the predicted value, I, and the 
true value, H, i.e. minimize Var(H-I).  Thus we wish to minimize 
 

E(H - I)2   = E[I - H)' (I - H)] 

      = E[I - H)' (I - H)'] 

      = E[(b'x - v'g)(x b - g'v)] 

      = E[(b'xx'b - b'xg'v - v'gx b + v'gg'v] 
 
where x = column vector of observations and g = column vector of genetic values.  Each of the 
terms in the above equality can be found as: 
 

E(b'xx'b)  = b'E(xx')b  = b'Pb, 

E(b'xg'v)  = b'E(xg')v  = b'Gv, 

E(v'gx b)  =  v'G b       = b'Gv  since v'G'b is a scalar 

and   E(v'gg'v)  = v'E(gg')v   = v'Cv 



 52 

Therefore, to minimize M = b'Pb - 2b'Gv + v'Cv 
 

we must find the values which correspond to  
bδ

δM  = 0 = 2Pb - 2Gv + 0 

Therefore   Pb = Gv 
 

Hence,    b = P-1Gv  which is identical to equation (4.39). 
 
 
4.4.1.2 Accuracy of the index 
 
The accuracy of the selection index can be computed as the correlation between I and H: 

rHI =
HI

HI

σσ
σ         (4.40) 

The variance of the index, σ 2
I , is easily found as 
σ 2
I  = Var(b1x1 + b2x2 … bmxm) 

          =  22
1 1p
b σ  + 2

2b
2
p2σ + …+ 2b1b2 p12σ  + 2b1b3 p13σ  

 
or in matrix notation:  σ 2

I  = Var(b’x) = b’ Var(x)b = b'Pb    (4.41) 
 
Following the same argument as for σ 2

I , σ 2
H  Var(v’g) = v’ Var(g)v =  = v'Cv  (4.42) 

 
where C is an n x n matrix of genetic covariances among the traits in the aggregate genotype.   
 
Similarly, it follows that        σHI =  Cov(b’x, v’g) = b’ Cov(x,g)v = b'Gv   (4.43) 
 

Hence,    rHI = 
HI

HI

σσ
σ  = 

Cvv' Pbb'
Gvb'     (4.44) 

 
Note that because the index was constrained such that bHI = 1 and bHI = σHI/σ 2

I , thus σHI = σ 2
I   

 
and from equations (4.41) and (4.43),  b'Pb = b'Gv     (4.45) 
 
Thus, for the optimal index, equation (4.44) for accuracy simplifies to: 
 

rHI =
H

I

σ
σ  = 

Cvv'
Pbb' =  

Cvv'
Gvb'    (4.46) 

 
Note, however, that equations (4.45) and (4.46) only hold for the optimal index, whereas 
equation (4.44) holds for any arbitrary index. 
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4.4.2 Family Selection Indexes 
 
With family selection indexes, the problem is to combine information from different types of 
relatives to provide the most accurate estimate of the additive genetic value of a given trait (g) 
for a given individual.  As indicated previously, in this case H = g,  v = [1], and σ 2

H  =σ 2
g . This 

simplifies derivations to: 
from equation (4.39)   b = P-1G      (4.47) 
 

and from equation (4.46)  rHI = ggr , = 
2
g

Gb'
σ

     (4.48) 

 
4.4.2.1 Examples of family selection indexes 
 
Single source of information 
 
The simplest form of a family index are the cases discussed in sections 4.2 and 4.3, where only a 
single source of observations is used, i.e. a single record or the mean of m records of the same 
type. The simplest case is a single record of the phenotype of the individual itself.  In this case, 

the selection index is  I =
∧

g = b1x1 and the aggregate genotype is    H = g 
 
where x1 and g are both expressed as deviations from their population mean.   

In this case,   P = σ 2
x   and  G = xgσ  

Hence,    b = b= P-1G = (σ 2
x )-1 xgσ = xgσ /σ 2

x  

The accuracy of selection, given by (4.48), is rHI = ggr , = 
2
g

Gb'
σ

= 
C
Gb  = 

gx

xg

σσ

σ
  

These results are equivalent to those obtained in section 4.4.2. 
 

More than one observation in the index 
 
For the previous example, when there was only one source of information in the index, algebraic 
expectations for b and rHI were derived directly in terms of basic population parameters.  
Appropriate formulae can be derived for a wide range of situations, including some situations 
with two or more sources for a single trait.  A few more examples are given in Table 4.1, and a 
more extensive list is given by Van Vleck, 1993. Once there is more than one source of 
information in the index, it is often more useful to derive the expectations for the elements of P 
and G and then solve for b, bHI, etc. using a computer package for matrix programming, rather 
than attempting to derive an algebraic solution directly. 
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Table 4.1 Selection index coefficients, b, and accuracies, rHI, for some common sources 
of information in family indexes to predict additive genetic value for a single trait.   

 

Information Source 
 

b rHI = ggr ,  

Single record on 
individual 

 
h2 

2h  
 

 
m records on individual 1)1(

2

+− tm
mh

 
1)1(

2

+− tm
mh

 

 
Single record on one 

parent 
 

½ h2 ½ 2h  
 

 
m records on one parent 

mh2

2((m−1)t +1)
 ½

mh2

((m−1)t +1)
 

 
Single record on both 

parents 
 

½ h2, ½ h2 0.71 2h  
 

 
m records on both parents 

) 1)1((2

2

+− tm
mh

, 
 )1)1((2

2

+− tm
mh

 0.71 
)1)1((

2

+− tm
mh

 

 
Mean of n half-sib 

progeny with one record )4)1((
2

2

2

+− hn
nh

 
4)1( 2

2

+− hn
nh

 

 
 

4.4.2.2 General equations to derive elements of selection index matrices  
 
This section describes general equations that can be used to derive elements of the P, G, and C 
matrices that are needed for selection index calculations. Possible sources of information in the 
index are individual records and the mean of m records on a group of individuals or of m own 
records. Records on different traits can be included in the index and the aggregate genotype can 
consist of a single trait or of multiple traits. 
 
It must be noted that these equations assume no selection or inbreeding. The impact of selection 
and inbreeding on index derivations will be discussed in a later chapter. 
 
Notation: 

m   = number of records within a group 
c2  = common environment component within a group of individuals that contribute to a mean 
σpk  = phenotypic standard deviation of trait k 
σgk  = additive genetic standard deviation of trait k 
rpkl  = phenotypic correlation between traits k and l 
rgkl  = genetic correlation between traits k and l 
a   = additive genetic relationship within a group 
aij   = additive genetic relationship between individual(s) in groups i and j 
ahj = additive genetic relationship between the individual in the breeding goal (h) and 

individuals in group j 
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P-matrix 
diagonal:  
• Variance of m records of a given type 

        2)1(1
pm

tm
σ

−+    (= 2
pσ  for  m=1)         (4.49) 

                        with  t = repeatability for repeated records 
                           t = ah2+ c2  for multiple individuals 
 
off-diagonal:  
• Covariance between mean of m records on different traits (k and l) for the same group: 

        
m

ramr
lkkllkkl gggppp σσσσ )1( −+
  ( = rpklσpkσpl  for m=1)   (4.50) 

 
• Covariance between (mean of) record(s) on same trait k for different groups (i and j): 
        (aij h 2

k
 + c 2

k )σ 2
kp
                    (4.51) 

 
• Between records on different traits (k and l) in different groups (i and j): 
        

lkkl gggijra σσ                       (4.52) 
 
G-matrix 
• Covariance of the genetic value for trait k on the breeding goal animal (h) with records on trait l 

for group j 
        

lkkl ggghjra σσ    (= 2
kghja σ if k=l)          (4.53) 

 
C-matrix 
Diagonal: 
• Variance of genetic value for trait k 
       2

kg
σ                            (4.54) 

Off-diagonal: 
• Covariance between genetic values for traits k and l on breeding goal animal 
        

lkkl gggr σσ                        (4.55) 
 
 
4.4.2.2.1 Example Index of individual record and full-sib mean performance 
 
Imagine a situation where we have an observation on the individual's performance plus the mean 
performance of that individual's m full sibs, and we wish to predict the individual's breeding 
value.   The index will then take the form, 

I =
∧

g = b1x1 + b2x2 

 
where x1 is the individual's phenotype and x2 is the full-sib mean phenotype, both expressed as 
deviations from the population mean.  
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Then P and G will take the form, 
 

P = 
!
!
"

#

21

1

2

xx

x

σ

σ
   

!
!
"

#
2
2

21

x

xx

σ

σ
 ,       G = !

"

#
$
%

&

gx

gx

2

1

σ

σ
     (4.56) 

 
Elements of P and G can be derived using the equations developed in the previous section. As an 
example, consider a selection index based on individual phenotype and the mean performance of 
5 full sibs for animals in a population recorded for growth rate with a heritability of 0.5. We will 
assume there is no common environmental component.  

Then:    P = 

!
!
!
!

"

#

$
$
$
$

%

&

−+
m

hmh

h

2
2
1

2
2
1

2
2
1

)1(1

1

σ 2
p  = !

"

#

25.
1

   !
"

#

4.
25. 2

pσ   (4.57) 

 

and:    G = !
"

#
$
%

&
2

2
1

2

h
h 2

pσ  = !
"

#
$
%

&

25.
5. 2

pσ      (4.58) 

 
Selection index coefficients are given by   b = P-1G which, since σ 2

p  cancels out, gives 

b =  !
"

#

25.
1

   
1

4.
25. −

"
#

$
!
"

#
$
%

&

25.
5.

 = !
"

#
$
%

&

3704.
4074.

 

 
Hence, the selection index would be 

I =
∧

g = 0.4074 x1 + 0.3704 x2 

 
The accuracy of this index or EBV is given by 

rHI = ggr , = 
2
g

Gb'
σ

 =
2
p

2
'

 5.0
.25
.5

   
3704.
4074.

σ

σ p"
#

$
%
&

'
"
#

$
%
&

'

= 0.77  (4.59) 

 
We can compare this accuracy with the accuracy of 0.707 for phenotypic selection on the same 
trait as shown in Section 2.8.1.  By adding information on the mean performance of 5 full sibs, 

the accuracy of evaluation is increased from 0.71 to 0.77, i.e. by 8.9%.  And, since S = i ggr , σg , 

and i and σg are not affected by the addition of extra information to the index, expected response 
will also increase by 8.9%. 
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4.5 Selection Index and Animal Model BLUP   
 
An assumption in the use of selection indexes to estimate breeding values is either that there are 
no fixed effects in the data used, or that fixed effects are known without error.  This may be true 
in some situations.  An example are some forms of selection in egg-laying poultry where all 
birds are hatched in one or two very large groups and reared and recorded together in single 
locations.  But in most cases, fixed effects are important and not known without error.  For 
example, with pigs, different litters are born at different times of the year, often in several 
different locations.  In progeny testing schemes in dairy cattle, cows are born continuously, begin 
milking at different times of year and in a very large number of different herds. 
 
For this reason (and others) genetic evaluation in practice is often based on methods of Best 
Linear Unbiased Prediction, BLUP, which is a linear mixed model methodology which 
simultaneously estimates random genetic effects while accounting for fixed effects in the data in 
an optimum way.  Relationships among animals can be included in the model.  A sire model 
would account for relationships through the sire, i.e. half-sibships.  A sire and dam model 
accounts for relationships through both the sire and the dam, i.e. full and half-sibships.  An 
animal model accounts for all relationships among all animals in the data set.  A description of 
the theory and application of BLUP, and animal model BLUP in particular, can be found in 
Schmidt (1988), Mrode (1996), and Lynch and Walsh (1998). 
 
When relationships are included in a BLUP procedure, the method is equivalent to a selection 
index with the additional ability to efficiently estimate and correct the data for fixed effects.  In 
the absence of fixed effects, BLUP with relationships is identical to a selection index.  For 
example, a BLUP sire and dam model without records on the sire and dam would be the same as 
a selection index based on individual, full sib and half-sib records.  An animal model BLUP 
would be equivalent to a selection index based on all related individuals, including ancestors, 
with records. 
 
These equivalences are important for the design of breeding programs, because it means that in 
many situations, many aspects of selection programs with BLUP evaluation can be effectively 
studied with simulations based on equivalent selection indexes.  There are two approaches to 
modeling Animal model BLUP EBV using selection index: 
 
1) Develop a selection index based only on those relatives providing the greatest amount of 

information, rather than all possible relatives as in the animal model.  For example, when 
records on parents, full and half sibs, and progeny are accounted for, information on more 
distant relatives may only provide a trivial increase in accuracy of selection. 

 
2) Develop a selection index that includes parental EBV as sources of information, along with 

records on the individual itself, collateral relatives, and progeny, if available. In such an 
index, the parental EBV account for all ancestral information. 

 
Development of the first type of index follows from the previous sections. We will describe the 
development of the second type of index in more detail in the following. 
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Consider the following information sources to estimate the BV of individual i for a hierarchical 
breeding design in which each sire is mated to m dams and each dam has n progeny (Figure 4.1): 
• xi    = the animal’s own record,  
• xfs  = the average of single records on the individual’s n-1 full sibs 
• xhs = the average of single records on the individual’s (m-1)n half sibs 

• sĝ = the EBV of the individual’s sire, excluding xi, xfs, and xhs 

• dĝ = the EBV of the individual’s dam, excluding xi, xfs, and xhs 

• mĝ = the mean EBV of the (m-1) mates of the sire that produced the individual’s half sibs 
 

 
 
Based on this information, the selection index to estimate the individual’s BV can be formulated 

as:  Ii = iĝ = b1 xi + b2 xfs + b3 xhs + b4 sĝ + b5 dĝ + b6 mĝ     (4.60) 
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  G = !"
#

$%
&

midisihsifsiii ggggggxgxgxg                          ˆˆˆ σσσσσσ    (4.62) 
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G = [ ] 2   22

2
1   22

2
1   2

4
1   2

2
12    0      /       /     /     /      pds hrhrhhh σ      (4.64) 

With   xhs =  
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Where   xkl = klklms ds ecggg
klk

            /     / 2
1

2
1 ++++     (4.66) 
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Also,   
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As before, index weights can be derived as: GPb -1  =  

And accuracy as:    2
ˆ /  ggg,r σPbb'=  

Because elements of the P and G matrices depend on accuracy of EBV of the sire and dam, 
which in turn depend on the EBV of their parents, iteration must be used to derive the final index 
and its accuracy. This can be done by using some starting value for accuracy of parental EBV, 
e.g. rs = rd = h, deriving the index and its accuracy, and then using the resulting accuracy as the 
new accuracy for rs and rd, resolving the index, etc.. This process of iteration is akin to building 
pedigree information; in each iteration, an additional ancestral generation with data is added, 
which increases accuracy but at a diminishing rate, until accuracy asymptotes (see example). 
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The group of selected animals represents one tail of the distribution of the phenotypic 
distribution. If 2

pσ  is the phenotypic variance in the population before selection, k the factor by 
which the variance is reduced, and a subscript * is used to denote parameters after selection, the 
variance, 2*

pσ , in the selected individuals is: 
2*

pσ  = (1 - k) 2
pσ       (5.2) 

Factor k depends on intensity of selection (Pearson, 1903). When selection is by truncation of a 
normal distribution, then: 

k = i(i - x)       (5.3) 
 
where i is the selection intensity and x is the standardized truncation point to the normal 
distribution corresponding to i, expressed in standard deviation units. 
 
For genetic improvement, the question is what effect does selection on phenotype have on 
genetic variance of the trait.  Again, from standard normal distribution theory it follows that with 
truncation selection on trait y the variance of a correlated trait x in the selected group, 2*

xσ , is 

given by    2*
xσ  = (1 - 2

xyrk ) 2
xσ       (5.4) 

where xyr  is the correlation between traits x and y. 
 
Covariances between variables are similarly affected by selection.  For example, the genetic 
covariance between w and x after selection on y is 

*
wxσ  =  wxσ - k 2

y

xywy

σ

σσ
     (5.5) 

Note that equation (5.4) for genetic variance is just a special case of (5.5) when w = x. 
 
For mass selection, genetic variance among the selected individuals can be deduced as follows: 

2*
gσ  = (1 - 2

gyrk ) 2
gσ       (5.6) 

            = (1 - 2hk ) 2
gσ  

where 2
gσ  is the genetic variance before selection.  The correlation between additive genetic 

value g and phenotypic value, y, is h, the square of the heritability. The phenotypic variance is 
reduced by a factor k and the proportion h2 of 2

gσ  is reduced by that same factor. 
 
The formulae to calculate the reduction in genetic variance will now be generalized to a situation 

where selection is based on estimated breeding value ĝ (Figure 5.3).  Genetic variance among 
selected individuals can be derived using the correlation between the true genetic value g and the 

EBV, ĝ , which is equal to ggr , .  When selection is on ĝ , the variance in ĝ among the 

selected animals is 2*
gσ  = (1 - k) 2

gσ  and from (5.4) it follows that the genetic variance among 

the selected animals is  2*
gσ =  (1 - 2

ggrk ) 2
gσ       (5.7) 
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5.2  Prediction of Genetic Variance and Response for Mass Selection 
 
In Table 5.1, the genetic variance is given for different (4) generations of mass selection in males 
and females. Generation 0 is assumed to be unselected, h2=½, and 2

eσ = 2
)(ogσ =100.  Truncation 

selection is used in both males and females and 5% of animals with highest phenotype are 
selected. In that case: i = 2.063 and x = 1.645, which based on equation (5.3) results in k = i(i-x) 
= 2.063(2.063-1.645) = 0.862.  Using equation (5.6), genetic variance among selected parents 
(sires and dams) is (1-0.862x½)100 = 56.9. 

 
From equation (5.11) it follows that genetic variance in generation 1 is equal to ¼x56.9 + ¼x56.9 
+ ½x50 = 78.45.  Selection reduced genetic variance to 78.45. In the base population, 2

eσ  was 
100 and the level of this variance is not affected by selection. Heritability in generation 1 is now 
78.45/(100+78.45)=0.44.  With this new level of h2, variance among parents selected in 
generation 1 can be calculated using (5.6) and variance in generation 2 using (5.11).   
 
 
Table 5.1 Effect of truncation selection with p=5% in males and females (i=2.063, x=1.645) 
during 5 generations (t = 0 to 4) on additive genetic variance 2

)( tgσ and average additive genetic 

merit of individuals ( )(tg ). Heritability in generation 0 was ½ (no inbreeding). 
 

t 2
)( tgσ  

 

2
)( t

h  

 

)(tg  
 

)(tg - )1( −tg  
0 100 0.50   50.0 0 
1   78 0.43   64.6 14.6 
2   74 0.43   76.7 12.1 
3   74 0.42   88.3 11.6 
4   73 0.42   99.8 11.5 
5   73 0.42 111.3 11.5 

Selection stopped (random selection from here on) 
6   87 0.47 111.3 0 
7   93 0.48 111.3 0 
8   97 0.49 111.3 0 
9   98 0.49 111.3 0 

10   99 0.49 111.3 0 
 
 
From Table 5.1 it can be seen that genetic variance reaches an equilibrium after three generations 
of selection.  Genetic variance is equal to 74 and does not decrease further although selection is 
continued. This is referred to as the asymptotic genetic variance. When this is reached, the 
amount of gametic phase disequilibrium created by selection of individuals is equal to the 
amount of gametic phase disequilibrium which is broken down during meiosis (Mendelian 
sampling). When selection is stopped after four generations, no new gametic phase 
disequilibrium is created in the parents and the variance reduction is halved each generation as a 
result of Mendelian sampling.  After 10 generations, genetic variance is back to its original level. 
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Response to selection from one generation to the next can be predicted as derived in chapter 1, 
but using parameters that apply to the parental generation: 
   )1( +tg = )(tg + ih(t)σg(t)       (5.12) 
The mean of the population changes as a result of selection.  After five generations of selection 
the population level has increased by 111.3 units (Table 5.10. The greatest genetic gain was 
realized in generation 1 because this was the generation with the highest h2 and genetic variance. 
Response in subsequent generations is reduced both because of a reduction in genetic variance, 
as well as a result of a reduction in accuracy of selection. The population remains at the same 
level after selection has stopped.   
 
Genetic variance in the population is reduced by 26% after one round of selection but this is the 
result of a much larger, i.e. 52%, reduction in variance among selected sires and dams. This 
results from the fact that variance due to Mendelian sampling is not affected by selection and 
consequently remains 50. Another way to look at this is to consider variation within and between 
full sib families. Without selection, between and within family variances are both equal to 50.  
With selection, variation between full sib families is equal to ¼ 2*

)( tsgσ + ¼ 2*
)( tdgσ , while the within 

full sib family genetic variance is equal to 2
mgσ = ½ 2

)(ogσ .  In generation 1, the between full-sib 
genetic variance is equal to ¼x56.9+¼x56.9=28.45, while the within full-sib variance remains 
equal to 50. This demonstrates that selection has changed the ratio of within and between family 
genetic variance. An implication of this is that using a reduced heritability in deriving selection 
index weights is not the correct way to deal with changes in genetic variance resulting from 
selection because this assumes that all components of genetic variance are affected in the same 
way, which is not true, as we have seen in equation (5.11).  Mass selection is a special case in 
which we only use the observations on the individual and forms an exception to this rule. 
 
 
5.2.1  Asymptotic Genetic Variance and Response to Selection   
 
The previous enables recursive prediction of changes in variance and response to selection. Both 
variance and response reach steady state or asymptotic values after a number of generations. For 
the case of mass selection (and BLUP selection as we will see later), these steady state 
parameters can also be derived directly, as will be demonstrated below.  
 
Starting with recursive equation (5.11):  2

)1( tgσ = ¼(1- 2
)( tss rk ) 2

)( tgσ + ¼(1- 2
)( tdd rk ) 2

)( tgσ  + ½ 2
)(ogσ , 

steady state parameters (denoted by subscript (L)) can be derived by setting 2
)( Lgσ = 2

)1( tgσ = 2
)( tgσ , 

)( Lsr =
)( tsr , and 

)( Ldr =
)( tdr , which results in the following steady-state equation: 

2
)( Lgσ = ¼(1- 2

)( Lss rk ) 2
)( Lgσ + ¼(1- 2

)( Ldd rk ) 2
)( Lgσ  + ½ 2

)(ogσ  (5.12) 
This equation can be solved if an equation can be developed that expresses accuracy of selection 

at the limit, 
)( Lsr and 

)( Ldr , in terms of 2
)( Lgσ and base population parameters. This is possible for 

mass selection and, as will be shown later, also for selection on BLUP EBV but not in general 

for selection on other types of selection indexes. 
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5.3. Incorporating Gametic Phase Disequilibrium in the Selection Index 
 
Because selection affects genetic variances and co-variances, it also affects elements of the P and 
G matrices that are needed to derive the optimal weights for selection indexes. In this section we 
will illustrate how changes in genetic parameters can be incorporated in selection index 
derivations and will evaluate their impact on accuracy of the index. 
 
In general, because selection affects between and within-family variances differentially, 
derivation of elements of the P and G matrices must be based on the partitioning of the genetic 
value of individuals into parental and Mendelian sampling components: 
 
    goffspring = ½ gs + ½ gd + gm     (5.20) 
 
and, from equation (5.10), genetic variance in the offspring generation, t, must be partitioned 
into:    2

)( tgσ  = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + 2
mgσ     (5.21) 

with from (5.7)  2*
)1( −tsgσ =  (1- 2

)1( −tss rk ) 2
)1( −tgσ  

2*
)1( −tdgσ = (1- 2

)1( −tdd rk ) 2
)1( −tgσ  

2
mgσ    =  ½ 2

)(ogσ  
 

As an example consider the situation where selection of sires and dams is on an index using 
phenotype of the individual and the mean performance of m full sibs. The index for selection in 
generation t will then take the form, 

)(ˆ tg = b1(t) x1 +  b2(t) x2      (5.22) 
where x1 is the individual's phenotype and x2 is the full-sib mean phenotype, both expressed as 
deviations from the population mean. Then the matrices needed to derive the index for 
generation t, P(t) and G(t) will take the form, 
 

P(t) = 






21

1

2

xx

x

σ

σ
   






2

2

21

x

xx

σ

σ
 ,       G(t) = 









gx

gx

2

1

σ

σ
    (5.23) 

 
Elements can be derived as follows: 
From equation (5.21):  2

1xσ  = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + 2
mgσ + 2

eσ    (5.24) 
2

2xσ     = ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ  + ( 2
mgσ + 2

eσ )/m  (5.25) 

σx 1 x 2   =  ¼ 2*
)1( −tsgσ  + ¼ 2*

)1( −tdgσ      (5.26) 

   σx1,g    = ¼ 2*
)1( −tsgσ   + ¼ 2*

)1( −tdgσ + 2
mgσ     (5.27) 

and    σx2,g    = ¼ 2*
)1( −tsgσ   + ¼ 2*

)1( −tdgσ      (5.28) 
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In generation 0, prior to selection, the above equations simplify to those derived in section 
4.4.2.2.1.  
 
For a trait with h2 = 0.5, 2

)0(gσ = 25, 2
)0(pσ = 50, and m=5 full-sibs, we get the following: 

P(0) = 



5.12

50
   




20

5.12
  G(0) = 








5.12

25
  and         b(0) = P(0)

-1
G(0) = 








3704.
4074.

 

 

Accuracy is    r(0) = 2
(0)(0)

(0)gσ

G'b
 

 = 0.77 

 
When in generation 0 only the 5% of sires and dams with the highest EBV are used to produce 
offspring, k = 0.863 and 

2*
)1(sgσ = 2*

)1(dgσ = (1- 2
)0(

rk ) 2
)0(gσ = (1-0.863x0.77

2
)25 = 12.21 

and   2
)( tgσ  = ¼ 2*

)1( −tsgσ + ¼ 2*
)1( −tdgσ + 2

mgσ = 18.61 
 
Using these values to derive elements of the P and G matrices for t=1 we get: 

P(1) = 



11.6
61.43

   



61.13
11.6

 G(1) = 







11.6
61.18

  and         b(1) = P(1)
-1

G(1) = 







2746.
3883.

 

 

Accuracy is    r(1) = 2
(1)(1)

(1)gσ

G'b
 

 = 0.69 

 
Using the recursive equations, this accuracy can be used to predict response to selection from t=1 
to t=2 and to derive the genetic variance and selection in t=2. 
 
Note that, compared to generation 0, selection reduced the variance among sires and dams and, 
as a consequence, the relative importance of observations on full-sibs is lower for the index used 
for selection in t=1 and the relative importance of observations on the individual has increased.  
 
The reduced importance of full-sib information can also be illustrated by comparing accuracy of 
the index to the accuracy of selecting on own phenotype alone, which is equal to h(0) and h(1) for 
t=0 and t=1, respectively. Based on this, the efficiency of the index excluding information from 
the full-sibs is 0.71/0.77 = 0.92 and 0.65/0.69 = 0.95 before and after one round of selection. 
 
 
5.4 Incorporating Gametic Phase Disequilibrium in BLUP EBV      
 
The previous section described methods to incorporate the effect of selection on genetic variance 
components in derivation of selection indexes based on recursive equations. In principle, these 
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methods can also be applied to the selection indexes described in section 4.5, method 1, to 
approximate BLUP EBV. Examples are in Wray and Hill (1989) and Villaneuva et al. (1993).  
 
For BLUP EBV, however, an alternative method can be used to incorporate the Bulmer effect, 
which facilitates direct derivation of steady state parameters. This method is based on the second 
approach for approximating BLUP EBV described in section 4.5 and utilizes the important 
property of BLUP EBV that their prediction error variance (PEV) does not depend on selection, 
but only on the amount of information used, with information defined as the number and type of 
records that is available on the individual itself and its relatives. This was described by 
Henderson (1975), using the argument that PEV’s are based on the inverse of the coefficient 
matrix, which depends on the design matrices, the matrix of additive genetic relationships, and 

genetic parameters in the base population: 2
εσ = Var(ε) = Var( )ˆ g-g  = C22    (5.29) 

where   ε ε , ĝ , and g are vectors of prediction errors, EBV, and BV, respectively, and C22 is the 
part of the inverse of the coefficient matrix of the mixed model equations that corresponds to 
animal breeding values. Elements of C22 do not depend on selection. Therefore, the PEV of a 
particular animal with a particular amount of information in an unselected population is the same 
as if that animal was in a selected population (but with selection accounted for through ancestor 
information). Thus, to get the PEV of an EBV, the mixed model equations can be set up ignoring 
the effect of selection on genetic variance and solved for. The same applies to approximations of 
BLUP EBV using the selection index methods described in section 4.5. Thus, the variance of 

prediction errors can be derived as:  2
)0(ε

σ = (1- 2
)0(

r ) 2
)(ogσ     (5.30) 

where the subscript 0 (t=0) refers to parameters derived for an unselected population, and 
)0(

r is 
the accuracy of the BLUP EBV, derived using an index that ignores the effect of selection, 
following section 4.5. 

Although selection doesn’t affect the PEV, and, therefore, remains equal to 2
)0(ε

σ , PEV can also 
be derived based on the accuracy and genetic variance in the selected population as: 

     2
)(tε

σ = (1- 2
)( t

r ) 2
)( tgσ      (5.31) 

Thus, using the property that PEV is unaffected by selection: 

     2
)(tε

σ = 2
)0(ε

σ  

     (1- 2
)( t

r ) 2
)( tgσ = (1- 2

)0(
r ) 2

)(ogσ  
 
which, solving for 2

)( t
r results in: 2

)( t
r  = 1-(1- 2

)0(
r ) 2

)(ogσ / 2
)( tgσ     (5.32) 

This equation expresses the accuracy of EBV in a selected population in terms of the accuracy of 
EBV in an unselected population and the ratio of genetic variance in the unselected and selected 
population. Equation (5.32) holds for any generation and for any group of individuals. 
 
Together with the recursive equation (5.11) for genetic variance: 
 

2
)1( tgσ = ¼(1- 2

)( tss rk ) 2
)( tgσ + ¼(1- 2

)( tdd rk ) 2
)( tgσ  + ½ 2

)(ogσ  
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equation (5.32) provides a recursive system to derive genetic variance, accuracy of selection, and 
response to selection, as illustrated in Table 5.2 for selection on BLUP EBV that are described in 
section 4.5, method 2. Note that it is assumed that full pedigree information is available in 
generation zero. 
  

 
Table 5.2. Recursive prediction of genetic variance, accuracy, and response with selection on 
BLUP EBV. Selected fractions are 0.2 and 0.5 for males and females, respectively, for a trait 
with heritability 0.25 and phenotypic variance 100. Selection is on BLUP EBV from a 
hierarchical mating structure with 20 mates per sire and 10 offspring per dam. Accuracy in 
generation zero is derived in section 4.5. 
t (is+id) 

2 
ks kd σg(0)

2 σg(t)
2 r(0) r(t)= g(t+1) = R(t) = σ∗gs(t)

2 = σ∗gd(t)
2 = σg(t+1)

2 = 

     from t-1    (1-(1-r(0)
2)σg(0)

2 

σg(t)
2 

g (t)  + 
1/2(is+id)r(t)σg(t) 

g (t+1)- g (t)  
(1-r(t)2ks)σg(t)

2 
 

(1-r(t)2kd)σg(t)
2 

1/2σ
∗
gs(t)

2+1/2σ
*

gd(t)
2 

+1/2σg(0)
2 

0 1.1 0.78 0.64 25 25.00 0.704 0.704 3.871 3.871 15.326 17.074 20.600 

1 1.1 0.78 0.64 25 20.60 0.704 0.623 6.979 3.108 14.363 15.490 19.963 

2 1.1 0.78 0.64 25 19.96 0.704 0.607 9.961 2.982 14.224 15.261 19.871 

3 1.1 0.78 0.64 25 19.87 0.704 0.604 12.924 2.963 14.204 15.228 19.858 

4 1.1 0.78 0.64 25 19.86 0.704 0.604 15.884 2.960 14.201 15.223 19.856 

5 1.1 0.78 0.64 25 19.86 0.704 0.604 18.843 2.960 14.200 15.223 19.856 
 

Table 5.2 shows that, similar to mass selection, the impact of the Bulmer effect reaches a steady 
state after 5 generations of selection. 
 
 
5.4.1  Asymptotic Genetic Variance and Response to Selection 
 
Equations (5.32) and (5.11) can also be used to directly derive steady state parameters, following 
Dekkers (1992). Assuming for simplicity equal selection in males and females, using equation 
(5.32), accuracy at the limit is:    

2
)( L

r  = 1 - (1- 2
)0(

r ) 2
)(ogσ / 2

)( Lgσ      (5.33) 
Simplifying equation (5.11) for equal selection among males and females, genetic variance at the 
limit is:    2

)( Lgσ = ½(1- 2
)( L

rk ) 2
)( Lgσ + ½ 2

)(ogσ     (5.34) 

Rearranging results in: 2
)( Lgσ = 2

)(ogσ /(1- 2
)( L

rk )     (5.35) 

and substituting equation (5.33) gives an equation that expresses genetic variance at the limit in 
terms of parameters for t=0: 2

)( Lgσ = [1+k(1- 2
)0(

r )] 2
)(ogσ /(1+k)    (5.36) 

 
Equations (5.36) and (5.33) can then be used to derive response at the limit as: 
     R(L) = i 

)( L
r

)( Lgσ  

Response at t=0 is:  R(0) = i 
)0(

r
)(ogσ   
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    2*
)( tsigσ = (1- 2

)( tsisi rk ) 2
)( tsigσ  

where  sik  is the variance reduction factor corresponding to the selection intensity among sires of 
age group i:   )( sisisisi xiik −=  
Genetic variance among all selected sires at time t is the pooled genetic variance of selected sires 
within each age group, augmented by the genetic variance between age groups: 

    2*
)( tsgσ = 

sP
1 Σpsi wsi 

2*
)( tsigσ + 

sP
1 Σpsi wsi ( *

)(tsig - *
)( tsg )

2  (5.40) 

Similarly for dams:  2*
)( tdgσ = 

dP
1 Σpdi wdi 

2*
)( tdigσ + 

dP
1 Σpdi wdi ( *

)(tdig - *
)(tdg )

2 (5.41) 

And genetic variance at time t+1 can be computed using equation (5.8) as: 
2

)1( tgσ  = ¼ 2*
)( tsgσ  + ¼ 2*

)( tdgσ  + ½ 2
0gσ  

 
 

5.6 Effects of Sample size and Inbreeding 
 
There are two additional factors that affect genetic variance in future generations under the 
infinitesimal model: sample size and inbreeding. Models to incorporate these effects will be 
presented in the following sections. 
 
 
5.6.1 Effect of finite population size on genetic variance 
 
Expected variances derived in the previous sections apply to infinite population sizes. When 
selecting n individuals out of a population, in addition to the effect of selection on genetic 

variance, variance is expected to be reduced further by a factor (1-
n
1

). Thus, extending equation 

(5.7):    2*
gσ =  (1-

n
1

)(1 - 2
ˆggrk ) 2

gσ      (5.42) 

This adjustment is needed because the variances predicted in the previous sections are expected 
population variances rather than expected sampling variances. Recalling from statistics, sample 
variance is estimated by dividing sums of squares by n, whereas population variance is estimated 
by dividing sums of squares by n-1. Thus, to convert an estimate of population variance to an 
estimate of sample variance, the population variance estimate must be multiplied by  

(n-1)/n = (1-
n
1

). It is clear that the impact of this adjustment will be minor for n>50. 

 
5.6.2 Effect of Inbreeding on Genetic Variance 
 
The coefficient of inbreeding of an individual is equal to the probability that two alleles drawn at 
random from a locus at that individual are identical by descent. Inbreeding, thereby, reduces the 
variance contributed by Mendelian sampling by a parent by a factor (1-Fi), where Fi is the 
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coefficient of inbreeding of the parent. Averaging over all sires and dams that are used for 
breeding, Mendelian sampling variance contributed to the next generation then is equal to: 

2
)1( +tmgσ = (1- ½( )()( tdts FF + ))½ 2

)(ogσ     (5.43) 

where )(tsF and )(tdF are mean coefficients of inbreeding of sires and dams selected at time t. 
 
 
 
5.7   Multiple Stage Selection 

 
Breeding goal:   H = v1g1 + v2g2 + v3g3 +  . . . . . . + vngn = v’g 
 
Information sources:  X1 , X2 , X3 , X4 , . . . . . . , Xm 
 
Selection index:  I =  b1X1 + b2X2 + b3X3 +  . . . . . . + bmXm 
 
    b = P-1 G v 
 
Selection on I maximizes response to selection in H 
 

- requires all animals to be measured for all traits 
 
Multiple-stage selection: 
 
   Stage 1: select on I1 =  b1X1 + b2X2 + . . . . + bkXk           = b1’X1 
 
   Stage 2: select on I2 =  b1X1 + b2X2 + b3X3 +  . . . . + bmXm = b2’X 
 
Only animals that are selected in stage 1 have to be evaluated for information 
sources Xk+1 , . . . . , Xm 

 
  ! Cost savings 
  ! Opportunities to increase population size for early stages 
 
Optimal index weights:  
  
 I1  : b1 = P11

-1 G1 v  P11 = Var(X1) 
 
      G1 = Cov(X1, g) 
  
 I2  : b2 = P-1 G v 
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   P11 P12   G1 
  P =     G =     
   P21 P22   G2 
 
Optimal index weights for index I2 are not affected by Stage 1 selection on I1, 
provided that all data that is included in I1 is also included in I2. 
   (Cunningham 1975 Theor. Appl. Genet. 46:55-61)  
 
But accuracy and response to selection on I2 is affected by selection on I1 
 

Stage 1:  accuracy of I1:   r1 = 
Cvv'

vG'b 11  C = Var(g) 

 
  trait response vector: Sg,1 = i1 

1111

11

bP'b
G'b  

 

Stage 2: accuracy of I1:   r2 = 
vCv'
vG'b

*

*
2  

 

  trait response vector: Sg,2 = i2 
2

*
2

2

bP'b

G'b *

 

 
Total response vector stage 1+2: Sg =Sg,1 + Sg,2 
 
P*, G*, and C* are P, G, and C matrices adjusted for selection on I1 
 
Matrix equivalent of covariance adjustment for selection on w: 
 

  σxy
* =  σxy - k 2

w

wywx

σ
σσ

  k = i(i-x)  x = truncation pt. 

  
Vectors w, x, y ; selection on b’w     

  Cov(x,y)* = Cov(x,y) – k )Var(
)Cov( ),Cov(

wb'
yw,b'wb'x

 

 

          = Cov(x,y) – k bwb'
yw,bb'wx,

)Var(
)Cov()Cov(
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 Stage 1 selection on b’w = b1’X1 
    

 P* = Var(X)* = Cov(X,X)* = P - k 
111

1111

b)XVar('b
)X,XCov('b b)X,XCov(

 

 

          = P - k 
[ ]

1111

211111
21

11

bP'b

PP'b b
P
P










 

 
 

 G* = Cov(X,g)* = G - k 
111

1111

b)XVar('b
)g,XCov('b b)X,XCov(

 

 

         = G - k 
1111

111
21

11

bP'b

G'b b
P
P










 

 

 C* = Var(g)* = Cov(g,g)* = C - k 
111

1111

b)XVar('b
)g,XCov('b b)X,gCov(

 

 

       = C - k 
1111

1111

bP'b
G'b b'G

 

 
 
Multi-stage selection with availability of multi-trait EBV: 
 
- EBV for all m traits available at every stage (different accuracies) 
  

- select on complete index at every stage 
 
  I = nn2211 gv....gvgv ˆˆˆ +++  
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5.7.1 Optimization of proportions selected at each stage 
 
Total proportion selected over s stages = p 

Proportion selected at stage i = pi   p = ∏
=

s

1i
ip     

    
 
 ai = cost of traits measured at stage i 
 

 Total cost = TC =  ∏∑
−

==

+
1i

1j
j

s

2i
i1 paa  

 
Maximize gain in breeding goal per unit of cost: Q = ∆∆∆∆H/TC 
 
Or Maximize Profit from sale of breeding stock:  
 
 Profit = N p k b ∆H – TC 
 
  N = total # animals in breeding program 
  p = percent selected 
  k = # times breed is multiplied before distribution 
  b = slope of supply-demand curve 
     = extra returns from sale of animal per extra unit   
   genetic worth of animal 
 
Maximize proportion selected at each stage – requires numerical 
integration (Ducrocq and Colleau, 1989). 
 
 
References: 
Cunningham (1975), Theor. Appl. Genet. 46:55 
Ducrocq and Colleau (1989) Genet. Sel. Evol. 21:185 
Xu and Muir (1991) Genetics 129:963 
Xu and Muir (1992) Theor. Appl. Genet. 83:451 
Xu, Martin, and Muir (1995) J. Anim. Sci. 73:699 
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Chapter 6 
 

Economic Selection Indexes 
 
In economically oriented breeding programs, the trait that we want to improve could be called 
economic merit.  The breeding objective of our program is then to maximize improvement of 
economic merit.  Economic merit might be defined in different ways, e.g. as profit per animal, 
profit per enterprise, economic efficiency, or something else.  We will return to this problem in 
later Chapters.  For the present, it is only necessary to recognize that the breeding objective is a 
general statement of the economic genetic goal of the breeding program. 
 
For a given definition of the breeding objective, there will likely be several or many traits that 
contribute to the objective.  The aggregate genotype is then defined as a function of the additive 
genetic values of the traits of interest of an individual, which if selected upon would achieve the 
breeding objective.  The function need not necessarily be linear, but in many cases an 
approximate linear relationship can be found which adequately defines aggregate genotype over 
the range of genetic values encountered (see Chapter 7).  If the function is a linear function, then 
the aggregate genotype, H, can be written as 

 
H = v1g1 + v2g2 … vngn = v’g    (6.1) 

 
where gi is the additive genetic value of the ith trait and vi is the economic value of genetically 
improving that trait.  Note that vi is a partial economic weight, that is, it is the economic value of 
genetically improving the ith trait, when all other traits remain unchanged. 
 
In vector notation, v’ = [ v1 , v2 , … , vn] and g’ = [ g1 , g2 , … , gn] . 
 
In practice, additive genetic values are not known.  However we can record each individual's 
performance for a number of traits.  Observations on these traits can then be combined into a 
selection index, I of the form,  

I = b1x1 + b2x2 … bmxm  = b’x     (6.2) 
 
where xi is an observation on the ith trait and bi is the selection index coefficient (or weight) for 
that trait. In vector notation: b’ = [ b1 , b2 , … , bm] and x’ = [ x1 , x2 , … , xm]. 
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The problem is then to estimate the selection index coefficients, bi, such that selection of 
individuals on their selection index value, I, maximizes response in the aggregate genotype, H. 
The selection index methods described in Chapter 4 can be used to derive such indexes based on: 
 
     b = P-1Gv      (6.3) 
 
It is worth noting at this point that the traits recorded and which appear in the index do not need 
to be, and often are not, the same traits as those that appear in the aggregate genotype.  As a 
crude example, consider a terminal sire line of pigs.  Assume that the profitability of this line is 
(approximately) a linear function of carcass weight and lean percentage at 120 days of age.  Thus 
the aggregate genotype would be written as: 

 
H = v1 g(carcass weight) + v2 g(lean percentage) 

 
Neither carcass weight nor lean percentage can be recorded directly in live pigs, but we could 
record live weight at 120 days and ultrasonically estimated back fat depth at 120 days. The 
selection index would then take the form, 
 

I = b1 x(live weight) + b2 x(ultrasonic back fat depth) 
 

In this case, neither of the two traits recorded actually appear in the aggregate genotype, but both 
can be expected to be closely related to the traits in the aggregate genotype. 
 
 
6.1 Predicting Response to Selection and Related Parameters 
 
If we were interested in a practical problem of what weight to give a series of observations on a 
particular population of animals for selection, and we were certain of our phenotypic and genetic 
parameters contained in P and G and were sure of our economic weights in v, then we might 
stop here.  But curiosity alone would likely prompt us to ask what the predicted variance of the 
index would be, what would be the predicted response of the aggregate genotype to selection on 
the index, and what would be the predicted correlated response of each of the traits in the 
aggregate genotype?  And, mere curiosity aside, such predictions are essential when comparing 
different possible indexes, for assessing whether predicted responses of individual traits are 
likely to be acceptable to the users of the index or to their customers, and for determining 
whether it is worthwhile to record data on a given trait for inclusion in the index. 
 
In section 4.4.1.2 the variance of the index, σ 2

I , was derived as σ 2
I  = b'Pb  (6.4) 

 
It is important to realize that this equation holds whatever values of b are used, i.e. not only for 
the optimal b derived using selection index theory, but for any arbitrary vector b.  However, if b 
is the optimal set of index coefficients, then  b=P-1Gv , which when substituted into (6.4) gives:  
 

σ 2
I  = b'P P-1 Gv  = b' Gv     (6.5) 
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This second form is most often quoted as the variance of a selection index.  But it should always 
be remembered that this holds only for the "optimal'' selection index.  Since you may wish to 
explore the consequences of using sub-optimal indexes, it is probably safer to use the form given 
in equation (6.4), which holds for any selection index, optimal or sub-optimal. 
 
Applying the general equation for response to selection, to selection on I to improve H, predicted 
genetic superiority for the aggregate genotype, H, to selection on the index, I, is given by:  
    SH = i rHI σH       (6.6) 
 
As given in 4.4.1.2, the variance of the breeding goal can be derived as: 

σ 2
H  = v'Cv       (6.7) 

where C is an n x n matrix of genetic covariances among the traits in the aggregate genotype.   
 
Similarly, it follows that σHI = b'Gv       (6.8) 
 

Hence,    rHI =
HI

HI

σσ
σ  = 

Cvv' Pbb'
Gvb'      (6.9) 

 

and    SH = i
Pbb'
Gvb'        (6.10) 

 
Note again, all the above derivations, (6.6) to (6.10), apply to any selection index (that is any set 
of b values) not just the optimum index.  However, if we are dealing with the optimal index, 
where b = P-1Gv, then as noted at equations (6.4) and (6.5) b'Pb = b'Gv and substituting into 
equation (6.10) gives:  

 SH = i Gvb'        (6.11) 
 

We could have also obtained this optimal selection response directly, as SH = i bHI σI 
 
and recalling that for the optimal selection index: bHI = 1, hence:  SH = i σI 
 
and substituting in the variance of the optimal index defined at (6.5): SH = i Gvb'  (6.12) 
 
The accuracy of an index is defined as its correlation with the aggregate genotype, i.e. rHI, as 
estimated at (2.17).  For an optimal index, noting the equivalence of equations (2.13) and (2.14), 
the expectation for the accuracy of the index can also be written as  

rHI = 
Cvv'
Gvb'        (6.13) 

The expected change in the additive genetic value of the ith trait in the aggregate genotype due to 
selection on the index, Sgi, can be found as a correlated response to selection on I as: 

Sgi   =  bgiI SI =  bgiI iσI  =  i 
I

I

Igi σ
σ

σ
2

 = i 
I

Igi

σ

σ   (6.14) 

Where    iiiIg gg
i

Gbxbxb '),cov(')',cov( ===σ     (6.15) 
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where Gi denotes the ith column of G: G = [G1, G2, …, Gi, …, Gn] 

Hence for all indexes:    Sgi = i 
Pbb'
Gb' i      (6.16) 

 

For an optimum index, the solution is also Sgi = i 
Gvb'
Gb' i     (6.17) 

 
It also follows directly from (6.17), that the vector of genetic responses of each of the traits in the 

aggregate genotype, can be found as:  Sg = ],,,,[
1 ni ggg SSS ……  = i 

Pbb'
Gb'   (6.18) 

 
These derivations of the principal parameters defining a selection index for all indexes and for 
optimal indexes are summarized in Table 6.1 

 
Table 6.1 Summary of selection index formulae for any index and for optimal indexes. 

 

 Derivation 

Parameters Any Index Optimal Index 

b Arbitrary P-1Gv 

σ 2
I  b'Pb b'Gv 

σ 2
H  v'Cv v'Cv 

σHI b'Gv b'Gv 

rHI 

Cvv' Pbb'
Gvb'  

H

I

σ
σ

==
Cvv'
Pbb'

Cvv'
Gvb'  

SH i 
 Pbb'

Gvb'  
 

Iiii σ== Pbb'Gvb'  

Sgi i 
 Pbb'

Gb' i  i 
 Gvb'

Gb' i  

Sg i 
 Pbb'

Gb'  i 
 Gvb'

Gb'  
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The correlation between index values of two relatives, i and j, which is needed to, e.g., compute 
selection intensities as in section 3.6, can be computed as:   
 

t = corr(Ii,Ij) = corr(b’xi, b’xj) =
Pbb'

)bx,cov(xb' ji  = 
Pbb'
Rbb'  

where R is a matrix with covariances between information sources on the two relatives (De Boer 
and Van Arendonk, 1989). 
 
 
6.2 Example of Economic Index Selection 
 
A beef breed is to be used as a terminal sire and economic analysis has shown that three key 
traits are post-weaning gain (PWG) with an economic value of 370 $/kg/d, ultrasonic back fat 
depth (BF), with an economic value under the local payment system of -20 $/mm, and feed 
intake, with an economic value of –50 $/kg/d.  Only PWG and BF are recorded in the bull-
testing program.  Genetic and economic parameters are summarized in Figure 6.1. 
 

 
 

 
Matrices P, G, and C have the following elements: 
 

P = 
!
!
"

#

BFPWG

PWG

pp

p

,

2

σ

σ
   

!
!
"

#

2

,

BF

BFPWG

p

pp

σ

σ
       (6.19) 
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G = 
!
!
"

#

BFBFPWGBF

BFPWGPWGPWG

gpgp

gpgp

,,

,,

σσ

σσ
   

!
!
"

#

FIBF

FIPWG

gp

gp

,

,

σ

σ
     (6.20) 

 

C = 

!
!
!
!

"

#

BFFIPWGFI

BFPWGBF

BFPWGPWG

gggg

ggg

ggg

,,

2
,

,
2

σσ

σσ

σσ

   

!
!
!
!

"

#

2

,

,

FI

FIBF

FIPWG

g

gg

gg

σ

σ

σ

     (6.21) 

 

The elements of P, G, and C can be found by recalling that  r12  =   
2
2

2
1

12

σσ

σ  

hence    σ 12 = r12σ1σ2 
 
and that   σ 2

g  = h2 σ 2
p  

 

giving   P = !
"

#

00621.0
0529.0

   !
"

#

0225.0
00621.0

,    G = !
"

#

004632.0
02116.0

   !
"

#

01068.00099.0
02277.0004632.0

 

 

and   C = 
!
!
!

"

#

02277.0
004632.0
02116.0

   
!
!
!

"

#

05.001068.0
01068.00099.0
02277.0004632.0

 

 

The vector of economic weights is: v = 
!
!
!

"

#

$
$
$

%

&

−

−

50
20

370
 

 

Hence, the index weights would be b = P-1Gv = !
"

#
$
%

&

52.9
6.123

 

 

The index accuracy would be  rHI = 
Cvv'
Gvb'  = 0.6214 

 
The expected genetic superiority for the breeding goal to 1 standard deviation selection on the 
index is:     

SH =
 Pbb'

Gvb' = 28.722 
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Expected genetic superiorities for PWG, BF, and FI to one standard deviation selection on the 

index are:    Sg = 
Gvb'
Gb'  = 

!
!
!

"

#

$
$
$

%

&

1015.0
0232.0
0926.0

 

 
Thus, one standard deviation of selection on the index would be expected to yield bulls with an 
average breeding value of +0.0926 kg/day for PWG, + 0.0232 mm for BF, and +.1015 kg/day 
more FI. Also, their expected breeding value for profit is +$28.72. 
 
 
6.3 Economic Indexes Based on Estimated Breeding Values  
 
So far we have dealt with economic selection indexes that were based on phenotypic records. In 
these cases, the main interest is to predict the individual's breeding value for the aggregate 
genotype.  In practice, however, the sources of information that are available to develop the 
economic index are EBV for individual traits, rather than phenotypic records: 

     I = b1 1ĝ  + b2 2ĝ  +… + bm mĝ  = b’ Iĝ  
 
This leads to a step-wise procedure for development of economic selection indexes, in which the 
first step consists of predicting BV for individual traits and the second step of combining the 
resulting EBV into an economic index. An advantage of this step-wise approach is that it allows 
different breeders to put different emphasis on traits in the aggregate genotype, while utilizing 
the most accurate EBV for the component traits. 
 
To derive the optimal weight that should be placed on EBV, consider a vector of available 
phenotypic records x that can be subdivided into subvectors xi which correspond to phenotypic 
records on trait i for i=1,…, m: 
     x’ = [x1, x2, x3, . . . . , xm] 
 
and a breeding goal with n traits: H = v1g1 + v2g2 + … + vngn = v’g

H
 

 
Then, an economic selection index based on the full set of phenotypic records x can be derived 
as: 
     IF = b

F
’x 

 
with the vector of index weights derived using standard selection index theory from: 
 
     bF= P

-1
Gv 

 
Note that this index maximizes accuracy of predicting H given the available phenotypic records. 
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In the two-step approach, the objective is to develop the following type of index: 

     IS = b1 1ĝ  + b2 2ĝ  +… + bm mĝ  = bS’ Iĝ  
 
Consider first the situation where the traits in the index and the breeding goal are the same. Thus, 
m=n and g

H
 = g

I = g
  . 

 

The first step is to derive EBV for each individual trait i based on all available data x: iĝ = b
i
’x 

Index weights for this EBV can be derived as: b
i
 = P

-1
Gi 

 
where Gi is the ith column of matrix G, i.e. a vector representing the genetic covariances between 
the observations in x and the ith trait in the aggregate genotype gi: 
 

G = [G1; G2; … ; Gn] 
 
Because all EBV are based on the same data vector x, the selection index equations for the 
individual EBV can be combined to directly estimate the vector of EBV as: 

     ĝ = [g1, g2, …, gn]’ = [b1; b2; … ; bn]’x 
 
Combining the selection index equations that are used to derive each set of index weights bi we 

get:     ĝ = {P
-1

[G1; G2; … ; Gn]}’x = (P
-1

G)’x 
  
Using these EBV to develop the economic index we get: 

   IS =  bS’ ĝ = bS’(P
-1

G)’x = (P
-1

G bS)’x 
 
Note that, if we set bS = v then IS = (P-1Gv)’x = bF’x = IF because bF= P

-1
Gv based on                                  

the one-step approach 
 
Note that this proves that the optimal index can be obtained by weighting the EBV by the 
economic weight for that trait in the breeding goal. 
 
Note, however, that this only holds if the same traits are included in the breeding goal and the 
index and if the EBV are based on all available data on all traits, i.e. multiple-trait EBV are used. 

If the traits in the breeding goal and index are not the same, i.e. m=/ n and g
H
=/ g

I  then the index 
weights can be derived by partitioning the breeding goal into a component that is related to the 
traits in the index and an uncorrelated residual: 

     H = v’g
H = v’( 'b gg IH

g
I  +  e) 
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where 
IHggb is a vector of regression coefficients for the regression of vector g

H
 on g

I . Vector 

IHggb can be derived using standard multiple regression methods as: 

     
IHggb = 1-

IC IHC  
where IC is the genetic variance/covariance matrix among the traits which appear in the index 
and IHC  is the genetic covariance matrix between traits in the index and traits in the aggregate 
genotype. 
 
The residual vector e is by definition uncorrelated to traits in the index and does, therefore, not 
need to be considered when deriving the index. Thus, considering only the first term, the new 
breeding goal is one for which the assumption g

H
=g

I  holds but with a new set of economic 

values:     H* = v*’g
I = v’ 'b gg IH

g
I  

Thus     v*  =  
IHggb v 

and the optimal weights on the EBV for index IS =  bS’ ĝ  can be derived as: 

     bS = 1-
IC IHC v 

 
An alternative derivation of this same result was given by Schneeberger et al. (1992).  

Note that when g
H
=g

I  i.e. when the same traits are included in H and I, IC = IHC  and bS 
simplifies to the original result: bS = v. 
 
It is interesting to note that the index weights for indexes that contain EBV depend only on the 
economic values and genetic parameters. They do not depend on the accuracy of the individual 
EBV. Thus, the same index can be used for all animals.  
 
It is important to realize, however, that these results only hold if all observations on all traits are 
used to estimate the BV for all traits. This would be the case when multiple-trait genetic 
evaluation models are used. The previous equations do not hold when trait EBV are derived from 

single-trait evaluation models, for which only data on trait i are used to estimate iĝ . The reason 
is that single-trait evaluation methods do not consider covariances between trait records, whereas 
covariances are considered in the multiple-trait evaluation methods. However, if the single trait 
EBV have high accuracy, index weights can still be approximated by the economic values because, 
with high accuracy, correlated trait information has little impact on EBV and, thus, single-trait 
EBV approximate multi-trait EBV. 
  
If single trait EBV do not have high accuracy, approximate weights on EBV must be derived using 

selection index procedures using:  bS= 1-
SP GSv  
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where  PS = matrix with (co-)variances among single trait EBV, iĝ  

  GS = matrix with covariances of EBV iĝ with true BV of traits in the breeding goal 
 
Elements of PS and GS must now be approximated by specifying a vector xi of sources of 

phenotypic records for each EBV iĝ . Standard selection index theory can then be used to derive 

each EBV as:       iĝ = bi’xi with   bi = 1-
iiP Gii 

where iiP is the (co-)variance matrix for records in xi, and Gii is the vector of covariances of gi 
with xi. 
 
Then, the covariance between two EBV can be computed as:  

       
ji gg ,σ = cov(bi’xi, bj’xj) = bi’ cov(xi, xj)bj = bi’ ijP bj 

where ijP is the (co-)variance matrix between records in xi and xj  

and the covariance between and EBV and a true BV can be computed as:  

       
ji gg ,σ = cov(bi’xi, gj) = bi’ cov(xi, gj) =  bi’ ijG  

where ijG is a vector with covariances of xi with gj . 
 
Note that in contrast to indexes based on multi-trait EBV, weights on single-trait EBV depend on 
the accuracy of the EBV and on the sources of information that contribute to each animal's EBV. 
Index weights will, therefore, differ from animal to animal. Depending on parameters and the 
range of accuracies, it may however be possible to use a single index for all animals, with the 
index derived based on average amounts of information. Methods to evaluate the loss in 
accuracy when using a single index will be described in the next section. 
 
One issue that we have not yet discussed is how to derive the accuracy of economic selection 
indexes that are based on EBV. When the index is based on single-trait EBV, accuracy can be 

derived using standard selection index theory as: rHI = 
Cvv'
vGb S

'
S   

For the index based on multi-trait EBV, although index weights do not depend on the amount of 
information that goes into each EBV, the accuracy of the index does.  For multi-trait EBV 
indexes, accuracy must, therefore, be derived by specifying the sources of information in the 
multiple-trait vector of observations x. Then, accuracy can be obtained by deriving the accuracy 

of the full index:        rHI = 
Cvv'
Gvb 'F    
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This is illustrated in the following example where selection is based on observations on growing 
pigs for growth rate (GR, g/d)  on the individual (xGR) and the mean of 5 full sibs (for GRx ) and 
own performance for feed intake (xFI , g/d).  The phenotypic standard deviation is 100 for GR 
and 200 for FI, and the h2 for both traits is 0.25.  The phenotypic correlation is 0.6 while the 
genetic correlation is 0.8.   
 
The aggregate genotype is  H = 0.2 gGR - 0.05 gFI  
 
The selection index weights for prediction of the aggregate genotype using the full index with all 
three sources of information (xGR , GRx  , xFI ) can be calculated as: 

 

bF = P-1Gv = 
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Weights b1 for the prediction of the breeding value for growth rate using all data are: 
 

   b1 = P-1G1 = 
!
!
!

"

#

$
$
$
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&
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Similarly, weights for feed intake using all data, b2, are: 
 

   b2 = P-1G2 = 
!
!
!
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&
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As demonstrated previously, the multiple-trait EBV can be combined into an economic index to 
predict the aggregate genotype with index weights equal to the economic values: 

 IS = 0.2 GRĝ  -0.05 FIĝ  
 
Substituting the multiple-trait index weights b1 and b2 gives: 

 IS = 0.2 
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proving that the index based on multiple-trait EBV is equivalent to the full index. 
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Let us now look at a situation where breeding values for GR and FI are predicted with a 
univariate model, i.e. the EBV for GR is based on observations for GR only and similarly the 
EBV for FI is based entirely on observations for FI. The following index weights result: 

    b1 = 1-
11P G11 = !

"

#
$
%

&
=!

"

#
$
%

&
−

!
"

#
$
%

&
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25001
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Since the single-trait EBV for FI is based only on own performance, the index weight is equal to 

heritability: b2 = 1-
22P G22 = [40000]

-1
 [10000] = [0.25] 

 
Combining these single-trait EBV into an economic index to predict H results in: 

 

     bS= 1-
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These weights on single-trait EBV differ from those on multiple-trait EBV, which are equal to 
the economic values. Multiplying the weights out gives: 
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These weights are different from those for the optimal index and, thus, the index derived from 
single-trait EBV is not optimal. The reason for the suboptimality is that, when deriving the 
single-trait EBV, relative weights put on records are determined while only considering a single 
trait and not the whole aggregate genotype. In our present example, this resulted in a weight of 
0.2088 on xGR and of 0.3297 on GRx , a ratio of 0.2088/0.3297=0.633. This same ratio of weights 
is still present in the overall index (0.02698/0.04261=0.633). In the optimal index, however, the 
ratio of weights on xGR versus GRx is 0.02874/0.04011=0.7165. 
 
Although the single-trait EBV index is not optimal, an important question is how much we 
would lose in accuracy when using this index instead of the optimal index. This can be studied 
by evaluating the accuracy of both indexes.  
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Accuracy of the multiple-trait EBV index must be derived from the full index with the three 

sources of information: rHI = 
Cvv'
Gv'bF  = 0.5518 

The variance of the aggregate genotype v’Cv equals 45 in this example. 
 
The accuracy of the single-trait EBV index can be derived in two ways: 
 
1) as the accuracy of a sub-optimal index with the three information sources: 

rHI = 
Cvv'Pb'b

Gv'b
**

*

FF

F   

2) or as the accuracy of an optimal index based on the two single-trait EBV 

rHI = 
Cvv'
vG'b SS  

Both result in accuracy to be equal to 0.5511, which is only slightly smaller than the accuracy of 
the optimal index, which was 0.5518. Thus, in this case, use of single-trait EBV had limited 
impact on efficiency. 
 
As an example of the use of principles similar to those outlined above, Veerkamp et al. (1995) 
investigated sensitivity to economic values and genetic parameters of a sire selection index of type 
and production traits for a breeding goal with production traits and longevity. They also 
investigated the efficiency of using index weights derived for an index with multiple-trait EBV in 
indexes that included single-trait rather than multiple-trait EBV and in indexes that included EBV 
from two multiple-trait evaluations, one for production traits and one for type traits. Results 
showed that losses in efficiency were less than 1% for EBV based on at least 50 daughter records, 
which confirms the robustness of selection indexes for progeny-tested dairy sires. 
 
 
 
6.4 Sensitivity of Selection Indexes to Estimates of 

Variances and Covariances 
 
As described so far, the selection index provides a method to maximize selection response for a 
given aggregate genotype when a given set of observations are available.  It is assumed that the 
variances and covariances that make up the elements of P, G and C are known without error. 
 
In practice, elements of P, G and C are estimated with error, and are often obtained from several 
different sources.  Sales and Hill (1976) deal in detail with the ways in which errors in the 
estimates of variances and covariances affect efficiency of selection.  For the present purposes, it 
is sufficient to note that, when the elements of P and G are not known without error, the 
selection index is often relatively insensitive to errors in estimates of these elements.  However, 
it is always wise to examine how sensitive the resulting index is to the assumed elements of P 
and G. (Note that the elements of C do not affect selection index coefficients nor the prediction 
of response to selection.) 
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Bouchez and Goffinet (1990) propose a method for eliminating traits (or other sources of 
information) from the index based on maximizing an approximate estimate of the mean square 
error of prediction of the index, allowing for the inaccuracy of estimates of variances and 
covariances among traits.  Their method deals with the situation where parameters are estimated 
from the same population as is being selected.  Their method does not appear to increase 
selection response but involving fewer traits, is claimed to be more robust than a full index. An 
alternative approach would be to use Bayesian methods to simultaneously derive genetic 
parameters and selection indexes. Bayesian methods allow uncertainty about parameters to be 
included in development of the index. Literature estimates of genetic parameters can be included 
through specification of proper priors. Bayesian analyses are, however, typically complex in 
nature and an alternative series of simpler tests and modifications is proposed here. 
 
 
6.4.1 Testing Consistency of Variance/Covariance Matrixes 
 
Whenever a selection index is constructed, the P and C matrixes should be tested for being 
positive definite.  A non-positive definite variance/covariance matrix may indicate that one or 
more traits in the index are linear functions of combinations of other traits, or that certain 
elements of the matrix are not possible given that the other elements are correct.  For example, 
consider the phenotypic covariances among three traits with standardized variances such that, 

2
1σ  = 2

2σ  = 2
3σ  = 1. Then, if σ12  = 0.9 and σ13 = 0.9, common sense would tell us that σ23 must 

also take a relatively high value.  A value of σ23 = -0.5 would clearly be impossible.  It can be 

shown in this case that if    P = 
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P becomes non-positive definite when σ23 ≤ 0.62.  At this point P also becomes singular and an 
inverse to P (i.e. P-1) cannot be found. 
 
All matrix programming languages carry sub-routines to calculate the eigenvalues of a matrix.  
There are as many eigenvalues as there are rows and columns of the matrix (i.e. an n x n matrix 
has n eigenvalues).  If one or more of the eigenvalues is negative, the matrix is non-positive 
definite.   
 
Matrices which are close to being non-positive definite should also be examined closely because 
such matrixes are very close to being singular and are only just within the allowable parameter 
space, indicating possible inconsistencies in parameter values. 
 
As noted by Sales and Hill (1976) and Hayes and Hill (1980), matrixes are more likely to 
become inconsistent (non-positive definite) as the number of traits considered increases, the size 
of the data base used to obtain estimates decreases, and when estimates are obtained from 
different sources.  This in turn can lead to increasing instability and uncertainty over the resulting 
indexes and their responses.  In general, this argues for keeping the number of traits in both the 
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index and the aggregate genotype down to the minimum number consistent with achieving 
effective genetic progress. 
 
The P and C matrixes referred to above are those for observations in the index and traits in the 
aggregate genotype respectively.  Often the elements of P are themselves derived from 
population phenotypic and genetic parameters.  For example, observations in the selection index 
might be full-sib mean performance for a series of traits.  Then, the variances and covariances 
among these observations would be derived from the phenotypic and genetic variances and 
covariances among single phenotypic records.  We can denote PO and GO as the phenotypic and 
genetic variance covariance matrixes among single phenotypic records of traits appearing in the 
selection index, which we used to derive the elements of P.  Then, if our records are to be 
biologically meaningful, PO and GO should also be within the allowable parameter space and 
should thus be tested for being positive-definite.  
 
Similarly, if our model is  y = g + e 
 
then     EO = PO - GO 
 
is the implied environmental variance/covariance matrix among the traits in the index, given PO 
and GO.  Again, to be consistent and biologically meaningful, EO should also be positive definite. 
 
Variance/covariance matrixes can be biologically and economically inconsistent despite being 
positive definite.  For example, a matrix for the three traits, milk yield (M), fat yield (F) and fat 
concentration (f) could be positive definite but not conform to the expectation that, since  

f = 
M
F , the variance of f and its covariances with F and M are entirely dependent on the 

variances and covariances among F and M.  This is because the test of positive definiteness 
examines possible linear combinations of traits and does not recognize the possibility of there 
being a pre-specified linear or non-linear relationship, such as f  being a ratio of F/M.  In general, 
any trait that is a direct function of other traits in the index (or the aggregate genotype) will carry 
little or no additional information and as such is usually best omitted. 
 
The economic weight of a trait is defined as the marginal change in economic value given a 
genetic change in that trait while holding all other traits in the aggregate genotype constant.  
Thus any trait in the aggregate genotype which is entirely a function of other traits in the 
aggregate genotype has an indeterminate economic value since it is impossible to make genetic 
change in that trait without making genetic change in other traits.  As an example, again 

considering the traits M, F and f, where f = 
M
F , it is quite clear that there cannot be a change in f 

without a change in either F or M or both.  Thus, if F and M appear in the aggregate genotype, f 
should not appear. 
 
It is surprising how often these basic checks for consistency of variance/covariance components 
are not made in examples appearing in the literature, sometimes causing quite misleading results 
and conclusions.  It is thus best not only to check over your own parameters for consistency, but 
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also to check parameters in published papers, unless the authors have quite clearly stated that the 
appropriate checks have been made. 
 
In many cases, by elimination of unnecessary and less useful traits in the index, matrixes will 
become positive definite.  Where matrixes remain non-positive definite, Hayes and Hill (1981) 
present a mathematical method ("bending'') for altering parameters to obtain positive definite 
matrixes.  This method assumes there is no additional information available about parameter 
estimates and as such is unlikely to be generally appropriate.  An alternative is to adjust 
individual parameter estimates based on an assessment of reliability of the estimates.  An 
example and further discussion is given in the following section.  But there is certainly room for 
further investigation of this problem.   

 
 

6.4.2 Tests of Sensitivity of Indexes to Assumed Variances and Covariances 
 
If the various variance/covariance matrixes pass the test of being positive definite and being 
consistent in other ways, there is still a concern that the index derived may be sensitive to the 
assumed values of the variance/covariance components. A test of sensitivity would be to ask 
what proportion of the maximum response would we expect in the aggregate genotype if we used 
one set of variances to derive our index coefficients when another set of covariances was the 
correct set.  
 
If we use the subscript u to describe the result of a particular set of parameters used and t to 
describe the set defined as true, then  

bu = -1
uP Gu v      

  
and      bt = -1

tP Gt v.       
 

If Pt and Gt are the true variance/covariance matrixes, then, by definition, selection using index 
coefficients, bt, will give the maximum expected response in the aggregate genotype H.  Thus 
use of bu will give less response than bt. We can then define the efficiency of using bu instead of 
bt as the ratio of genetic superiority of selected individuals in H when selecting using bu 

compared to when selecting using bt, i.e. Eut = 
t

u

H

H

S
S

 

uH
S  can be found from the equation in Table 6.1 that defines response to selection from an 
arbitrary index and 

tH
S  from the equation which defines response to selection from the optimal 

index, so that    
uH

S = i
utu

tu

 '

 '

b Pb

v Gb
 and 

tH
S = i v Gb tt'   

 

and thus   Eut = 
utu

tu

 '

 '

b Pb

v Gb
 

v Gb tt  '
1     
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The process would be to define a parameter set to be our best possible estimate based on the 
evidence available and to use this as Gt and Pt.  Alternative sets would then be defined and the 
question asked of each alternative set, "if the alternative set were indeed true, how well would 
the index based on our best estimates perform?''  There will likely be some difficulty in deciding 
what are realistic alternative sets of parameters.  Clearly, if parameters are well estimated, there 
would be little relevance in examining widely different parameter sets.  Whereas, if we are very 
uncertain of our estimated parameter set, we may well wish to examine widely different 
alternative sets.  Also, the problem becomes worse the larger the number of elements in P and G, 
since the number of possible combinations of alternative parameter sets rapidly expands with 
increasing dimensions of P and G. 
 
If there is insufficient evidence to say that the parameters used are the "best available'' or "most 
likely'', it may be worth considering an alternative set of parameters if one can be found that 
gives an index that is less sensitive to the parameters being incorrect than use of the original set 
of parameters.  This could be judged by creating a matrix of relative efficiencies where each 
parameter set was tested against all other parameter sets, i.e.  

 
‘true’ parameters 

E = 

!
!
!
!

"

#

1

21

11

nE

E
E

 

2

22

12

nE

E
E

 

nn

n

n

E

E
E

2

1

!
!
!
!

"

#

 used parameters   

  
where the rows correspond to parameter sets used and the columns to the parameter sets assumed 

to be correct, so that: Eij = 
jt

iu

H

H

S

S
 where i and j are the used and true sets of parameters, resp. 

The diagonal elements of E are 1.0, all other elements are <1.0.  The parameter set could then be 
chosen for which the elements of the corresponding row of E were as close to 1.0 as possible, i.e. 
the parameter set which showed the least sensitivity to being incorrect in relation to the 
alternative parameter sets examined. 
 
These processes of investigation are rather subjective.  Indeed there is scope for research into the 
general area of how best to obtain estimates of population parameters, how to perform sensitivity 
analyses and how to modify parameters for particular applications in animal breeding. Bayesian 
methods provide opportunities to address these issues. 
 
There is also the question of what action to take if our results are indeed sensitive to parameter 
values and what constitutes sensitivity?  For example, if our best estimated parameter sets give 
response efficiencies Eu in the range of 0.85-1.0 for alternative parameter sets, would this be 
considered as sensitive or insensitive?  There is no hard and fast rule, though by analogy with 
advances in methods of genetic evaluation (which improve accuracy of evaluation and hence 
response), potential losses in response of one or two percent may be of little concern whereas 
losses of 5% or more at the very least warrant careful investigation. 
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6.4.2.1 A Numerical Example of Testing Index Sensitivity to  
   Variance/Covariance Estimates 

 
Imagine a species such as swine or beef cattle, selected for growth performance, perhaps as a 
terminal sire.  Assume that the traits in the aggregate genotype have been determined to be 
slaughter weight (SW) and feed intake during growth to slaughter (FI), that both these traits are 
recorded, and that a phenotypic selection index is used.  When both traits are scaled so that σp = 
1, economic weights of SW and FI were found to be 2 and -1 monetary units per phenotypic s.d.   
(Note that FI has a negative economic weight, reflecting that feed costs money; increased FI 
decreases profit.) Heritabilities of SW and FI have been estimated from several data sets and 
found to be 0.4 for both traits.  Phenotypic and genetic correlations have been estimated only 
once and found to be 0.8 and 0.8.  Thus, since selection is on phenotypic records of the 

individual,  P = !
"

#

8.
1

   !
"

#

1
8.

,  G = !
"

#

32.
4.

   !
"

#

4.
32.

 and v = !
"

#
$
%

&

−1
2

. 

Note that the off-diagonal element of G, 
SW.FIgσ , is obtained by recalling that  r

ijg
= 

2
g

2
j

σσ

σ

i

ij

g

g , 

hence  
SW.FIgσ  = 0.8 0.4.  ∗4.0  

From these parameters and selection intensity i we obtain, b = !
"

#
$
%

&

− 4.
8.

  and  SH = 0.5367 i . 

In the present case, we might decide that heritabilities are well estimated, coming as they do 
from several published data sets, but we are uncertain about the estimated correlations.  In 
general, phenotypic correlations are much more accurately estimated than genetic correlations.  
So we conclude that we are most uncertain about our genetic correlation, which we believe may 
in reality lie anywhere between 0.65 and 0.95. 
 
We then investigate the following four situations for the correlations, all other parameters 
remaining constant: 

 
1. rgSW,FI  = 0.80 and rpSW,FI = 0.8 

 
2. rgSW,FI = 0.65 and rpSW,FI = 0.8 

 
3. rgSW,FI = 0.95 and rpSW,FI = 0.8 

 
4. rgSW,FI = 0.80 and rpSW,FI = 0.7. 

 
To calculate E21 we will need to determine the index weight corresponding to situation 2.   

The G matrix in that case is:  G = !
"

#

26.
4.

   !
"

#

4.
26.
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yielding new estimates of  b = !
"

#
$
%

&

− 867.0
233.1

 

Response to selection when using the index weights for situation 2 while parameters for situation 

1 are the true parameters is: 
1,2 tuH

S = i
212

12

 '

'

b Pb

v Gb  
= 0.5122 i 

The efficiency of using alternative parameter set 1 while the original set 1 is true is estimated as: 

    E21 = 
1

1,2

tH

tH

S

S
U =  0.5122/0.5367 = 0.9545 

Similarly, efficiencies for all the other combinations of parameter sets can be calculated, which 

results in:   

!
!
!
!

"

#

$
$
$
$

%

&

=

19444.08646.09751.0
9258.006513.08480.0
8746.06513.019545.0
9738.08480.09545.01

E  

 
Two things are worth pointing out in these results.  In the first place, uncertainty over the true 
value of the genetic correlation between SW and FI seems to be important in terms of response 
to selection since an index using a genetic correlation of 0.8 is only 84.8% effective if rg is as 
high as 0.95, although it is 95.5% efficient if rg is as low as 0.65.  We conclude that, in terms of 
finding an optimal index for this selection program, we need to have a more accurate estimate of 
the genetic correlation between SW and FI than we have at present.  In particular, it will be 
important to know whether this genetic correlation is higher than our current estimate of 0.8.  A 
reduction of the phenotypic correlation from 0.8 to 0.7 has a smaller effect on efficiency than a 
similar change in the genetic correlation. 
 
Secondly, the efficiency is symmetric about the diagonal for the first three-parameter sets but not 
for the last set.  In the first three parameter sets G changed but P remains constant.  For those 
cases it has been shown that the efficiency criteria is equal to the correlation between indices.  
Given that similarity, this symmetry is no surprise.  Parameter set 4 resulted in a different P 
compared to the other three sets and as a consequence, for example, efficiency E41 is not the 
same as E14. 
 
Predicted optimal economic responses (SH) for the first three parameter sets corresponding to rg 
= 0.65, 0.8, and 0.95 were 0.749, 0.537, and 0.422 economic units per standard deviation of 
selection intensity.  Predicted absolute economic responses to selection increased by 77.5% as rg 
decreased from 0.95 to 0.65. 
 
From experience, it seems to be a general phenomenon that altering variances and covariances 
has a much larger effect on the prediction of absolute economic response to selection than on the 
efficiency of one index versus another.  Since the prediction of absolute economic response is 
used in assessment of the economic cost-benefits of selection programs, having good estimates 
of variances and covariances will often be of even more importance for cost-benefit assessments 
than for the optimization of a particular program in terms of the index to be used.  
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6.4.3  Uncertainty Over Economic Weights 
 
As will be discussed later, economic weights are rarely known without error.  Indeed, there is 
often considerable uncertainty of what the true economic weight might be, arising from 
uncertainties of biological and management models used and uncertainty about the values of 
different traits in future production systems and markets.  In many cases we will therefore have a 
"best estimate'' set of economic weights and several, perhaps many, alternatives, covering 
alternative present and future scenarios. 
 
As with investigations of uncertain variances and covariances, we can carry out analogous 
investigations for uncertain economic weights.  In this case the subscripts u and t refer to the 
economic weights used and those deemed to be "true''.  Then, efficiency of a set of index weights 
derived for the used set of economic weights when compared to that for the “true” set of 

economic weights is given by:  Eut = 
t

u

H

H

S
S

 = 
uu

tu

 '
 '

b Pb
vG b  

tt  ' vG b
1  

where   bu = P-1 G vu 
and   bt = P-1 G vt. 
 
As with uncertainties over variances and covariances, Eut could be derived for a single set of 
"most likely'' or "best estimate'' economic weights, compared to a variety of alternative economic 
weights.  Or, a matrix of efficiencies, E, could be determined, comparing every set of economic 
weights with every other set.  Economic weights do not affect P and, as shown in the previous 
section, E is symmetric about the diagonal, so that Eij = Eji. 
 
 
6.5 The Value of Including Traits in the Selection Index 
 
Recording of animals takes time and effort and consequently costs money.  Some traits may be 
considerably more difficult and costly to record than others.  Thus a key question in the design of 
breeding programs is which traits and types of relatives should be recorded?  It is often relatively 
straightforward to identify a number of traits and types of relatives potentially useful to record.  
A selection index could then be constructed and the question asked, how much does each 
observation contribute to response in the aggregate genotype?  Then, the economic benefits of 
including that observation in terms of enhanced response can be evaluated against the cost of 
recording and a decision taken on whether or not to collect that information.  Consider the usual 
selection index problem with n observations in the index and m traits in the aggregate genotype, 
but define the index as including all traits that might possibly be included.  Then, the efficiency 
of a reduced index without observation i can be defined as the ratio of economic (aggregate 

genotype) response for the reduced index to that with the full index, or: Ei = 
H

H

S

S
i
*

 

where *
iH

S  is the response in the aggregate genotype for selection on the index without 

observation i, *
iH

S , and SH is the response with the full index I, 
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*
iH

S = *
*

iIi
*
i ii σ=vGb  

 
where ∗

ib  is    b *
i  = P *

i
-1 G *

i  v 
and *

iP  and *
iG  are reduced forms of P and G corresponding with the reduced index. Matrix *

iP  
is found by deleting the ith row and column from P, and *

iG by deleting the ith row from G. 
 
Similarly, the efficiency of indexes with more than one observation deleted can easily be found.  

For an index with observations i and j missing: Eij = 
H

H

S

S
ij
*

 

where     *
ijH

S = vGb *
ij

*
ij  

 
and     *

ijb  = P *
ij

-1 G *
ij  v 

 
and P *

ij  is P with the ith and jth rows and the ith and jth columns removed and G *
ij  is G with the ith 

and jth rows removed. 
 
The efficiency, given a certain aggregate genotype and set of population parameters, is directly 
related to changes in rHI.  The contribution of each individual observation in the index to the 
accuracy can be calculated.  Cunningham (1969) has described a method to derive the decrease 
in accuracy which is given below. 
 
Assume an index with n sources of information, I = b'x and an aggregate genotype with m traits, 
H = v'g.  Solving the set of equations, Pb = Gv, gives the vector b.  The variance of the index is 
b'Pb.  When, for instance, the first observation is ignored, we obtain a new index, *

1I , with a 
vector with n-1 weighting factors, β .  The weighting factors are a solution of solving: *

1P β  = 
*
1G v where, as before, *

1P  is the n-1 by n-1 variance-covariance matrix of the observations in *
1I , 

and *
1G  is the n-1 by m matrix obtained from G by ignoring the first row. 
 

Based on the original equation, this can be visualized as: 
 

Pb = Gv 
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where P11, b1, and R1 are scalars representing the first elements in P, Gv, and b, respectively.  
Matrix Q is a column vector representing the remaining elements of the first column in P.  In 
most cases, β ≠ b0. 
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The variance of the reduced index *
1I  is:  βPβ' *

1=2
*
1I

σ  

and its correlation with the aggregate genotype H is: 
2*

1
H
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r

σ
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1=  

Efficiency of the index ignoring observation i is equal to 
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depends entirely on the difference in variances of the indices, βPβ' *
1  and b'Pb. To determine the 

magnitude of this difference, let W be the inverse matrix of P:   W = P-1 = 
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It can be shown (Cunningham, 1969) that:    - 2Iσ
11

2
12 b

*
1 WI =σ  

In general, ignoring the ith observation in the index:  - 2Iσ
ii

i
I Wi

2
2 b
* =σ  

The advantage of this method is that in computing the decrease in variance, no new index has to 
be derived; information for the computation is available from computations for the original 

index.  Variance 2
*
1I

σ  can be derived from the equation above as: 
ii

i
II Wi

2
22 b

* −=σσ  

Efficiency of the index ignoring observation i can also be derived from the above results as: 
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The method can be extended to compute the reduction of variance of the index when 
simultaneously ignoring more than one trait.  The variance of an index, from which the ith until 
the jth observation is ignored, is  '' bWb i j

1
i ji j

22
*
..

−−=
II ji

σσ  

where bi..j is the vector including the ith until the jth weighting factor of the original index, and 
Wi..j is the diagonal submatrix of  P-1 corresponding with the observations that were removed 
from the index. 
 
 
6.5.1   Example of A Reduced Index 
 
Consider the example in section 6.5.2.1 for selection on slaughter weight (SW) and feed intake 
(FI).  How much do inclusion of SW and FI in the index contribute to selection response?  

The full index was given by P = !
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Giving    b = !
"

#
$
%

&

− 4.
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   , 2
I

σ = .288 ,     and SH = 0.537 i 

 
An index without SW would be found from 

*
1P  = [1],  *

1G  = [.32    .4], and v = !
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giving    *
1b  = 0.24 and *

1H
S  = 0.24 i 

and hence   E1 = 
H

H

S

S *
1  = 0.447 

 
Similarly, removing FI from the original index, gives 

*
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2G  = [.4    .32] and v = !
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giving    *
2b  = 0.48,  *

2H
S = 0.48 i 

 
and    E2 = 0.894. 
 
These results could also have been obtained from b and P-1, which is equal to: 
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Thus, not recording SW would reduce economic response by (1 - 0.447) 100 = 55.3%, while not 
recording FI would reduce economic response by only 10.6% compared to recording both traits.  
Since recording FI is likely to be more expensive than SW, it would seem well worthwhile to ask 
in detail how much it will cost to record FI in the breeding program and what the expected extra 
10.6% economic response is worth.  The final answer will depend on such parameters as the 
number of animals in our breeding program, the number of animals benefiting from the extra 
genetic response, the cost of recording individual animals, and the time between incurring costs 
(recording) and obtaining returns (selling or producing from genetically improved animals). 
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6.6  The Value of Traits in the Aggregate Genotype 
 
With equation (6.11): SH = i Gvb' , response in the aggregate genotype as a result of selection 
on the index can be calculated.  Response in the aggregate genotype is an important criterion in 
comparing different indexes.  In addition, it is also interesting to look at responses in the 
individual traits in the aggregate genotype.  This will give information on which traits have 
contributed to response in the aggregate genotype and one might want to look at the direction 
and size of change in each of the traits.  In the example of beef cattle, it is interesting to see 
whether response to selection is due to a change in slaughter weight, feed intake, or a 
combination of these two traits.  In this section, we will illustrate the relationship between 
changes in the aggregate genotype and in individual traits.  Furthermore, we will look at 
comparing response to selection for various situations and try to give some guidelines on the 
criteria to use in such a comparison. 
 
The expected change in individual traits (gj) of the aggregate genotype as a result of selection on 
the selection index (I) can be computed using the covariance between gj and I, as shown in 
(6.18).  Recall that the expected change in gj (expressed in units of measurement) as a 

consequence of selection on I is:  Sgj = i
I

j

σ

Gb'
 

where Gj denotes the jth column of G, and that the vector of responses in each trait is equal to: 

      Sg = i 
Iσ
Gb'  

Response in the aggregate genotype, SH in monetary units (assuming that elements of v are 
expressed in monetary units), can be calculated as: 

SH  =  i
Iσ
Gvb'  

which is equal to:    SH  =  i
Iσ
Gb' v = i Sgv = i j

I

j  v∑ σ

Gb'
 

 
The above equation demonstrates that response in the aggregate genotype is the sum of responses 
in individual traits multiplied by their economic weights. The contribution of response in gj to 

overall response (Cj) can be calculated as: Cj = 
H

jg

S

S
j
v

 

With this criterion we can evaluate the relative contribution of each trait in the aggregate 
genotype. To illustrate this, we return to the example of 6.5.2.1, use parameter set 1 and set 
selection intensity equal to 1. We have seen that response in the aggregate genotype, SH, equals 
0.537. Using (6.18), response in slaughter weight is 0.358 and  response in feed intake is 0.179, 
both expressed in phenotypic standard deviations. The economic weight is 2 and -1 for SW and 
FI, respectively.  Using these weights, response in monetary units in SW and FI is equal to 
$0.716 and $-0.179, respectively. The contribution of SW to overall response (CSW) is equal to 
0.716/0.537 = 1.33.  In words, response in SW accounts for 133% of the monetary response in 
the aggregate genotype.  At first sight, it looks strange that the contribution exceeds 100%.  
When we have a closer look at the example, we see that we are trying to improve two traits 
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which are positively correlated, of which one has a positive and the other has a negative 
economic weight.  Given the parameters we have used, the index results in an increase in 
slaughter weight, which is associated with a change in feed intake.  The latter change results in a 
reduction in the financial gain.  This is reflected by the negative contribution of 33% of FI to the 
overall response. 
 
From the example it is clear that Cj can take values that are smaller than zero or bigger than one. 
The advantage of looking at values for Cj instead of Sgj  is particularly the unit that is used, i.e. 
money vs units of measurement. 
 
Different indexes can be compared using accuracy of selection, as long as the parameters for the 
aggregate genotype (e.g. genetic variances and co-variances) and the economic weights have not 
changed.  Comparison of indexes in other cases is less straightforward.  Let us, for example, 
return to the example and consider a second index for a situation where feed intake was excluded 
from the aggregate genotype and for two different values of rg, all other factors including the 
index remaining unaffected.  Results for that and the original aggregate genotype are 
summarized in Table 6.2. 
 
Table 6.2  Results of selection using a selection index including slaughter weight (SW) and feed 

intake (FI) for two different values of the genetic correlation between SW and FI rg and 
economic weight of FI v2 using a selection intensity of 1a). 

 rg = 0.8 rg = 0.65 
 v2 = -1 v2 = 0 v2 = -1 v2 = 0 

rHI 0.632 0.632 0.765 0.652 
σI 0.537 0.800 0.750 0.825 
σH 0.849 1.265 0.980 1.265 
SH 0.537 0,800 0.750 0.835 
SSW 0.358 0.4 0.358 0.412 
SFI 0.179 0.32 -0.035 0.175 
CSW 1.33 1 0.953 1 
CFI -0.33 0 0.047 0 
Set 1 2 3 4 

a The index in all cases consists of observations on FI and SW on the individual animal. 
 
Let us first look at the situation where rg is 0.8.  The accuracy of rHI was identical for both sets of 
economic weights but the variance of the aggregate genotype differed largely.  We are looking at 
a situation with two highly correlated traits with opposite signs for their economic weights.  
Setting the economic weight equal to zero for one of the traits resulted in a higher variance of the 
aggregate genotype. The response in the aggregate genotype and slaughter weight increased 
when v2 was set equal to zero.  Correlated response in FI for v2 = 0 amounted to 0.32 phenotypic 
standard deviations, which was much larger than for v2 = -1. Changing the economic weight of 
FI did not affect rHI.  This is not a result that one would find in general, but one which is specific 
for the parameter set used in this example. There are two factors that contributed to this.  In the 
first place, both traits had the same heritability and standard deviation.  Schaeffer (1984) showed 
that the benefit of including a correlated trait in prediction of the EBV for a trait depends on the 
absolute difference between the phenotypic and genetic correlation.  The correlated trait does not 
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contribute when the phenotypic correlation is equal to the genetic correlation, which is the case 
for rg = 0.8.  This means that v2 = 0 refers to an index with observations on SW only for the 
correlation of 0.8.  In that case one also expects to find rHI = 4.0  = 0.632. 
 
Different results are found when rg is lowered to 0.65. For v2 = -1, a positive response of 0.358 
units in SW is associated with a reduction in FI of 0.035 units, i.e. a change in the desired 
direction for both traits in the aggregate genotype.  As to be expected, correlated response in FI 
is positive when v2 = 0 but it is smaller in size than when the genetic correlation was 0.8. 
  
In comparing the results in Table 6.2, it is obvious that there is not a single criterion which can 
be used. The criteria to look at very much depend on the question one wants to answer. It is 
important to realize that variation in the aggregate genotype differs between all four cases 
studied.  This is different from a situation where one varies the observations to be included in the 
index. In that case one generally works with a constant σ 2

H  and can use the accuracy rHI.  In 
comparing the four situations in Table 6.2, the efficiency criteria introduced in section 6.5.2 
might be very useful. Efficiencies for the different combinations of parameters sets, using the 
numbering of sets as given in Table 6.2, can be summarized as: 
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This illustrates that when rg is 0.8, loss in selection response amounts to (1 - 0.954)*100% = 
4.6% when FI was ignored in the aggregate genotype, while the true economic value of FI is -1. 
 
 
6.7  Non-Linear Indexes 
 
The discussion of selection indexes so far has assumed that the aggregate genotype is a linear 
function of additive genetic values.  In practice, the aggregate genotype will often not be linear.  
In general, however, linear indexes can be found which closely approximate most non-linear 
descriptions of economic value.  These will be discussed in relation to derivation of economic 
weights in Chapter 7. 
 
 
6.8  Constrained and Desired Gains Indexes   
 
In the selection indexes discussed so far, response to selection of traits in the aggregate genotype 
is determined entirely by the economic weight of that trait, the information available in the 
index, and the phenotypic and genetic variances and covariances among traits.  It is, however, 
possible to construct indexes in which the rate of genetic change in one or more traits is pre-
determined.  For example, it is possible to maximize an index for genetic change in one set of 
traits subject to other traits being constrained to zero genetic change.  Alternatively, the change 
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in one trait might be desired to be twice the change in another, with all other traits being allowed 
to change as the index dictates. 
 
Methods for achieving these types of constrained or desired gain indexes were reviewed by 
Brascamp (1984).  Linear programming (see later Chapter) can also be used to achieve 
constrained and desired gain indexes (Keller and Gibson, 1990; Toro, 1992). 
 
Following Brascamp (1984), separate the vector of traits in the aggregate genotype H = v’g into 

two sets of traits:    g = !
"

#
$
%

&

1

0

g
g

 

where g0 includes traits for which progress will be maximized according to v0’g0 , i.e. the 
economic part of the breeding goal 

and      g1 includes traits for which changes are constrained to relative changes = δ . 

Correspondingly, partition matrix G as: G = !
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Let the constrained index be:    I*= b*’X with variance    2*Iσ = b*'Pb* 

For simplicity, and without loss of generality, set  2*Iσ = 1 

 
Then, from Table 6.1, response in g1 to selection on this index is proportional to  b*’G1 
 
Thus, the problem of finding the constrained index can be formulated as the following 
constrained optimization problem: 
 
     vGb

b
00

*

*
'Max    subject to b*’G1 = αδ    and   b*'Pb* = 1 

 
This problem can be solved using the Lagrange multiplier method, as described in Brascamp 
(1984) and Weller (1994). 
 
Although there is considerable literature on the construction and properties of such indexes, at no 
point does there appear in the literature a sound reasoning for applying these indexes in 
economic animal breeding.  Gibson and Kennedy (1991) attempted to provide a rationale for 
why such indexes should not be used in animal breeding, on the grounds that an economic index 
can always be found to at least equal and usually out-perform a constrained index. They showed 
that constrained or desired gains indexes have implied, or pseudo economic values for all traits, 
including for those that are constrained. The vector of pseudo economic values, v*, is the set of 
economic values that would have resulted in the index weights b*, using the selection index 
equations. Values for the pseudo economic values can be derived as follows: 
 
Using the selection index equations, set Pb*= Gv* and solve for v* as follows: 
 
      G’Pb*= G’Gv* !      v* = (G’G)-1G’Pb* 
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6.8.1 Example of Desired Gains Index 
 
Figures 6.2 and 6.3 illustrate the potential impact of putting a constraint on genetic progress for a 
given trait. The example is of selection for an aggregate genotype in pigs consisting of growth, 
feed intake, and backfat thickness. Economic values are 0.178 $/g/d for growth, -0.05 $/g/d for 
feed intake, and –0.0415 $/mm for backfat thickness: 
 
    H = 0.178 ggrowth – 0.05 gfeed intake – 0.0415 gbackfat 
 
The index includes phenotype on the individual and its sire for all three traits. Based on these 
economic values, unit intensity of selection on the optimal index results in an increase backfat 
thickness by 0.7316 mm (Figure 6.2). In many breeding programs, such an increase is 
undesirable and, thus it seems reasonable to develop a constrained index in which genetic gain 
for backfat thickness is constrained to zero. Results for such an index are in Figure 6.3. For this 
index, the relative pseudo economic values are: 
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Note that economic values in v* are relative economic values. When expressed relative to an 
economic value of 0.178 for growth rate, which is its true economic value, implied economic 

values under the constrained index become: v* = 
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Thus, the implied economic value for fat thickness relative to growth is almost 100 times as large 
as its true economic value. 
 
Efficiency of the constrained index in terms of response in the true aggregate genotype can be 
evaluated using the procedures described in sections 6.5.2 and 6.5.3. Alternatively, with genetic 
superiorities in the individual traits already computed for the desired gains index, response in H 
can be computed following section 6.7 as:  

SH
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  =  Sg
*
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0415.0
05.0
178.0

0,37.67,65.13   = $5.80 

 
In contrast, response for the optimal index is (see Figure 6.2)       SH  = $7.39  

Thus, efficiency is:  E = 785.0
39.7
80.5*

==
H

H

S
S ,  a 21.5% loss. 
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Figure 6.2 Selind program output for optimal economic index for pig selection example 
 
Listing of used matrices 
 
Listing of P-matrix 
      7744         968   1.144e+04         220       47.52       27.74   
       968        7744         220   1.144e+04       27.74       47.52   
 1.144e+04         220       4e+04        5000          56       29.66   
       220   1.144e+04        5000       4e+04       29.66          56   
     47.52       27.74          56       29.66           4         1.1   
     27.74       47.52       29.66          56         1.1           4   
 
Listing of G-matrix 
      1936         440       55.47   
       968         220       27.74   
       440       1e+04       59.33   
       220        5000       29.66   
     55.47       59.33         2.2   
     27.74       29.66         1.1   
 
Listing of C-matrix 
      1936         440       55.47   
       440       1e+04       59.33   
     55.47       59.33         2.2   
 
Listing of P-inverse-matrix 
 0.0002572  -6.187e-05  -7.397e-05   2.736e-05   -0.001678  -0.0004214   
-6.187e-05   0.0002572   2.736e-05  -7.397e-05  -0.0004214   -0.001678   
-7.397e-05   2.736e-05   4.751e-05  -1.344e-05   0.0001265  -1.121e-05   
 2.736e-05  -7.397e-05  -1.344e-05   4.751e-05  -1.121e-05   0.0001265   
 -0.001678  -0.0004214   0.0001265  -1.121e-05      0.2886    -0.06352   
-0.0004214   -0.001678  -1.121e-05   0.0001265    -0.06352      0.2886   
 
Index based on economic weights 
---------------------------------------------------- 
|               trait |   ec weight |  genetic sup | 
---------------------------------------------------- 
|              growth |       0.178 |        30.88 |  
|         feed intake |       -0.05 |       -38.39 |  
|           fat thick |     -0.0415 |       0.7316 |  
---------------------------------------------------- 
------------------------------------------------------------------------- 
|              animal ,               trait |     B-value |     rvi (%) | 
------------------------------------------------------------------------- 
|     own performance ,              growth |     0.08516 |        30.5 |  
|                sire ,              growth |     0.01686 |       1.018 |  
|     own performance ,         feed intake |    -0.03579 |       28.88 |  
|                sire ,         feed intake |   -0.007106 |      0.9787 |  
|     own performance ,           fat thick |       1.095 |       3.882 |  
|                sire ,           fat thick |      0.1251 |     0.04967 |  
------------------------------------------------------------------------- 
Standard deviation of index  : 7.3861 
      of aggregate genotype  : 8.8283 
Correlation between index and aggregate genotype  : 0.83663 
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traits are genetically correlated. This complicates extension of the index to producers. There are 
several avenues that can be pursued in a) derivation of the index, b) expression of the index, or c) 
extension, to facilitate the understanding and, thereby, implementation of the index by its target 
audience. 
 
Index derivation.  Four approaches, among other, that can be used to develop total merit indexes 
that facilitates their understanding, acceptance, and implementation of the index are 1) alignment 
of index weights with economic values, 2) evaluation of the accuracy of alternative index weights, 
3) use of customized indexes, and 4) development of indexes based on subindexes.  In principle, all 
four approaches focus on consideration of alternative indexes that are more acceptable or easier to 
interpret and on exploring the accuracy of these indexes relative to the optimum index. Flexibility 
in consideration of alternative indexes without compromising accuracy stems from the robustness 
of genetic change to economic values, which was first explored by Vandepitte and Hazel (1977) 
and Smith (1983). 
  
Aligning index weights with economic values.   
Economic values of traits in the breeding goal are frequently easier to interpret than are selection 
index weights. Therefore, aligning index weights closely to economic weights in the breeding goal 
will facilitate understanding of the index. The ability to accomplish this depends on the degree to 
which traits in the index differ from traits in the breeding goal, whether single- or multiple-trait 
procedures are used for genetic evaluation of traits in the index, and, in the case of single-trait 
evaluation procedures, on the accuracy of EBV. 
 
For index traits that are indicators of traits in the breeding goal, index weights can be related to 
their indirect economic importance based on the relationship between the indicator trait and the 
economic trait in the breeding goal. For example, for SCC as an indicator of susceptibility to 
mastitis, an indirect economic value can be derived as the genetic regression coefficient of SCC on 
mastitis, multiplied by the economic value of mastitis. This derivation was implicit to the economic 
value of SCC derived by Schutz (1994). 
 
When EBV for traits in the index are based on a joint procedure for multiple-trait evaluation and 
traits in the index are the same as the traits in the breeding goal, economic values can be used 
directly as selection index weights, as described previously. When traits in the index are different 
from traits in the breeding goal, procedures described in previously can be used, and resulting 
index weights amount to the indirect economic values described.  
 
When EBV are from single-trait genetic evaluation models, index weights can still be 
approximated based on economic weights if the accuracy of individual EBV is high. The efficiency 
of indexes derived on this basis relative to the optimum index must be considered in these cases. 
 
Exploring the accuracy of alternative index weights.   
Optimum index weights for a given set of economic values can be difficult to accept by producers 
if those weights do not correspond to the perceived incentives for genetic change, as discussed 
previously. For example, Gibson et al. (1992) found optimum index weights for Ontario to result in 
a negative weighting for milk yield, although producers were paid in part for milk volume, in 
addition to payments for fat and protein yield. The negative weighting on milk yield was a result of 
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the nature of the dual quota system that was in operation in Ontario at the time.  In this sytem, one 
quota was based on volume for fluid milk sales, with a substantial premium for milk volume, and 
the second quota was based on fat sales, with no premium for milk volume. Because of the partial 
payment for volume, an index with a negative weighting on milk was difficult to accept by 
producers. An index with a zero weighting on milk volume was explored as an alternative.  This 
index was found to be over 98.5% as efficient as the optimal index and was subsequently 
implemented by the industry as part of the LPI. Another aspect that helped implementation of this 
index was the demonstration that selecting on this index was expected to result in substantial 
improvement in milk yield, despite a zero emphasis on milk in the index. 
 
Customised Indexes. 
Customized indexes allow producers to develop a selection index based on economic 
circumstances that are specific to their herd Bowman et al. (1996). The use of customized indexes 
is justified technically if economic circumstances differ between herds or if traits are genetically 
different across herds Visscher and Amer (1996), which would make use of a single index derived 
based on economic circumstances of an average farm inappropriate. Visscher and Amer (1996) 
found that, for economic and genetic parameters typical for dairy cattle, customized indexes did 
not result in substantially greater improvements in profit at the population level than a single index 
that was based on average parameters. This result was caused in particular by the dominating 
economic importance of production traits and the high genetic correlations among milk, fat, and 
protein production. Visscher and Amer (1996) concluded that the main reason for use of 
customized indexes in dairy cattle is promoting the use of a selection index approach to multiple-
trait selection instead of selection on independent culling levels. In development of customized 
indexes care must be taken, however, that objective economic information is used in their 
derivation; Visscher and Amer (1996) assumed that customized indexes were based on accurate 
economic data for individual farms. 
 
Although customized indexes can play an important role in implementation of selection index 
principles in the field, we do advocate availability and promotion of an overall index that applies to 
average circumstances in the population. Such an index can provide default values for weights in 
customized indexes and provide a unified and global focus for selection and marketing decisions 
for all sectors of the breeding industry.  
 
Development of indexes based on subindexes. 
This was described previously. 

 
6.9.1   Expression of the index 
 
Interpretation and implementation of an overall selection index can be facilitated by its expression.  
Expression of this index includes the name given to the index which must convey the purpose and 
meaning of the index, expression of the index formula, and the scale on which the index is 
expressed. The latter two issues are discussed further. 
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Expression of the index formula.   
The magnitude of economic values and index weights is dependent on the scale of expression of 
EBV and may not reflect the relative emphasis on traits in relation to genetic selection decisions. 
Multiplying index weights by the genetic standard deviation for the trait provides standardized 
weights that reflect the emphasis put on each trait in relation to the genetic variability that is 
present in the population. 
 
Index weights can also be standardized by the standard deviation of EBV. Although the type of 
standardization (i.e., based on the standard deviation of true versus estimated breeding values) does 
not affect the eventual index values, there are some significant differences with regard to 
interpretation of the resulting index weights.  These are summarised in the following: 1) index 
weights standardized by the genetic standard deviation are independent of the accuracy of genetic 
evaluations and are, therefore, more closely related to the economic importance of traits in the 
breeding goal; 2) standardization on the basis of the standard deviation of EBV reduces the 
emphasis that is perceived to be put on traits with low heritability (i.e., low accuracy of EBV).  
Standardization on the basis of the genetic standard deviation maintains the distinction between the 
ability to identify genetic differences in the population and the relative emphasis that is put on a 
given difference in EBV between animals; 3) the relative magnitude of the standard deviation of 
EBV among traits may differ between, for example, sires and cows.  This would result in different 
indexes if standardization is on the basis of the standard deviation of EBV. 
 
Scale of expression.   
A total merit index ranks sires and cows based on genetic merit for the overall breeding goal. Apart 
from use of the index as a ranking tool, understanding, implementation and use of the index can be 
enhanced if the index is expressed in meaningful units. For total merit indexes that are intended to 
rank animals based on genetic merit for profitability, expressing the index in monetary units 
facilitates and promotes use of the index. The ultimate goal is to express the index in a way that 
enables its use for investment decisions (e.g., semen purchase). Expression of total merit indexes 
for sires as a net present value of a dose of semen was explored by McGilliard (1978), Bakker et al. 
(1980), and others. This requires consideration of the time and frequency of expression of genetic 
superiority in resulting daughters, discount rate, and conception and survival rates. Based on such 
indexes, differences between bulls in expected returns from a dose of semen can be compared 
directly to differences in semen price.  
 
 
6.9.2 Extension of the index 
 
Effective implementation of any index relies on promotion of the index through extension 
activities. Extension efforts should focus on the consequences of selection on an index rather than 
on the composition of the index. Index weights or economic values may not give a clear indication 
of what can be expected from use of the index.  This is because responses to selection on an index 
are affected by genetic constraints on improvement of individual traits, which are quantified by the 
genetic parameters, as well as by the emphasis put on each trait in the index through the index 
weights.  
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Responses to selection can also be used to illustrate that, although for dairy cattle an increased 
protein to fat ratio may seem a reasonable selection objective, and selection indexes can be derived 
that maximise that objective, selection on such an index may have detrimental effects on responses 
for yield traits and result in reduced fat and protein yields. 
 
Another example of the use of predicted responses to index selection in extension is to alleviate 
concerns regarding indexes with a negative weight on SCC as indicators of susceptibility to 
mastitis. Such indexes are often perceived to reduce SCC, which raises concerns about reaching 
levels of SCC that are too low to manifest an effective resistance to infection. Consideration of 
responses to selection on an index that includes production and SCC illustrates that such an 
index does not result in dramatic reductions in SCC but may instead reduce the rise in SCC that 
is the result of the positive genetic correlation between SCC and production.  
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Figure 7.5 Economic values for multiple generation selection
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The example chosen by Dekkers et al. (1995) was for a rather extreme practical situation, with a 
highly nonlinear profit function involving an optimum (for egg weight).  Thus, it seems likely 
that multiple generation optimization of index weights would rarely, if ever, be necessary in 
practice.  The simpler recursive procedure to derive economic weights based on progeny 
generation performance might give one or two percent extra gains in some practical situations.  
But in most situations, the classical approach of using partial derivatives of profit based on 
current generation means, will be sufficiently accurate, rarely giving more than one or two 
percent less gain in profit than an optimized procedure. 
 
 
7.3.6 Non-Linear Indexes for Non-Linear Profit Functions        
 
Although most profit functions are non-linear, in the previous we only considered linear indexes. 
At first glance, it seems reasonable to assume that a non-linear index would be better than a non-
linear index. In this section, non-linear indexes will be introduced, followed by a discussion of 
using linear versus non-linear indexes.  
 
Wilton et al. (1968) showed that with quadratic profit functions, quadratic indexes of quadratic 
aggregate genotypes can be defined that are maximum likelihood solutions to maximizing 
economic genetic progress.   
 
For example, if the profit function took the form  P = π1y + π2y2 

then the aggregate genotype could be defined as  H = v1(µg + g) + v2(µg + g)2 

Denise
population mean in future will depend on selection now which depends on the economic value.
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and the selection index as    I = bx1 + b2 x2 
where µg is the mean genotypic value of the trait, x1 is an observation (e.g. phenotype, full-sib 
mean, etc.) based on y, and x2 is the equivalent observation based on y2 (e.g. mean phenotype 
squared, full-sib mean of squared phenotypes, etc.).  The term µg is introduced into H because 
the economic merit of an animal relative to other animals is now, because of the quadratic profit 
relationship, dependent on the population mean.  With a linear aggregate genotype, relative 
economic values are independent of the mean genotypic value.  Optimal weights for the 
quadratic index were derived by minimizing the sum of squared differences between the index 
and genetic merit of selection candidates for the profit function. Solutions to the problem were 
given by Wilton et al. (1968) and are not dealt with here. 

 
Given that we have phenotypic and genetic variances and covariances for y, it is straightforward 
to derive them for y2 and to derive covariances between y and y2 (see Appendix B). And hence it 
is straightforward, though obviously a little more tedious, to derive quadratic indexes.  However, 
if the initial variance/covariance matrixes are close to being non-positive definite, adding the 
additional terms for y2 will often cause the matrixes to become non-positive definite.  This may 
sometimes happen when the initial matrixes are not close to being non-positive definite. 
 
Ronning (1971) extended the method of Wilton et al. (1968) to derive a cubic index for a cubic 
profit function. 
 
In several practical applications, a non-linear index is developed by substituting multiple trait 
EBV directly into the profit function.  
E.g., for a profit function    P = f(µ+g) 
the selection index is     I = f(µ+ ĝ ). 
 
 
7.3.7 Non-Linear vs. Linear Indexes for Non-Linear Profit Functions  
 
Goddard (1983) argued that the quadratic index of Wilton et al. (1968) does not maximize profit 
of progeny. The reason is that the index is derived to maximize the correlation of the index with 
genetic merit for profit of the selection candidates. This does not necessarily maximize the 
correlation of the index of selection candidates and genetic merit for profit of their progeny.   
 
To illustrate the inadequacy of a quadratic index, Goddard (1983) used an example of a profit 
function P = y2, where y is an additive trait with heritability 1.0 and y =0. For this case, the 
index is I = y2. As illustrated in Figure 7.6, selection on this index would select individuals with 
high y, as well as individuals with low y. Mating the selected parents (at random), would result in 
a progeny generation for which the genetic mean for the trait still is zero. Thus, there is no 
response to selection.  
 

Denise
often, this is not a good thing to do.
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Figure 7.6: Illustration of selection based on a quadratic index

I = y2

 
 

The reason for the lack of response to selection on the quadratic index is that, although all 
variation in profit is genetic, additive genetic variance for profit is zero. In fact, all genetic 
variance for profit is epistatic (additive x additive), which is not inherited from parents to 
progeny. This despite the fact that all genetic variance for the trait y is additive. The presence of 
non-genetic variance is a general property of non-linear profit functions and forms the basis of 
the concept of profit heterosis of Moav (1966). Presence of non-additive variance for profit also 
implies that mean profit can be increased by assortative mating. And indeed, when selecting 
individuals based on the quadratic index, mean profit of the progeny will be increased if 
individuals with high negative trait values for y are mated to each other and, similarly, 
individuals with high positive trait values are mated. Ultimately, this would result in the 
development of two separate lines, one with high y and one with low y. 
 
For the example of P = y2, the first derivative of the profit function evaluated at the current 
population mean (=0) is equal to zero. Thus a linear index I=by that is derived based on the 
current population mean would have b=0 (b can be set equal to v = 0 because heritability = 1) 
and would therefore be equal to zero for all individuals and result in no response to selection. 
However, when the linear index is derived based on the first derivative of the profit function at 
the mean of the progeny, as in section 7.3.5.1, the index weight b will be non-zero. In this case, 
the linear index will either select individuals with high negative values for y, if b<0, or select 
individuals with high positive values, if b>0, but not both. This will result in a change in the 
population mean and an increase in mean profit. 
 
More generally, Meuwissen and Goddard (1997) explained the sub-optimality of a non-linear 
index that is developed by substituting multiple trait EBV in the profit function, i.e. f(µ+ ĝ ), as 
follows: if the genetic traits are additive and distributed multivariate normal, ĝ  are maximum 
likelihood estimates of the genetic value of the individual for component traits and, therefore,  
f(µ+ ĝ ) provides a maximum likelihood estimate of the genetic value of the animal for profit . If 
profit is a non-linear function and, therefore, includes non-additive genetic variation, f(µ+ ĝ ) is 
not guaranteed to provide a maximum likelihood estimate of the genetic value of the progeny. 
 

Denise
if we select based on y^2, then the mean of the population won't change. So, in this situation, we select just one side. Or we could select both and do assortative mating but then we end up with two separate populations. If we made this a linear trait then the economic value would be 0 at the current mean, which we know is not true. So a linear index at the knew mean will do the trick.

Denise
This can be referred to as profit heterosis

Austin Putz
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Although the previous illustrates that the quadratic index of Wilton et al. (1968), and non-linear 
indexes in general, do not maximize response in profit, it does not imply that the best index is a 
linear index. To pursue this, it is important to distinguish between the following two selection 
objectives: 
a) maximize profit of an average progeny,  i.e. Max[f( 1+ty )] 

b) maximize the average profit of progeny,  i.e. Max[ )( 1+tf y ] 
 
Note that in section 7.3.5.1, the first objective was used to derive the optimal linear index. 
 
For a linear profit function, it is clear that f( 1+ty )= )( 1+tf y  and the same index maximizes both 
objectives. The same holds for a quadratic profit function if genetic traits are distributed 
multivariate normal. To see this, consider the following general quadratic profit function: 

P = f(y) = a’y + y’Ay  
where a and A are a vector and matrix of constants. 
Then     E[f(y)]  = E[a’y + y’Ay] = a’E[y] + E[y’]AE[y] + tr(AV) 
where tr is the trace operator, and V is the variance-covariance matrix of y. 
 
Now, since tr(AV) is equal to a constant, E[f(y)]= f(E[y]) + constant 
Thus, for a quadratic profit function with multi-variate normal variables, E[f(y)] and  f(E[y]) only 
differ by a constant and, thus, maximizing f( 1+ty ) is equivalent to maximizing )( 1+tf y  and the 
two objectives are equivalent. For profit functions with higher degrees of non-linearity, however, 
the two objectives are not equivalent.  
 
We will first consider the first objective, i.e. maximizing profit of an average progeny, for which 
the optimal linear index was derived in section 7.3.5.1. Goddard (1983) provided an intuitive 
proof that for the index that maximizes profit of an average progeny is a linear index regardless 
of the degree of non-linearity of the profit function if the traits that contribute to profit are 
additive. Itoh and Yamada (1988) provided a formal proof. The intuitive proof is based on the 
fact that the greatest genetic change in any direction in the multi-dimensional space of population 
trait means will be achieved by a linear index when the traits are additive. Referring to Figure 
7.4, the origin is the current combination of population means for the two traits and the circles 
represent the response circle for all possible linear indexes for a given selection intensity. 
Consider the second response circle. As suggested, a linear index will result in the greatest 
change in the combination of population means in any direction and thus in the greatest distance 
of any point on the circle from the current population mean A. Any non-linear index will result 
in a combination of population means that lies within the response circle. Then, when the 
objective is to maximize f( 1+ty ), two possibilities exist: 
 
1) The profit function has no maximum within the response circle. In this case there will be a 

point on the response circle that will result in greater f( 1+ty ) than any other point on or within 
the response circle. In Figure 7.4 this is represented by point b on the second response circle, 
for which the response circle is tangent with the furthest profit contour. 
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2) The profit function has a maximum within the response circle. In this case we can reduce the 
selection intensity such that the maximum falls on the response circle for linear indexes. Now 
situation 1) applies and, thus, a linear index results in at least as much gain as a non-linear 
index. 

 
Thus, if the objective is to maximize profit of an average progeny, a linear index derived as 
described in section 7.3.5.1 is optimal. 
 
When the objective is to maximize average profit of the progeny, rather than profit of an average 
progeny, the linear indexes derived above will also maximize the objective for linear and 
quadratic profit functions because, as shown above, E[f(y)] and  f(E[y]) only differ by a constant.  
 
Itoh and Yamada (1988) argued that most higher-order profit functions can be approximated 
reasonably well by a quadratic profit function. Although this may not hold for the entire range of 
a profit function, this will indeed most often hold for the range of EBV present in any given 
generation. If the quadratic approximation is accurate, we are again back to the situation of a 
quadratic profit function, for which a linear index derived based on maximizing profit of an 
average progeny is optimal. 
 
One can also argue whether the objective should indeed be to maximize the average profit of 
progeny instead of maximizing the profit of an average progeny. Profit of an average progeny, 
f( 1+ty ), is determined by progeny means for the genetic traits in y. In general, the difference 

between f( 1+ty ) and )( 1+tf y  depends on the nature of the profit function and on the distribution 
of traits among the progeny. Selection has a direct effect on population means for the genetic 
traits, i.e. on 1+ty . Apart from the effects of selection on genetic variance, as described in 
Chapter 3, selection does not affect the distribution of traits among the progeny. The distribution 
of traits among progeny can, however, be affected to some degree by mating, independent of 
selection, by capitalizing on profit heterosis (Moav and Hill, 1966). This means that for selection 
purposes, the main objective should be to improve population means for biological traits and, as 
a result, prime emphasis should be on improving the profit of an average progeny, while the 
mating strategy can focus on improving distribution aspects. This is in particular true if longer-
term objectives are considered, e.g. maximizing cumulative discounted profit over a planning 
horizon, because mating will only have a temporary effect, whereas changes in population means 
are permanent and passed on from generation to generation. 
 
The previous assumes selection and mating strategies are independent. Ideally, however, 
selection and mating should be combined into mate-selection strategies (Kinghorn, 1997). These 
strategies are, however, beyond the scope of this course. 
 
Meuwissen and Goddard (1997) compared by simulation the performance of alternative selection 
indexes with regard to profit obtained after 10 generations of selection. Their profit function 
included non-linear economic, as well as non-linear genetic relationships between traits. The 
latter caused genetic parameters to change as population means changed. In this case, derivation 
of the optimal linear index also involved updating genetic parameters. They showed that, in 
general, the difference between the optimal linear index and a non-linear index created by 
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substituting multiple-trait EBV in the profit function, i.e. f(µ+ ĝ ), was small.  The optimal linear 
index was, however, more difficult to derive and required updating of genetic parameters, 
whereas genetic parameters were not updated for the non-linear index. If parameters were not 
updated for the linear index, the non-linear index was slightly better. Thus, the non-linear index 
appeared quite robust to non-linearities in genetic parameters. Thus, a ‘simple’ non-linear index 
may be slightly better than a ‘simple’ and, therefore, sub-optimal linear index. The same held 
true for selection on direct EBV for profit (Meuwissen and Goddard, 1997). 
 
 
7.3.8 Some Practical Considerations Regarding Non-linear Profit Functions   

(Taken from Dekkers and Gibson, 1997) 
 
In practice, nonlinear relationships are frequently implied in the selection and mating decisions that 
are made and promoted in the industry. In particular, computerized mating programs, in which 
mating pairs are arranged or a specific sire is sought for a particular cow, often rely on the concept 
of corrective mating, which implies existence of nonlinear relationships. Mating strategies often 
pay particular attention to traits that have or are perceived to have an intermediate optimum. 
Several conformation traits present examples of such traits, such as set of rear legs when viewed 
from the side (rear legs that are too curved or too straight are deemed undesirable), teat length, 
stature, and udder depth (shallow udders are associated with less production, but udders that are 
too deep are associated with more mastitis). Examples of non-conformation traits that are 
perceived to have an intermediate optimum are milking speed (slow milkers are associated with 
increased labor but fast milkers are associated with increased susceptibility to mastitis) and to some 
extent somatic cell count (SCC) [high SCC is associated with increased susceptibility, but SCC 
that is too low may also be associated with reduced resistance]. Intermediate optima can relate to 
traits in the breeding goal or to traits that appear exclusively in the selection index (e.g., 
conformation traits). 
 
Emphasis by producers on traits with an intermediate optimum or nonlinear relationships, and 
emphasis on mating in breeding strategies takes away from the use and implementation of the total 
merit selection strategies that are promoted for genetic improvement of an overall breeding goal. 
Dealing with these antagonistic perspectives requires a better understanding of the nature of the 
nonlinear relationships considered by producers and of the role of selection versus mating in 
genetic improvement strategies. 
 
 
7.3.8.1 Intermediate optimum traits and non-linear relationships.  
 
A trait can be perceived to have an intermediate optimum because of simultaneous consideration of 
antagonistic pleiotropic effects of the trait. For traits in the breeding goal, an obvious example is 
milking speed, which has a positive effect on milking labour but a negative effect on susceptibility 
to mastitis. Udder depth is a selection index trait that is often perceived to have an intermediate 
optimum.  This is caused by antagonistic relationships that udder depth has with two traits in the 
breeding goal: udder depth has an undesirable relationship with susceptibility to mastitis but a 
desirable relationship with production. 
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For traits with a real, rather than perceived, intermediate optimum, a distinction must also be made 
between traits in the breeding goal and selection index traits. For traits in the breeding goal, the 
intermediate optimum relationship between a trait and the overall goal (e.g., profit) can be 
formulated in terms of a non-linear profit function. Other, less extreme non-linear relationships 
also fall within this category. Examples of such traits in dairy cattle are conception rate, 
persistency, and SCC in relation to payment or penalty schemes.  Non-linear relationships can also 
pertain to the relationship between a selection index trait and one or more traits in the breeding 
goal. An example is set of rear legs, which has an intermediate optimum relationship with 
longevity. Another example is the assertion that the need for good conformation is more important 
for cows at high production because better conformation enables the cow to better withstand the 
stresses of high production (balanced breeding). 
 
Solkner and Furst-Waltl (1996) discussed the potential for non-linear heritabilities and of non-
linear genetic correlations for functional traits in dairy cattle. Non-linear genetic relationships can 
be due to segregation of genes of large effect at low frequency, physiological limits, and others. 
 
7.3.8.2 Nonlinear effects in the formulation of selection and mating strategies.  
 
Three situations can be distinguished with regard to presence or perception of nonlinearity in 
relation to formulation of selection strategies:  antagonistic pleitropic effects, non-linear breeding 
goal (non-linear profit function), and non-linear genetic parameters.  Although, strategies to deal 
with non-linear effects in genetic improvement programs cannot ignore strategies for mating, in 
what follows the impact of non-linear relationships on the development and implementation of 
selection indexes is discussed separately. 
 
Antagonistic pleitropic effects.   Antagonistic pleiotropic effects of a trait and the resulting 
perceived intermediate optimum, can often be resolved through proper formulation of the breeding 
goal or selection index and through consideration of the role of the trait in the breeding goal or 
index in relation to other traits that are included. For example, if resistance to mastitis is a trait in 
the breeding goal, along with milking speed, the economic value of milking speed should only 
consider the effects of milking speed on milking labour. The negative effect of milking speed on 
susceptibility to mastitis is accounted for in derivation of the index through the genetic correlation 
between milking speed and mastitis. With regard to traits in the index, pleiotropic effects of, for 
example, udder depth are accounted for in formulation of an index for a breeding goal that includes 
production and mastitis through the genetic correlations among udder depth, production, and 
mastitis. 
 
Non-linear breeding goal  This has been discussed previously. 
 
Non-linear genetic parameters.   
For selection index traits, non-linear relationships with traits in the breeding goal can be caused by 
or modelled as non-linear genetic correlations (Solker and Furst 1996). For example, the 
intermediate optimum relationship between set of rear legs and longevity can be modelled as a 
non-linear genetic correlation with a positive genetic correlation at low values of the trait (curved), 
a zero correlation at the intermediate optimum, and a negative genetic correlation at high values of 
the trait (straight) (Figure 7.7). Similarly, the assertion of the increased importance of conformation 
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at high production implies that the strength of the relationship between conformation and longevity 
increases as level of production increases.  This relationship can also be modelled as a non-linear 
genetic correlation, which increases as level of production increases. 
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Figure 7.7   Relationship of set of rear legs with herd life and of the 
genetic correlation between set of rear legs and herd life with the 

population mean for set of rear legs.

 
 
Limited research has been conducted on methods for detecting and estimating non-linear genetic 
relationships. In addition little research has been done on the impact of non-linear relationships on 
selection strategies. Gowe (1983) suggested that for a trait with a non-linear heritability that is 
caused by presence of a major gene, selection based on an independent culling level is preferred 
over inclusion of the trait in a selection index. This advantage, however, was not confirmed in 
simulation studies by Meuwissen et al. (1995), which suggested the use of an empirical restricted 
selection index to deal with such traits. Strategies for dealing with this and other types of non-
linear genetic parameters require further investigation. Extrapolating from results for non-linear 
profit functions, linear selection indexes that are derived based on linear genetic parameters 
evaluated at future rather than current trait means would be expected to be close to optimum for 
most situations. This situation is illustrated in Figure 7.7 for the non-linear relationship between set 
of rear legs and profit, for which the genetic correlation evaluated at the mean of progeny would be 
used to derive an index that maximises profit in the next generation. 
 
For dairy cattle, traits that potentially involve nonlinear genetic relationships have limited 
economic importance relative to production traits. In addition, although significant nonlinear 
relationships (e.g., conformation traits and herd life) may be observed at the phenotypic level, as 
is perceived by breeders, the extent of nonlinearity may be limited at the genetic level. This 
limitation occurs because the range of breeding values and, especially, the range of estimated 
breeding values, is much smaller than the range of phenotypic values, in particular for traits with 
low heritability. Therefore, use of selection indexes derived based on linear genetic parameters 
estimated at current population means will likely be close to optimum for most applications in 
dairy cattle.  
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7.4 Economic Weights for Categorical Traits 
 
7.4.1 A Graphical Illustration 
 
Many traits are either measured on a categorical scale or, although expressed on a linear scale, 
incur financial rewards or penalties in some stepwise manner.  In either case, the relationship 
between enterprise profit and individual expression of the trait is discontinuous.  This does not, 
however, mean that profit is a discontinuous function of population mean expression for the trait.  
This is illustrated for the case of calving ease in dairy cattle, which is recorded on a four point 
scale of decreasing difficulty of calving:  S (surgical intervention), H (hard pull), E (easy pull) 
and U (unassisted).  The trait is assumed to operate as a threshold model, which assumes that 
there is an underlying normal distribution of susceptibility to calving ease.  This distribution has 
a mean of zero and variance of one.  Incidences of the categories define the threshold values for 
susceptibility, as illustrated in Figure 7.8. 
 
An increase in the mean of the population on the underlying scale is illustrated by the broken line 
in Figure 7.8.  The thresholds retain their absolute values but now occur further to the right 
relative to the mean of the new population.  This leads to a decreased incidence of the deleterious 
calving ease categories. 
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Figure 7.8: Normal distribution on underlying scale, showing thresholds  
corresponding to the five categories of calving ease, and reduced incidence 
of deleterious categories with an increase in  population mean (broken line). 

 
 
If the incidence of each category for a given population is pi, i = 1, 4, and their respective 
economic values (i.e. profit) are wi, then the overall profit is P = Σpi wi.  The change in profit 
with a change in the population mean, µ, can be found by changing the mean in successive small 
increments, recalculating incidences pi and profit P, and then plotting P against µ.  For an 
example situation, the resulting profit function for the population mean of calving ease is shown 
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in Figure 7.9. The economic weight for calving ease (expressed on the underlying scale) is the 
tangent to this profit curve at the current population mean. Thus at the current mean of zero, the 
economic weight is clearly close to zero, and is not much affected by substantial changes on 
either side of the current mean.  But increasing calving difficulties (a decrease in calving ease on 
the underlying scale) leads to an accelerating increase in the economic weight. 
 

Population
mean liability

Pr
of

it

µ

Figure 7.9: Change in average profit with change in genetic mean
for calving ease expressed on the underlying (normal) scale

 
 
The derivation of profit curves in Figure 7.9 assumes that: 1) variance on the underlying scale is 
not affected by the mean, and 2) profit per animal associated with each category is not dependent 
on its incidence.  The first assumption can easily be relaxed if there is good reason for doing so, 
which in most cases there likely would not be.  The second assumption may be false in a 
competitive market between breeding companies where there are acceptable limits for incidence 
beyond which an increasing proportion of customers would refuse to purchase a particular strain.  
This situation can be dealt with following the approach of de Vries (1992), after correcting for 
the errors in his derivations.  There may also be direct associations between profit per animal in 
each category and overall incidence, if increasing incidences make the enterprise increasingly 
difficult to operate efficiently.  If so, the functional relationship between incidence and vi can be 
included directly in the process of constructing the profit curve. 
 
 
7.4.2 An Algebraic Solution      
 
While the graphical approach illustrated above is useful and recommended for exploring the 
relationship between profit and expression of a categorical trait, economic weights can also be 
derived directly as follows. 
 
Consider an underlying normally distributed variable with mean µ and variance σ2. Assume the 
trait is observed in n categories. Denote the lower and upper thresholds for the normally 
distributed underlying variable for category i by xUi and xLi, the proportion in category i by pi, 
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and its value by wi. Note that xL1 = ∞−  and xUn= ∞+ . Given the mean and SD of the normal 
distribution and the thresholds, the proportion of the population that is in category i can be 

derived as: pi = ∫
=

∂
iU

iL

x

xx

xxN )|( µ , which can be derived using the cumulative distribution function 

of the Normal distribution as pi = φ(xUi) - φ(xLi), where φ(xUi) = N(x |µ)∂x
x=−∞

xUi

∫ , which can be 

obtained using function NORMDIST in Excel. 

Profit, P, of an average individual is then equal to:  P(µ) = i

n

i
i pw∑

=1

    

The economic value of the trait can then be derived by evaluating the increase in profit from 
increasing the population mean from µ to µ+Δ as: v = [P(µ+Δ)-P(µ)]/Δ. 
 
Alternatively, assuming small genetic change, the economic weight for this trait expressed on the 
underlying scale can be derived as the partial derivative of the profit function evaluated at the 
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Using the rule of Leibnitz, which allows exchange of derivatives and integrals, 
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Thus, the economic value is equal to a weighted sum over categories of the difference between 
heights of the ordinates of the Normal distribution at the lower (N(xLi|µ)) and the upper bound 
(N(xUi|µ)) for each category. 

 
 

7.5 Economic Values for Infectious Disease Resistance 
 
Genetic improvement of resistance to infectious disease has a direct impact on the improved 
animal through increased health and performance and through reduced veterinary costs. Genetic 
improvement of these traits, however, also has an indirect impact on other animals in the herd or 
population through reduced infection rates because fewer animals transmit the disease, which 
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Direct impact on improved animal is a function of increased health and performance, reduced veterinary costs and an indirect impact on herd/population through reduced infection rates.
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reduces the probability that non-resistant animals become infected. Both the direct and indirect 
benefits of increasing resistance must be considered when deriving economic values for these 
traits. Spread of the disease can be modeled through epidemiological models. 
 
Models that combine genetics and epidemiology were developed by Bishop and Stear (1997 and 
1999) to investigate the impact of increasing nematode resistance in sheep. They showed that 
selection on nematode egg count in faeces results in considerably greater responses in faecal egg 
count and live-weight gain than expected based on genetic principles when the epidemiological 
effects through reduced infection pressure were accounted for. These models can also be used as 
the basis for deriving economic values for infectious disease traits (see 7.6.1). 
 
 
7.6 Economic Values for Unpriced Traits    

 
There are several categories of traits that are associated with genetic characteristics that have no 
direct market value (at present). This can include traits associated with product quality (e.g. meat 
quality, which may at present not have a direct economic value), quality of production (i.e. traits 
that are valued by the producer but that have no direct economic value, e.g. temperament of dairy 
cows), animal welfare, environmental quality, and environmental sustainability.  
 
One approach for such traits would be to use a desired gains index. For example, if temperament 
is a concern and negatively correlated with, e.g., milk yield, one may want to develop an index 
that keeps temperament constant. Although this appears to be an attractive alternative, it can also 
be very dangerous, as discussed in section 6.9. Thus, as a minimum, the impact of restricting 
change in temperament on change in other traits and quantifiable profit should be evaluated. 
 
Several alternative approaches have been used in the literature to derive economic values for 
such traits and these will be discussed briefly below. 
 
 
7.6.1 Economic values for unpriced production traits 
 
For traits that are of importance to the producer because of their inherent impact on the 
production process (e.g. temperament in dairy cows), one approach to derive an economic value 
is to evaluate the impact of the trait in relation to traits whose economic value can be quantified. 
For example, Wickham (1979) regressed survival on milk yield and temperament and used the 
ratio of the resulting estimates of the regression coefficients (bM and bT) to quantify the economic 
value of temperament: when culling cows, the producer values one unit of temperament score as 
high as bT/bM kg of milk. Thus, the economic value for temperament is bT/bM times the economic 

value for milk: M
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It is clear that survival is not the only aspect of a cow’s ‘socio-economic’ life on the farm that 
temperament affects and, for that matter, neither is this the case for milk yield. The method 
proposed by Wickham (1979) does, however not exclude the potential impact of temperament on 
aspects beyond culling. However, it does assume that the culling decision provides a good 
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assessment of the relative importance of temperament versus milk yield. To the extent that 
culling provides a good assessment of a cow’s value to the farmer, this assumption holds. 
Culling decisions, however, are or should be based on future profit that is expected from a cow 
(relative to a replacement), rather than profit over the entire lifetime; although past profit is a 
good indicator of expected future profit, other factors, such as health or fertility status are 
important determinants of expected future profitability. Thus, the method of Wickham (1979) 
will overvalue traits that affect profitability later in life, because those are important determinants 
of expected future profitability. In addition, because results are based on field data, the method 
assumes that farmer culling decisions are based on sound economic decision making.  
 
Bishop and Nagel (unpublished, as presented in Bishop 2003), estimated a lower bound to the 
economic value of nematode egg count in sheep by quantifying the impact of reducing egg count 
on live weight, which is one of a number benefits of reducing egg counts – others are enhancing 
animal health and reducing anthelmintic costs. The combined genetic – epidemiological model 
of Bishop and Stear (1999) was used to quantify the impact of reducing egg count on growth rate 
in the flock. 
 
 
7.6.2 Market surveys 
 
Market surveys can be used to derive economic values for traits that are important to consumers 
but that (at present) do not have a direct economic value. Meat quality traits are good examples 
of such traits. Such surveys can be conducted at the level of the consumer, processors, or 
producers.  
 
Von Rohr et al. (1996) presented a contingent valuation method (Mitchell and Carson 1993) to 
derive economic values for meat quality traits in pigs. This method is used to obtain estimates of 
costs and benefits for goods and services that are not traded on ordinary markets by presenting 
respondents in the survey a market in which the goods under study are treated as if they were 
tradable. This obviously requires respondents to be familiar with the goods and services being 
evaluated. 
 
In the study of Von Rohr et al. (1996), meat technology experts of several large meat processing 
companies were asked to assign price changes from the base market price to a set of hypothetical 
carcasses with different quality characteristics (color, drip loss, intramuscular fat, iodine value, 
pH, and proportion of premium cuts). Six classes were set up for each quality trait and 
hypothetical carcasses consisted in a change from a standard carcass in only one attribute.. 
Economic values were then estimated using the categorical trait approach described in section 
7.4.2. 
 
Melton (1995) and Melton et al. (1996) used the experimental auction method (Shogren 1993) 
and the trial/repeat purchasing model to estimate economic values for pork quality traits based on 
consumer preferences. In this approach, consumers tasted pork with different quality attributes 
and compared it to chicken breast, which they tasted simultaneously. The pork was assigned one 
of 5 price levels, in relation to a standard price for chicken, and consumers were then asked 
whether they would be more likely to buy this pork, with its specific quality and price attributes, 
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or the chicken breast. Logistic regression was then used to analyze the probability of purchase 
(non-purchase) as a function of pork quality attributes and price: 

 Prob(pork purchase) = Pi = 1/(1+eβ i’Xi)  

with    β i’Xi =  fixed effects + Σbijxij + bprice
pricechicken
pricepork  

where xij is the value for pork quality attribute j. This model estimates the effect of a change in 
attribute or price on the probability of purchase. The economic value of a quality attribute was 
then derived by evaluating the change in price that is needed to keep the probability of purchase 
constant, when quality is changed by one unit. Algebraically, this can be solved from the above 
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Using a given probability of pork purchase, which was based on current consumption patterns 
(=0.15), and using parameters estimated from the logistic regression model (i.e. for fixed effects 
and bij, this equation represents a functional relationship between quality characteristics xj and 
price that consumers are will to pay per kg pork. The first derivative of this equation for a given 
quality trait j, then gives the economic value of that trait on a per kg basis. Multiplying be the kg 
product per animal, and assuming no costs associated with this change in quality, gives the 
economic value on a per slaughter pig basis. 
 
 
7.7 Incorporating competitive position in economic values      
 
For breeders that are operating in a competitive market, market share is the driving force behind 
breeding objectives. De Vries (1989a) argued that in that case, economic values must take into 
account the competitive position of the company for individual traits. I.e. economic values should 
be increased for traits for which the company lags behind its competition, and economic values 
should be reduced for traits for which the company is ahead of the competition. De Vries (1989) 
used a market model to incorporate the impact of competitive position on profit for the breeder 
and, consequently, on economic values.  
 
For each trait i in the breeding goal, an acceptance level Ti is defined as the minimum level for the 
breeding stock to be acceptable to the potential buyer. Assuming a normal distribution of 
acceptance level over all customers, the trait level of a given stock then determines the percentage 
of the customers that will find the stock unacceptable. The proportion of customers that accepts the 
trait level for trait i is equal to the proportion of customers whose acceptance level is below the 
performance level of the stock. With n traits, each with acceptance proportions pi, market share for 
the stock is:  

ms = c (p1 p2 p3 … pn) 
where c is a constant that depends on the number of competitors. 
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Figure 7.10: Distribution of clients according to their acceptance level for a
trait i.

 
 
For stock that is above the acceptance level for trait i, it is assumed that price is proportional to the 
regular economic value of the trait, derived at the producer level, vi. 
 
Then, the economic weight of the trait when taking into account saleability is equal to the regular 
economic value of the trait for the producer,  vi, multiplied by a factor that depends on the 

acceptance level for trait i:  vi
* = 

2
π

i

i

p
z  vi = 

2
π

ii  vi  

Where pi is the current acceptance level of the stock for trait i, zi the ordinate of the standard 
normal distribution associated with that proportion, and ii the selection intensity associated with 
proportion pi. Note that the economic value decreases with an increase in the acceptance level for 
the trait. 
 
Acceptance level for a given trait is related to the level of that trait relative to competitors. Thus, 
the economic value of trait i for a given stock depends on the genetic level of that trait in that stock 
relative to competitors; if the genetic level is below that of competitors, the acceptance level with 
be low and the economic value high; if it is above that of competitors, the acceptance level will by 
high and the economic value low. 
 
Problems associated with applying this approach were discussed by De Vries (1989b) and include 
lack of knowledge of the buying behaviour of customers and sub-optimality of resulting indexes 
for longer-term responses to selection. 
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7.8 Some practical Considerations 
  (Taken from Dekkers and Gibson, 1997) 
 
7.8.1 Identification of  the Target Group and Intended Use of the Selection Index 
 
The first step in development of breeding goals and selection indexes for practical implementation 
involves specifying the purpose for which the selection index will be designed. This process 
includes identification of its target audience, identification of financial and other incentives to 
which the target audience is exposed which may impact on the perceived importance of  traits 
(Figure 6.2), and consideration of the manner in which the index is to be used. For example, 
although selection indexes are intended as an initial guide to selection, few breeders would base 
their entire selection decision on a single overall index. Prior or subsequent selection may be on 
individual traits, in particular, on conformation traits or individual milk component traits. 
Consequences of secondary selection decisions on emphasis on traits in the overall selection 
strategy must be monitored and perhaps incorporated when developing selection indexes. 
 
If selection indexes are made available for cows as well as sires, it must be recognized that 
selection of dams of cows, which with current female reproductive rates is closely related to 
culling of cows, should be based on expected profit from the cow herself rather than on a genetic 
selection index, which is based on expected profit of the descendants. To investigate the potential 
consequences of implementation of the lifetime profit index (LPI) as criterion for genetic selection 
of cows in Canada, a study was undertaken (Dekkers and Gibson, 1992, unpublished) to 
investigate the relative efficiency of culling cows on the index of EBV for milk, fat, and protein 
that was incorporated in the LPI versus culling cows on an index based on estimated producing 
abilities for the production traits. Estimated producing ability predicts production of the cow in 
future lactations and is more appropriate for culling decisions than is EBV. Concern regarding 
misuse of the LPI for cows was exacerbated by the lack of specific guidelines for culling cows in 
Canada and implications of the name chosen for the genetic index (Lifetime Profit Index). Results 
from this study showed that culling on an index of EBV was only 4 to 7% less efficient in 
improving future production of current cows in the herd than culling on an index of estimated 
producing abilities. These results alleviated concerns regarding the consequences of potential use 
of the index for culling rather than genetic selection. 
 
Consideration of the intended use of the index is also important when developing criteria for 
selection of sires of sons versus for selection of sires of cows. Selection of sires of sons and dams 
of sons requires a longer planning horizon than selection of sires of cows and selection of dams of 
cows. In changing markets, the same index may not be appropriate for alternative paths of 
selection (see subsequent discussion). 
 
In development of breeding goals and selection indexes, a clear distinction must be made between 
economic traits that are included in the breeding goal and indicator traits that are included in the 
selection index. With regard to interpretation of the selection index, this involves clarification of 
the role of indicator traits in relation to the economic traits in the breeding goal. For example, a 
frequent assertion of breeders is the need to include conformation traits in the breeding goal. 
Although conformation traits can have a direct economic value for breeders who sell breeding 
stock, conformation only has an indirect economic value in a commercial milk production 



 
151 

environment through its relationship with herd life and functionality. In this case, conformation 
traits should not be in the breeding goal but belong in the selection index as indicator traits for 
components of the breeding goal.  
 
 
7.8.2 Consideration of Current vs. Future Economic Circumstances and Market Demands 

 
Development of breeding objectives and derivation of economic values must consider future 
conditions rather than current economic and market conditions because of the delay in the 
expression of selected genes.  The length of the planning horizon depends on the path of selection 
and is different, for example, for selection of sires of sons than for selection of sires of cows.  
 
Breeders, however, tend to judge the suitability of indexes and economic values primarily in 
relation to present economic circumstances, perhaps modified by their perception of future trends 
in consumer demands (Figure 6.2). The latter may be influenced by, for example, media reports on 
the need for low fat diets. The manner in which producers are paid for milk and its components 
provides particularly strong economic incentives. In many countries, incentives provided by the 
pricing system are complicated by the presence of a quota system, which is frequently based on 
production of one of the components (e.g. fat).  This can eliminate the perceived benefits of 
selection pressure on that trait. 
 
Although payment systems for milk across the world currently tend to converge toward multiple-
component pricing, with payments per kg of milk, fat, and protein that are increasingly reflect 
world market prices, substantial differences remain.  Some payment systems lack payment for 
protein and others base payments for fat and protein on a differential. Pricing systems for milk are 
typically based on past or current market considerations rather than on anticipated future market 
conditions.  Differences in pricing systems are partly a reflection of regional differences in milk 
markets and partly a reflection of traditional payment schemes and their inflexibility to change. 
Economic incentives that are provided to producers through existing pricing systems may, 
therefore, not promote optimum genetic decisions. Although anticipated future market trends 
provide indirect incentives that can modify the impact of direct economic incentives on selection 
decisions (Figure 1), they are often incorporated subjectively. An index that is developed based on 
economic values that incorporate future market trends (e.g., J. P. Gibson, M. Greimel, and J. C. M. 
Dekkers, 1996, unpublished) may, therefore, not reflect producer perceptions.  Such an index may 
be difficult to implement. For example, it may be difficult to convince a producer to select for 
protein yield if the pricing system reflects no payment for protein or if it reflects a protein 
differential rather than a payment for protein yield.  
 
Given the impact of price incentives on breeding and management decisions, pricing and quota 
systems must be proactive and aimed toward the future. Ideally, pricing systems are developed in 
an interactive manner in close relation to anticipated changes in management and genetics that 
would result from the incentives they provide. This type of development may, however, be 
unrealistic and would be further complicated by the different planning horizons for management 
versus genetic decisions. More realistic is the development of pricing systems that reflect the true 
value of products in the market and that are flexible to accommodate changes in market values. 
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Breeding goals for production traits should be developed on the basis of fat and protein rather than 
on their percentages, because component quantities rather than their concentrations in raw milk are 
the marketable commodities at the level of the processing industry. Many pricing systems at the 
farm level, however, have traditionally been based on a price per kg of milk and a percentage 
differential premium based on the fat and protein content of milk. Pricing systems based on fat and 
protein differentials can be converted to multiple-component pricing systems based on kg of milk, 
fat, and protein that have an identical payout to the producer. Similarly, for fat and protein 
differential pricing systems, selection can be based with equal accuracy on an index of milk, fat, 
and protein yield as on an index that is based on milk yield and fat and protein percentage. An 
example is given in Table 7.7, in which the 1997 multiple components pricing system in Ontario is 
converted to an equivalent payment system based on differentials for fat and protein.  
 
The main difference between the two pricing system of Table 7.7 is that the perceived value of 
milk yield is much higher under the differential pricing system.  This is reflected in the economic 
values and in the resulting index weights. In fact, under the multiple-component pricing system, 
milk yield has a negative economic value and index weight (Table 7.7).  Such an index would be 
difficult to implement when producers are paid based on a differential pricing system. Ideally the 
pricing system should be changed to reflect more closely the real economic value of milk and its 
components.  Given the complexities of making such changes, however, the breeding goal and 
selection index based on milk volume and fat and protein would facilitate their implementation in 
such situations.  
 
Table 7.7 Impact of alternative pricing systems, which result in identical payments to producers, 
on formulation of the breeding goal. 
 Multiple-component pricing1 Percentage differential pricing 

 Milk (kg) Fat (kg) Protein (kg) Milk  (kg) Fat  (%) Protein (%) 

Price, $      0.071     5.31     8.44 0.53755 0.0531 0.0844 

Marginal cost, $      0.152     3.112     1.70 0.20928 0.0311 0.0179 

Economic value, $    - 0.081     2.20     6.65 0.32827 0.0220 0.0665 

Index weights3    - 0.067     2.19     6.19    

Standardized4    - 4.0 +  4.9 +10.0    

Response5 +351.07 +14.10 +10.54 +351.076 +0.02776 +.00566 

1  Based on 1996 Ontario prices and costs. 
2  Includes interest cost on fat quota. 
3  Index weights on a per kg basis for sires with 50 daughters. 
4  Index weights on a per genetic standard deviation basis. 
5  Response in daughter performance to one standard deviation selection in sires on the index. 
6  Based on assumed linear relationships between yield traits and % traits. 
 
 

Denise
Concern when developing this was that producers would use it to cull cows. Culling should be much more based on production versus genetics.

Denise

Denise

Denise

Denise

Denise
Better to avoid percentages or ratios as in the example so use breeding goal to the left.
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7.10 Different Perspectives in Animal Breeding
In discussing profit equations, so far we have given little attention to the following four related
issues that refer to definition of the breeding objective:

1) From what perspective should the benefits of genetic improvement be viewed.  As noted in
the introduction to this Chapter, we might view genetic improvement, and hence profit, from
the view of the breeder/breeding company, the producer, the processor, the consumer, the
whole industry, or some other view.

2) Should profit be expressed per farm, per animal, or per unit of product?

3) Should the breeding objective be to maximize profit (i.e. R-C) or to maximize economic
efficiency (i.e. R/C), where R = total returns and C = total costs. Note that maximizing R/C is
equivalent to minimizing C/R.

4) Should the breeding objective be defined per farm, per animal, per unit of product, per unit
of an input factor, or subject to any other constraint?

It was Moav (1973) who first noted that different perspectives can yield different profit functions
and different absolute and relative economic weights in the aggregate genotype.  Subsequent
authors have discussed this problem, and we illustrate it here with the example provided by
Brascamp, Smith and Guy (1985).

Imagine a meat production enterprise consisting of N breeding females, and producing n
offspring for slaughter each year.  A simple profit function for the production enterprise could
take the form,

P = N(nwr - nc1d - c2)

where w is the weight of meat produced per offspring, r is the returns per unit product, d is the
number of days to slaughter, c1 the cost per day, and c2 the cost of maintaining each female for
one year. There are three traits under genetic control, n, d and w.

Consider four different perspectives:
1) profit per enterprise: the viewpoint of the producer with potentially unlimited space for

breeding females;
2) profit per breeding female: the viewpoint of the producer with a fixed number of

breeding females;
3) profit per slaughter progeny: the viewpoint of the processor buying slaughter animals

and interested in minimizing the cost per head;
4) profit per unit of product: the viewpoint of the consumer interested in minimum price

per unit product.
The argument behind perspectives 3) and 4) is that an initial increase in profits due to genetic
improvement ultimately results in reduced prices as competition forces prices down, so that
something close to the original profit margin prior to genetic improvement is attained.

Austin Putz
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Austin Putz


Austin Putz
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The appropriate profit equations are shown in Table 7.1 along with the resulting economic

weights obtained as the partial derivatives of the profit equation: vij = 
i

j

y

P
 �
�

where j indicates the perspective taken (1 to 4) and i indicates trait i.

Table 7.1 Profit equations and economic weights for four profit perspectives*.
Economic Weight, vi

Perspective Profit equation vn vd vw

Per enterprise P1 = N(nwr - nc1d - c2) N( w r - c1 d ) - N n c1 N rn

Per female P2 = nwr - nc1d - c2 rw - c1 d - 1cn rn

Per individual
P3 = wr - c1d - 

n
c 2

2
2

n

c - c1 R

Per unit product P4 = r - 
w
dc1  - 

wn
c 2

wn

c
2

2

w

c1- ÜÝ
ÛÌÍ

Ë +
n

c
  dc 

w
2

12

1

* n = number of progeny per breeding female per year; w = weight of product per slaughter
animal; r = returns per unit product (price); c1 = cost per slaughter animal per day; c2 =
cost per breeding female per year; d = days to market for slaughter animals.

It is clear from Table 7.1 that the relative economic weights for n, d and w are the same for
perspectives 1 and 2, the absolute values differing only by a scaling factor, N. Thus, these two
perspectives would result in equivalent genetic progress. Relative economic weights for n, d, and
w do differ for other perspectives. This is disturbing, since it implies that different perspectives
in the industry would have different indexes (and hence different directions of genetic change).
But, the same animals must serve all levels of the industry.

The question then is whether it is possible to develop a consistent selection strategy (i.e. a
consistent set of economic values) that meets the objective from every perspective. The answer
to this question is yes, provided some important assumptions are made. Five related approaches
have been suggested to obtain consistent economic values (after Goddard 1998):
1) Zero or normal profit (Brascamp et al. 1985): change the economic model by including

normal return on investment as a cost, such that current profit equals zero.
2) Rescaling (Smith et al. 1986): subtract from the change in profit that results from genetic

change the increase in profit that is due to a change in scale of the enterprise.
3) Fixed base of comparison: restrict total returns, total costs, or total profit to be constant.
4) Define the objective as economic efficiency (R/C) (Dickerson (1978).
5) Scale optimization (Amer and Fox, 1992): increase the scale of the production system until

an optimum is reached for the new genetic level.
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7.10.1  Zero or Normal Profit

One branch of economic theory predicts that in stable but competitive markets, profit obtained at
each level of an industry settles down to the “normal profit”.  Normal profit is the profit
necessary for  persons operating a given level of the industry to make a reasonable return on their
investment in time and money. In this case, normal profit can be viewed as a necessary operating
cost, and would appear on the right hand side of the profit equation as a cost of production, so
that profit now equals zero.

If the four profit equations in Table 7.1 are rewritten as zero profit equations, i.e. Pi is set equal
to zero, a new set of economic weights can be derived and these are shown in Table 7.2.  To
illustrate how these economic weights are derived, consider the profit equation expressed per

slaughter animal, P3 = wr - c1d - 
n
c 2 which, from Table 7.1, gives an

economic weight for n of vn = 2
2

n

c

With zero profit: P3 = 0 = wr - c1d - 
n
c 2

so that c2 = n(wr - c1d) and substituting for c2 in the

expression for vn we get: vn = 
n

dc - rw 1 which is the value in Table 7.2.

Table 7.2 Profit equations and economic weights for the four profit perspectives shown in Table
7.1 when net profit is zero.

Economic Weight, vi

Perspective Profit equation vn vd vw

Per enterprise P1 = N(nwr - nc1d - c2) = 0 N( w r - c1 d ) - N n c1 N rn

Per female P2 = nwr - nc1d - c2 = 0 rw - c1 d - 1cn rn

Per individual P3 = wr - c1d - 
n
c 2  = 0

n
dc - rw 1 - c1 r

Per unit product P4 = r - 
w
dc1  - 

wn
c 2  = 0

nw

dc - rw 1

w

c1-
w

r

In the case of zero profit, relative economic weights given in Table 7.1 for n, d, and w are the
same for all perspectives, with absolute values for P1, P3 and P4 differing from those for P2 by

factors of N, 
n
1

, and 
nw
1

.  Thus all perspectives would result in the same relative index weights

and the same direction of genetic change.
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Brascamp et al. (1985) went on to give a general proof that this was true of zero (or normal)
profit equations whenever the profit function could be written in the form: P = f(y,k1) / g(y,k2)
where f is any function of genetically controlled traits, y, and economic traits, k1, and g is any
function of y and a vector of constants, k2.

The concept of zero profit should not be interpreted as meaning that there is no incentive for
genetic improvement.  Under normal profit, if all producers were able to form a unified cartel,
they could agree that no one should practice genetic improvement and all would retain their
current profit without the expense of genetic improvement.  But, in a competitive market, those
producers who practice genetic improvement will increase their profits above those who do not
or who do so less effectively.  The incentive for change can then be viewed as either the
economic advantage of practicing improvement when others do not, or the economic opportunity
cost of not practicing improvement when others are (and are hence causing reduced prices as
their normal profit returns to pre-improvement levels).

One problem with the zero profit approach is that incentives for appropriate change may not
occur in rigidly structured industries with different sectors pursuing their own sectional interests.
For example, consumers may desire lean beef, producers of slaughter calves may get paid
premiums for conformation or carcass quality, but sellers of weaner calves seldom get premiums
on the genetic quality of calves to yield lean beef.  While this situation is maintained, breeders of
weaner calves may pursue economic goals quite different from the interests of the consumer.

7.10.2 Rescaling

In this section a method of deriving economic weights proposed by Smith et al. (1986) is
outlined, along with some related extensions of their proposal.  The original intention of the
authors was to show how, given certain assumptions, a variety of different methods and
perspectives that had hitherto been seen as conflicting, were actually equivalent.  (As always, it
is up to you to decide whether or not you feel that the methods are valid and under what
situations you might feel happy applying them.)

We have just seen that when normal profit applies, economic weights are the same from all
perspectives.  What is introduced here are arguments for treating all costs as variable costs and
the need for enterprise rescaling due to genetic changes in production.

7.10.2.1 Fixed Versus Variable Costs

The definition of fixed and variable costs is important when deriving economic weights.  If fixed
costs exist, genetic increases in output can cause extra returns at the same fixed cost.  Do fixed
costs exist? When an enterprise is started up the answer is certainly no.  The investment is geared
to the level of production anticipated.  Equally, when re-investment in an enterprise to change its
scale occurs, that investment is geared to the level of production anticipated.  Thus over long
time periods, so called fixed costs are related to production (output).  Similarly when summed
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over many production units (the national perspective) or when investment is continuous, fixed
costs are variable in relation to the level of production and size.

Another line of reasoning for considering all costs as being variable argues that, if genetic
increases in output can be accommodated without a change in fixed cost, the original enterprise
must not have been at maximum efficiency.  Any selection, which is made to fill existing
inefficiencies in production, will be of short-term value.  Such selection will therefore be made at
the opportunity cost of selecting for those traits that reduce costs per unit output.

7.10.2.2 Rescaling Concept

The second argument is that any profit of genetic change, which could have been made by
rescaling (changing the size) of the enterprise should not be attributed to that genetic change.
For example, consider a genetic change, which increases the output of lean meat from a swine
enterprise.  The producer might have achieved the same increase in output by increasing the size
of his enterprise, probably by changing the number of swine, by 10%.  The true net value of the
genetic change is therefore the difference in profit due to a 10% increase in output per pig versus
a 10% increase in enterprise size. The difference is the economic improvement due to reduced
costs per unit output.

7.10.2.3 Derivations of Economic Weights with Rescaling to Equal Output
Value

If you are unfamiliar with the relationship between partial differentials and small changes, refer
to Appendix B2 before reading this section.

Consider a profit equation of the general form P = R - C

where P = profit, R = returns and C = costs.  R and C may be any function of any number of trait
values.  Assume that the enterprise has a scaling factor, N, such that rescaling produces equal
proportional changes in R and C.  Note that this rescaling factor means that there are no fixed
costs.  N could be interpreted as the number of animals but does not have to be.

Given the definition of the scaling factor N: 
N
C

 
C

  
N
R

  
R �

�=�
� 11

Consider a trait, y.  Genetic change in y will lead to a change in profit of
C  - R  1 DD=DP

which, for a small change in y, yD , gives 1PD  = y
y
C

   
y
R Dßà

ÞÏÐ
Î

�
�-�
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The change in profit from genetic improvement is the result of both a change in output (returns),

y
y
R Dßà
ÞÏÐ

Î
�
�

 , and a change in costs, y
y
C Dßà
ÞÏÐ

Î
�
�- . As argued earlier, the increase in output could have

been achieved without genetic improvement, by rescaling the enterprise.  Let the enterprise be

Austin Putz
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rescaled by a small change in N, DN, to match the change in output (returns) caused by genetic

change.  Change in profit in this situation would be 2PD  = N
N
C

N
R

 Dßà
ÞÏÐ

Î
�
�-�

�

and the net value of genetic change is 3PD  = 1PD  - 2PD
Equating the change in output from rescaling the enterprise to the change in output from genetic

improvement, note that y
y
R

N
n
R
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Hence, 2PD  = y
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Substituting the previous equations we get, 3PD  = y
y
C

  
y
R

R
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Dividing by yD  to get the economic value of unit change in y: vy = 
y
C

  
y
R

R
C

�
�-�

�
Example
As an example, consider again the profit function: P = N(nwr - nc1d - c2)

In this case R = Nnwr

and C = N(nc1d + c2)

Note that for this profit function, all costs are variable in relation to the scaling factor N, the
number of animals. Thus, at the level of number of animals, there are no fixed costs and
rescaling by changing N produces equal proportional changes in returns.

The traditional economic value for n is: )( 1dcrwN
n
P -=�
�

Thus, a change in n by Dn results changes profit by: 1PD  = ndcrwN D- )( 1

and output value by: 1RD  = nrwN D
Output value can, however also be increased by changing N; a change by DN results in the
following change in output value: 2RD  = rwnND
And the following change in profit: 2PD  = Ncdcnrwn D-- )( 21
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Setting DN to match the change in output from Dn: 1RD  = nrwN D = 2RD  = rwnND
Thus: n

n
N

N D=D
Then, subtracting the profit that could be obtained from rescaling the enterprise to match the
change in output, the net value of the genetic change by Dn is:

3PD  = 1PD  - 2PD
         = ndcrwN D- )( 1 - Ncdcnrwn D-- )( 21

Substituting n
n
N

N D=D gives: 3PD  = ndcrwN D- )( 1 -N n
n
c

dcrw D-- )( 2
1

         = n
n
c

N D2

Thus the economic value is: vn = 
n
c

N 2

Rescaling against alternative methods of increased output is not the only form of rescaling that
can be achieved.  Other, equally plausible, possibilities are to rescale against increased input
value or increased profits.

Economic values for w and d can be derived similarly, resulting in: vw = 
w

cdcn
N 21 +

Since a change in d only affects costs, the economic value for d is not affected by rescaling:
vd = 1cnN-

7.10.3Fixed Base of Comparison (Dekkers)

As an alternative to rescaling to match the increase in output value (or input value, or profit), the
enterprise might be rescaled so that total returns (output value), costs (inputs value), or profits
remained constant.  Economic weights can be derived for these situations by following a similar
approach as outlined above. Using the example, as shown previously, for trait n, a change in n by
Dn results in a change in output value by:

1RD  = nrwN D
whereas a change in N by DN results in a change in output value by:

2RD  = rwnND
Forcing a change in N such that output value remains unchanged when n is changed by Dn, DN
can be solved by setting 2RD =- 1RD :

rwnND = - nrwN D
Thus: n

n
N

N D-=D
Changing N by n

n
N

N D-=D  results in a change in profit equal to:

2PD  = Ncdcnrwn D-- )( 21
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         =-N n
n
c

dcrw D-- )( 2
1

Thus the net economic value if n is changed by Dn is:
3PD  =  1PD + 2PD

         = ndcrwN D- )( 1 -N n
n
c

dcrw D-- )( 2
1

         = n
n
c

N D2

and the economic value is: vn = 
n
c

N 2

Note that this is equivalent to the economic value derived previously with rescaling to match
changes in output. Thus, rescaling to fixed output value is equivalent to rescaling to match
changes in output value. The same holds for rescaling to fixed input value or profit.

7.10.4Economic Efficiency

Starting in the early 70’s, Dickerson argued that the only reasonable way of evaluating genetic
change is by examining the effect of genetic change on the economic efficiency ratio, f = R/C,
rather than on profit.

Using the previous example, economic values based on economic efficiency can be derived as

follows: f  = R/C =  
21 cdnc

nwr
+

vn = 
n

 �
�f

= 
21 cdcn

rw
+ - 2

21

1

)( cdcn
drcwn

+ = 2
21

2

)( cdcn
rwc

+
Similarly, economic values for the other two traits can be derived to be equal to:

vd = 
2

21

2
1

)( cdcn

rwnc

+-

vw = 
21 cdcn

rn
+

7.8.5 Comparision of Zero Profit, Rescaling, and Economic Efficiency
(Modified by Dekkers)

Table 7.3 summarizes economic values for the example when derived using the zero profit
approach, rescaling to output value, or based on economic efficiency.
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Table 7.3. Economic values for the example profit function using three alternative approaches
Economic Weight, vi

Perspective vn vd vw

Zero profit N( w r - c1 d )

                   = 
n
c

N 2

- N n c1 N rn

=         
w

cdcn
N 21 +

Rescaling to
output value n

c
N 2 1cnN-

w
cdcn

N 21 +

Economic
efficiency 2

21

2

)( cdcn

rwc

+ 2
21

2
1

)( cdcn

rwnc

+-
21 cdcn

rn
+

Although the economic values derived using the three approaches appear quite different, the
relative economic values are actually equal. To see this, note that with zero profit,

N( n w r - n c1 d  - c2) = 0

and thus w r - c1 d  = 
n
c2

and rn =
w

cdcn
N 21 +

This makes the economic values for the zero profit approach equivalent to those for rescaling to
output value. Also, note that economic values for rescaling to output and those based on

economic efficiency differ by a factor f
C

=
rwnN

cdcnN 2
21

2 )( +
Thus, economic values based on zero profit, rescaling, and economic efficiency are equivalent.

Equivalencies of economic values based on rescaling to output value with those based on
economic efficiency can also be shown in more general terms as follows. Recalling from section
7.10.2.3 that economic values with rescaling to output value can be derived as:

vy = 
y
C

  
y
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this can be rewritten as: vy = 
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Table 7.4 shows similar equivalencies for rescaling to match or to fixed output value, input
value, profit, or zero profit. We can note that C and f are the same for all traits and all situations.
Thus the relative economic weights of each trait are the same for all situations.  However the

absolute economic weights differ, depending on the scaling factor, f
C

, C or  
C

1-f .

Since f = 
C
R

, 
y�

�f
 is the rate of change in the ratio of R:C with genetic change in y.  In other

words, the economic weight is always the rate of change in economic efficiency, scaled by a
constant that depends on whether enterprise scaling is at the level of outputs, inputs or profit.

Table 7.4 Comparison of Economic weights derived using different approaches.1

Approach Economic Weight (vy)

Economic efficiency
y�

�f
Zero profit

f
C

 
y�

�f
Scaled Fixed

Output value
f
C

 
y�

�f
f
C

 
y�

�f

Input value
y

C �
�f

y
C �
�f

Profit
dy

 
C f

f
�

-1 dy
 

C f
f

�
-1

1 C = cost, f = 
C
R

 , and R =returns.

It is also important to note that rescaling to increased or fixed profit holds for any definition of
the profit equation P=R-C.  Thus, these economic weights also apply to the zero profit approach
of Brascamp et al. (1985).  Since these authors showed that all perspectives in the market were
equivalent in this situation, the results derived above should apply to all perspectives and all
forms of enterprise scaling considered.

Thus, under the initial assumptions of no fixed costs and the need to disallow increased profit
that could be achieved by enterprise scaling, all conflicting perspectives and derivations
presented in the scientific literature are shown to be equivalent.

Austin Putz



161

7.10.6 Absolute Versus Relative Economic Weights

In the absence of rescaling, economic weights would normally be taken as the partial derivative

of profit with respect to the trait in question, i.e. vy = 
y
P
�
�

 = 
y
R
�
�

 - 
y
C
�
�

Rescaling to output achieved by other means gives the following economic value:

vy = 
R
C

y
R
�
�

 - 
y
C
�
�

Since C is generally <R (i.e. the enterprise is profitable), absolute economic weights with
rescaling are less than those without.  The effect on relative economic weights depends on the

variation in 
y
R
�
�

 - 
y
C
�
�

between traits.  In many cases, relative economic weights may be little

affected.  Thus, rescaling is often most important in deriving cost-benefits of animal breeding.

7.10.7 Some Problems with Rescaling

One possible criticism of the rescaling approach of Smith et al. (1986) is that when scaling to
outputs or inputs, all inputs and outputs are considered only in relation to their contribution to
profit at the current population mean.  For example, consider the principle of scaling to fixed
output in relation to the production of meat and wool from sheep.  Assume that there is no
limitation on inputs, i.e. that far more sheep could be reared if it were profitable to do so.  As
used by Smith et al. (1986), scaling to fixed output means scaling to fixed output value. It is
assumed that the total output value of sheep from meat and wool is fixed.  But this may not be
true.  It could well be that total production is limited by saturation of the market for meat or
wool, but not both.  Assume that the market for sheep meat is saturated so that excess production
of meat has no market and makes sheep rearing beyond that point unprofitable.  In that case,
sheep that produced more wool at the same carcass weight would be more profitable; the
economic value of wool should include all extra profits from increased output and not be scaled.

In practice it is probably very difficult to decide whether or not all traits are saturating the
market.  Both production systems and markets accommodate themselves to the type of animal
available.  Thus the method of Smith et al. (1986) achieves maximization of economic efficiency
of the existing production/marketing status quo but does not consider the possibility of creating
or expanding markets for some traits.  Similar criticisms could be given for scaling to inputs.
The current balance between breeding for current production or marketing systems and
considering new balances among the traits remains to be explored.

7.10.8 Dealing With Quotas

One situation where scaling of all traits clearly runs into difficulties is when markets operate
under legislated quotas on one or more but not all outputs. This could include legislated quota on
production designed to manage markets, or quota on manure or mineral emissions from
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production systems to limit the environmental impact of animal production (e.g. Gibson and
Wilton 1998, Olesen et al. 2000).
Provided that such quota and the pricing systems that go with it have long term stability, a
producer should allow for increased output opportunities for traits not under quota.  The critical
assumption is that the quota and pricing system will be around for a sufficiently long time.
There would be little point in breeding for a quota system if the very act of producing genetic
change caused modifications to the system, which partially negated those genetic changes.

Using the same notation as earlier, since total yield remains constant, for a small change, D y, in
initial output per animal y, Ny = (N + DN)(y + Dy)

so that, ignoring second order terms, DN =  N
y
yD-

Enterprise profit before genetic change, is T = NP = N(R - C)

After a small genetic change in trait y, Dy, and scaling the enterprise so that quota is not

exceeded, the new profit, T1, is T1 = (N + DN) [ [  P +
y
C

 - 
y
R

�
�

�
� ] ]y D

which, ignoring second order terms, gives T1 = T + PDN + yNDßà
ÞÏÐ

Î
�
�-�

�
y
C

   
y
R

 

and vy = 
y
P

 - 
y
C

 - 
y
R

yN
T

�
�

�
�=D

D
  

All other traits, unconstrained by quota, can recoup the full value of increased output so that their

economic weights are simply vy = 
y
R
�
�

 - 
y
C
�
�

Note that we now have a situation quite different from that due to enterprise scaling relating to
total inputs or outputs. Economic weights are now given by expressions of different form for
traits under quota than for those not under quota.  Neither equation for the economic values

under quota can be written in the form vy = a - 
y�

�f
and are thus not simply scaled measures of changes in economic efficiency.

Assuming that the initial enterprise is profitable, then 
y
P

 > 0 and the effect of scaling to quota is

to reduce the economic value of the trait under quota relative to those for unconstrained traits.

For highly profitable enterprises, 
y
P

, the profit per unit output of y, can be large, so that the

economic value of the trait under quota can be severely reduced, in some cases changing signs to
become negative.  In general, but not always, it appears that rescaling to allow for quota has a
larger effect on relative economic weights than rescaling to total enterprise inputs or outputs.
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It is interesting to note that, if R is a linear function of the trait under quota, then the equation for

the economic value of the trait under quota becomes vy = 
y
C
�
�

 + ,
)(

y
*P

 - 
y
yC

where P* is profit to returns and costs not dependent on y, and  
y
yC )(

 is the average cost of

production of trait y.  The economic weight of trait y under quota is therefore independent of the
returns generated by that trait (i.e. the price).

7.10.8.1  A Working Example

Consider a linear profit equation constructed for comparing dairy cattle genotypes,

P = 0.175 Milk Yield + 5.00 Fat Yield - 7.50 Labour - 0.1 Feed Intake - 1.0 Miscellaneous Costs

where P is expressed in $.  As expressed in this problem, each trait is considered separately and
has only returns or costs associated with it.  Thus, milk and fat generate returns of 0.175 and 5.0
$/kg respectively, and labor, feed, and miscellaneous incur costs of 7.5 $/hr, 0.1 $/kg and 1
$/unit.

Population mean production and input levels are given in Table 7.5, along with the breeding
values of two alternative sires, assumed known without error.

Table 7.5 Population means and transmitting abilities of two sires as candidates for selection.
Population Transmitting Ability

Trait Mean Sire A Sire B

Milk (kg) 5000 0 +1000

Fat (kg) 190 +10 +20

Labour (hr) 22 -1 +2

Feed (kg) 5800 -300
+

700

Miscellaneous 100 0 +10

Ignoring constraints, at the population mean:

P = 0.175 (5000) + 5.0 (190) - 7.5 (22) - 0.1 (5800) - 1.0 (100) = 980

R = 0.175 (5000) + 5.0 (190) = 1825

C = 7.5 (22) + 0.1 (5800) + 1.0 (100) = 845
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Consider economic weights scaled to output values: vy = 
y
C

 - 
y
R

 
R
C

  �
�

�
�=�

�
y

C f
f

and
R
C

 = 
1825
845

 = 0.463

Resulting economic values are in Table 7.6.

The relative net economic value of sire A would be:

TA = 0.081 (00.0) + 2.315 (10) - 7.5 (-1) - 0.1 (-300) - 1.0 (0.0) = 60.65 $/daughter lactation

TB = 0.081 (1000) + 2.315 (20) - 7.5 (-2) - 0.1 (700) - 1 (10)      = 32.30 $/daughter lactation.

In this example, sire A is more valuable than sire B.  For the definition of economic weights
operating here, it must be assumed that the initial enterprise, geared to the population mean,
operates at maximum economic efficiency.  There is no quota on any one output, though overall
economic output is scaled, and there are no constraints on inputs.  The number of animals in the
initial enterprise does not enter the equation, it is assumed to be at an optimum level.

If there is a quota on milk volume which is recognized as stable, the appropriate economic

weight for milk, v1, would be v1 =
y
R
�
�

 - 
y
C
�
�

 - 
y
P

while for all other traits it would be vy =
y
R
�
�

 - 
y
C
�
�

Resulting economic values are in Table 7.6 and using these values, net economic values of the
two sires are:

TA =  87.5 $/daughter lactation

TB = -16.0 $/daughter lactation.

If the quota on volume operates, sire A is much superior to sire B.  Again it must be remembered
that for this method to be valid, it is assumed that the original production system is optimized
and that inputs are not constrained.

Economic values if the quota were to apply to fat instead of volume are also given in Table 7.6.,
giving:

TA = 35.92 $/daughter lactation

TB = 76.84 $/daughter lactation.

In this case, sire B is considerably more valuable than sire A.  Switching quotas from value to fat
has a large effect on relative economic weights and consequent changes in sire selection.
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Taking the profit equation at face value, and ignoring any constraints or need to rescale, yields

economic weights vy = 
y
R
�
�

 - 
y
C
�
�

(see Table 7.6)

giving TA = 87.5
TB = 180.

Table 7.6 Estimated economic values of traits and net economic values of sires A and B for
different types of scaling, expressed as $ per daughter lactation.

Not
constrained

Scaled
Output

Scaled to
Quota on
Volume

Scaled to
Quota on

Fat
v1 0.175 0.463(0.175)-0.0 =  0.0810 0.175 - 980/5000 = -0.021 0.175

v2 5.0 0.463 (5.0)   -0.0 =  2.315 5.0 5.0-980/190  = -0.158

v3 -7.5 0.0                -7.5 =-7.5 -7.5 -7.5

v4 -0.1 0.0                -0.   =-0.1 -0.1 -0.1

v5 -1.0 0.0                -1.0 =-1.0 -1.0 -1.0

TA 87.50 60.65 87.5 35.92

TB 180.0 32.3 -16.0 76.84

In this example, rescaling to allow for quotas has a very large effect on relative economic
weights and absolute sire values.  The effect is large because initial profit per cow, P, was large

so that the scaling factor, profit per unit yield of the trait under quota ÜÜÝ
ÛÌÌÍ

Ë
y
P

, is also large.  This

means that the potential to make improvements in economic efficiency of production of the trait
under quota by genetically increasing output per cow is more than offset by losses in profit in
other traits when reducing the number of cows to stay within quota.  Usually, profit margins
would not be so high and rescaling to quota would have a less dramatic effect.

7.10.8.2 An Example of Re-Optimization with Constraints

Consider a simple example of a dairy farm with a fixed quota, Q, for production of a single
output trait with production level per cow of y, and zero payment for over quota production.  The
profit equation, recognizing the existence of the quota but ignoring the opportunity to optimize
the system after genetic change, would be

P = (R(y) - C(y)|Y � Q) - (C(y)|Y > Q)
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where Y = Ny is total enterprise production of y and N is the number of cows.  The first term in
this equation is a combination of returns and costs functions that apply to under quota
production, while the second term is the cost of producing y over quota (since returns are zero
over quota).  Initially the enterprise would be optimized so that total production exactly fills the
quota, i.e. Y = Ny = Q.  If re-optimization is ignored, the economic weight for y is found by
differentiating that part of the profit equation that applies to over quota production (since all

increases in output will be in excess of quota), i.e. vnoopt = 
y
C

�
�-

 , where 
y
C
�
�

 is the cost of

production per unit extra output.

The profit function could however be re-written to allow for optimization of the enterprise after
genetic change.  In this case the number of cows would be altered to stay within quota.  The total
enterprise profit, T, would be T = N(R(y) - C(y))

and, since total production Ny = Q,  N = ,
y
Q

 and, T = 
y
Q

(R(y) - C(y)) = 
y
yN oo (R(y) - C(y))

giving an economic weight for y for this optimized profit function of

vopt = 
y
f
�
�

 = 
yN

T

o�
�1

 = - 2yN
Q

o

(R(yo) - C(yo)) + 
y
R
�
�

 - 
y
C
�
�

vopt = 
y
R
�
�

 - 
y
C
�
�

 - 
y
P

In this dairy cattle case with quota, vnoopt would be negative and vopt positive and are clearly very
different from each other.

The solution for vopt is identical to that given for the economic weight after allowing for scaling

to stay within quota.  The economic value, v, without rescaling is given as:v = 
y
R
�
�

 - 
y
C
�
�

, and is

clearly different from vnoopt given here.  The reason for this discrepancy is that when rescaling to
quota was introduced, the initial profit equation ignored existence of the constraint.  In the
present example, existence of the constraint (quota) is recognized in the original profit function,
but the change in management variables to optimize profit is ignored when deriving vnoopt

Obtaining economic weights with rescaling to constant output (or quota on a single trait)
involved allowing for the change in the number of animals to stay within the constraint.  It
should be clear, as done here, that this change could be incorporated directly into the profit
function, so that profit is now defined as profit allowing for re-optimization of management to
stay within a production constraint; and differentiation of the new profit equation leads directly
to vopt

The importance of re-optimization of the management system should be examined on a case by
case basis and will depend on the original formulation of the profit function (or model).  While a
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profit function ignoring re-optimization is often simpler, in general it seems safest to make sure
that the profit function always allows for optimization of management to match genetic change.

As described above, quota restrictions can be incorporated into derivation of economic values
through the concept of rescaling. With rescaling, economic values of the product under quota are
equal to the economic value of the trait with unlimited output apart from subtracting a rescaling
term.  The rescaling term is equal to the average profit over fixed costs per unit of the product
under quota. The same result is obtained when profit is described at the level of the whole
enterprise (e.g., herd or country) instead of at the level of the individual animal.  This equivalence
holds provided dependence of number of cows in the enterprise on output per cow of the trait
under quota is included in formulation of the profit function.

When quota is a tradable commodity, which is the case for most quota systems, the two approaches
just discussed for dealing with quota may not appear sensible at the farm level because both
assume an absolute restriction on output. Another approach to account for quota in the derivation
of economic values is to charge interest on the market value of quota as a marginal cost for the
product under quota.   This more closely reflect market circumstances to which individual
producers are exposed.  This approach leads to economic values that are identical to economic
values that are derived with rescaling when interest cost per unit of quota is equal to the average
profit over fixed cost per unit of the product under quota, which is the term that is subtracted in
derivation of economic values under rescaling. This condition is expected to hold when quota is
traded on a free market that is in equilibrium.
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and, hence, from year n1 to n2 is given by  = =   (8.3) 

Where undiscounted returns are the same in every generation in perpetuity, the appropriate 

cumulate discounting factor is given by,      (8.4) 

and if returns started in generation n and went to perpetuity, the appropriated cumulate 

discounting factor would be  =   (8.5) 

In the above dairy cattle example, the appropriate cumulative discount rate is given by (8.3) with 

n1 = 4, n2 = 8 and r = 0.05 to give  = 3.74, so that R = v  = 20 ∗ 3.74 = $74.80 per 

replacement heifer, as before. 
 
 

8.1.4 Choosing Discount Rates in Animal Breeding 
 
The first point to note is that all discount rates should be adjusted to be net of inflation since 
inflation affects all real values in an equal way.  This can be seen by considering a kg of milk at 
today's price of 0.5 $/kg.  If milk prices increase with inflation at 5% per annum, after 10 years 
of inflation, absolute prices will be 0.5*1.0510 = 0.814 $/kg.  If the discount rate is also 5% 
(equivalent to an interest rate equal to the inflation rate), the discount factor is 1/1.0510, so that 
the net present value of milk ten years hence is 0.5*1.0510 x 1/1.0510 = 0.5 $/kg; i.e. today's price.  
The interest rate chosen to set the discount rate should, therefore, be based on real rates of 
interest, over and above the inflation rate. 
 
From the point of view of a company setting up in the animal breeding business, the discount 
rate is often taken to be the real rate of return if the money were instead invested in an average 
business.  In a review of discount rates in the animal breeding literature, Bird and Mitchell 
(1980) found that the minimum rate used was around 8% per annum.  They argued that this was 
too high, since real rates of return would probably be lower than this, especially in agricultural 
businesses, and that it was difficult to justify a rate higher than about 5% per annum. 
 
Bird and Mitchell (1980) also argued that government funded projects (and presumably also co-
operatively run projects where members directly use results of genetic improvement in their 
production enterprises) should set the discount rate at the "social time preference rate''.  This is a 
rather vague measure of the extent to which people in general give preference to economic 
events (consumption) now rather than later.  Bird and Mitchell (1980) argued that 3% per annum 
would be a reasonable estimate of this rate, in which case government or co-operative projects 
would use a lower discount rate than commercial companies. 
 
It has been quite common in animal breeding studies to estimate cost-benefits over a fixed time 
horizon, say 10 or 20 years.  One argument for doing this is that benefits of genetic improvement 
become increasingly uncertain over time.  This could arise because of uncertain competition 
from other companies or countries in the future, uncertainty over whether the current direction of 

Austin Putz
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genetic change will be appropriate under future management and market conditions and 
uncertainty over the amount of genetic change actually achieved.  However, truncation at some 
particular point in time is quite arbitrary and reflects a rather peculiar form of uncertainty where 
returns (and cost) are obtained up until a certain point and then suddenly cease. 
 
An alternative way of dealing with uncertainty would be to increase the discount rate used to 
evaluate returns, so that returns become increasingly less valuable the further into the future they 
occur.  Since costs are often estimated with a higher degree of certainty, only the returns from 
the program would receive the extra discounting factor.  A 2% differential would be a standard 
amount for uncertainty; but this may be just as arbitrary as truncating returns at a fixed point. 
 
If these arguments are accepted, it would seem that many, perhaps most, economic evaluations 
of animal breeding programs have used too high a discount rate.  This would favor programs 
with high returns early in the program rather than later, and with low initial costs and high later 
costs.  This is probably inappropriate in a business such as animal breeding, where long-term 
success depends on the principle of small rates of gain building cumulatively on previous gains 
to give impressive long-term changes.  Applying high discount rates focuses attention on traits 
expressed early in life, and early in the program, and away from potential long-term deleterious 
correlated changes.  This would be a dubious practice, even for businesses where there is the 
potential to replace their original products with new products over time.  But, in animal breeding 
there will be limited opportunity to replace a defective product (line or stock of animals) with 
another in the future.  Thus, use of high discount rates could be particularly risky for long-term 
health of an animal-breeding program. 
 
As a general guideline, it would seem appropriate to use discount rates in the range of 3 to 5% 
and to consider the use of a slightly higher discount rate for returns than for costs.  But, there is 
considerable opportunity for more detailed definition of discount rates appropriate to animal 
breeding and investigation of the effects of different discount rates. 

 

 

8.2. Gene Flow Methods 
 
Gene flow methods allow study of the flow of genes through a population, which in turn can be 
used to define the times at which genes are expressed, and by knowing the value of that 
expression and the number of animals involved, the economic value of that expression can be 
calculated.  Discounting future profits and costs then allows cost-benefit analysis of a breeding 
program.  This section develops the principles of gene flow following the method developed by 
Hill (1974). 
 
To allow easy comparison with Hill's (1974) original paper, much of the notation used here is the 
same as that used by Hill.  This means that there is some overlap with notation used in earlier 
Chapters and some terms have quite different interpretations to those used earlier.  Except where 
indicated, the examples used to illustrate development of the method are the same as those used 
by Hill. 
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8.2.1 A Diagramatic Approach to Gene Flow 
 
At any given time, animals in a population can be divided into a number of different age and sex 
classes.  A gene flow diagram can then be constructed to follow the movement of genes through 
the population over time. Imagine a population of pigs with one farrowing every 6 months.  
Boars are used once only and their progeny are born when they are 12 months old.  Sows farrow 
twice so that half their progeny are born when they are 12 months old and half when 18 months 
old.  One possible and relatively simple division of this population into age and sex classes is to 
consider the following five classes: 1) males at 6 months; 2) males at 12 months; 3) females at 6 
months; 4) females at 12 months; and 5) females at 18 months (see section 8.2.2 for details on 
defining age and sex classes).  Let the additive genetic merit of each of these classes when we 
first observe the population (at time 0) be a, b, c, d and e, respectively.  If we examine the 
population six months later, animals will have aged and changed age classes, as shown by the 
solid arrows in Figure 8.1 

 
For example, 6-month-old males at time 0 are 12 months old when we look at the population 6 
months later.  Thus, males in class (1) are now in class (2).  Their genes have obviously moved 
with them so that the additive genetic merit of animals in class (2) changes from b to a. 
Similarly, class (3) animals (6-month females) move to class (4) (12 month old females), and 
class (4) animals move to class (5) (18 month old females). At time 6 months, classes (1) and (3) 
are not accounted for by aging.  These animals enter the population as progeny of animals 
existing at time 0.  The origin of genes through reproduction is shown by broken arrows for class 
(1) animals (6-month-old males) in Figure 8.2. 
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Half the genes of class (1) males come from male parents that are 12 months old when their 
progeny are born.  The other half come from female parents, half of which are 12 months and 
half are 18 months old when their progeny are born.  Thus, half the genes of class (1) animals at 
time 6 months come from class (2), a quarter from class (4) and a quarter from class (5) animals 
at time 0.  The additive genetic merit of class (1) animals is therefore ½b + ¼(d + e).  Obviously 
the same origin of genes applies to class (3) animals (6-month-old females) whose genetic merit 
would also be ½b + ¼(d + e). 
 
Clearly, the origin of genes of all animals at one time period can be accounted for by combining 
the movement of genes due to aging and reproduction of animals in the previous time period, as 
illustrated in Figure 8.3 for two time periods. 
 
This diagramatic approach could be extended over any number of time periods but would be 
tedious to apply and it is easy to make mistakes, especially for the more complex population 
structures encountered in real life.  The problem can be simplified by considering movement of 
genes of only one group of animals at a time and is more readily solved using the algebraic 
methods developed below. 
 
 

8.2.2 An Algebraic Approach to Gene Flow 
 
Typically we wish to examine the spread of genetic improvement through a population coming 
from a single selected group of animals.  To do this, we need to estimate the proportion of genes 
of the original selected group of animals that are carried by animals in the population as time 
progresses.  We need to specify: 1) the group of animals whose genes we wish to follow; 2) the 
structure of the population in terms of ages of each sex of animal we are interested in; 3) the 
frequency with which we wish to examine the population; and 4) the way in which genes are 
passed on from animals at one time period to animals in the following time period. 
 
Consider the population of pigs described in section 8.2.1.  We deal with the questions in the 
order defined above.  

 
1. The question is how do genes from boars selected at 6 months of age spread through the 

population over time. 
 

2. The age classes at which animals are examined should reflect all important events in the life 
of all animals of interest in the population, including as a separate age class their first 
appearance in the population.  These age classes must be a uniform time apart, so that as time 
progresses in uniform steps the animals in one class can be related to animals in previous 
classes in the previous time period.  In the present case, the population can be adequately 
described by considering a minimum of 3 age classes; 6, 12 and 18 months, respectively.  
Males first appear in the population at age 6 months and leave progeny at age 12 months.  
They then leave the population and do not appear at age 18 months. Females appear at age 6 
months and leave progeny at ages 12 and 18 months.  With males appearing at two age 



 178 

classes and females at three age classes, we have a total of five age-sex classes, as defined in 
section 8.2.1 above. 
 

3. The frequency with which we examine the population will depend on the ages at which 
events happen to animals in the population.  In the present case, the time period would be 6 
months since moving 6 months at a time allows animals to move from one event in their lives 
to the next so that all events are covered.  With dairy and beef cattle a one-year interval is 
often convenient. 
 

4. The object is then to define a vector m(t) whose elements define the proportion of genes in 
each sex and age class in generation t that come from the original group of animals at time 0.  
In the present case, m(t) is of length h + k, where h is the number of male classes (h = 2 in 
this example) and k the number of female classes (k = 3 in this example), and t is measured 
in 6 month periods. 

 
In generation 0,     male age classes female age classes 

   m'(0) =      (8.6) 

 
Because we have defined males of age 6 months (class 1) at time t = 0 as the group of interest 
whose genes we wish to follow, that element 1 is 1 and all other elements (males at age 12 
months and females at ages 6, 12 and 18 months) are 0. 
 
The elements of m(t) are found by defining the flow of genes from each sex-age class at  
t-1 to each sex-age class at time t.  For example, males in class 2 (= age 12 months) at time t are 
the same as males in class 1 (= age 6 months) at time t-1 (they have aged by 6 months and 
clearly possess the same genes).  Similar relationships exist for all other sex-age classes, except 
for age-class 1 of each sex (i.e. elements 1 and h + 1 of m). 
 

In general, therefore, the jth element of m(t) is given by   =  

 
The exceptions for the first age class of each sex are because these animals appear for the first 
time in the population and are new progeny of previous sex-age classes.  For example, the genes 
of males in class 1 came half from males in class 2, one-quarter from females of class 4, and one-
quarter from females of class 5 of the previous time period.  Thus  

= ½  + ¼  + ¼  

 
Similarly for the first age class of females (= element h+1=3 of m), i.e. 

= ½  + ¼  + ¼ . 

 
Although it would be possible to calculate the elements of any m(t) given m(t-1) using these rules, 
it is much simpler to think of the problem in terms of a transition probability matrix which 
relates the proportion of genes in each sex-age class represented in m(t-1) that appear in each age-
sex class in m(t), so that 
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m(t) = Pm(t-1)       (8.7) 
 

P then has the general form P = genes TO    (8.8) 

where Pij is the proportion of genes in sex-age class i at time t which comes from sex-age class j 
at time t-1. 

In the present case,  P =     (8.9) 

 
where the horizontal and vertical lines in P denote the separate male and female pathways of 
gene flow  

   TO 

 
 
 
 
 
 
 
 
 
The general form of P is that: 

• row 1 defines the origin of genes of males entering the population 
• row h + 1 defines the origin of genes of females entering the population. 

 
All other rows define the transition by aging to current sex-age class from the previous sex-age 
classes.  Note that the sum of all rows is 1, so that all genes in each current age-sex class are 
accounted for. 

Reproduction row 

1   0   0  . . . . . . 0 

0   1   0  . . . . . . 0 

.    .    .   . . . . . . . 
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0   0   0  . . . . . . 0 

0   0   0  . . . . . . 0 

.    .    .   . . . . . . . 

.    .    .   . . . . . . .  

0   .    .   . . . . . . 0 

Σ = ½  

ageing  



 180 

 
If the elements of m(t) for each time period are required they can be found as, 
    m(1)  =  Pm(0) 
    m(2)  =  Pm(1) 

     

    m(t) = Pm(t-1)      (8.10) 
 
Alternatively, if the elements of m(t) are required for one particular time period they can be found 

as:    m(t) = P 
t
m(0)      (8.11) 

 
For the pig example, P is given by equation (8.9) and m(0) by equation (8.6). The resulting 
proportion of genes in each age-sex class over successive time periods is given in Table 8.1. 
 
 
Table 8.1 Proportions of genes derived from males of age 6 months in successive time periods*. 
 

 1 2 3 4 5 

Time m(t) r(t) m(t) r(t) M(t) r(t) m(t) r(t) m(t) r(t) 

0 1 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 0 0 

2 .5 .5 0 0 .5 .5 0 0 0 0 

3 0 0 .5 .5 0 0 .5 .5 0 0 

4 .375 .375 0 0 .375 .375 0 0 .5 .5 

5 .125 .125 .375 .375 .125 .125 .375 .375 0 0 

6 .281 .281 .125 .125 .281 .281 .125 .125 .375 .375 

10 .228 .228 .211 .211 .228 .228 .211 .211 .242 .242 

15 .222 .222 .223 .223 .222 .222 .223 .223 .221 .221 

20 .222 .222 .222 .222 .222 .222 .222 .222 .222 .222 

* In bold proportions including ageing, in italic, proportions corrected for ageing 
 
An alternative example is given in Table 8.2 which follows the flow of genes from females of 
age 6 months (= age class 3), so that in this case, 

m(0) = [0 0 1 0 0] 
 
where m(0) is treated in exactly the same way as before, but now reflects that the original group 
of animals of interest were female. 
 
Tables 8.1 and 8.2 clearly illustrate that it takes considerable time for the genes of one group of 
animals to spread through the population until they affect all individuals in the population 
equally.  In general, equilibrium takes longer to be achieved the greater the number of age 
classes, the longer the average generation interval, the longer animals are retained for breeding 
and the greater the difference in breeding ages of males and females.  The first factor is mostly 
dependent on the formulation of the problem whereas the others are inherent to a particular 
breeding program. 
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Table 8.2 Proportion of genes derived from females of age 6 months in successive time periods. 
 

 1 2 3 4 5 

Time m(t) r(t) m(t) r(t) m(t) r(t) m(t) r(t) m(t) r(t) 

0 0 0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

2 .25 .25 0 0 .25 .25 0 0 1 0 

3 .25 .25 .25 .25 .25 .25 .25 .25 0 0 

4 .188 .188 .25 .25 .188 .188 .25 .25 .25 .25 

5 .25 .25 .188 .188 .25 .25 .188 .188 .25 .25 

6 .203 .203 .25 .25 .203 .203 .25 .25 .188 .188 

10 .22 .22 .227 .227 .22 .22 .227 .227 .215 .215 

15 .222 .222 .222 .222 .222 .222 .222 .222 .223 .223 

20 .222 .222 .222 .222 .222 .222 .222 .222 .222 .222 

* In bold proportions including ageing, in italic, proportions corrected for ageing 
 

In the present example, the generation interval (= average age of parents when progeny are born) 
is two time periods (= 12 months) in the male parent path and 2.5 time periods (= 15 months) in 
the female path.  The sum of generation intervals over both paths is ΣL = 4.5 time periods.  We 

can note that the equilibrium genetic contribution from a single group of animals in Tables 8.1 
and 8.2 is 0.222, which is equal to 1/ΣL .  As discussed more fully in section 8.6, this is a general 

result, regardless of how many paths of genetic improvement exist in the population. 
 
Usually we are interested only in the expression of genes in their progeny and other descendants.  
Thus the direct contributions to m(t) from the original group of individuals must be excluded.  
This can easily be accomplished by defining a new vector m*(t), that refers proportions of genes 
in each sex-age class at time t that originated from the original group of animals at time 0 
through ageing alone. Thus, 
    m*(0)  =  m(0) 

 

and    m*(t) =     Qm*(t-1) = Q
t 
m(0)     (8.12) 

 
where Q is a transition matrix that describes ageing alone. Matrix Q is analogous to P but 
describes only transmission from one sex-age class to another due to aging of animals and 
ignores transmission due to reproduction; i.e. Q is equal to P with elements of rows 1 and h + 1 
set to zero.  In the present pig example  

    Q =       (8.13) 
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Subtracting m*(t) from m(t) results in vector r(t), which is a vector of proportions of genes in each 
sex-age class at time t that originated from our group of interest in time 0 through descendants 
alone: 
    r(t) = m(t) - m*(t)       (8.14) 

 

Note that    rt = Pm(t-1) - Qm*(t-1)   

   =  P 
t
m(0)  - Q

t
m(0)  =  (P 

t

 - Q
t
)

 
m(0)    (8.15) 

 
Note that after a few time periods, Qt  0 so that (8.15) simplifies to  rt = Pt

m(0) 

 

In addition to the ageing matrix Q, it is also useful to define the reproduction matrix R: 
 
    R = P - Q       (8.16) 
 

In our example, R is equal to: R =  

Thus, matrix R consists of the reproduction rows only. 
 
Then, from equation 8.15, vector rt can be rewritten as: 
 

rt = Pm(t-1) - Qm*(t-1) = P(r(t-1) – m*(t-1))- Qm*(t-1) = 
 

   = (P – Q)m*(t-1) + Pr(t-1) 

 

   = Rm*(t-1) + Pr(t-1)  

 

    = RQ
t-1

m(0) + Pr(t-1)      (8.17) 
 
Here, the first term represents production of progeny from the initial group of individuals, while 
the second term represents ageing of and reproduction from their descendants. 
 
 

8.2.3. Defining the Flow of Genetic Improvement from One Round of 

Selection 
 
Vector m(t) defines the proportions of genes coming from the original group of animals which, 
assuming additive genetic inheritance, is also the proportion of the breeding value of the original 
group of animals that is expected to be expressed in each sex-age class at time t.  Thus, if the 
vector of genetic superiorities (i.e. mean breeding values relative to unselected animals in the 
same age-sex class) at time t is s, then  



 183 

    m(0)  =  s 

 

and, from equations 8.10 and 8.11, the vector of resulting responses at time t can be computed 

as:    m(t) = Pm(t-1)      =     P 
t
m(0) 

 
Similar to before, vector m(t) includes the occurrence of the original group of animals. Usually 
we are interested only in expression of genes in their progeny and other descendants. This can 
easily be accomplished by defining a new vector of responses, m*(t), which refers only to genetic 
expression of the original animals (parents) and ignores all descendants. Similar to before, m*(t) 

can be computed as m*(t) = Qm*(t-1) = Q
t
s, which is then subtracted from the original response 

vector, to obtain a vector r(t)  which defines the vector of responses at time t from selection 
decisions made at time 0 through reproduction alone. Similar to equation 8.17: 

r(t) = Rm*(t-1) + Pr(t-1)   = RQ
t-1

s + Pr(t-1)   (8.18) 
 
Similar to equation 8.17, the first term represents transmission of genetic superiority from the 
originally selected individuals to their progeny, while the second term represents transmission of 
resulting response over age classes and generations through ageing of and reproduction from 
their descendants. 
 
Again following the pig example given by Hill (1974), imagine that selection is for weight gain, 
which has h2 = 0.3 and σp = 70 g/day. Assume that the best 1/40 males and the best 1/8 females 

are selected prior to 6 months of age. Then, genetic superiorities of selected 6-month-old males 
is  50 g/day (ihσg) and the genetic superiority of selected 6-month-old females is 35 g/day. Then, 

the vector of genetic superiorities at time 0 is: 
s' = [50  0  35  0  0] 

 
If we are interested in following response from selection of males only, we can define s as: 

 

s' = [50  0  0  0  0] 
 

Similarly, if we want to follow selection of females only, s' = [0  0  35  0  0] 
 
Table 8.3 shows resulting responses of live weight gain due to selection of this single group of 
males or females or with both sexes selected.  Response is evaluated as the mean genetic merit of 
males and females entering the population in age class 1 in each time period (i.e. mean of 
elements 1 and 3 of r(t)).  In the present example, genetic merit of males in age class 1 is the 
same as that of females in age class 1 at every time period, as can be seen from Tables 8.1 and 
8.2.  This is because parental origin of male genes is identical to that of female genes, as defined 
by rows 1 and h + 1 = 3 of P.  Although this need not be true in general, in many cases it will be. 
 
Note that, similar to genetic contributions in Tables 8.1 and 8.2, responses to selection initially 
fluctuate but then stabilize. The eventual genetic contribution of 18.9 is equal to the asymptotic 

gain per time period for this breeding scheme, which can be computed as: R =  = 18.9 

kg/six-month period. We will come back to this in the next section. 
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Table 8.3 Response of live weight gain when a single group of males and/or females are initially 

selected.* 
 

 Response 

Time Males Initially 
Selected 

Females Initially 
Selected 

Both Sexes 
Initially Selected 

0 0 0 0 
1 0 0 0 
2 25.0 8.8 33.8 
3 0 8.8 8.8 
4 18.8 6.6 25.3 
5 6.2 8.8 15.0 
6 14.1 7.1 21.2 
10 11.4 7.7 19.1 
15 11.1 7.8 18.9 
20 11.1 7.8 18.9 

* Response is the mean genetic merit of males and females entering the population (age class 1) 
in each time period. 

 
 

8.2.4 Defining the Flow of Improvement from Multiple Rounds of Selection 
 
In most breeding programs, the intention would be to practice genetic selection uniformly for 
each successive group of animals recruited to the population in successive time periods.  In an 
additive genetic system, the expected additive genetic merit of an animal from any one source 
can be added to the additive genetic merit obtained from all other sources to obtain the overall 
genetic merit of that animal, provided that all initial sources are expressed as deviations from the 
mean of that group prior to selection.  Thus, the cumulate genetic merit of a given sex-age class 
at a given time due to selection in several time periods can be found by simply adding together 
the predicted merit due to each round of selection separately. 
 
Thus if selection is practiced in each of n successive time periods starting at time period 0, the 
cumulate response vector, R(t) is given by 

R(t) = r(t) + r(t-1) … + r(t-n+1)  (8.19) 
 
or, if selection takes place in every time period R(t) = r(t) + r(t-1) + … r(1)  (8.20) 
 
and selection taking place in any combination of time periods can be obtained by analogy. 
 
Cumulate responses for the pig example assuming selection takes place in every time period are 
shown in Table 8.4.  Extra response (genetic gain) from one time period to the next when both 
males and females are selected is also given in column 4 of Table 8.4.  This genetic gain is equal 
to response in each time period due to a single round of selection at time t = 0 (column 3 of 
Table 8.3).  Thus, the rate of approach to equilibrium response rate with continuous selection is 
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the same as the rate of approach to equal gene distribution (or equal genetic effect) in all groups 
of animals with a single round of selection. 
 
Stabilized gain from one time period to the next is again equal to the asymptotic response to 
selection, i.e. 18.9. Here, response is the result of selection in all previous rounds of selection. In 
contrast, in Table 8.3, asymptotic response is the eventual effect of a single round of selection. 
 
 
Table 8.4 Cumulate response1 and Δg

2
 with selection for live weight gain in every time period. 

 

 Cumulative Response  

 
 

Time 

 
Males Only 

Selected 

 
Females Only 

Selected 

 
Males and 

Females Selected 

Δg with Males 

and Females 
Selected 

1 0 0 0 0 
2 25.0 8.8 33.8 33.8 
3 25.0 17.5 42.5 8.8 
4 43.8 24.1 67.8 25.3 
5 50.0 32.8 82.8 15.0 
6 64.1 39.9 104.0 21.2 
10 107.5 71.3 178.8 19.1 
15 163.0 110.2 273.1 18.9 
20 218.5 149.1 367.6 18.9 

1 Response measured as the genetic merit of males and females recruited to the population (age-
sex classes 1 and 3) in each time period. 
2 Δg is the genetic change from the previous time period to the current. 

 
 

8.3 Discounted Gene Expression 
 
Responses derived in previous sections can be converted to discounted economic expressions 
given the economic value of the trait, the discount rate, and the number of animals in each age-
sex class that generate income.  The discount rate in any given time period, t, is given by  

d(t) =       (8.21) 

where r is the discount rate per annum and m is the number of time periods per year.  
 
Let n be a vector with numbers of animals by sex-age group that express the trait in each given 
time. For the pig example, imagine that there are 100 sows breeding every time period (50 at age 
12 months and 50 at 18 months) and each sow produces 4 male and 4 female progeny per litter.  
There are 400 males and 400 females entering the population each period.  One in 40 males are 

selected for breeding, leaving  x 400 = 390 males for slaughter at 6 months (age-sex class 1).  

The 10 males returned for breeding are slaughtered at 12 months (age-sex class 2).  One in 8 
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females are returned for breeding, leaving  x 400 = 350 females for slaughter. Thus, vector n is 

equal to:   n' = [390  10  350  0  0] 
 
Similarly, let v be a vector with economic values per unit of genetic improvement for the trait in 
and per animal that expresses the trait in each sex-age group. These economic values can be 
derived as described in Chapter 7.  For the sake of argument, the economic value of live weight 
gain is set at 0.01 $/g/day for slaughter males at both ages and for slaughter females at 6 months, 
but is zero for slaughter females at 18 months because of increased feed costs while maintaining 
the sow for breeding. Thus, vector v becomes: 

 

v' = [0.01  0.01  0.01  0  0] 
 
Then, compute a vector w = n # v       (8.22) 
 
where the operation # indicates element-wise multiplication. Vector w is a vector of economic 
benefits of a one unit genetic improvement of the trait for each sex-age group, across all animals 
that express the trait by sex-age group. In our example:  
 
  w' = [390  10  350  0  0] # [0.01  0.01  0.01  0  0]  = [3.9   0.1   3.5   0   0] 
 
The first element in this vector implies that a one unit genetic improvement in age class 1 of 
males results in $3.9 greater profit from this age group in a given time period. 
 
The problem as defined equates to a commercial farmer practicing genetic selection within his 
own herd and not selling any breeding stock.  (Note that this economic evaluation is not the same 
as that used by Hill (1974), in part to better illustrate the problem and in part to correct some 
minor inconsistencies in Hill's paper.) 
 
With a single round of selection, returns at time t of genetic superiority created at time 0 is given 
by:     y*(t) = w'r(t)         (8.23) 
 

With a discount rate for time t of d(t), the present value of these returns is equal to: 
y(t) = d(t)w'r(t)       (8.24) 

 
The present value of cumulative returns at time t from one round of selection at time 0 is equal 

to:    Y(t) =       (8.25) 

Discounted returns at time t if continuous selection is practiced are equal to: 

 = d(t)w'R(t).      (8.26) 

 
and present value of cumulate returns from continuous selection at time t are given by:  

=       (8.27) 
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For the present pig example, discounted returns at each time period and cumulative discounted 
returns over time are shown for a single round of selection and for continuous selection of both 
males and females in Table 8.5.    

 
 

Table 8.5 Discounted returns and cumulative discounted returns at time t for a single round of 
selection and continuous selection of males and females for live weight gain in a pig 
nucleus of 100 sows, with a discount rate of 0.05. 

  Discounted Returns ($) 

  Single Round of Selection Continuous Selection 

 
Time 

Discounting 
Factor (d) 

At 
Time t 

Cumulate 
to t 

At 
Time t 

Cumulate 
to t 

1 .976 0 0 0 0 
2 .952 238 238 238 238 
3 .929 63 301 295 533 
4 .907 171 472 459 992 
5 .885 100 572 548 1540 
6 .864 137 709 671 2213 
10 .784 112 1165 1049 5858 
15 .694 98 1680 1419 12258 
20 .614 87 2138 1691 20207 
25 .543 77 2542 1882 29265 
30 .481 68 2900 2007 39073 
40 .377 53 3497 2106 59828 
50 .295 42 3965 2069 80770 

 
Results in Table 8.5 illustrate the process whereby, as the discounting factor becomes smaller 
over time, returns per annum from a single round of selection continue to decrease even after 
genetic equilibrium has been achieved.  Cumulate returns then increase at a diminishing rate as 
time progresses and would eventually plateau. 
 
With continuous selection, discounted returns at time t increase over time at a diminishing rate 
and eventually reach a peak and then begin to decrease, though more slowly than returns from a 
single round of selection.  In the present example, maximum discounted returns with continuous 
selection occurred at period 42 (= year 21).  This is a reflection of the role of discounting in 
saying that future events (costs or returns) are inherently of less interest to us than current events.  
It should not be taken as meaning that animal breeding will be inherently less valuable 40 years 
from now than it is today.  This being so, it raises the question of whether it is sensible to 
consider continuous selection schemes in terms of continuous investment appraisal or whether 
one should consider only returns from investment made over a finite time period. 
 
 

8.4 Cost-Benefits and Cash Flow 
 
The discounted returns illustrated in Table 8.5 can readily be used to estimate the cost-benefits of 
a breeding program over time.  Often the costs (at today's prices) will be expected to be the same 
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from one period to the next but this need not be so.  If we identify the cost of running the 
improvement program in period t at today's (t = 0) prices as c(t) then the discounted cost in year t 

is:    C(t) = d(i)c(i) + c(0)      (8.28) 

It is then straightforward to examine the cumulate discounted net returns, NR, over time t1 from 

investment over time t2 as: NRt1,t2
 =  - C(t2)      (8.29) 

 
Also of interest is the change in NR over time and, in particular, determination of the point in 
time when the investment becomes profitable and estimation of the rate of increase in profit 
beyond that point.  This is illustrated by considering the pig example.  Imagine that the cost of 
selection in each time period was $572, due to the costs of identifying individual pigs, weighing 
and recording, selection and so on, so that,  

c(0) = c(1) = c(2) … = c(t) = $572 
 

It is clear from column 2 of Table 8.5 that a single round of selection at time 0 would yield 
discounted cumulate returns of $572 at period 5 (= 2½ years later).  Thus the initial investment in 
selection is recouped after 2½ years, and yields a net discounted cumulate profit of Y(t) - 572 
beyond that time.  For example, after 10 time periods (= 5 years) the net cumulate discounted 
profit is 1165 - 572 = $593. 
 
Often, net profit is expressed in ratio form as the cost-benefit ratio, which is the ratio of cumulate 

discounted returns to cumulate discounted costs: RRt1,t2
 = / C(t2)   (8.30) 

In the present case, with a single round of selection, the cost-benefit ratio at time period 10 
would be 1165/572 = 2.04. 
 
It takes longer to obtain a net profit with continuous selection schemes than with a single round 
of selection.  This is illustrated in Table 8.6 where cumulate returns from continuous selection, 
taken from Table 8.5, are combined with cumulate investment costs to obtain the cost-benefit 
ratio for this scheme and this is compared to the cost-benefit ratio for a single round of selection.  
In this case, with continuous selection, it takes 10 periods (5 yrs) before the cost-benefit ratio 
exceeds 1.0 and the program becomes profitable.  The cost-benefit ratio is always lower than that 
for a single round of selection, though the two would have equal cost-benefit ratios at t = ∞.  

Again, these results raise a note of caution in using discounted cost-benefit measures for long 
periods of investment, since later investments are not given the opportunity to recoup returns 
when the returns' time horizon is truncated at the same point as the investment (cost) horizon. 
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Table 8.6 Discounted costs, returns and cost-benefit ratio for continuous selection and cost-

benefit ratio for single round of selection of both sexes for live weight gain, when the 
cost of selection is $572 per time period.  

 Single Round of Continuous Selection 

 
Time 

Selection Cost-
Benefit Ratio 

Cumulate 
Discounted Costs 

Cost-Benefit1 
Ratio 

1 0 1130 0 
2 .41 1674 .14 
3 .53 2206 .24 
4 .82 2725 .36 
5 1.0 3231 .48 
6 1.24 3726 .59 
10 2.04 5586 1.05 
15 2.94 7670 1.60 
20 3.74 9515 2.12 
25 4.44 11147 2.62 
30 5.07 12593 3.10 
40 6.11 15004 3.97 
50 6.93 16894 4.78 

1 Using discounted returns from Table 8.5. 
 
 

8.5 Expansion to More Complex Breeding Structures 
 

8.5.1 Different Selection Intensities in Parents of Males and Females 
 
In section 8.2.2 it was implicitly assumed that genetic superiority of parents (defined by s) was 
the same for both sexes of replacement breeders. In most situations this is true, but typically in 
dairy cattle it does not hold since male and female parents of breeding males are more intensely 
selected than parents of breeding females.  This can be easily be accommodated by separately 
defining parental selection vectors, sm and sf, and creating two reproduction matrixes, Rm and Rf, 
which define the passage of genes to males and females by reproduction only.  In our pig 

example,  Rm =  and Rf =   

so that Rm and Rf correspond to the rows 1 and h+1(=3) of P, with all other rows set to zero, or 
to rows 1 and h+1 of the full reproduction matrix R. Note that Rm+ Rf = R. 
 
Then, using equation 8.18, response at time t from parents of males selected at time 0 can be 
computed as: 

rm(t) = Rmm*(t-1) + Prm(t-1) 

 

           = RmQ
t-1

s + Prm(t-1)     (8.31) 
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The first term defines response obtained from transmission of genetic superiority created at time 
0 through the parents of males selection path and the second term represents subsequent 
responses through ageing and reproduction of progeny.  
 
Similarly, responses through selection of parents of females at time 0 can be computed as: 

rf(t) = RfQ
t-1

s + Prf(t-1)      (8.32) 
 
Note that combined response from selection of parents of males and females is equal to: 

    r(t) = rm(t) + rf(t) = RmQ
t-1

s + Prm(t-1) + RfQ
t-1

s + Prf(t-1)  

 

        = (Rm + Rf)Qt-1
s + P(rm(t-1)+ rf(t-1) ) 

 

        =  RQ
t-1

s + Pr(t-1) 
which is identical to equation 8.18. 
 
Responses can be further split into the four individual paths of selection, sires of males (sm), 
dams of males (dm), sires of females (sf), and dams of females (df), by defining separate 
reproduction matrices by path, Rsm, Rdm, Rsf, Rdf. For example, for our pig breeding program,  

  Rdf =   

Response through this pathway can then be evaluated as: rdf(t) = RdfQ
t-1

s + Prdf(t-1) (8.33) 
 

The above equations can also be used to evaluate the number of discounted expressions by 
pathway by replacing vector s with vector m(0) that has element 1 at the appropriate place. For 
example, the number of discounted expressions from selection of dams of females in our pig 
example can be evaluated by setting 

m(0) = [0 0 1 0 0] 
 

and computing    rdf(t) = RdfQ
t-1

m(0) + Prdf(t-1)    (8.34) 
 
Resulting vectors rdf(t) can then be used to compute discounted expressions using the methods 
described in section 8.3. 
 
Differential reproduction by pathway can result in different numbers of discounted expression by 
pathway and, therefore, in different discounted economic values. In most cases, these differences 
are, however, expected to be small. 
 
 

 

 



 191 

8.5.2 Multiplier Tiers and Commercial Herds 
 
The examples so far have been for selection in a single nucleus population or herd.  In practice 
there may be several levels of multipliers before genetic improvement reaches commercial herds.  
This is easily accommodated since P can be defined to accommodate flow of genes between any 
number of groups of animals rather than just the two groups (males and females in the nucleus) 
so far considered. 

The general structure of P is: P =  

and each element of P, Pij, describes the proportion of genes appearing in group-age class i at 
time t that originate from group-age class j at time t-1. 
 
Vectors m(0) (for discounted expression analysis) and s (for response analysis) are similarly 
augmented to match the dimensions of P, and matrices Q and R contains those elements of P 
describing the aging and reproduction of animals, respectively, with all other elements set to 0. 
 
Consider a slightly modified version of Hill's (1974) extension to the pig example, whereby 
breeding males from the nucleus become parents of commercial animals at 18 months old and 
replacement females in the commercial herd come from the commercial herd, in which females 
have litters at 12, 18 and 24 months.  Allowing for culling and other losses, females in 
commercial herds leave 1/2, 1/3 and 1/6 of their progeny at parities 1, 2 and 3 (ages 12, 18 and 24 
months).  All commercial males are slaughtered at 6 months.  The P matrix then becomes:  

  P =  

     nm       nf   cm        cf 

 
where nm, nf, cm, and cf indicate nucleus males, nucleus females, commercial males and 
commercial females. 
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There are now three age classes for nucleus males because they are kept till 18 months to sire 
commercial progeny.  There is one age class of commercial males, the age at which they appear 
and are sent to market (6 months).  Commercial males pass on no genes and appear here for the 
purposes of estimating economic returns and gene flow to commercial product.  There are four 
age classes of commercial dams, representing their first appearance in the population and at three 
successive breedings. 
 
Matrix Q is obtained by setting the elements of rows 1, 4, 7, 8, 9, 10, 11 of P to zero.  And when 
both sexes are initially selected, s becomes  

s' = [50  0  0  35  0  0  0  0  0  0  0] . 
 
Table 8.7 gives the average genetic merit of animals entering the commercial herd with one 
round of selection and with continuous selection on both sexes in the nucleus.   
 
 
Table 8.7 Genetic responses of commercial animals and cumulate discounted returns of 

commercial plus nucleus animals with selection on males and females for live weight gain. 
 

 Responses 
(g/day) 

Cumulate Discounted 
Returns ($) 

 
Time 

1 Round  
of Selection 

Continuous 
Selection 

1 Round 
of Selection 

Continuous 
Selection 

1 0 0 0 0 

2 0 0 238 238 

3 25 25 647 879 

4 0 25 816 1674 

5 23.1 48.1 1222 2855 

6 8.5 56.7 1468 4254 

10 16.3 126.0 2764 12756 

15 18.6 217.5 4273 28907 

20 18.8 310.9 5628 49940 

25 18.9 405.1 6833 74576 

 
We will assume essentially the same economic conditions as before, but now with 200 breeding 
sows in the commercial herd, 1/8 sows in the commercial herd are kept for replacements.  (There 
are 200 x 4 = 800 females born per time period, and ½ x 200 = 100 of breeding sows are in the 
youngest category at 18 months of age.  Of the 800 females born, we therefore retain 100 for 

breeding; i.e. =  of females born.)  Thus, there are 800 males and  x 800 = 700 females in 

age class 1 in the commercial herd going to slaughter.  Since breeding males in the nucleus are 
now kept until 18 months old, we will assume that the economic advantage in their live weight 
gain is zero.  This gives 

n' = [390  0  0  350  0  0  800  700  0  0  0] 
 

and    v' = [0.01  0  0  0.01  0  0  0.01  0.01  0  0  0] 
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so that    w' = n' # v' = [3.9  0  0  3.5  0  0  8  7  0  0  0] 

 
The resulting discounted economic returns from both the nucleus and the commercial herd are 
also shown in Table 8.7. 
 
 

8.5.3. Crossbreeding and Other Structures 
 
It should be clear from the general structure of P given in section 8.5.2 that virtually any 
breeding structure can be accommodated by gene flow methods, provided the origin of genes can 
be defined for each class of animal in the population.  Crossbreeding structures consist of two or 
more nucleus populations, with or without multipliers feeding into a commercial population.  
The purebred nucleus can also be open to genes coming back in from selected males or females 
from the purebred multipliers and commercial populations. 
 
As an example, in the population examined in section 8.5.2, a proportion of the commercial sows 
could be selected for litter size in their first two parities and returned to the nucleus for one parity 
of breeding.  If half the 18-month nucleus sows were replaced by 24-month commercial sows, 
the first and fourth rows of P would become 

      [0   1/2   0   0   1/4   1/8] 
 

and all other rows would remain unchanged (in this case there are sufficient sows in the 
commercial population for age structure of breeding sows to remain unchanged at the 
commercial level).  Assuming no correlation between growth rate and litter size, s is unaffected, 
since these commercial sows are not selected for growth.  If you test this example, you should 
find that genetic progress in growth rate is lower than previously because a proportion of nucleus 
females selected for growth rate are replaced by commercial females not selected for growth 
rate.  When examining the response in reproduction, elements of s are the breeding values for 
reproduction of the two selected groups in the initial example, or three groups when some sows 
in the nucleus come from the commercial population.  Note that the elements of s describe 
breeding values of the selected group as a deviation from breeding values of that class of animal.  
Response in reproduction may increase or decrease depending on the breeding values of the three 
selected groups. If you try this as an example, you should find that the breeding value of the 
commercial sows has to exceed the genetic lag (see section 8.6.2) between the selected nucleus 
and unselected commercial sows before response is increased compared to when taking all sows 
from the nucleus.  
 
 

8.6 Applications of Gene Flow Methods 
 

8.6.1 Gene Flow Versus Equilibrium Response Rate 
 
Gene flow methods, as outlined here, provide a method of estimating rates of response from two-
path selection schemes and, using the elaboration developed in 8.5, four-path selection schemes.  
The equilibrium response rate (as t → ∞) with continuous selection was shown by Hill (1974) to 

Austin Putz
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be identical to that predicted by Rendel and Robertson's formula (see Chapter 3, equation (3.42)) 

for response per year,   R = =      

With, for each path, genetic superiorities derived as :     Si = iiriσg 

 
The standardized rate of response from selection in any one path can be found by setting one 

term on the numerator to 1 and others to 0, to obtain r = .  As illustrated earlier (section 

8.2.2) this is also the equilibrium genetic contribution to the population from one round of 
selection. 
 
Gene flow methods have the advantage over the asymptotic response derived in equation (3.42) 
in that: 
1. the rate of response can be estimated in the early time periods, following initiation of a 

program but prior to attaining equilibrium response rates; and 
 
2. genetic and economic responses in sub-populations that depend on genetic improvement in 

the nucleus (e.g. multipliers and commercial operations) is readily estimated along with 
genetic lags (see below). 

 
The combination of 1) and 2) allows estimation of cost-benefits over time, the point at which the 
program becomes profitable in terms of discounted net returns - costs, and the point at which rate 
of returns exceed rate of costs (i.e. the point of positive cash-flow). Note that the geneflow 
equations for predicting cumulative response from time-period to time-period are equivalent to 
the recursive equations provided in Chapter 3 (e.g. equation 3.7). 

 

 

8.6.2 Genetic Lag 
 
Genetic lag is the difference in genetic merit between any two contemporary groups of animals; 
for example, between males entering the nucleus and commercial males, or between breeding 
females and females entering the commercial population.  The genetic lag initially fluctuates 
over time but eventually reaches an equilibrium.  In our pig breeding example, the genetic level 
for growth rate of pigs entering the commercial population at time period 20 (close to 
equilibrium) is 310.9 g/day (Table 8.7) compared to 367.6 g/day for pigs entering the nucleus, 
giving an equilibrium genetic lag of 367.6 - 310.9 = 56.7 g/day.  Since the equilibrium response 
rate is 18.9 g/day (Table 8.4), this is equivalent to 56.7/18.9 = 3.0 time periods or 18 months of 
genetic improvement. 
 
In general it is desirable to minimize genetic lag between nucleus and commercial populations, 
and gene flow methods can be used to explore the consequences of alternative breeding 
structures for genetic lag. Analytical procedures to study genetic lags in stabilized breeding 
programs were provided by Bichard (1971) and Guy and Smith (1981). 
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Genetic lag also affects economic weights, and hence selection indexes, since, as noted in 
Chapter 7, economic weights should be evaluated under the economic and management 
conditions when genes are expressed, not when selection takes place.  Genetic lag can vary 
substantially between selection paths, and should be evaluated separately for each path.  A 
striking example is the difference between sire to sire and sire to dam paths in a dairy cattle 
progeny testing scheme (see Table 3.1), where genetic lags between selection decisions and 
expression of genes in the commercial population are typically about 13 versus 5 years. 
 
 

8.6.3. Relative Economic Weights 
 
In many cases, economic weights for different traits initially will be estimated per expression, as 
in Chapter 7; for example, for growth traits the economic value is determined per slaughter pig, 
while for reproduction traits, value is estimated per farrowing per sow.  Gene flow methods can 
then be used to determine the number of discounted gene expressions of each trait in a given 
population structure.  The net economic value, to be used for deriving selection indexes, will be 
the economic value per expression multiplied by the discounted number of expressions. 
 
To obtain the discounted number of expressions, the appropriate elements of the vector m(0) are 
set equal to 1.  The elements of v are set to the relative value per expression of the corresponding 
age-sex class, with a value of one given to the age-sex class for which the economic weight was 
initially estimated.  For example, if the economic weight of milk yield is estimated per lactation 
for mature cows, elements of v corresponding to mature age classes would be one.  The element 
for first lactation cows would be about 0.80, reflecting the lower milk yield and lower value of 
genetic expressions in first lactation. Cumulate discounted expressions are then estimated in the 
same way as cumulate discounted returns (see section 8.3) over the required time horizon, using 
an n vector appropriate for each trait in turn. 
 
Considering the pig nucleus example, the vector n for growth rate was given in section 8.3 as 
 

n' = [390   10   350   0   0], 
 
and v' would become,  v' = [0.01  0.01  0.01  0  0] 
 
since expression in 6 and 12 month males and in 6 month females had full economic value, while 
expression in other age-sex classes had zero value.  Appropriate vectors for litter size would be, 
 

n' = [0   0   0   50   50] 
 
and    v' = [0   0   0     1     1] 
 
which assumes that litter size is expressed with equal value in sows at 12 and 18 months. 
 
Rerunning the example shown in Table 8.5, using m(0) = [1 0 1 0 0], yields the discounted 
expressions for growth and reproduction following a single round of selection in males, females, 
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and both sexes together, shown in Table 8.8.  It is immediately clear that there are many more 
expressions of growth rate than litter size.  By time 20 (close to equilibrium), there have been 
about 8.17 discounted growth rate expressions for every litter size expression, whichever sex is 
initially selected. 
 
 
Table 8.8 Cumulate discounted expressions for growth rate and litter size from one round of 

selection in one sex or both sexes. 
 

 Growth rate Litter size 

 
 

Time 

Males 
Selected 

Females 
Selected 

Males and 
Females 
Selected 

Males 
Selected 

Females 
Selected 

Males and 
Females 
Selected 

1 0 0 0 0 0 0 
2 352 176 529 0 0 0 
3 352 348 701 23 12 35 
4 604 473 1078 46 34 80 
5 686 637 1324 62 54 116 
6 866 767 1633 84 73 157 
10 1388 1306 2695 155 155 301 
15 1986 1906 3892 236 225 462 
20 2516 2436 4953 308 298 606 

 
In the shorter term, the relative number of expressions depends on the time horizon and the sex 
initially selected.  Because of the different pattern of expression of genes for different traits over 
time, the relative number of expressions will also depend on the discount rate.  As noted in 8.1.4, 
imposing high discount rates forces a short-term perspective which conflicts with the inherently 
long-term nature of genetic improvement.  It is recommended, therefore, that low discount rates 
and long time horizons should generally be used when determining relative numbers of 
expressions for use in estimating economic weights.  Similarly, short-term differences between 
selection paths should generally be ignored.  In closed single nucleus systems, each selection 
path makes the same genetic contribution to commercial expression at equilibrium.  In open 
systems and systems with crossbreeding, different selection paths can make substantially 
different genetic contributions to commercial expression of different traits and these differences 
should be incorporated into estimates of economic weights. 
 
 

8.6.4 Limitations of Gene Flow Methods 
 
The principal limitations to gene flow methods are that the proportion of genes arising from 
different age classes of parents in the previous time period, i.e. elements of matrix P, must be 
known in advance, along with the genetic merit of selected parents in each pathway.  With 
continuing genetic progress, within a sex, the mean genetic merit of age class i-1 will be higher 
than that of age class i, and so on.  Also, if information on animals accumulates with age, 
accuracy of selection, rHI, will increase with age.  There may also be changes in genetic variance, 

, over time.  Different selection responses at different ages can be dealt with by adding 
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elements to vector s.  The elements at older ages should represent the difference in response 
between the older age and the previous age at selection.  However, one critical question is what 
should be the contribution of each age class to the following generation for optimum genetic 
response; a question that gene flow methods cannot tackle directly since they require constant 
proportions over time.  Similarly, it is difficult to optimize complex breeding structures where 
there may be several methods and sources of genetic improvement with flow of genes between 
all sources and to commercial animals.  Here, one design question would be what are the 
optimum proportions of genes originating from different sources and how does this affect genetic 
merit of selected parents from different sources?  Again, these optima would change over time in 
the early years of a program.  Optimal proportions selected could be derived using the bisection 
methods of Chapter 3 for selection across age classes. Some of these problems can be tackled by 
coupling gene flow to a nonlinear optimization routine, allowing parameters of interest to vary.  
But such routines often become complex, do not always converge, and require much computing. 
 
Caution should also be used carrying out economic evaluations over prolonged periods.  The 
methods outlined assume linear relationships between genetic change and economic value, an 
assumption that may be reasonable for small genetic changes (see Chapter 7) but is less 
reasonable for the genetic changes that accumulate over long periods of time.  And, as noted 
earlier, there is uncertainty over appropriate discount rates, particularly for predicting returns in 
the distant future.  These difficulties argue that, in every case, it would be wise to examine the 
sensitivity of results obtained to the values assumed for the various input parameters. 
 
 

8.7 Investment appraisal in competitive markets  
 
The methods discussed previously, evaluate returns from a breeding program in terms of the 
effect of genetic change on profit of commercial production. For example, the effect of an 
increase in genetic value of milk yield on profit of cows on a dairy farm. Commercial breeding 
programs that operate in a competitive market, however, do not derive their income from 
increased profit of commercial production but from increased market share for their germplasm. 
Although in a perfect market, the market share that a company’s germplasm is able to attain 
should be directly related to the profit which that germplasm is able to generate in commercial 
production, such conditions often do not exist.  
 
 

8.7.1 Economic perspectives in competitive markets 

 
Dairy cattle breeding is a clear example where there is intense global competition for germplasm 
from progeny-tested bulls and individual bulls are sold on the basis of their estimated breeding 
values in competition with other companies or countries (see Figure 8.4). In addition, there is 
competition for contracting bull dams and all competitors have access to semen from all 
progeny-tested sires for use as bull sires. Thus, in this situation, an AI firm’s breeding program is 
not closed but is part of a single global breeding program, in which, at equilibrium, all AI firms 
improve at the same rate but with genetic lags, depending on the effectiveness of each firm’s 
improvement program (see Figure 8.5). This also implies that program improvements will have 
less of an impact on returns than they would have in a closed system. 
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Based on these considerations, commercial breeding firms must look at breeding programs from 
a different perspective, as illustrated in Figure 8.6. Important components then are: 

1) procurement of superior germplasm 
2) product development 
3) product marketing 

 
For example, for a conventional dairy cattle progeny testing program for dairy cattle, 
procurement of superior germ plasm includes sourcing of bull dams and bull sires from the 
available global cow and bull populations for production of young bulls or, if bull calves have 
already been produced by individual producers, sourcing of bull calves. The product 
development phase involves the progeny-testing of these young bulls. 
 

  
 

 

 

 

 
 
In such programs, returns are generated from the sale of germ plasm from marketable bulls. Only 
a limited number of bulls are required to breed the population, so that only those bulls above a 
certain threshold are likely to be saleable.  A similar situation may also arise in some beef cattle 
and sheep breeding markets where animals (or their semen) are sold for breeding on the basis of 
their EBV.  The situation is illustrated graphically in Figure 8.6.  Only bulls above the threshold 
are saleable. For marketable bulls, there will also be non-linear relationship between the value of 
product sold and EBV of the bulls: more semen is sold from the top marketable bulls, plus it is 
sold at a higher price per unit. 
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In such a competitive market for breeding stock, there are three ways to increase market share in 
terms of share of value of germ plasm sold in the global market: 

1) increase the size of the program 
2) increase the mean of the germ plasm that is entered in the product development phase 
3) increase the differentiation of germ plasm during the product development phase. 

 
The impact of these three strategies on market share are illustrated in Figure 8.8 for a dairy cattle 
progeny testing program. For such a program, increasing the size of the program (1) amounts to 
increasing the number of bulls tested, increasing the mean of germ plasm entered the product 
development phase (2) amounts to increasing the mean genetic value of young bulls entered, and 
increasing differentiation of the germ plasm during product development (3) amounts to 
increasing progeny group size. The latter will increase the accuracy of EBV following progeny 

test, which increases the variance of EBV ( ). 

 

  
 
 
In this situation increasing the mean of the genetic value of procured germ plasm can be 
achieved in two ways: 

a) increasing effectiveness of selection of superior germ plasm from the resource population 
b) increasing genetic progress in the resource population 

 
Objective a) can be achieved by applying the principles outlined in Chapter 3 by selecting the 
best sires and dams based on EBV from all available candidates, regardless of age or accuracy. 
With regard to objective b), in a conventional progeny testing program, an individual AI firm has 
limited impact on genetic gain in that population. In addition, all AI firms are in direct 
competition with each other for procurement of superior bull dams and thus source from the 
same population of selection candidates. Addition of a nucleus herd changes this situation. As 
illustrated in Figure 8.9 access to an AI firm’s nucleus herd is restricted to that AI firm. This 
allows that firm to have some degree of protection of its female genetic resources. If selection 
procedures in the nucleus are more effective than in the general population, this will increase 
genetic gain and genetic lags, as illustrated in Figure 8.5. 
 
The impact of alternative breeding programs and of nucleus herds on market share were studied 
by Dekkers and Shook (1990a,b) using a semi-stochastic simulation program (Dekkers and 
Shook 1990c). In this model, cows in the population were modeled deterministically as age 
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groups with defined means and variances of breeding values.  Sires appeared in the model as 
individuals (i.e. stochastically) with an EBV based on pedigree information and a daughter 
average performance.  This process provided the actual number of sires achieving saleable status 
for each organization in each time period for a given replicate.  Running the program many times 
allowed estimation of mean and variance of performance of a given selection strategy. 
 
The impact of selection strategies on market share can, however, also be evaluated using a 
complete deterministic model. The deterministic model would model the mean and variance of 
true and estimated breeding values of each sex-age group. For bulls, means and variances would 
be modeled by AI firm. Then, assuming multivariate normality, determination of the number of 
marketable bulls provided by an AI firm would be obtained by determining the unique truncation 
point across distributions of EBV for all available age groups and AI firms such that the correct 
number of bulls is selected. Multiple truncation procedures described in Chapter 3 can be used 
for this purpose. 
 
Let nijt be the number of marketable bulls from age group i of AI firm j at time t, which are 

selected from a Normal distribution with mean  and variance . Also, let 

represent the functional relationship between EBV of a marketable bull and value of 

semen sold from that bull in a particular time period. Then, returns from semen sales from age 
group ij at time t,  Rijt, can be determined by integrating the relationship between EBV and value 

of sales over the truncated distribution: Rijt = nijt  

where is the marketing threshold for time t. 

 
Returns per age group can be summed over age groups within AI firm to determine total returns 
at a given time t, discounted to determine the present value of those returns, and summed over 
time periods.  
 
 

8.7.2 Example of economic optimization of progeny group size 

 
Dekkers et al. (1996) used the semi-stochastic model of Dekkers and Shook (1990) to optimize 
progeny group size for a fixed testing capacity for young bulls in a competitive market (Figure 
8.9). The principal question asked was, what is the combination of number of bulls sampled and 
number of daughters tested per bull that would maximize the net profits of an AI organization 
that is in competition with three other companies for sale of bulls into a market requiring 36 
bulls, each selling 25,000 doses of semen per 6 mo. period?  The base situation was each AI firm 
testing 60 bulls per annum, with 60 daughter records per bull.  The performance of one 
organization, which varied its sampling program, was evaluated, while all other organizations 
maintained the original sampling policy.  Selection for net economic merit with h2 = 0.25 was 
assumed. 
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Semen prices were assigned to an individual bull, k, based on the following linear or quadratic 

function of EBV:  = pmin + bt( )q 

where pmin is the semen price assigned to the lowest ranking marketable bull across A.I. firms in a 

given time period ($4), and ( ) is the difference in EBV between the ith marketable bull and 

the lowest ranking marketable bull in time t. Exponent q is equal to 1 and 2 for the linear and 
quadratic price functions. Coefficient bt was determined for each time period such that the average 
semen price remained constant ($15). 
 
For each A.I. firm, discounted gross returns from semen sales were computed per semi-annual 
cohort of young bulls by discounting and summing over time the semi-annual returns from semen 

sales for each marketable bull in the cohort:   

where Rij is the total discounted gross return from the cohort of bulls sampled by firm j and born in 
semi-annual period i, r is the annual discount rate (5%), t is a semi-annual period in which bulls 
from cohort ij are marketable, and Bt,ij is the set of bulls from cohort ij that are marketable at time t, 
and. Factor 25000 represents the number of doses sold per marketable bull per half year. 
 
Total discounted sampling costs per cohort (C) were computed as: C = N(F + VD), where N is the 
number of bulls sampled, F is the fixed cost per bull sampled, which includes all costs for a young 
bull associated with purchase, housing, feeding, etc., D is progeny group size, and V is the variable 
cost per daughter record, which mainly consists of incentives to producers for use of young bull 
semen. Similar to returns, costs were discounted to the time of birth of the cohort of young bulls at 
5% per year. 
 
The model was run for twenty combinations of numbers of bulls sampled and progeny group size 
for AI firm A, keeping the program of the other three AI firms at the base level of 60 bulls sampled 
and 60 daughters per bull tested. 
 
Summary data for number of bulls marketed and gross returns per cohort were then analysed using 
response surface methodology by fitting the following quadratic response surface to the twenty data 

points:   

where Y(Nk, Dl) is the mean response for firm A when it samples Nk bulls per year with Dl progeny 
per bull.  
 
Response surfaces for discounted net returns per cohort were obtained by subtracting C = N(F+VD) 
from the response surface for gross returns or, equivalently, by subtracting F and V from parameter 
estimates for b1 and b5. 
 
In many cases, the number of cows that is available to an A.I. firm for insemination with young bull 
semen is limited. Test capacity was defined in terms of the number of young bull daughters per 
annual cohort of bulls sampled by an A.I. firm: T = ND. Optimum utilization of a fixed test capacity 
in terms of number of bulls to sample versus progeny group size was investigated by reformulating 
the estimated response surface equations by substituting N = T/D: 
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Optimum progeny group size for a given test capacity T was derived by maximizing Y(D,T) with 
regard to D, which resulted in the following quartic polynomial for optimum progeny group size 

(D*):     

with a shadow value for T of:  

 
Solutions for D

* were obtained by using Maple V (Maple V, 1994, Waterloo Maple Software, 
Waterloo, ON, Canada). Optima and shadow values for net returns per cohort were obtained by 
replacing estimated parameters b1 and b5 for gross returns by (b1 - F) and (b5 - V). 
 
Figure 8.10 shows the effect of progeny group size and numbers of bulls sampled on genetic gain 
for fixed test capacities. To determine the effect on genetic gain, breeding programs were 
changed for all four AI firms. Genetic gain was also estimated using a deterministic model based 
on the asymptotic equations developed in Chapter 3 but ignoring the Bulmer effect. 
 
 

 
 
 
Increasing progeny group size (and decreasing number of bulls sampled) had a greater effect on 
deterministic predictions of genetic gain than on genetic gain predicted based on the semi-stochastic 
model; when progeny group size was greater than 50, the effect of reducing the number of bulls 
sampled on selection intensity outweighed increases in accuracy for deterministic predictions. This 
was less the case for semi-stochastic predictions. The reason is that relative increases in accuracy 
with progeny group size are larger when the effects of selection are accounted for (see Chapter 4). 
 
For the deterministic method, optimum progeny group size was 46, 51, and 56 for test capacities 
of 2700, 3600, and 4500 young bull daughters (Figure 8.10). Optimum progeny group size was 
larger under the stochastic method (57, 59, and 61 daughters). For both methods, small to 
moderate deviations from optimum progeny group size had a small effect on genetic gain.  
 
Figure 8.11 shows how market share, in terms of number of marketable bulls, depends on 
progeny group size and number of bulls sampled for a fixed test capacity. Progeny group size that 
resulted in the maximum number of marketable bulls increased with test capacity: optimum progeny 
group size was 22, 31, and 40 for test capacities of 2700, 3600, and 4500. For a given number of 
bulls sampled, differences between lines in figure 8.11 reflect the effect of progeny group size on 
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market share through its effect on accuracy. As expected, the effect of progeny group size was 
smaller for larger progeny group sizes (left side of Figure 8.11).  
 

Figure 8.12 shows the effect of progeny group size and number of bulls sampled on discounted net 
returns for a fixed test capacity of 3600 and a quadratic price function, for varying fixed costs per 
bull. For a fixed test capacity, total cost for young bull daughter incentives are equal to TV and 
unaffected by the number of bulls sampled and progeny group size. Incentive costs per daughter do, 
therefore, not affect the shape of the contour lines in Figure 8.12, nor the optimum progeny group 
size. Changing the number of bulls sampled does, however, affect total fixed costs. A fixed cost of 
$0 gives discounted gross returns. Increasing fixed cost per bull increased the optimum progeny 
group size (Figure 8.12). Curves were, however, relatively flat around the optimum. For typical 
fixed costs per bull in Canada of $30,000, optimum progeny group size was 102. 
 
 
 

 
 
 

 
 
 
Global optima for other cost scenarios and for the linear price function are in Table 8.9. The 
optimum number of bulls to sample was highly sensitive to the cost of sampling, but sampling cost 
had a limited effect on optimum progeny group size. Comparing optima for the linear and quadratic 
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price function (Table 8.9) shows that price function had almost no effect on the optimum number of 
bulls to sample but optimum progeny group size was slightly lower for the linear price function. 
 

 

Table 8.9. Optimal progeny group size for a fixed test capacity (from Dekkers et al. 1996) 
 

 Test Capacity 

 2700  3600  4500 

 Fixed costs per bull (x103) 

Deviation from base1 $20 $30  $20 $30  $20 $30 

 -------------------------- Optimum progeny group size ------------------ 

None 98 102  97 102  97 103 

Linear price function 92 97  91 98  91 98 

Population size +20% 96 100  95 100  95 100 

Population size -20% 100 104  100 105  100 107 

Semen price +20% 97 100  95 100  95 100 

Semen price -20% 100 104  100 105  100 107 

Interest 8% 100 104   99 104  100 106 

One competitor at 100 
100 daughters/bull 

 99 102   99 103   99 105 

 --Extra profit (x104 $/yr) at optimum versus at 60 daughters/bull-- 

None  49  66   49  73   56  86 

Linear semen price  28  44   28  50   34  61 

One competitor at 
100 daughters/bull 

 54  72    56  80   61  92 

 ------------------Shadow value of test capacity ($/daughter)--------- 

None 376 274  338 238  289 195 

Linear semen price 397 287  352 246  305 207 

Population size +20% 454 348  416 313  377 278 

Population size -20% 259 161  229 134  200 109 

Semen price +20% 495 389  448 344  398 300 

Semen price -20% 259 161  229 134  200 109 

Interest 8% 282 183  251 155  219 128 

One competitor at 100 
100 daughters/bull 

261 163  242 145  222 129 
 
  1 In the base situation population size is 950,000 cows, semen price is based on a quadratic 

function of estimated breeding value, average semen price is $15, interest rate is 5% per year, 
and the three competing AI firms sample 60 bulls with 60 daughters each. 

 
 
Table 8.9 also shows the additional profit per annual cohort of bulls of sampling at the optimum 
instead of at 60 daughters per bull. Sampling at 102 daughters per bull instead of at 60 increased 
discounted net return by $730,000 per annual cohort or by 38%. Reducing fixed costs to $20,000 
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per bull reduced the optimum progeny group size by five daughters and also reduced the economic 
benefit of moving to the optimum scheme.  
 
Optimum progeny group size was little affected by test capacity (Table 8.9). However, the 
economic benefit of optimising progeny group size was greater for larger test capacity, at least in 
absolute terms. Table 8.9 also shows the shadow value of test capacity, which is equal to the extra 
profit that can be expected when increasing test capacity by one daughter under an optimum design. 
Shadow values do not incorporate incentive costs (V) but represent the maximum incentives that 
could be paid to increase test capacity by one daughter without reducing profit. Shadow values were 
lower for larger test capacities and for larger fixed costs per bull. Shadow values were, however, 
greater than the $180 incentive that was on average provided to producers by Canadian A.I. 
organizations. Table 8.9 also shows that the optimum was little affected by population size, semen 
price, or interest rate. 
 
Market share of an A.I. firm depends not only on the firm's own breeding program but also on the 
breeding program of its competitors. Previous results were for situations in which competitors 
conducted the base breeding program of sampling 60 bulls with a progeny group size of 60. 
Optimum progeny group size was, however, little affected when one of the competitors sampled 
bulls with a progeny group size of 100 daughters instead of 60 (Table 8.9). Although profit was 
significantly lower when one competitor sampled at 100 daughters per bull instead of at 60, the 
economic benefit to firm A of sampling at the optimum progeny group size instead of at 60 
daughters per bull was little affected by the breeding program of its competitor. This represents the 
opportunity cost of not changing to the optimum of 100 progeny per bull. 
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Inbreeding and its Impact on Design of Breeding Programs 
Jack Dekkers 

 
Inbreeding = mating of individuals that are related by ancestry 
 à may carry alleles that are identical-by-descent (IBD) (vs. by state or IBS) 
 à increases probability that progeny will by homozygous 
 
Inbreeding coefficient  = probability individual’s pair of alleles at a locus are IBD 
    = coefficient of coancestry of parents 
 
Coefficient of coancestry individuals x and y 

 = prob( a random allele from x (at a given locus) is IBD to 
               a random allele from y) 

 
Additive genetic relationship x, y = 2 x coefficient of coancestry between x and y  
 
Effects of inbreeding à increased homozygosity 

• Increased incidence of recessive disorders 
• Inbreeding depression à reduced phenotypic performance 
• Loss of genetic variance à reduction in rates of genetic improvement 

 
 
Genotypic frequencies and mean performance in a population with inbreeding 
coefficient F for a single gene with 2 alleles with inbreeding coefficient F  

P = freq(A1)     q = freq(A2) 
Genotype Frequency Value Frequency x value 

A1A1 p2      +pqF +a p2a     +pqaF 

A1A2 2pq -2pqF   d 2pqd -2pqdF 

A2A2 q2      +pqF - a -q2a     -pqaF 

  Sum = MF = a(p-q)+2dpq-2dpqF 

= a(p-q)+2dpq(1-F) 

 
Without inbreeding: mean = M0 = a(p-q)+2dpq 
 
Inbreeding depression = M0 – MF = -2dpqF 
 
Summed over loci (no epistasis): M0 – MF = -2FSdpq 
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Impact of inbreeding on genetic variance: 
 
Infinitesimal genetic model 
 
No inbreeding: = ¼(1- ) + ¼(1- )  + ½  = base pop. var. 
 
With inbreeding: Mendelian sampling variance =  (1- )¼ + (1- )¼  

               =   (1- ½( ))½  

 
 
Only Mendelian sampling variance is affected by inbreeding, depending on 

inbreeding coefficient of parents, rather than inbreeding of the progeny 
 
PREDICTION OF RATES OF INBREEDING  
 

DF = =    Ne =  

 

Ne = Effective population size = number of individuals that would give rise to a rate 
   of inbreeding DF if bred as an idealized population 

 

Idealized population -    Random mating (incl. selfing), No selection 
- Discrete (non-overlapping) generations 
- Random distribution of family size – each individual has 

                             equal probability to contribute a progeny 
 
Factors affecting rate of inbreeding in a closed non-idealized population 
In a population that is not under 
selection: 

• # males (Nm) and females (Nf) used 
for breeding      
• ßà population size 
• ßà selection intensity 

      (Wright, 1922) 

DF =  

à Ne is less than the # parents; < Nm + Nf     
à Ne is driven primarily  
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               by the smaller of Nm and Nf     
• Variance of family size ßà unequal use of parents (and their progeny) 

- family size = number of progeny that become breeding parents 
      (Hill, 1979 Genetics 92:317) 

 

  è   DF = =  
 

  N    = Total population size (½N males, ½N females) 
 

  Vkm = Var(# progeny per male) 
 

  Vkf  = Var(# progeny per female) 
 

  Vkm and Vkf  affected by unequal use of individuals for breeding 
- selection 
- differential use of selected individuals 
 

  Mean family size = 2 (each parent à 2 progeny to maintain population size) 
 

Idealized population: distribution of family size = Binomial Poisson 

 àVkm = Vkf =  mean family size = 2   è  

Variance of family size can be reduced (by the breeder) by ensuring that all 
selected parents equally contribute breeders for the next generation 
- within family selection – select best male and best female from each 

fullsib family  è Vk = 0 è Ne  2N 
 

• Generation Interval    ßà shorter à greater rate of inbreeding per year  
 

  è  DF/yr = /L=  

 
 *Most of the above equations calculate inbreeding per generation 
 Nc = total # progeny per year 
 L  = average generation interval (across males and females) 
 

Selection increases inbreeding through: (Verrier et al. 1990) 
• Probability of co-selection of relatives ßà correlation of the selection criterion 

                                                                                                            between relatives 
• Inheritance of selective advantage – progeny of good parents are more likely to be 

                                                                    selected themselves, as are their descendants 
                                                                 è increased variance of family size 
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*Half sib and full sib records will increase the correlation of EBV’s; progeny records will 
decrease the correlation. All of these equations can be found in 6.1-6.2 and can be calculated 
in stepEBV.  
 
 
 
More accurate methods to predict rates of inbreeding in populations under selection 

In part based on notes from Bijma and van Arendonk 
See Wray and Thompson (1990 Genet. Res. 55:41), Verrier et al. (1990) 

 

Previous methods are ‘single generation’ methods  
– account for differential contributions of ancestors to future generations through 

differential numbers of progeny that become breeding parents 
– do not account for additional differences in an ancestral contributions through 

differential numbers of grand progeny that become breeding parents 
  

DF ~ variance of long-term genetic contributions among ancestors (Wray & Thompson ‘90) 
 

Theory of long-term genetic contributions 
 Wray and Thompson 1990. Genet. Res. 55:41 Woolliams et al. 1999 Genetics 153:1009 
 Woolliams and Bijma 2000 Genetics 154:1851 Bijma and Woolliams 2000 Genetics 156:361 
 Bijma et al. 2000 Genetics 156:361  Bijma et al. 2001 J.Anim.Sci. 79:840 

 = Genetic contribution of ancestor i born at generation t1 to an individual j 
born at generation t2 (t2>t1)l 

 = proportion of genes of j expected to derive by descent from ancestor i. 
 
         Note: Full-sibs share ½ of their genes but make no genetic contribution to each other. 

 =  Mean genetic contribution of ancestor i born at generation t1 to generation t2  
 = the average proportion of genes among individuals in generation t2 contributed 

by ancestor i 

• E( ) =  for male ancestors  (Nm = # male ancestors) 

       =  for female ancestors 

•  differ between ancestors due to differences in # progeny  
                                    and differences in the selective advantage of descendents 

= 1 
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• as t2- t1 increases, contributions from a given ancestor stabilize and become   
               similar across individuals in generation t2  à à0 

• t2- t1à infinity, genetic contributions from a given ancestor are  
                                                               the same for all individuals in time t2 

= long-term genetic contribution of ancestor i = ri 
Pedigree to illustrate concept of genetic contributions  
             Each generation contains 4 males and 4 females.  
                Base population:1-4=males  ;  5-8=females 
 Generation 1 Generation 2 Generation 3 
sex ind sire dam ind sire dam ind sire dam 
Male 11 1 5 21 11 15 31 22 25 
 12 1 6 22 11 17 32 22 27 
 13 2 5 23 12 16 33 23 25 
 14 3 7 24 13 15 34 23 26 
Female 15 1 5 25 11 15 35 22 25 
 16 1 6 26 11 17 36 22 27 
 17 2 5 27 12 16 37 23 25 
 18 3 7 28 13 15 38 23 26 

 
Contribution of each ancestors to each offspring:      

and mean contribution of each ancestor:   
 Ancestors 

Offspring1 1 2 3 4 5 6 7 8 
 Generation 1 

11/15 0.5 0 0 0 0.5 0 0 0 
12/16 0.5 0 0 0 0 0.5 0 0 
13/17 0 0.5 0 0 0.5 0 0 0 
14/18 0 0 0.5 0 0 0 0.5 0 
Mean 

contribution 
0.25 0.125 0.125 0 0.25 0.125 0.125 0 

 Generation 2 
21/25 0.5 0 0 0 0.5 0 0 0 
22/26 0.25 0.25 0 0 0.5 0 0 0 
23/27 0.5 0 0 0 0 0.5 0 0 
24/28 0.25 0.25 0 0 0.5 0 0 0 
Mean 

contribution 
0.375 0.125 0 0 0.375 0.125 0 0 

 Generation 3 
31/35 0.375 0.125 0 0 0.5 0 0 0 
32/36 0.375 0.125 0 0 0.25 0.25 0 0 

)),((raV 2, 1
tjr tij

),( 2, 1
tjr ti
)( 2, 1

tr ti
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33/37 0.5 0 0 0 0.25 0.25 0 0 
34/38 0.375 0.125 0 0 0.25 0.25 0 0 
Mean 

contribution 
0.406 0.104 0 0 0.313 0.187 0 0 

1 Each generation consisted of a full sib male and female, which have equal contributions. 
Contributions can be derived from pedigree. Contributions across ancestors sum to 1. 
Contributions of a given ancestor to descendants become less variable over time. 
 
The variability of genetic contributions will tend to be variable until they stabilize which is the “long term 
contribution 
   
 Use of long-term genetic contribution theory to predict DF 
 
 

Rate of inbreeding is related to the variance of long-term contributions among ancestors 
 

 - Asymptotic DF = ¼ * sum of squares of long-term contributions     
      DF= ¼Sri2 
 

Example: 20 selected parents per generation (ignoring that there are two sexes).  
Pedigree analysis quantifies the contribution of each parent to a particular generation.  
Their contribution will sum to 1; genetic contributions always sum to 1 per generation.  
 

Consider two extreme cases: 
 

1) the contribution of each individual is the same, r = 0.05 for all individuals 
 

 à     DF= ¼(0.052 + 0.052 + .. 0.052) = 0.0125  = 1.25% per generation 
 

2) contributions differ between individuals: r = 0.25 for 4 best parents  r = 0 for rest 
 

 à     DF = ¼(0.252 + 0.252 + .. 02) = 0.0625  = 6.25% per generation.  
 

  è variance in the contributions of ancestors à higher inbreeding 
 

Example: If there were 2 male and 2 female ancestors in a generation with contributions 
3/8, 1/8, 5/16 and 3/16 (note the 2 males sum to ½ and the two females sum to ½) then the 
estimate of DF attributed to that generation is  
 

 
 
If the population were in a steady state we would expect approximately the same answer 
every generation and the average over generations would be the expected DF. 
 

The importance of relationship DF= ¼Sri2   is: 
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• It is general and applies to both selected and unselected populations. 

• It relates DF to terms that can be found in the relationship (A) matrix. 

• Predictive forms can be developed from the relationship. 

• Strictly it is an approximation, but the proportional error (an underestimate) is of the 
same order as those previously developed for unselected populations. 

• Its form will lead to insights into how optimal selection schemes work. 

A problem for prediction of DF is that it requires estimation of the variance of long term 
contributions 
Use of long-term contributions to predict rates of inbreeding (Woolliams and Bijma, 2000): 
 

 E(DF) = E{¼Sri2} = ¼T*E[ri2] T = # selection candidates 
 

            E[ri2] = expectation of square of contributions across all candidates 
• Requires mean and variance of long-term contributions 

 

BUT: Woolliams et al. (‘99) showed: DF ~ square of expected long-term genetic  
                                                                                     contributions of selected parents 

DF= ¼Sri2      à       
       è prediction of the variance of long term genetic contributions not needed 
 
Following Woolliams et al. (1999), the (long-term) genetic contribution of an ancestor can 
be predicted by regression on its breeding value, using the model: 

 
 

           ri = expected genetic contribution of ancestor i 
          a = expected genetic contribution for an average ancestor 

ß = regression coefficient of the genetic contribution on the BV (gi) of the ancestor 
 

For discrete generations: a is determined by the number of parents:      
                                                       For male ancestors,   a = ½Ns 
                                                       For female ancestors a = ½Nd 
 

ß describes that:  
• selective advantage influences the selection decisions in offspring generation 
• selective advantage is inherited àhas an influence beyond offspring generation 

 
 

è Two mechanisms must be described to enable the prediction: 
1) better parents have on average more offspring that are selected as parents.  
2) the selected offspring of better parents are on average better, which also affects 

the genetic contributions.  
 

ΔF = 1
2NE(r)2

iiii grgrE ba +==)|(
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In short, the procedure (implemented in SelAction) is as follows:  
 

1) A regression model is used to predict the long-term contribution of selected parents, 

 
 

 E(r) = expected contribution given the true BV of an individual 
 a     = the contribution of an individual with an average BV  
 b     = increase of the contribution of parents with a higher BV.  
**Genup calculates the long-term contributions, shows pedigree trees 
 

The second term accounts for parents with high BV having more selected offspring. 
 

 a and b can be derived mathematically (see Woolliams et al. 1999). 
 

2) Calculate the square of the expected contributions of selected parents:                 

        (Woolliams et al. 1999) 
                              sA2(1-kr2) = genetic variance of selected parents; r = accuracy 
 
The above gives E(r)2, but in fact we need to calculate E(r2):  
 E(r)2 = square of the expected contributions of selected parents. 
 E(r2) = expectation of the squared (actual) contribution of selected parents.  
 

Under certain conditions E(r2) = 2[E(r)]2 , leading to the following result to predict DF:  

   
 

          N = # parents            E(r)2 = square of the expected contributions of selected parents, 
               predicted as given above  
 

Note: ¼ in DF= ¼Sri2 is replaced by ½ because we have replaced the square of the actual contributions 
Sr2 by the square of the expected contributions, NE(r)2. 
 

Woolliams et al. (1998) also extended the method to overlapping generations.  
 
 

Design of breeding programs with controls on inbreeding 
  

Short-term response is maximized by (based on DG = i r sg): 
- selection on BLUP EBV          –  i.e. maximize accuracy r 
- select only the best individuals – i.e. maximize intensity i - given repro rates 

 

But this may not maximize long(er)-term response because it leads to higher DF. 

)()( ggrE -+= ba

)()( 22222 -1+= rsba krE A

ΔF = 1
2NE(r)2
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Strategies to control inbreeding 
• (Mate selected parents such that inbreeding of 

progeny is minimized) 
- limited effect on long-term rates of 

inbreeding 
 

• Select more animals - increase population size   à 
increased costs 

- reduce selection intensity àreduced (short-term) response 
 

• Reduce probability of co-selection of relatives 
- impose restrictions on selection of relatives (e.g. 1/full-sib family) 
- increase h2 in genetic evaluation (affects both pedigree and progeny info) 

 - decrease weight on pedigree information 
 - control the average relationship among selected parents 
  - cost factor on average relationship (Brisbane and Gibson 1994) 
  - constraint on average relationship (Meuwissen 1997, JAS 75:934) 
 

• Introduce outside genetics 
Toro & Perez-Enciso 1990, GSE: 
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Quinton, Smith, Goddard. 1992. Comparison of selection methods at the same level of  
      inbreeding. J. Anim. Sci. 70: 1060.  
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Villaneuva and Woolliams (1997). Optimization of breeding programs under index 
                                           selection and constrained inbreeding.  Genet. Res. Camb. 69:145 
 

Objective = maximize response (over planning horizon) with constraint on DF 
Parameters to optimize: 

• Population size 
• # sires and dams to select 
• Selection criterion to use 

(emphasis on family info)  
• Mating strategy 

 

Population size = 200 
Maximize average response from 5 -  
20 generations by optimizing 

- # sires selected 
- # dams/sire 
- weight on family vs. own 

performance 
 
 
 
 
 h2=0.1 h2=0.3 

 Constraint on Inbreeding Constraint on Inbreeding 

 None DF<1% DF<0.25% None DF<1% DF<0.25% 

DF/generation 2.09 1.00 0.25 2.00 1.00 0.25 

DG in generation 20 0.109 0.100 0.047 0.278 0.258 0.128 

# sires 22 32 69 21 30 68 

# dams/sire 1 1 1 1 1 1 

Relative weight on 
family info 

2.12 1.60 1.07 1.43 1.06 0.76 

Optimal weight 
based on sel. index 

9.6      
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Optimal Contribution Selection 
Selection while Controlling Inbreeding in Operational Programs 

Based on Meuwissen (1997). J. Anim. Sci. 75: 934.  
 
Meuwissen (1997) developed a method to directly control long-term DF while maximizing 
DG by formulating selection as a constrained maximization program: 
    Max  = ct’   Subject to Q’ct =  

          ½ct’Atct =  

 = mean BV in the next generation 
  = vector of BLUP EBV of selection candidates in generation t 
 ct = vector of contributions of selection candidates to the next generation 

Q = known incidence matrix for sex (the first column contains 1 for male  
candidates and the second column a 1 for female candidates) 

  =  which ensures that contributions of males and of all females sum to ½ 

 At = additive genetic relationship among selection candidates in generation t. 
 = average coancestry among all progeny in generation t+1 

= ½ weighted average genetic relationships among selected parents = ½ct’Atct.  
= set equal to DF(t+1) when objective is to restrict rate of inbreeding per 

generation to DF and generation 0 is non-inbred  
 

ð Maximize      for ct, l0, and l 
 

               l0, and l are LaGrangian multipliers, and lv’=[l0, l].  

Solving this system for ct results in:     

In order to obtain ct, values for l0 and l are needed. 
Constraint Q’ct = ½    à    
Constraint ct’Atct/2= t+1  à   

               Solving for l0    à  
 

The value for l0 is used in the previous equation to obtain the value for l. These two values can 
now be used to obtain ct. This ct may contain negative values for some animals with a poor EBV. 
Negative values of ct can be constrained to 0 by eliminating those animals. 
 

A negative right hand sight for the last equation implies that ct’Atct/2= t+1 cannot be met. So it is 
impossible to find a solution for ct for which the average coancestry between parents is less or equal 
to the desired level. The minimum average relationship that can be obtained by minimizing ct’Atct 
under the constraint Q’ct= ½. This leads to the following minimum: .251’(Q’At-1Q)-11. 
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Based on BLUP 
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Optimal contribution selection was extended to overlapping generations 
by Meuwissen and Sonesson (1998). J. Anim. Sci. 76: 2575 
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