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CHAPTER 1 ST 732, M. DAVIDIAN

1 Introduction and Motivation

1.1 Purpose of this course

OBJECTIVE: The goal of this course is to provide an overview of statistical models and methods that

are useful in the analysis of longitudinal data; that is, data in the form of repeated measurements

on the same unit (human, plant, plot, sample, etc.) over time.

Data are routinely collected in this fashion in a broad range of applications, including agriculture and

the life sciences, medical and public health research, and physical science and engineering. For example:

• In agriculture, a measure of growth may be taken on the same plot weekly over the growing season.

Plots are assigned to different treatments at the start of the season.

• In a medical study, a measure of viral load (roughly, amount of HIV virus present in the body)

may be taken at monthly intervals on patients with HIV infection. Patients are assigned to take

different treatments at the start of the study.

Note that a defining characteristic of these examples is that the same response is measured repeatedly

on each unit; i.e. viral load is measured again and again on the same subject. This particular type of

data structure will be the focus of this course.

The scientific questions of interest often involve not only the usual kinds of questions, such as how the

mean response differs across treatments, but also how the change in mean response over time

differs and other issues concerning the relationship between response and time. Thus, it is necessary to

represent the situation in terms of a statistical model that acknowledges the way in which the data

were collected in order to address these questions. Complementing the models, specialized methods of

analysis are required.

In this course, we will study ways to model these data, and we will explore both classical and more

recent approaches to analyzing them. Interest in the best ways to represent and interpret longitudinal

data has grown tremendously in recent years, and a number of new powerful statistical techniques have

been developed. We will discuss these techniques in some detail.
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CHAPTER 1 ST 732, M. DAVIDIAN

TERMINOLOGY: Although the term longitudinal naturally suggests that data are collected over

time, the models and methods we will discuss are more broadly applicable to any kind of repeated

measurement data. That is, although repeated measurement most often takes place over time, this is

not the only way that measurements may be taken repeatedly on the same unit. For example,

• The units may be human subjects. For each subject, reduction in diastolic blood pressure is

measured on several occasions, each occasion involving administration of a different dose of an

anti-hypertensive medication. Thus, the subject is measured repeatedly over dose.

• The units may be trees in a forest. For each tree, measurements of the diameter of the tree are

made at several different points along the trunk of the tree. Thus, the tree is measured repeatedly

over positions along the trunk.

• The units may be pregnant female rats. Each rat gives birth to a litter of pups, and the birthweight

of each pup is recorded. Thus, the rat is measured repeatedly over each of her pups.

The third example is a bit different from the other two in that there is no natural order to the repeated

measurements.

Thus, the methods will apply more broadly than the strict definition of the term longitudinal data

indicates – the term will mean, to us, data in the form of repeated measurements that may well be

over time, but may also be over some other set of conditions. Because time is most often the condition

of measurement, however, many of our examples will indeed involve repeated measurement over time.

We will use the term response to denote the measurement of interest. Because units are often human

or animal subjects, we use the terms unit, individual, and subject interchangeably.

1.2 Examples

To put things into firmer perspective, we consider several real datasets from a variety of applications.

These will not only provide us with concrete examples of longitudinal data situations, but will also serve

to illustrate the range of ways that data may be collected and the types of measurements that may be

of interest.

PAGE 2
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Several features are notable from the plot of the data:

• It appears that each child has his/her own trajectory of distance as a function of age. For any

given child, the trajectory looks roughly like a straight line, with some fluctuations. But from

child to child, features of the trajectory (e.g., its steepness), vary. Thus, the trajectories are all of

similar form, but vary in their specific characteristics among children. Note the one unusual boy

whose pattern fluctuates more profoundly than those of the other children and the one girl who

is much “lower” than the others.

• The overall trend is for the distance measurement to increase with age. The trajectories for some

children exhibit strict increase with age, while others show some intermittent decreases, but still

with an overall increasing trend across the entire 6 year period.

• The distance trajectories for boys seem for the most part to be “higher” than those for girls –

most of the boy profiles involve larger distance measurements than those for girls. However, this is

not uniformly true: some girls have larger distance measurements than boys at some of the ages.

• Although boys seems to have larger distance measurements, the rate of change of the measure-

ments with increasing age seems similar. More precisely, the slope of the increasing (approximate

straight-line) relationship with age seems roughly similar for boys and girls. However, for any

individual boy or girl, the rate of change (slope) may be steeper or shallower than the evident

“typical” rate of change.

To address the questions of interest, it is clear that some formal way of representing the fact that each

child has an individual-specific trajectory is needed. Within such a representation, a formal way of

stating the questions is required.
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As with the dental data, several features are evident:

• For the most part, the trajectories for individual guinea pigs seem to increase overall over the

study period (although note pig 1 in the zero dose group). Different guinea pigs in the same dose

group have different trajectories, some of which look like a straight line and others of which seem

to have a “dip” at the beginning of week 5, the time at which vitamin E was added in the low

and high dose groups.

• The trajectories for the zero dose group seem somewhat “lower” than those in the other dose

groups.

• It is unclear whether the rate of change in body weight on average is similar or different across

dose groups. In fact, it is not clear that the pattern for either individual pigs or “on average”

is a straight line, so the rate of change may not be constant. Because vitamin E therapy was

not administered until the beginning of week 5, we might expect two “phases,” before and after

vitamin E, making things more complicated.

Again, some formal framework for representing this situation and addressing the primary research

question is required.

EXAMPLE 3: Growth of two different soybean genotypes.

This study was conducted by Colleen Hudak, a former student in the Department of Crop Science at

North Carolina State University, and is reported in Davidian and Giltinan (1995, p. 7). The goal was

to compare the growth patterns of two soybean genotypes, a commercial variety, Forrest (F) and an

experimental strain, Plant Introduction #416937 (P). Data were collected in each of three consecutive

years, 1988–1990. In each year, 8 plots were planted with F, 8 with P. Over the course of the growing

season, each plot was sampled at approximate weekly intervals. At each sampling time, 6 plants were

randomly selected from each plot, leaves from these plants were mixed together and weighted, and an

average leaf weight per plant (g) was calculated. In Figure 3, the data from the 8 F plots and 8 P plots

for 1989 are depicted.

The primary objective of the study was

• To compare the growth characteristics of the two genotypes.
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In fact, the investigators realized that the growth pattern would not be as simple as an apparent straight

line. They knew that growth would tend to “level off” toward the end of the season; thus, a more precise

statement of their primary objective was

• To compare the apparent “limiting” average leaf weight/plant between the 2 genotypes.

• To compare the way in which growth accelerates during the middle of the growing season.

• To compare the apparent initial average leaf weight/plant.

From Figure 3, it seems that average leaf weight/plant achieves “higher” limiting growth for genotype

P relative to genotype F. That is, the “leveling off” seems to begin at lower values of the response for

genotype F. The two genotypes seem to start off at roughly same value. It is difficult to make a simple

statement about the relative rates of growth from the figure. Naturally, the investigators would like to

be able to be more formal about these observations.

As it so happened, weather patterns differed considerably over the three years of the experiment: in

1988, conditions were unusually dry; in 1989, they were unusually wet; and conditions in 1990 were

relatively normal. Thus, comparison of growth patterns across the different weather patterns as well

as how the weather patterns affected the comparison of growth characteristics between genotypes, was

also of interest.

SO FAR: In the three examples we have considered, the measurement of interest is continuous in

nature. That is,

• Distance (mm) from the center of the pituitary to the pterygomaxillary fissure

• Body weight (g)

• Average leaf weight/plant (g)

all may in principle take on any possible value in a particular range. How precisely we observe the value

of the response is limited only by the precision of the measuring device we use.

In some situations, the response of interest is not continuous; rather, it is discrete in nature. That

is, the values that we may observe differ by fixed amounts. For definiteness, we consider 2 additional

examples:
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EXAMPLE 4: Epileptic seizures and chemotherapy.

A common situation is where the measurements are in the form of counts. A response in the form of

a count is by nature discrete – counts (usually) take only nonnegative integer values (0, 1, 2, 3, . . .).

The following data were first reported by Thall and Vail (1990). A clinical trial was conducted in which

59 people with epilepsy suffering from simple or partial seizures were assigned at random to receive

either the anti-epileptic drug progabide (subjects 29–59) or an inert substance (a placebo, subjects

1–28) in addition to a standard chemotherapy regimen all were taking. Because each individual might

be prone to different rates of experiencing seizures, the investigators first tried to get a sense of this

by recording the number of seizures suffered by each subject over the 8-week period prior to the start

of administration of the assigned treatment. It is common in such studies to record such baseline

measurements, so that the effect of treatment for each subject may be measured relative to how that

subject behaved before treatment.

Following the commencement of treatment, the number of seizures for each subject was counted for

each of four, two-week consecutive periods. The age of each subject at the start of the study was also

recorded, as it was suspected that the age of the subject might be associated with the effect of the

treatment somehow.

The data for the first 5 subjects in each treatment group are summarized in Table 1.

Table 1: Seizure counts for 5 subjects assigned to placebo (0) and 5 subjects assigned to progabide (1).

Period

Subject 1 2 3 4 Trt Baseline Age

1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
3 2 4 0 5 0 6 25
4 4 4 1 4 0 8 36
5 7 18 9 21 0 66 22...

29 11 14 9 8 1 76 18
30 8 7 9 4 1 38 32
31 0 4 3 0 1 19 20
32 3 6 1 3 1 10 30
33 2 6 7 4 1 19 18

The primary objective of the study was to

• Determine whether progabide reduces the rate of seizures in subjects like those in the trial.
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Here, we have repeated measurements (counts) on each subject over four consecutive observation periods

for each subject. Obviously, we would like to compare somehow the baseline seizure counts to post-

treatment counts, where the latter are observed repeatedly over time following initiation of treatment.

Clearly, an appropriate analysis would make the best use of this feature of the data in addressing the

main objective.

Moreover, note that some of the counts are quite small; in fact, for some subjects, 0 seizures (none)

were experienced in some periods. For example, subject 31 in the treatment group experienced only 0,

3, or 4 seizures over the 4 observation periods. Clearly, pretending that the response is continuous

would be a lousy approximation to the true nature of the data! Thus, it seems that methods suitable

for handling continuous data problems like the first three examples here would not be appropriate for

data like these.

To get around this problem, a common approach to handling data in the form of counts is to transform

them to some other scale. The motivation is to make them seem more “normally distributed” with

constant variance, and the square root transformation is used to (hopefully) accomplish this. The

desired result is that methods that are usually used to analyze continuous measurements may then be

applied.

However, the drawback of this approach is that one is no longer working with the data on the orig-

inal scale of measurement, numbers of seizures in this case. The statistical models being assumed

by this approach describe “square root number of seizures,” which is not particularly interesting nor

intuitive. Recently, new statistical methods have been developed to allow analysis of discrete repeated

measurements like counts on the original scale of measurement.

EXAMPLE 5: Maternal smoking and child respiratory health.

Another common discrete data situation is where the response is binary; that is, the response may

take on only two possible values, which usually correspond to things like

• “success” or “failure” of a treatment to elicit a desired response

• “presence” or “absence” of some condition

Clearly, it would be foolish to even try and pretend such data are approximately continuous!
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The following data come from a very large public health study called the Six Cities Study, which was

undertaken in six small American cities to investigate a variety of public health issues. The full situation

is reported in Lipsitz, Laird, and Harrington (1992). The current study was focused on the association

between maternal smoking and child respiratory health. Each of 300 children was examined once a year

at ages 9–12. The response of interest was “wheezing status,” a measure of the child’s respiratory health,

which was coded as either “no” (0) or “yes” (1), where “yes” corresponds to respiratory problems. Also

recorded at each examination was a code to indicate the mother’s current level of smoking: 0 = none,

1 = moderate, 2 = heavy.

The data for the first 5 subjects are summarized in Table 1.2.

Table 2: Data for 5 children in the Six Cities study. Missing data are denoted by a “.”

Smoking at age Wheezing at age

Subject City 9 10 11 12 9 10 11 12

1 Portage 2 2 1 1 1 0 0 0
2 Kingston 0 0 0 0 0 0 0 0
3 Portage 1 0 0 . 0 0 0 .
4 Portage . 1 1 1 . 1 0 0
5 Kingston 1 . 1 2 0 . 0 1

The objective of an analysis of these data was to

• Determine how the typical “wheezing” response pattern changes with age

• Determine whether there is an association between maternal smoking severity and child respiratory

status (as measured by “wheezing”).

Note that it would be pretty pointless to plot the responses as a function of age as we did in the

continuous data cases – here, the only responses are 0 or 1! Inspection of individual subject data does

suggest that there is something going on here; for example, note that subject 5 did not exhibit positive

wheezing status until his/her mother’s smoking increased in severity.

This highlights the fact that this situation is complex: over time (measured here by age of the child),

an important characteristic, maternal smoking, changes. Contrast this with the previous situations,

where a main focus is to compare groups whose membership stays constant over time.
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Thus, we have repeated measurements, where, to further complicate matters, the measurements

are binary! As with the count data, one might first think about trying to summarize and transform

the data to allow (somehow) methods for continuous data to be used; however, this would clearly be

inappropriate. As we will see later in the course, methods for dealing with repeated binary responses

and scientific questions like those above have been developed.

Another feature of these data is the fact that some measurements are missing for some subjects.

Specifically, although the intention was to collect data for each of the four ages, this information is not

available for some children and their mothers at some ages; for example, subject 3 has both the mother’s

smoking status and wheezing indicator missing at age 12. This pattern would suggest that the mother

may have failed to appear with the child for this intended examination.

A final note: In the other examples, units (children, guinea pigs, plots, patients) were assigned to

treatments; thus, these may be regarded as controlled experiments, where the investigator has some

control over how the factors of interest are “applied” to the units (through randomization). In contrast,

in this study, the investigators did not decide which children would have mothers who smoke; instead,

they could only observe smoking behavior of the mothers and wheezing status of their children. That

is, this is an example of an observational study. Because it may be impossible or unethical to

randomize subjects to potentially hazardous circumstances, studies of issues in public health and the

social sciences are often observational.

As in many observational studies, an additional difficulty is the fact that the thing of interest, in this

case maternal smoking, also changes with the response over time. This leads to complicated issues of

interpretation in statistical modeling that are a matter of some debate. We will discuss these issues in

our subsequent development.

SUMMARY: These five examples illustrate the broad range of applications where data in the form of

repeated measurements may arise. The response of interest may be continuous or discrete. The

questions of interest may be focused on very specific features of the trajectories, e.g. “limiting growth,”

or may involve vague questions about the form of the “typical” trajectory.

1.3 Statistical models for longitudinal data

In this course, we will discuss a number of approaches for modeling data like those in the examples and

describe different statistical methods for addressing questions of scientific interest within the context of

these models.
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STATISTICAL MODELS: A statistical model is a formal representation of the way in which data

are thought to arise, and the features of the model dictate how questions of interest may be stated

unambiguously and how the data should be manipulated and interpreted to address the questions.

Different models embody different assumptions about how the data arise; thus, the extent to which

valid conclusions may be drawn from a particular model rests on how relevant its assumptions are to

the situation at hand.

Thus, to appreciate the basis for techniques for data analysis and use them appropriately, one must

refer to and understand the associated statistical models. This connection is especially critical in the

context of longitudinal data, as we will see.

Formally, a statistical model uses probability distributions to describe the mechanism believed to generate

the data. That is, responses are represented by a random variables whose probability distributions are

used to describe the chances that a response takes on different values. How responses arise may involve

many factors; thus, how one “builds” a statistical model and decides which probability distributions are

relevant requires careful consideration of the features of the situation.

RANDOM VECTORS: In order to

• elucidate the assumptions made under different models and methods and make distinctions among

them

• describe the models and methods easily

it is convenient to think of all responses collected on the same unit over time or other set of conditions

together, so that complex relationships among them may be summarized.

Consider the random variable

Yij = the jth measurement taken on unit i.

To fix ideas, consider the dental study data in Figure 1. Each child was measured 4 times, at ages 8,

10, 12, and 14 years. Thus, we let j = 1, . . . , 4; j is indexing the number of times a child is measured.

To summarize the information on when these times occur, we might further define

tij = the time at which the j measurement on unit i was taken.
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Here, for all children, ti1 = 8, ti2 = 10, and so on for all children in the study. Thus, if we ignore

gender of the children for the moment, the responses for the ith child, where i ranges from 1 to 27, are

Yi1, . . . , Yi4, taken at times ti1, . . . , ti4. In fact, we may summarize the measurements for the ith child

even more succinctly: define the (4 × 1) random vector

Y i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Yi1

Yi2

Yi3

Yi4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The components are random variables representing the responses that might be observed for child i

at each time point. Later, we will expand this notation to include ways of representing additional

information, such as gender in this example.

The important message is that it is possible to represent the responses for the ith child in a very

streamlined and convenient way for the purposes of talking about them all together. Each child i has

its own vector of responses Y i. It often makes sense to think of the data not just as individual

responses Yij , some from one child, some from another according to the indices, but rather as vectors

corresponding to children, the units – each unit has associated with it an entire vector of responses.

It is worth noting that this way of summarizing information is not always used; in particular, some of

the classical methods for analyzing repeated measurements that we will discuss are usually not cast in

these terms. However, as we will see, using this unified way of representing the data will allow us to

appreciate differences among approaches.

This discussion demonstrates that it will be convenient to use matrix notation to summarize longi-

tudinal data. This is indeed the case in the literature, particularly when discussing some of the newer

methods. Thus, we will need to review elements of of matrix algebra that will be useful in describing

the models and methods that we will use.

PROBABILITY DISTRIBUTIONS: Statistical models rely on probability distributions to describe

the way in which the random variables invoved in the model take on their values. That is, probability

distributions are used to describe the chances of seeing particular values of the response of interest.

This same reasoning will of course be true for repeated measurements. In fact, acknowledging that it

makes sense to think of the responses for each unit in terms of a random vector, it will be necessary

to consider probability models for entire vectors of several responses thought of together, coming from

the same unit.
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NORMAL DISTRIBUTION: For continuous data, recall that the most common model for single

observations is the normal or Gaussian distribution. That is, if Y is a normal random variable with

mean µ and variance σ2, then the probabilities with which Y takes on different values y are described

by the probability density function

f(y) =
1√

2πσ2
exp

{

−(y − µ)2

2σ2

}

.

This function is depicted graphically in Figure 4. Recall that the area under the curve between two

values represents the probability of the random variable Y taking on a value in that range.

Figure 4: Normal density function with mean µ.

 

µ

The assumption that data may be thought of as ending up the way they did according to the probabilities

dictated by a normal distribution is a fundamental one in much of statistical methodology. For example,

classical analysis of variance methods rely on the relevance of this assumption for conclusions (i.e.

inferences based on F ratios) to be valid. Classical methods for linear regression modeling also

are usually motivated based on this assumption. When the response is continuous, the assumption of

normality is often a reasonable one.
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MULTIVARIATE NORMAL DISTRIBUTION: When we have data in the form of repeated measure-

ments, we have already noted that it is convenient to think of the data from a particular unit i as a

vector of individual responses, one vector from each unit. We will be much more formal later; for now,

consider that these vectors may be thought of as unrelated across individuals – how the measurements

for one child turn out over time has nothing to do with how they turn out for another child. However,

if we focus on a particular child, the measurements on that child will definitely be related to one

another! For example, in Figure 1, the boy with the “highest” profile starts out “high” at age 8, and

continues to be “high” over the entire period. Thus, we would like some way of not only characterizing

the probabilities with which a child has a certain response at a certain age, but of characterizing how

responses on the same child are related!

When the response is continuous and the assumption of normality seems reasonable, we will thus need to

discuss the extension of the idea of the normal distribution from a model just for probabilities associated

with a single random variable representing a response at one time to a model of the joint probabilities

for several responses together in a random vector. This of course includes how the responses are related.

The multivariate normal distribution is the extended probability model for this situation. Because

many popular methods for the analysis of longitudinal data are based on the assumption of normally

distributed responses, we will discuss the multivariate normal distribution and its properties in some

detail.

NORMAL, CONTINUOUS RESPONSE: Armed with our understanding of matrix notation and al-

gebra and the multivariate normal distribution, we will study methods for the analysis of continuous,

longitudinal data in the first part of the course that are appropriate when the multivariate normal

distribution is a reasonable probability model.
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DISCRETE RESPONSE: Of course, the normal distribution is appropriate when the response of interest

is continuous, so, although the assumption of normality may be suitable in this case, it may not be

when the data are in the form of small counts, as in the seizure example. This assumption is certainly not

reasonable for binary data. As discussed above, a common approach has been to try to transform data

to make them “approximately normal” on the transformed scale; however, this has some disadvantages.

In the early 1980’s, there began an explosion of research into ways to analyze discrete responses that did

not require data transformation to induce approximate normality. These methods were based on more

realistic probability models, the Poisson distribution as a model for count data and the Bernoulli

(binomial) distribution as a model for binary data.

For regression-type problems, where a single response is measured on each unit, the usual classical

linear regression methods were extended to allow the assumption that these distributions, rather than

the normal distribution, are sensible probability models for the data. The term generalized linear

models is used to refer to the models and techniques used.

Starting in the late 1980’s, generalized linear model methods were extended to the situation of re-

peated measurement data, allowing one to think in terms of random vectors of responses, each

element of which may be thought of as Poisson or Bernoulli distributed. We will study these probability

distributions, generalized linear models, and their extension to longitudinal data.

NONNORMAL, CONTINUOUS RESPONSE: In fact, although the normal distribution is by far the

most popular probability model for continuous data, it is not always a sensible choice. As can be seen

from Figure 4, the normal probability density function is symmetric, saying that probabilities of seeing

responses smaller or larger than the mean are the same. This may not always be reasonable.

As we will discuss later in the course, other probability models are available in this situation. It turns

out that the methods in the same spirit as those used for discrete response may be used to model and

analyze such data.
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1.4 Outline of the course

Given the considerations of the previous section, the course will offer coverage of two main areas.

First, methods for the analysis of continuous repeated measurements that are reasonably thought of as

normally distributed will be discussed. Later, methods for the analysis of repeated measurements that

are not reasonably thought of as normally distributed, such as discrete responses, are covered.

The course may be thought of as coming in roughly five parts:

I. Preliminaries:

• Introduction

• Review of matrix algebra

• Random vectors, multivariate distributions as models for repeated measurements, multivariate

normal distribution, review of linear regression

• Introduction to modeling longitudinal data

II. Classical methods:

• Classical methods for analyzing normally distributed, balanced repeated measurements

– “univariate” analysis of variance approaches

• Classical methods for analyzing normally distributed, balanced repeated measurements

– “multivariate” analysis of variance approaches

• Discussion of classical methods – drawbacks and limitations

III. Methods for unbalanced, normally distributed data:

• General linear models for longitudinal data, models for correlation

• Random coefficient models for continuous, normally distributed repeated measurements

• Linear mixed models for continuous, normally distributed repeated measurements
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IV. Methods for unbalanced, nonnormally distributed data:

• Probability models for discrete and nonnormal continuous response, generalized linear models

• Models for discrete and nonnormal continuous repeated measurements – generalized estimating

equations

V. Advanced topics:

• Generalized linear mixed models for discrete and nonnormal continuous repeated measurements

• More general nonlinear mixed models for all kinds of repeated measurements

• Issues associated with missing data

Throughout, we will devote considerable time to the use of standard statistical software to implement

the methods. In particular, we will focus on the use of the SAS (Statistical Analysis System) software.

Some familiarity with SAS, such as how to read data from a file, how perform simple data manipulations,

and basic use of simple procedures such as PROC GLM is assumed.

The examples in subsequent chapters are implemented using Version 8.2 of SAS on a SunOs operating

system. Features of the output and required programming statements may be somewhat different

when older versions of SAS are used, as some of the procedures have been modified. In addition, slight

numerical differences arise when the same programs are run on other platforms. The user should consult

the documentation for his/her version of SAS for possible differences.

Plots in the figures are made with R and Splus. Making similar plots with SAS is not demonstrated in

these notes, as it is assumed the user will wish to use his/her own favorite plotting software.

It is important to stress that there are numerous approaches to the modeling and analysis of longitudinal

data, and there is no strictly “right” or “wrong” way. It is true, however, that some approaches are

more flexible than others, imposing less restrictions on the nature of the data and allowing questions of

scientific interest to be addressed more directly. We will note how various approaches compare as we

proceed.

Throughout, we adopt a standard convention. We often use upper case letters, e.g., Y and Y , to denote

random variables and vectors, most often those corresponding to the response of interest. We use lower

case letters, e.g., y and y, when we wish to refer to actual data values, i.e., realizations of the

random variable or vector.
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2 Review of matrix algebra

2.1 Introduction

Before we begin our discussion of the statistical models and methods, we review elements of matrix

algebra that will be quite useful in streamlining our presentation and representing data. Here, we will

note some basic results and operations. Further results and definitions will be discussed as we need

them throughout the course. Many useful facts here are stated systematically in this chapter; thus, this

chapter will serve as a reference for later developments using matrix notation.

2.2 Matrix notation

MATRIX: A rectangular array of numbers, e.g.

A =

⎛

⎜⎝
3 5 7 8

1 2 3 7

⎞

⎟⎠

As is standard, we will use boldface capital letters to denote an entire matrix.

DIMENSION: A matrix with r rows and c columns is said to be of dimension (r × c).

It is customary to refer generically to the elements of a matrix by using 2 subscripts, e.g.

A =

⎛

⎜⎝
a11 a12 a13 a14

a21 a22 a23 a24

⎞

⎟⎠

a11 = 3, a12 = 5, etc. In general, for a matrix with r rows and c columns, A, the element of A in the

ith row and the jth column is denoted as aij , where i = 1, . . . , r and j = 1, . . . , c.

VECTOR: A column vector is a matrix with only one column, e.g.

a =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2

0

3

−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

PAGE 20



CHAPTER 2 ST 732, M. DAVIDIAN

A row vector is matrix with only one row, e.g.

b =
(

1, 3, −5

)

It is worth noting some special cases of matrices.

SQUARE MATRIX: A matrix with r = c, that is, with the same number of rows and columns is called

a square matrix. If a matrix A is square, the elements aii are said to lie on the (principal) diagonal

of A. For example,

A =

⎛

⎜⎜⎜⎜⎝

4 0 7

9 −1 3

−8 4 5

⎞

⎟⎟⎟⎟⎠
.

SYMMETRIC MATRIX: A square matrix A is called symmetric if aij = aji for all values of i and j.

The term symmetric refers to the fact that such a matrix “reflects” across its diagonal, e.g.

A =

⎛

⎜⎜⎜⎜⎝

3 5 7

5 1 4

7 4 8

⎞

⎟⎟⎟⎟⎠

Symmetric matrices turn out to be quite important in formulating statistical models for all types of

data!

IDENTITY MATRIX: An important special case of a square, symmetric matrix is the identity matrix

– a square matrix with 1’s on diagonal, 0’s elsewhere, e.g.

I =

⎛

⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎠

As we will see shortly, the identity matrix functions the same way as “1” does in the real number system.

TRANSPOSE: The transpose of any (r × c) A matrix is the (c × r) matrix denoted as A′ such that

aij is replaced by aji everywhere. That is, the transpose of A is the matrix found by “flipping” the

matrix around, e.g.

A =

⎛

⎜⎝
3 5 7 8

1 2 3 7

⎞

⎟⎠ , A′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

3 1

5 2

7 3

8 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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A fundamental property of a symmetric matrix is that the matrix and its transpose are the same; i.e.,

if A is symmetric then A = A′. (Try it on the symmetric matrix above.)

2.3 Matrix operations

The world of matrices can be thought of as an extension of the world of real (scalar) numbers. Just as

we add, subtract, multiply, and divide real numbers, we can do the same in with matrices. It turns out

that these operations make the expression of complicated calculations easy to talk about and express,

hiding all the details!

MATRIX ADDITION AND SUBTRACTION: Adding or subtracting two matrices are operations that

are defined element-by-element. That is, to add to matrices, add their corresponding elements, e.g.

A =

⎛

⎜⎝
5 0

−3 2

⎞

⎟⎠ , B =

⎛

⎜⎝
6 4

2 −1

⎞

⎟⎠

A + B =

⎛

⎜⎝
11 4

−1 1

⎞

⎟⎠ , A − B =

⎛

⎜⎝
−1 −4

−5 3

⎞

⎟⎠

Note that these operations only make sense if the two matrices have the same dimension – the

operations are not defined otherwise.

MULTIPLICATION BY A CONSTANT: The effect of multiplying a matrix A of any dimension by a

real number (scalar) b, say, is to multiply each element in A by b. This is easy to see by considering

that this is just equivalent to adding A to itself b times. E.g.

3

⎛

⎜⎝
5 −2

6 4

⎞

⎟⎠ =

⎛

⎜⎝
15 −6

18 12

⎞

⎟⎠ .

GENERAL FACTS:

• A + B = B + A, b(A + B) = bA + bB

• (A + B)′ = A′ + B′, (bA)′ = bA′
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MATRIX MULTIPLICATION: This operation is a bit tricky, but as we will see in a moment, it proves

most powerful for expressing a whole series of calculations in a very simple way.

• Order matters

• Number of columns of first matrix must = Number of rows of second matrix, e.g.

A =

⎛

⎜⎝
1 3 5

−2 −1 2

⎞

⎟⎠ B =

⎛

⎜⎜⎜⎜⎝

2 3

0 5

1 −2

⎞

⎟⎟⎟⎟⎠

A B =

⎛

⎜⎝
7 8

−2 −15

⎞

⎟⎠

E.g. (1)(2) + (3)(0) + (5)(1) = 7 for the (1, 1) element.

• Two matrices satisfying these requirements are said to conform to multiplication.

• Formally, if A is (r × c) and B is (c × q), then AB is a (r × q) matrix with (i, j)th element

c∑

k=1

aikbkj .

Here, we say that A is postmultiplied by B and, equivalently, that B is premultiplied by A.

EXAMPLE: Consider a simple linear regression model: suppose that we have n pairs (x1, Y1), . . . , (xn, Yn),

and we believe that, except for a random deviation, the relationship between the covariate x and the

response Y follows a straight line. That is, for j = 1, . . . , n, we have

Yj = β0 + β1xj + ϵj ,

where ϵj is a random deviation representing the amount by which the actual observed response Yj

deviates from the exact straight line relationship. Defining

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1 xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

...

Yn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, ϵ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ϵ1

ϵ2

...

ϵn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, β =

⎛

⎜⎝
β0

β1

⎞

⎟⎠ ,

we may express the model succinctly as

Y = Xβ + ϵ. (2.1)

PAGE 23



CHAPTER 2 ST 732, M. DAVIDIAN

SPECIAL CASE: Multiplying vectors. With a row vector premultiplying a column vector, the result is

a scalar (remember, a (1 × 1) matrix is just a real number!), e.g.

ab =
(

1, 3, −5, 1

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2

0

3

−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= −15

i.e. (1)(2) + (3)(0) + (−5)(3) + (1)(−2) = −15

With a column vector premultiplying a row vector, the result is a matrix. e.g.

bc =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2

0

3

−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(
3 −1 2

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

6 −2 4

0 0 0

9 −3 6

−6 2 −4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

MULTIPLICATION BY AN IDENTITY MATRIX: Multiplying any matrix by an identity matrix of

appropriate dimension gives back the same matrix, e.g.

I A =

⎛

⎜⎝
1 0

0 1

⎞

⎟⎠

⎛

⎜⎝
1 3 5

−2 −1 2

⎞

⎟⎠ = A

GENERAL FACTS:

• A(B + C) = AB + AC, (A + B)C = AC + BC

• For any matrix A, A′A will be a square matrix.

• The transpose of a matrix product – if A and B conform to multiplication, then the transpose

of their product

(AB)′ = B′A′.

These latter results may be proved generically, but you may convince yourself by working them out for

the matrices A and B given above.

PAGE 24



CHAPTER 2 ST 732, M. DAVIDIAN

LINEAR DEPENDENCE: This characteristic of a matrix is extremely important in that it describes

the nature and extent of the information contained in the matrix. Consider the matrix

A =

⎛

⎜⎜⎜⎜⎝

1 1 1

3 1 5

2 3 1

⎞

⎟⎟⎟⎟⎠
.

Refer to the columns as c1, c2, c3. Note that

2c1 + −c2 + −c3 = 0,

where 0 is a column of zeros (in this case, a (3 × 1) vector). Because the 3 columns of A may be

combined in a linear function to yield a vector of nothing but zeros, clearly, there is some kind of

relationship, or dependence, among the information in the columns. Put another way, it seems as

though there is some duplication of information in the columns.

In general, we say that k columns c1, c2, . . . , ck of a matrix are linearly dependent if there exists a

set of scalar values λ1, . . . ,λk such that

λ1c1 + · · · + λkck = 0, (2.2)

and at least one of the λj ’s is not equal to 0.

Linear dependence implies that each column vector is a combination of the others, e.g.,

ck = −(λ1c1 + · · · + λk−1ck−1)/λk.

The implication is that all of the “information” in the matrix is contained in a subset of the columns

– if we know any (k − 1) columns, we know them all. This formalizes our notion of “duplication” of

information.

If, on the other hand, the only set of λj values we can come up with to satisfy (2.2) is a set of all zeros,

then it must be that there is no relationship among the columns, e.g. they are “independent” in the

sense of containing no overlap of information. The formal term is linearly independent.
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RANK OF A MATRIX: The rank of a matrix is the maximum number of linearly independent columns

that may be selected from the columns of the matrix. It is sort of a measure of the extent of “duplication

of information” in the matrix. The rank of a matrix may be equivalently defined as the number of linearly

independent rows (by turning the matrix on its side). The rank determined either way is the same.

Thus, the largest that the rank of a matrix can be is the minimum of r and c. The smallest rank may

be is 1, in which case there is one column such that all other columns are direct multiples.

In the above, the rank of the matrix A is 2. To see this, eliminate one of the columns (we have already

seen that the three columns are linearly dependent, so we can get the third from the other two). Now

try to find a new linear combination of the remaining columns that has some λj not equal to 0. If this

can not be done – stop and declare the rank to be the number of remaining columns.

FULL RANK: A matrix is said to be of full rank if its rank is equal to the minimum of r and c.

FACT: If X is a (r × c) matrix with rank k, then X ′X also has rank k. Note, of course, that X ′X is

a square matrix of dimension (c × c). If k = c, then X ′X is of full rank.

INVERSE OF A MATRIX: This is related to the matrix version of “division” – the inverse of a matrix

may be thought of in way similar to a “reciprocal” in the world of real numbers.

• The notion of an inverse is only defined for square matrices, for reasons that will be clear below.

• The inverse of the square matrix A is denoted by A−1 and is the square matrix satisfying

A A−1 = I = A−1 A

where I is an identity matrix of the same dimension.

• We sometimes write Ik when I is (k × k) when it is important to note explicitly the dimension.

Thus, the inverse of a matrix is like the analog of the reciprocal for scalars. Recall that if b is a scalar

and b = 0, then the reciprocal of b, 1/b does not exist – it is not defined in this case. Similarly, there

are matrices that “act like zero” for which no inverse is defined. Consequently, inverse is only defined

when it exists.

Computing the inverse of a matrix is best done on a computer, where the intricate formulæ for matrices

of general dimension are usually built in to software packages. Only in simple cases is an analytic

expression obtained easily (see the next page).
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A technical condition that an inverse of the matrix A exist is that the columns of A are linearly

independent. This is related to the following.

DETERMINANT: When is a matrix “like zero?” The determinant of a square matrix is a scalar

number that in some sense summarizes how “zero-like” a matrix is.

The determinant of a (2 × 2) matrix is defined as follows. Let

A =

⎛

⎜⎝
a b

c d

⎞

⎟⎠

Then the determinant of A is given by

|A| = ad − bc.

The notation |A| means “determinant of;” this may also be written as det(A). Determinant is also

defined for larger matrices, although the calculations become tedious (but are usually part of any decent

software package).

The inverse of a matrix is related to the determinant. In the special case of a (2 × 2) matrix like A

above, it may be shown that

A−1 =
1

ad − bc

⎛

⎜⎝
d −b

−c a

⎞

⎟⎠ .

Inverse for matrices of larger dimension is also defined in terms of the determinant, but the expressions

are complicated.

GENERAL FACTS:

• If a square matrix is not of full rank, then it will have determinant equal to 0. For example, for

the (2 × 2) matrix above, suppose that the columns are linearly dependent with a = 2b and

c = 2d. Then note that

|A| = ad − bc = 2bd − 2bd = 0.

• Thus, note that if a matrix is not of full rank, its inverse does not exist. In the case of a (2 × 2)

matrix, note that the inverse formula requires division by (ad− bc), which would be equal to zero.
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EXAMPLE:

A =

⎛

⎜⎝
5 0

−3 2

⎞

⎟⎠ , |A| = (5)(2) − (0)(−3) = 10

A−1 =
1

10

⎛

⎜⎝
2 0

3 5

⎞

⎟⎠ =

⎛

⎜⎝
1/5 0

3/10 1/2

⎞

⎟⎠

Verify that A A−1 = A−1A = I.

ADDITIONAL FACTS: Let A and B be square matrices of the same dimension whose inverses exist.

• (AB)−1 = B−1A−1, (A−1)′ = (A′)−1.

• If A is a diagonal matrix, that is, a matrix that has non-zero elements only on its diagonal,

with 0’s everywhere else, then its inverse is nothing more than a diagonal matrix whose diagonal

elements are the reciprocals of the original diagonal elements, e.g., if

A =

⎛

⎜⎜⎜⎜⎝

5 0 0

0 2 0

0 0 −4

⎞

⎟⎟⎟⎟⎠
, A−1 =

⎛

⎜⎜⎜⎜⎝

1/5 0 0

0 1/2 0

0 0 −1/4

⎞

⎟⎟⎟⎟⎠
.

Note that an identity matrix is just a diagonal matrix whose inverse is itself, just as 1/1=1.

• |A| = |A′|

• If each element of a row or column of A is zero, then |A| = 0.

• If A has any rows or columns identical, then |A| = 0.

• |A| = 1/|A−1|

• |AB| = |A||B|

• If b is a scalar, then |bA| = bk|A|, where k is the dimension of A.

• (A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1

• If A is a diagonal matrix, then |A| is equal to the product of the diagonal elements, i.e.

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 · · · 0

0 a22 · · · 0
...

...
...

...

0 0 · · · ann

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⇒ |A| = a11a22 · · · ann.
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USE OF INVERSE – SOLVING SIMULTANEOUS EQUATIONS: Suppose we have a set of simulta-

neous equations with unknown values x, y, and z, e.g.

x − y + z = 2

2x + y = 7

3x + y + z = -5.

We may write this system succinctly in matrix notation as Aa = b, where

A =

⎛

⎜⎜⎜⎜⎝

1 −1 1

2 1 0

3 1 1

⎞

⎟⎟⎟⎟⎠
, a =

⎛

⎜⎜⎜⎜⎝

x

y

z

⎞

⎟⎟⎟⎟⎠
, b =

⎛

⎜⎜⎜⎜⎝

2

7

−5

⎞

⎟⎟⎟⎟⎠
.

Then, provided A−1 exists, we may write the solution as

a = A−1b.

Note that if b = 0, then the above shows that if A has an inverse, then it must be that a = 0. More

formally, a square matrix A is said to be nonsingular if Aa = 0 implies a = 0. Otherwise, the matrix

is said to be singular.

Equivalently, a square matrix is nonsingular if it is of full rank.

For a square matrix A, the following are equivalent:

• A is nonsingular

• |A| ̸= 0

• A−1 exists

We will see that matrix notation is incredibly useful for summarizing models and methods for longitudi-

nal data. As is true more generally in statistics, the concepts of rank and singularity are very important.

Matrices in statistical models that are singular generally reflect a problem – most often, they reflect

that there is not sufficient information available to learn about certain aspects of the model. We will

see this in action later in the course.
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EXAMPLE: Returning to the matrix representation of the simple linear regression model, it is possible

to use these operations to streamline the statement of how to calculate the least squares estimators of

β0 and β1. Recall that the least squares estimators β̂0 and β̂1 for the intercept and slope minimize the

sum of squared deviations
n∑

j=1

(Yj − β0 − xjβ1)
2

and are given by

β̂1 =
SXY

SXX
, β̂0 = Y − β̂1x,

where

SXY =
n∑

j=1

(Yj − Y )(xj − x) =
n∑

j=1

xjYj −
(
∑n

j=1 xj)(
∑n

j=1 Yj)

n
, Y = n−1

n∑

j=1

Yj , x = n−1
n∑

j=1

xj

SXX =
n∑

j=1

(xj − x)2 =
n∑

j=1

x2
j −

(
∑n

j=1 xj)2

n
, SY Y =

n∑

j=1

(Yj − Y )2 =
n∑

j=1

Y 2
j −

(
∑n

j=1 Yj)2

n
,

We may summarize these calculations succinctly in matrix notation: the sum of squared deviations may

be written as

(Y − Xβ)′(Y − Xβ),

and, letting β̂ = (β̂0, β̂1)′, the least squares estimator for β may be written

β̂ = (X ′X)−1X ′Y .

Verify that, with X and Y defined as in (2.1), this matrix equation gives the usual estimators above.

CONVENTION: Here, we have referred to β̂0 and β̂1 as estimators, and have written them in terms of

the random variables Yj . The term estimator refers to the generic function of random variables one

would use to learn about parameters like β0 or β1. The term estimate refers to the actual numerical

values obtained by applying the estimator to data; e.g., y1, . . . , yn in this case.

We will see later that matrix notation is more generally useful for summarizing models for longitudinal

data and the calculations required to fit them; the simple linear regression model above is a simple

example.

TRACE OF A MATRIX: Defining this quantity allows a streamlined representation of many complex

calculations. If A is a (k × k) square matrix, then define the trace of A, tr(A), to be the sum of the

diagonal elements; i.e.

tr(A) =
k∑

i=1

aii.
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If A and B are both square with dimension k, then

• tr(A) = tr(A′), tr(bA) = btr(A)

• tr(A + B) = tr(A) + tr(B), tr(AB) = tr(BA)

QUADRATIC FORMS: The following form arises quite often. Suppose A is a square, symmetric

matrix of dimension k, and x is a (k × 1) column vector. Then

x′Ax

is called a quadratic form. It may be shown that

x′Ax =
k∑

i=1

k∑

j=1

aijxixj .

Note that this sum will involve both squared terms x2
i and cross-product terms xixj , which forms

the basis for the name quadratic.

A quadratic form thus takes on scalar values. Depending on the value, the quadratic form and the

matrix A may be classified. With x ̸= 0,

• If x′Ax ≥ 0, the quadratic form and the matrix A are said to be nonnegative definite

• If x′Ax > 0, the quadratic form and the matrix A are said to be positive definite. If A is

positive definite, then it is symmetric and nonsingular (so its inverse exists).

EXAMPLE: The sum of squared deviations that is minimized to obtain the least squares estimators in

regression is a quadratic form with A = I,

(Y − Xβ)′(Y − Xβ) = (Y − Xβ)′I(Y − Xβ).

Note that this is strictly greater than 0 by definition, because it equals

n∑

j=1

(Yj − β0 − xjβ1)
2,

which is a sum of squared quantities, all of which must be positive (assuming that not all deviations

are identically equal to zero, in which case the problem is rather nonsensical).

FACT: x′Ax = tr(Axx′); this may be verified by simply multiplying out each side. (Try it for the sum

of squared deviations above.)
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3 Random vectors and multivariate normal distribution

As we saw in Chapter 1, a natural way to think about repeated measurement data is as a series of

random vectors, one vector corresponding to each unit. Because the way in which these vectors of

measurements turn out is governed by probability, we need to discuss extensions of usual univari-

ate probability distributions for (scalar) random variables to multivariate probability distributions

governing random vectors.

3.1 Preliminaries

First, it is wise to review the important concepts of random variable and probability distribution and

how we use these to model individual observations.

RANDOM VARIABLE: We may think of a random variable Y as a characteristic whose values may

vary. The way it takes on values is described by a probability distribution.

CONVENTION, REPEATED: It is customary to use upper case letters, e.g Y , to denote a generic

random variable and lower case letters, e.g. y, to denote a particular value that the random variable

may take on or that may be observed (data).

EXAMPLE: Suppose we are interested in the characteristic “body weight of rats” in the population of

all possible rats of a certain age, gender, and type. We might let

Y = body weight of a (randomly chosen) rat

from this population. Y is a random variable.

We may conceptualize that body weights of rats are distributed in this population in the sense that

some values are more common (i.e. more rats have them) than others. If we randomly select a rat

from the population, then the chance it has a certain body weight will be governed by this distribution

of weights in the population. Formally, values that Y may take on are distributed in the population

according to an associated probability distribution that describes how likely the values are in the

population.

In a moment, we will consider more carefully why rat weights we might see vary. First, we recall the

following.
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(POPULATION) MEAN AND VARIANCE: Recall that the mean and variance of a probability

distribution summarize notions of “center” and “spread” or “variability” of all possible values. Consider

a random variable Y with an associated probability distribution.

The population mean may be thought of as the average of all possible values that Y could take on,

so the average of all possible values across the entire distribution. Note that some values occur more

frequently (are more likely) than others, so this average reflects this. We write

E(Y ). (3.1)

to denote this average, the population mean. The expectation operator E denotes that the

“averaging” operation over all possible values of its argument is to be carried out. Formally, the average

may be thought of as a “weighted” average, where each possible value is represented in accordance to

the probability with which it occurs in the population. The symbol “µ” is often used.

The population mean may be thought of as a way of describing the “center” of the distribution of all

possible values. The population mean is also referred to as the expected value or expectation of Y .

Recall that if we have a random sample of observations on a random variable Y , say Y1, . . . , Yn, then

the sample mean is just the average of these:

Y = n−1
n∑

j=1

Yj .

For example, if Y = rat weight, and we were to obtain a random sample of n = 50 rats and weigh each,

then Y represents the average we would obtain.

• The sample mean is a natural estimator for the population mean of the probability distribution

from which the random sample was drawn.

The population variance may be thought of as measuring the spread of all possible values that may

be observed, based on the squared deviations of each value from the “center” of the distribution of all

possible values. More formally, variance is based on averaging squared deviations across the population,

which is represented using the expectation operator, and is given by

var(Y ) = E{(Y − µ)2}, µ = E(Y ). (3.2)

(3.2) shows the interpretation of variance as an average of squared deviations from the mean across the

population, taking into account that some values are more likely (occur with higher probability) than

others.
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GENERAL FACTS: If b is a fixed scalar and Y is a random variable, then

• E(bY ) = bE(Y ) = bµ; i.e. all values in the average are just multiplied by b. Also, E(Y + b) =

E(Y ) + b; adding a constant to each value in the population will just shift the average by this

same amount.

• var(bY ) = E{(bY −bµ)2} = b2var(Y ); i.e. all values in the average are just multiplied by b2. Also,

var(Y + b) = var(Y ); adding a constant to each value in the population does not affect how they

vary about the mean (which is also shifted by this amount).

SOURCES OF VARIATION: We now consider why the values of a characteristic that we might observe

vary. Consider again the rat weight example.

• Biological variation. It is well-known that biological entities are different; although living things

of the same type tend to be similar in their characteristics, they are not exactly the same (except

perhaps in the case of genetically-identical clones). Thus, even if we focus on rats of the same

strain, age, and gender, we expect variation in the possible weights of such rats that we might

observe due to inherent, natural biological variation.

Let Y represent the weight of a randomly chosen rat, with probability distribution having mean

µ. If all rats were biologically identical, then the population variance of Y would be equal to 0,

and we would expect all rats to have exactly weight µ. Of course, because rat weights vary as a

consequence of biological factors, the variance is > 0, and thus the weight of a randomly chosen

rat is not equal to µ but rather deviates from µ by some positive or negative amount. From this

view, we might think of Y as being represented by

Y = µ + b, (3.3)

where b is a random variable, with population mean E(b) = 0 and variance var(b) = σ2
b , say.

Here, Y is “decomposed” into its mean value (a systematic component) and a random devia-

tion b that represents by how much a rat weight might deviate from the mean rat weight due to

inherent biological factors.

(3.3) is a simple statistical model that emphasizes that we believe rat weights we might see vary

because of biological phenomena. Note that (3.3) implies that E(Y ) = µ and var(Y ) = σ2
b .
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• Measurement error. We have discussed rat weight as though, once we have a rat in hand, we

may know its weight exactly. However, a scale usually must be used. Ideally, a scale should

register the true weight of an item each time it is weighed, but, because such devices are imperfect,

measurements on the same item may vary time after time. The amount by which the measurement

differs from the truth may be thought of as an error; i.e. a deviation up or down from the true

value that could be observed with a “perfect” device. A “fair” or unbiased device does not

systematically register high or low most of the time; rather, the errors may go in either direction

with no pattern.

Thus, if we only have an unbiased scale on which to weigh rats, a rat weight we might observe

reflects not only the true weight of the rat, which varies across rats, but also the error in taking the

measurement. We might think of a random variable e, say, that represents the error that might

contaminate a measurement of rat weight, taking on possible values in a hypothetical “population”

of all such errors the scale might commit.

We still believe rat weights vary due to biological variation, but what we see is also subject to

measurement error. It thus makes sense to revise our thinking of what Y represents, and think

of Y = “measured weight of a randomly chosen rat.” The population of all possible values Y

could take on is all possible values of rat weight we might measure; i.e., all values consisting of a

true weight of a rat from the population of all rats contaminated by a measurement error from

the population of all possible such errors.

With this thinking, it is natural to represent Y as

Y = µ + b + e = µ + ϵ, (3.4)

where b is as in (3.3). e is the deviation due to measurement error, with E(e) = 0 and var(e) = σ2
e ,

representing an unbiased but imprecise scale.

In (3.4), ϵ = b + e represents the aggregate deviation due to the effects of both biological

variation and measurement error. Here, E(ϵ) = 0 and var(ϵ) = σ2 = σ2
b + σ2

e , so that E(Y ) = µ

and var(Y ) = σ2 according to the model (3.4). Here, σ2 reflects the “spread” of measured rat

weights and depends on both the spread in true rat weights and the spread in errors that could

be committed in measuring them.

There are still further sources of variation that we could consider; we defer discussion to later in the

course. For now, the important message is that, in considering statistical models, it is critical to be

aware of different sources of variation that cause observations to vary. This is especially important

with longitudinal data, as we will see.
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We now consider these concepts in the context of a familiar statistical model.

SIMPLE LINEAR REGRESSION: Consider the simple linear regression model. At each fixed value

x1, . . . , xn, we observe a corresponding random variable Yj , j = 1, . . . , n. For example, suppose that

the xj are doses of a drug. For each xj , a rat is randomly chosen and given this dose. The associated

response for the jth rat (given dose xj) may be represented by Yj .

The simple linear regression model as usually stated is

Yj = β0 + β1xj + ϵj ,

where ϵj is a random variable with mean 0 and variance σ2; that is E(ϵj) = 0, var(ϵj) = σ2. Thus,

E(Yj) = β0 + β1xj and var(Yj) = σ2.

This model says that, ideally, at each xj , the response of interest, Yj , should be exactly equal to the

fixed value β0 + β1xj , the mean of Yj . However, because of factors like (i) biological variation and (ii)

measurement error, the values we might see at xj vary. In the model, ϵj represents the deviation from

β0 + β1xj that might occur because of the aggregate effect of these sources of variation.

If Yj is a continuous random variable, it is often the case that the normal distribution is a reasonable

probability model for the population of ϵj values; that is,

ϵj ∼ N (0, σ2).

This says that the total effect of all sources of variation is to create deviations from the mean of Yj that

may be equally likely in either direction as dictated by the symmetric normal probability distribution.

Under this assumption, we have that the population of observations we might see at a particular xj is

also normal and centered at β0 + β1xj ; i.e.

Yj ∼ N (β0 + β1xj , σ2).

• This model says that the chance of seeing Yj values above or below the mean β0 + β1xj is the

same (symmetry).

• This is an especially good model when the predominant source of variation (represented by the

ϵj) is due to a measuring device.

• It may or may not be such a good model when the predominant source of variation is due to

biological phenomena (more later in the course!).
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The consequence of independence is that we may think of data on an observation-by-observation

basis; because the behavior of each observation is unrelated to that of others, we may talk about each

one in its own right, without reference to the others.

Although this way of thinking may be relevant for regression problems where the data were collected

according to a scheme like that in the example above, as we will see, it may not be relevant for

longitudinal data.

3.2 Random vectors

As we have already mentioned, when several observations are taken on the same unit, it will be

convenient, and in fact, necessary, to talk about them together. We thus must extend our way of

thinking about random variables and probability distributions.

RANDOM VECTOR: A random vector is a vector whose elements are random variables. Let

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

...

Yn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

be a (n × 1) random vector.

• Each element of Y , Yj , j = 1, . . . , n, is a random variable with its own mean, variance, and

probability distribution; e.g.

E(Yj) = µj , var(yj) = E{(Yj − µj)
2} = σ2

j .

We might furthermore have that Yj is normally distributed; i.e.

Yj ∼ N (µj , σ
2
j ).

• Thus, if we talk about a particular element of Y in its own right, we may speak in terms of its

particular probability distribution, mean, and variance.

• Probability distributions for single random variables are often referred to as univariate, because

they refer only to how one (scalar) random variable takes on its values.
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JOINT VARIATION: However, if we think of the elements of Y together, we must consider the fact

that they come together in a group, so that there might be relationships among them. Specifically,

if we think of Y as containing possible observations on the same unit at times indexed by j, there is

reason to expect that the value observed at one time and that observed at another time may turn out

the way they do in a “common” fashion. For example,

• If Y consists of the heights of a pine seedling measured on each of n consecutive days, we might

expect a “large” value one day to be followed by a “large” value the next day.

• If Y consists of the lengths of baby rats in a litter of size n from a particular mother, we might

expect all the babies in a litter to be “large” or “small” relative to babies from other litters.

This suggests that if observations can be naturally thought to arise together, then they may not be

legitimately viewed as independent, but rather related somehow.

• In particular, they may be thought to vary together, or covary.

• This suggests that we need to think of how they take on values jointly.

JOINT PROBABILITY DISTRIBUTION: Just as we think of a probability distribution for a random

variable as describing the frequency with which the variable may take on values, we may think of a

joint probability distribution that describes the frequency with which an entire set of random variables

takes on values together. Such a distribution is referred to as multivariate for obvious reasons. We

will consider the specific case of the multivariate normal distribution shortly.

We may thus think of any two random variables in Y , Yj and Yk, say, as having a joint probability

distribution that describes how they take on values together.

COVARIANCE: A measure of how two random variable vary together is the covariance. Formally,

suppose Yj and Yk are two random variables that vary together. Each of them has its own probability

distribution with means µj and µk, respectively, which is relevant when we think of them separately.

They also have a joint probability distribution, which is relevant when we think of them together. Then

we define the covariance between Yj and Yk as

cov(Yj , Yk) = E{(Yj − µj)(Yk − µk)}. (3.5)

Here, the expectation operator denotes average over all possible pairs of values Yj and Yk may take on

together according to their joint probability distribution.
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Inspection of (3.5) shows

• Covariance is defined as the average across all possible values that Yj and Yk may take on jointly

of the product of the deviations of Yj and Yk from their respective means.

• Thus note that if “large” values (“larger” than their means) of Yj and Yk tend to happen together

(and thus “small” values of Yj and Yk tend to happen together), then the two deviations (Yj −µj)

and (Yk − µk) will tend to be positive together and negative together, so that the product

(Yj − µj)(Yk − µk) (3.6)

will tend to be positive for most of the pairs of values in the population. Thus, the average in

(3.5) will likely be positive.

• Conversely, if “large” values of Yj tend to happen coincidently with “small” values of Yk and vice

versa, then the deviation (Yj − µj) will tend to be positive when (Yk − µk) tends to be negative,

and vice versa. Thus the product (3.6) will tend to be negative for most of the pairs of values in

the population. Thus, the average in (3.5) will likely be negative.

• Moreover, if in truth Yj and Yk are unrelated, so that “large” Yj are likely to happen with “small”

Yk and “large” Yk and vice versa, then we would expect the deviations (Yj −µj) and (Yk −µk) to

be positive and negative in no real systematic way. Thus, (3.6) may be negative or positive with

no special tendency, and the average in (3.5) would likely be zero.

Thus, the quantity of covariance defined in (3.5) makes intuitive sense as a measure of how “associated”

values of Yj are with values of Yk.

• In the last bullet above, Yj and Yk are unrelated, and we argued that cov(Yj , Yk) = 0. In fact,

formally, if Yj and Yk are statistically independent, then it follows that cov(Yj , Yk) = 0.

• Note that cov(Yj , Yk) = cov(Yk, Yj).

• Fact: the covariance of a random variable Yj and itself,

cov(Yj , Yj) = E{(Yj − µj)(Yj − µj)} = var(Yj) = σ2
j .

• Fact: If we have two random variables, Yj and Yk, then

var(Yj + Yk) = var(Yj) + var(Yk) + 2cov(Yj , Yk).
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That is, the variance of the population consisting of all possible values of the sum Yj + Yk is the

sum of the variances for each population, adjusted by how “associated” the two values are. Note

that if Yj and Yk are independent, var(Yj + Yk) = var(Yj) + var(Yk).

We now see how all of this information is summarized.

EXPECTATION OF A RANDOM VECTOR: For an entire n-dimensional vector random Y , we sum-

marize the means for each element in a vector

µ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E(Y1)

E(Y2)
...

E(Yn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

µ1

µ2

...

µn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We define the expected value or mean of Y as

E(Y ) = µ;

the expectation operation is applied to each element in the vector Y , yielding the vector µ of means.

RANDOM MATRIX: A random matrix is simply a matrix whose elements are random variables; we

will see a specific example of importance to us in a moment. Formally, if Y is a (r × c) matrix with

element Yjk, each a random variable, then each element has an expectation, E(Yjk) = µjk, say. Then

the expected value or mean of Y is defined as the corresponding matrix of means; i.e.

E(Y) =

⎛

⎜⎜⎜⎜⎝

E(Y11) E(Y12) · · · E(Y1c)
...

...
...

...

E(Yr1) E(Yr2) · · · E(Yrc)

⎞

⎟⎟⎟⎟⎠
.

COVARIANCE MATRIX: We now see how this concept is used to summarize information on covariance

among the elements of a random vector. Note that

(Y − µ)(Y − µ)′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(Y1 − µ1)2 (Y1 − µ1)(Y2 − µ2) · · · (Y1 − µ1)(Yn − µn)

(Y2 − µ2)(Y1 − µ1) (Y2 − µ2)2 · · · (Y2 − µ2)(Yn − µn)
...

...
. . .

...

(Yn − µn)(Y1 − µ1) (Yn − µn)(Y2 − µ2) · · · (Yn − µn)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a random matrix.
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Note then that

E{(Y − µ)(Y − µ)′} =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E(Y1 − µ1)2 E(Y1 − µ1)(Y2 − µ2) · · · E(Y1 − µ1)(Yn − µn)

E(Y2 − µ2)(Y1 − µ1) E(Y2 − µ2)2 · · · E(Y2 − µ2)(Yn − µn)
...

...
. . .

...

E(Yn − µn)(Y1 − µ1) E(Yn − µn)(Y2 − µ2) · · · E(Yn − µn)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= Σ,

say, where for j, k = 1, . . . , n, var(Yj) = σ2
j and we define

cov(Yj , Yk) = σjk.

The matrix Σ is called the covariance matrix or variance-covariance matrix of Y .

• Note that σjk = σkj , so that Σ is a symmetric, square matrix.

• We will write succinctly var(Y ) = Σ to state that the random vector Y has covariance matrix Σ.

JOINT PROBABILITY DISTRIBUTION: It follows that, if we consider the joint probability distribu-

tion describing how the entire set of elements of Y take on values together, µ and Σ are the features

of this distribution characterizing “center” and “spread and association.”

• µ and Σ are referred to as the population mean and population covariance (matrix) for the

population of data vectors represented by the joint probability distribution.

• The symbols µ and Σ are often used generically to represent population mean and covariance, as

above.
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CORRELATION: It is informative to separate the information on “spread” contained in variances σ2
j

from that describing “association.” Thus, we define a particular measure of association that takes into

account the fact that different elements of Y may vary differently on their own.

The population correlation coefficient between Yj and Yk is defined as

ρjk =
σjk√

σ2
j

√
σ2

k

.

Of course, σj =
√

σ2
j is the population standard deviation of Yj , on the same scale of measurement as

Yj , and similarly for Yk.

• ρjk scales the information on association in the covariance in accordance with the magnitude of

variation in each random variable, creating a “unitless” measure. Thus, it allows one to think of

the associations among variables measured on different scales.

• ρjk = ρkj .

• Note that if σjk = σjσk, then ρjk = 1. Intuitively, if this is true, it says that the ways Yj and

Yk vary separately is identical to how they vary together, so that if we know one, we know the

other. Thus, a correlation of 1 indicates that the two random variables are “perfectly positively

associated.” Similarly, if σjk = −σjσk, then ρjk = −1 and by the same reasoning they are

“perfectly negatively associated.”

• Clearly, ρjj = 1, so a random variable is perfectly positively correlated with itself.

• It may be shown that correlations must satisfy −1 ≤ ρjk ≤ 1.

• If σjk = 0 then ρjk = 0, so if Yj and Yk are independent, then they have 0 correlation.

CORRELATION MATRIX: It is customary to summarize the information on correlations in a matrix:

The correlation matrix Γ is defined as

Γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ12 · · · ρ1n

ρ21 1 · · · ρ1n

...
...

. . .
...

ρn1 ρn2 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

For now, we use the symbol Γ to denote the correlation matrix of a random vector.
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ALTERNATIVE REPRESENTATION OF COVARIANCE MATRIX: Note that knowledge of the vari-

ances σ2
1, . . . ,σ

2
n and the correlation matrix Γ is equivalent to knowledge of Σ, and vice versa. It is often

easier to think of associations among random variables on the unitless correlation scale than in terms

of covariance; thus, it is often convenient to write the covariance matrix another way that presents the

correlations explicitly.

Define the “standard deviation” matrix

T 1/2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The “1/2” reminds us that this is a diagonal matrix with the square roots of the variances on the

diagonal. Then it may be verified that (try it)

T 1/2ΓT 1/2 = Σ. (3.7)

The representation (3.7) will prove convenient when we wish to discuss associations implied by models

for longitudinal data in terms of correlations. Moreover, it is useful to appreciate (3.7), as it allows

calculations involving Σ that we will see later to be implemented easily on a computer.

GENERAL FACTS: As we will see later, we will often be interested in linear combinations of the

elements of a random vector Y ; that is, functions of the form

c1Y1 + · · · cnYn,

which may be written succinctly as c′Y , where c is the column vector

c =

⎛

⎜⎜⎜⎜⎝

c1

...

cn

⎞

⎟⎟⎟⎟⎠
.

• Note that c′Y is a scalar quantity.

It is possible using facts on the multiplication random variables by scalars (see above) and the definitions

of µ and Σ to show that

E(c′Y ) = c′µ var(c′Y ) = c′Σc.

(Try to verify these.)
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More generally, if we have a set of q such linear combinations defined by vectors c1, . . . , cq, we may

summarize them all in a matrix whose rows are the c′k; i.e.

C =

⎛

⎜⎜⎜⎜⎝

c11 · · · c1n

...
. . .

...

cq1 · · · cqn

⎞

⎟⎟⎟⎟⎠
.

Then CY is a (q × 1) random vector. For example, if we consider the simple linear model in matrix

notation, we noted earlier that if Y is the random vector consisting of the observations, then the least

squares estimator of β is given by

β̂ = (X ′X)−1X ′Y ,

which is such a linear combination. It may be shown using the above that

E(CY ) = Cµ var(CY ) = CΣC ′.

Finally, the results above may be generalized. If A is a (q × 1) vector, then

• E(CY + a) = Cµ + a.

• var(CY + a) = CΣC ′.

• We will make extensive use of this result.

• It is important to recognize that there is nothing mysterious about these results – they merely

represent a streamlined way of summarizing information on operations performed on all elements

of a random vector succinctly. For example, the first result on E(CY + a) just summarizes what

the expected value of several different combinations of the elements of Y is, where each is shifted

by a constant (the corresponding element in a). Operationally, the results follow from applying

the above definitions and matrix operations.

3.3 The multivariate normal distribution

A fundamental theme in much of statistical methodology is that the normal probability distribution

is a reasonable model for the population of possible values taken on by many random variables of

interest. In particular, the normal distribution is often (but not always) a good approximation to the

true probability distribution for a random variable y when the random variable is continuous. Later

in the course, we will discuss other probability distributions that are better approximations when the

random variable of interest is continuous or discrete.
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If we have a random vector Y with elements that are continuous random variables, then, it is natural

to consider the normal distribution as a probability model for each element Yj . However, as we have

discussed, we are likely to be concerned about associations among the elements of Y . Thus, it does not

suffice to describe each of the elements Yj separately; rather, we seek a probability model that describes

their joint behavior. As we have noted, such probability distributions are called multivariate for

obvious reasons.

The multivariate normal distribution is the extension of the normal distribution of a single random

variable to a random vector composed of elements that are each normally distributed. Through its

form, it naturally takes into account correlation among the elements of Y ; moreover, it gives a basis

for a way of thinking about an extension of “least squares” that is relevant when observations are not

independent but rather are correlated.

NORMAL PROBABILITY DENSITY: Recall that, for a random variable y, the normal distribution

has probability density function

f(y) =
1

(2π)1/2σ
exp

{
−(y − µ)2/(2σ2)

}
. (3.8)

This function has the shape shown in Figure 3. The shape will vary in terms of “center” and “spread”

according to the values of the population mean µ and variance σ2 (e.g. recall Figure 1).

Figure 3: Normal density function with mean µ.

 

µ
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Several features are evident from the form of (3.8):

• The form of the function is determined by µ and σ2. Thus, if we know the population mean and

variance of a random variable Y , and we know it is normally distributed, we know everything

about the probabilities associated with values of Y , because we then know the function (3.8)

completely.

• The form of (3.8) depends critically on the term

−(y − µ)2

σ2
= (y − µ)(σ2)−1(y − µ). (3.9)

Note that this term depends on the squared deviation (y − µ)2.

• The deviation is standardized by the standard deviation σ, which has the same units as y, so

that it is put on a unitless basis.

• This standardized deviation has the interpretation of a distance measure – it measures how far y

is from µ, and then puts the result on a unitless basis relative to the “spread” about µ expected.

• Thus, the normal distribution and methods such as least squares, which depends on minimizing

a sum of squared deviations, have an intimate connection. We will use this connection to motivate

the interpretation of the form of multivariate normal distribution informally now. Later in the

course, we will be more formal about this connection.

SIMPLE LINEAR REGRESSION: For now, to appreciate this form and its extension, consider the

method of least squares for fitting a simple linear regression. (The same considerations apply to multiple

linear regression, which will be discussed later in this chapter.) As before, at each fixed value x1, . . . , xn,

there is a corresponding random variable Yj , j = 1, . . . , n, which is assumed to arise from

Yj = β0 + β1xj + ϵj , β = (β0, β1)
′

The further assumption is that Yj are each normally distributed with means µj = β0+β1xj and variance

σ2.

• Thus, each Yj ∼ N (µj , σ2), so that they have different means but the same variance.

• Furthermore, the Yj are assumed to be independent.

PAGE 48





CHAPTER 3 ST 732, M. DAVIDIAN

MULTIVARIATE NORMAL PROBABILITY DENSITY: The joint probability distribution that is the

extension of (3.8) to a (n × 1) random vector Y , each of whose components are normally distributed

(but possibly associated), is given by

f(y) =
1

(2π)n/2
|Σ|−1/2 exp

{
−(y − µ)′Σ−1(y − µ)/2

}
(3.11)

• (3.11) describes the probabilities with which the random variable Y takes on values jointly in its

n elements.

• The form of (3.11) is determined by µ and Σ. Thus, as in the univariate case, if we know the

mean vector and covariance matrix of a random vector Y , and we know each of its elements are

normally distributed, then we know everything about the joint probabilities associated with values

y of Y .

• By analogy to (3.9), the form of f(y) depends critically on the term

(y − µ)′Σ−1(y − µ). (3.12)

Note that this is a quadratic form, so it is a scalar function of the elements of (y−µ) and Σ−1.

Specifically, if we refer to the elements of Σ−1 as σjk, i.e.

Σ−1 =

⎛

⎜⎜⎜⎜⎝

σ11 · · · σ1n

...
. . .

...

σn1 · · · σnn

⎞

⎟⎟⎟⎟⎠
,

then we may write

(y − µ)′Σ−1(y − µ) =
n∑

j=1

n∑

k=1

σjk(yj − µj)(yk − µk). (3.13)

Of course, the elements σjk will be complicated functions of the elements σ2
j , σjk of Σ, i.e. the

variances of the Yj and the covariances among them.

• This term thus depends on not only the squared deviations (yj − µj)2 for each element in y

(which arise in the double sum when j = k), but also on the crossproducts (yj − µj)(yk − µk).

Each contribution of these squares and crossproducts is being “standardized” somehow by values

σjk that somehow involve the variances and covariances.

• Thus, although it is quite complicated, one gets the suspicion that (3.13) has an interpretation,

albeit more complex, as a distance measure, just as in the univariate case.
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BIVARIATE NORMAL DISTRIBUTION: To gain insight into this suspicion, and to get a better

understanding of the multivariate distribution, it is instructive to consider the special case n = 2, the

simplest example of a multivariate normal distribution (hence the name bivariate).

Here,

Y =

⎛

⎜⎝
Y1

Y2

⎞

⎟⎠ , µ =

⎛

⎜⎝
µ1

µ2

⎞

⎟⎠ , Σ =

⎛

⎜⎝
σ2

1 σ12

σ12 σ2
2

⎞

⎟⎠ .

Using the inversion formula for a (2 × 2) matrix given in Chapter 2,

Σ−1 =
1

σ2
1σ

2
2 − σ2

12

⎛

⎜⎝
σ2

2 −σ12

−σ12 σ2
1

⎞

⎟⎠ .

We also have that the correlation between Y1 and Y2 is given by

ρ12 =
σ12

σ1σ2
.

Using these results, it is an algebraic exercise to show that (try it!)

(y − µ)′Σ−1(y − µ) =
1

1 − ρ2
12

{
(y1 − µ1)2

σ2
1

+
(y2 − µ2)2

σ2
2

− 2ρ12
(y1 − µ1)

σ1

(y2 − µ2)

σ2

}

. (3.14)

Compare this expression to the general one (3.13).

Inspection of (3.14) shows that the quadratic form involves two components:

• The sum of standardized squared deviations

(y1 − µ1)2

σ2
1

+
(y2 − µ2)2

σ2
2

.

This sum alone is in the spirit of the sum of squared deviations in least squares, with the difference

that each deviation is now weighted in accordance with its variance. This makes sense – because

the variances of Y1 and Y2 differ, information on the population of Y1 values is of “different quality”

than that on the population of Y2 values. If variance is “large,” the quality of information is poorer;

thus, the larger the variance, the smaller the “weight,” so that information of “higher quality”

receives more weight in the overall measure. Indeed, then, this is like a “distance measure,” where

each contribution receives an appropriate weight.
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• In addition, there is an “extra” term that makes (3.14) have a different form than just a sum of

weighted squared deviations:

−2ρ12
(y1 − µ1)

σ1

(y2 − µ2)

σ2
.

This term depends on the crossproduct, where each deviation is again weighted in accordance

with its variance. This term modifies the “distance measure” in a way that is connected with

the association between Y1 and Y2 through their crossproduct and their correlation ρ12. Note

that the larger this correlation in magnitude (either positive or negative), the more we modify the

usual sum of squared deviations.

• Note that the entire quadratic form also involves the multiplicative factor 1/(1 − ρ2
12), which is

greater than 1 if |ρ12| > 0. This factor scales the overall distance measure in accordance with the

magnitude of the association.

INTERPRETATION: Based on the above observations, we have the following practical interpretation

of (3.14):

• (3.14) is an overall measure of distance of the value y of Y from its mean µ.

• It contains the usual distance measure, a sum of appropriately weighted squared deviations.

• However, if Y1 and Y2 are positively correlated, ρ12 > 0, it is likely that the crossproduct

(Y1 −µ1)(Y2 −µ2) is positive. The measure of distance is thus reduced (we subtract off a positive

quantity). This makes sense – if Y1 and Y2 are positively correlated, knowing one tells us a lot

about the other. Thus, we won’t have to “travel as far” to get from Y1 to µ1 and Y2 to µ2.

• Similarly, if Y1 and Y2 are negatively correlated, ρ12 < 0, it is likely that the crossproduct

(Y1 − µ1)(Y2 − µ2) is negative. The measure of distance is again reduced (we subtract off a

positive quantity). Again, if Y1 and Y2 are negatively correlated, knowing one still tells us a lot

about the other (in the opposite direction).

• Note that if ρ12 = 0, which says that there is no association between values taken on by Y1 and

Y2, then the usual distance measure is not modified – there is “nothing to be gained” in traveling

from Y1 to µ1 by knowing Y2, and vice versa.
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INDEPENDENCE: Note that if Y1 and Y2 are independent, then ρ12 = 0. In this case, the second term

in the exponent of (3.14) disappears, and the entire quadratic form reduces to

(y1 − µ1)2

σ2
1

+
(y2 − µ2)2

σ2
2

.

This is just the usual sum of weighted squared deviations.

EXTENSION: As you can imagine, these same concepts carry over to higher dimensions n > 2 in an

analogous fashion; although the mechanics are more difficult, the ideas and implications are the same.

• In general, the quadratic form (y − µ)′Σ−1(y − µ) is a distance measure taking into account

associations among the elements of Y , Y1, . . . , Yn, in the sense described above.

• When the Yj are all mutually independent, the quadratic form will reduce to a weighted sum of

squared deviations, as observed in particular for the bivariate case. It is actually possible to see

this directly.

If Yj are independent, then all the correlations ρjk = 0, as are the covariances σjk, and it follows

that Σ is a diagonal matrix. Thus, if

Σ =

⎛

⎜⎜⎜⎜⎝

σ2
1 0 · · · 0
...

...
...

0 0 · · · σ2
n

⎞

⎟⎟⎟⎟⎠
,

then

Σ−1 =

⎛

⎜⎜⎜⎜⎝

1/σ2
1 0 · · · 0

...
...

...

0 0 · · · 1/σ2
n

⎞

⎟⎟⎟⎟⎠
,

so that (verify)

(y − µ)′Σ−1(y − µ) =
n∑

j=1

(yj − µj)
2/σ2

j .

Note also that, as Σ is diagonal, we have

|Σ| = σ2
1σ

2
2 · · ·σ2

n.

Thus, f(y) becomes

f(y) =
1

(2π)1/2σ1
exp{−(y1 − µ1)

2/(2σ2
1)} · · ·

1

(2π)1/2σn
exp{−(yn − µn)2/(2σ2

n)}; (3.15)

f(y) reduces to the product of individual normal densities. This is a defining characteristic of

statistical independence; thus, we see that if Y1, . . . , Yn are each normally distributed and

uncorrelated, they are independent. Of course, this independence assumption forms the basis for

the usual method of least squares.
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(Note that, to actually carry this out in practice, we would need to know the values of each σ2
j ,

which is unnecessary when all the σ2
j are the same. We will take up this issue later.)

• Consider relaxation both of (i) and (ii); we believe that Y1, . . . , Yn are each normally distributed

but correlated with possibly different variances at each xj . In this case, we believe that y follows

a general multivariate normal distribution. Thus, we would want to base estimation of β on the

overall distance measure associated with this probability density, which takes both these features

into account; i.e. we would minimize the quadratic form

(Y − µ)′Σ−1(Y − µ).

Estimation of β in linear regression based on such a general distance measure is also sometimes

called weighted least squares, where it is understood that the “weighting” also involves infor-

mation on correlations (through terms involving crossproducts).

(Again, to carry this out in practice, we would need to know the entire matrix Σ; more later.)

NOTATION: In general, we will use the following notation. If Y is a (n × 1) random vector with a

multivariate normal distribution, with mean vector µ and covariance matrix Σ, we will write this as

Y ∼ Nn(µ,Σ).

• The subscript n reminds us that the distribution is n-variate

• We may at times omit the subscript in places where the dimension is obvious.

PROPERTIES:

• If Y ∼ Nn(µ,Σ), then if we have a linear combination of Y , CY , where C is (q × n), then

CY ∼ Nn(Cµ, CΣC ′).

• If also Z ∼ Nn(τ ,Γ) and is independent of Y , then Z + Y ∼ Nn(µ + τ ,Σ + Γ) (as long as Σ

and Γ are nonsingular).

• We will use these two facts alone and together.
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3.4 Multiple linear regression

So far, we have illustrated the usefulness of matrix notation and some key points in the context of the

problem of simple linear regression, which we have referred to informally throughout our discussion.

Now that we have discussed the multivariate normal distribution, it is worthwhile to review formally

the usual multiple linear regression model, of which the simple linear regression model is a special case,

and summarize what we have discussed from the broader perspective we have developed in terms of this

model in one place. This will prove useful later, when we consider more complex models for longitudinal

data.

SITUATION: The situation of the general multiple linear regression model is as follows.

• We have responses Y1, . . . , Yn, the jth of which is to be taken at a setting of k covariates (also

called predictors or independent variables) xj1, xj2, . . . , xjk.

• For example, an experiment may be conducted involving n men. Each man spends 30 minutes

walking on a treadmill, and at the end of this period, Y = his oxygen intake rate (ml/kg/min)

is measured. Also recorded are x1 = age (years), x2 = weight (kg) x3 = heart rate while resting

(beats/min), and x4 = oxygen rate while resting (ml/kg/min). Thus, for the jth man, we have

response

Yj = oxygen intake rate after 30 min

and his covariate values xj1, . . . , xj4.

The objective is to develop a statistical model that represents oxygen intake rate after 30 minutes

on the treadmill as a function of the covariates. One possible use for the model may be to get a

sense of how oxygen rates after 30 minutes might be for men with certain baseline characteristics

(age, weight, resting physiology) in order to develop guidelines for an exercise program.

• A standard model under such conditions is to assume that each covariate affects the response in

a linear fashion. Specifically, if there are k covariates (k = 4 above), then we assume

Yj = β0 + β1xj1 + · · · + βkxjk + ϵj , µj = β0 + β1xj1 + · · · + βkxjk. (3.16)

Here, ϵj is a random deviation with mean 0 and variance σ2 that characterizes how the observations

on Yj deviate from the mean value µj due to the aggregate effects of relevant sources of

variation.
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• More formally, under this model, we believe that there is a population of all possible Yj values that

could be seen for, in the case of our example, men with the particular covariate values xj1, . . . , xjk.

This population is thought to have mean µj given above. ϵj reflects how such an observation might

deviate from this mean.

• The model itself has a particular interpretation. It says that if the value of one of the covariates,

xk, say, is increased by one unit, then the value of the mean increases by the amount βk.

• The usual assumption is that at any setting of the covariates, the population of possible Yj values

is well-represented by a normal distribution with mean µj and variance σ2. Note that the

variance σ2 is the same regardless of the covariate setting. More formally, we may state this as

ϵj ∼ N (0, σ2) or equivalently Yj ∼ N (µj , σ
2).

• Furthermore, it is usually assumed that the Yj are independent. This would certainly make

sense in our example – we would expect that if the men were completely unrelated (chosen at

random from the population of all men of interest), then there should be no reason to expect

that the response observed for any one man would have anything to do with that observed for

another.

• The model is usually represented in matrix terms: letting the row vector x′

j = (1, xj1, . . . , xjk),

the model is written

Yj = x′

jβ + ϵj , Y = Xβ + ϵ,

with Y = (Y1, . . . , Yn)′, ϵ = (ϵ1, . . . , ϵn)′,

X =

⎛

⎜⎜⎜⎜⎝

1 x11 · · · x1k

...
...

...
...

1 xn1 · · · xnk

⎞

⎟⎟⎟⎟⎠
, β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

...

βk

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(p × 1),

where p = k + 1 is the dimension of β, so that the (n × p) design matrix X has rows x′

j .

PAGE 58



CHAPTER 3 ST 732, M. DAVIDIAN

• Thus, thinking of the data as the random vector Y , we may summarize the assumptions of

normality, independence, and constant variance succinctly. We may think of Y (n × 1) as

having a multivariate normal distribution with mean Xβ. Because the elements of Y are assumed

independent, all covariances among the Yj are 0, and the covariance matrix of Y is diagonal.

Moreover, with constant variance σ2, the variance is the same for each Yj . Thus, the covariance

matrix is given by ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 · · · 0 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= σ2I,

where I is a (n × n) identity matrix.

We thus may write

Y ∼ Nn(Xβ, σ2I).

• Note that the simple linear regression model is a special case of this with k = 1. The only

real difference is in the complexity of the assumed model for the mean of the population of Yj

values; for the general multiple linear regression model, this depends on k covariates. The simple

linear regression case is instructive because we are able to depict things graphically with ease; for

example, we may plot the relationship in a simple x-y plane. For the general model, this is not

possible, but in principle the issues are the same.

LEAST SQUARES ESTIMATION: The goal of an analysis of data of this form under assumption of

the multiple linear regression model (3.16) is to estimate the regression parameter β using the data

in order to characterize the relationship.

Under the usual assumptions discussed above, i.e.

• Yj (and equivalently ϵj) are normally distributed with variance σ2 for all j

• Yj (and equivalently ϵj) are independent

the usual estimator for β is found by minimizing the sum of squared deviations

n∑

j=1

(Yj − β0 − xj1β1 − · · ·− xjpβk)
2.
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In matrix terms, the sum of squared deviations may be written

(Y − Xβ)′(Y − Xβ). (3.17)

In these terms, the sum of squared deviations may be seen to be just a quadratic form.

• Note that we may write these equivalently as

n∑

j=1

(Yj − β0 − xj1β1 − · · ·− xjkβk)
2/σ2,

and

(Y − Xβ)′I(Y − Xβ)/σ2;

because σ2 does not involve β, we may equally well talk about minimizing these quantities.

Of course, as we have previously discussed, this shows that all observations are getting “equal

weight” in determining β, which is sensible if we believe that the populations of all values of

Yj at any covariate setting are equally variable (same σ2). We now see that we are minimizing

the distance measure associated with a multivariate normal distribution where all of the Yj are

mutually independent with the same variance (all covariances/correlations = 0).

• Minimizing (3.17) means that we are trying to find the value of β that minimizes the distance

between responses and the means; by doing so, we are attributing as much of the overall differences

among the Yj that we have seen to the fact that they arise from different settings of xj , and as

little as possible to random variation.

• Because the quadratic form (3.17) is just a scalar function of the p elements of β, it is possible

to use calculus to determine that values of these p elements that minimize the quadratic form.

Formally, one would take the derivatives of (3.17) with respect to each of β0, β1, . . . ,βk and set

these p expressions equal to zero. These p expressions represent a system of equations that may

be solved to obtain the solution, the estimator β̂.
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• The set of p simultaneous equations that arise from taking derivatives of (3.17), expressed in

matrix notation, is

−2X ′Y + 2X ′Xβ = 0 or X ′Y = X ′Xβ.

We wish to solve for β. Note that X ′X is a square matrix (p × p) and X ′y is a (p × 1) vector.

Recall in Chapter 2 we saw how to solve a set of simultaneous equations like this; thus, we may

invoke that procedure to solve

X ′Y = X ′Xβ.

as long as the inverse of X ′X exists.

• Assuming this is the case, from Chapter 2, we know that X ′X will be of full rank (rank =

number of rows and columns = p) if X has rank p. We also know from Chapter 2 that if a square

matrix is of full rank, it is nonsingular, so its inverse exists. Thus, assuming X is of full rank,

we have that (X ′X)−1 exists, and we may premultiply both sides by (X ′X)−1 to obtain

(X ′X)−1X ′Y = (X ′X)−1X ′Xβ

= β.

• Thus, the least squares estimator for β is given by

β̂ = (X ′X)−1X ′Y . (3.18)

• Computation for general p is not feasible by hand, of course; particularly nasty is the inversion of

the matrix X ′X. Software for multiple regression analysis includes routines for inverting a matrix

of any dimension; thus, estimation of β by least squares for a general multiple linear regression

model is best carried out in this fashion.
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ESTIMATION OF σ2: It is often of interest to estimate σ2, the assumed common variance. The usual

estimator is

σ̂2 = (n − p)−1
n∑

j=1

(Yj − x′

jβ̂)2 = (n − p)−1(Y − Xβ̂)′(Y − Xβ̂).

• This makes intuitive sense. Each squared deviation (Yj − x′

jβ)2 contains information about the

“spread” of values of Yj at xj . As we assume that this spread is the same for all xj , a natural

approach to estimating its magnitude, represented by the variance σ2, would be to pool this

information across all n deviations. Because we don’t know β, we replace it by the estimator β̂.

• We will see a more formal rationale later.

SAMPLING DISTRIBUTION: When we estimate a parameter (like β or σ2) that describes a popu-

lation by an estimator (like β̂ or σ̂2), the estimator is some function of the responses, Y here. Thus,

the quality of the estimator, i.e. how reliable it is, depends on the variation inherent in the responses

and how much data on the responses we have.

• If we consider every possible set of data we might have ended up with of size n, each one of these

would give rise to a value of the estimator. We may think then of the population of all possible

values of the estimator we might have ended up with.

• We would hope that the mean of this population would be equal to the true value of the

parameter we are trying to estimate. This property is called unbiasedness.

• We would also hope that the variability in this population isn’t too large.

• If the values vary a lot across all possible data sets, then the estimator is not very reliable.

Indeed, we ended up with a particular data set, which yielded a particular estimate; however, had

we ended up with another data set, we might have ended up with quite a different estimate.

• If on the other hand these values vary little across all possible data sets, then the estimator is

reliable. Had we ended up with another set of data, we would have ended up with an estimate

that is quite similar to the one we have.

Thus, it is of interest to characterize the population of all possible values of an estimator. Because the

estimator depends on the response, the properties of this population will depend on those of Y . More

formally, we may think of the probability distribution of the estimator, describing how it takes on

all its possible values. This probability distribution will be connected with that of the Y .
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A probability distribution that characterizes the population of all possible values of an estimator is

called a sampling distribution.

To understand the nature of the sampling distribution of β̂, we thus consider the probability distribution

of

β̂ = (X ′X)−1X ′Y , (3.19)

which is a linear combination of the elements of Y . We may thus apply earlier facts to derive

mathematically the sampling distribution.

• We may determine the mean of this distribution by applying the expectation operator to the

expression (3.19); this represents averaging across all possible values of the expression (which

follow from all possible values of Y ). Now Y ∼ Nn(Xβ, σ2I) under the usual assumptions, thus

E(Y ) = Xβ. Thus, using the results in section 3.2,

E(β̂) = E{(X ′X)−1X ′Y } = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β,

showing that β̂ under our assumptions is an unbiased estimator of β.

• We may also determine the variance of this distribution. Formally, this would mean applying the

expectation operator to

{(X ′X)−1X ′Y − β}{(X ′X)−1X ′Y − β}′;

i.e. finding the covariance matrix of (3.19). Rather than doing this directly, it is simpler to exploit

the results in section 3.2, which yield

var{(X ′X)−1X ′Y } = (X ′X)−1X ′var(Y ){(X ′X)−1X ′}′

= (X ′X)−1X ′(σ2I)X(X ′X)−1 = σ2(X ′X)−1.

Note that the variability of the population of all possible values of β̂ depends directly on σ2, the

variation in the response. It also depends on n, the sample size, because X is of dimension (n×p).

• In fact, we may say more – because under our assumptions Y has a multivariate normal distribu-

tion, it follows that the probability distribution of all possible values of β̂ is multivariate normal

with this mean and covariance matrix; i.e.

β̂ ∼ Np{β, σ2(X ′X)−1}.
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This result is used to obtain estimated standard errors for the components of β̂; i.e. estimates of the

standard deviation of the sampling distributions of each component of β̂.

• In practice, σ2 is unknown, thus, it is replaced with the estimate σ̂2.

• The estimated standard error of the kth element of β̂ is then the square root of the kth diagonal

element of σ̂2(X ′X)−1.

It is also possible to derive a sampling distribution for σ̂2. For now, we will note that it is possible to

show that σ̂2 is an unbiased estimator of σ2. That is, it may be shown that

E{(n − p)−1(Y − Xβ̂)′(Y − Xβ̂)} = σ2.

This may be shown by the following steps:

• First, it may be demonstrated that (try it!)

(Y − Xβ̂)′(Y − Xβ̂) = Y ′Y − Y ′Xβ̂ − β̂
′

X ′Y + β̂
′

X ′Xβ̂

= Y ′{I − X(X ′X)−1X ′}Y

We have just expressed the original quadratic form in a different way, which is still a quadratic

form.

• Fact: It may be shown that if Y is any random vector with mean µ and covariance matrix Σ that

for any square matrix A,

E(Y ′AY ) = tr(AΣ) + µ′Aµ.

Applying this to our problem, we have µ = Xβ, Σ = σ2I, and A = I − X(X ′X)−1X. Thus,

using results in Chapter 2,

E(Y − Xβ̂)′(Y − Xβ̂) = tr[{I − X(X ′X)−1X ′}σ2I] + β′X ′{I − X(X ′X)−1X ′}Xβ

= σ2tr{I − X(X ′X)−1X ′} + β′X ′{I − X(X ′X)−1X ′}Xβ.

Thus, to find E(Y − Xβ̂)′(Y − Xβ̂), we must evaluate each term.
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• We also have: If X is any (n × p) matrix of full rank, writing Iq to emphasize the dimension of

the identity matrix of dimension q, then

tr{X(X ′X)−1X ′} = tr{(X ′X)−1X ′X} = tr(Ip) = p,

so that

tr{In − X(X ′X)−1X ′} = tr(In) − tr(Ip) = n − p.

Furthermore,

{I − X(X ′X)−1X ′}X = X − X(X ′X)−1X ′X = X − X = 0.

Applying these to the above expression, we obtain

E(Y − Xβ̂)′(Y − Xβ̂) = σ2(n − p) + 0 = σ2(n − p).

Thus, we have E{(n − p)−1(Y − Xβ̂)′(Y − Xβ̂)} = σ2, as desired.

EXTENSION: The discussion above focused on the usual multiple linear regression model, where it is

assumed that

Y ∼ Nn(Xβ, σ2I).

In some situations, although it may be reasonable to think that the population of possible values of Yj

at xj might be normally distributed, the assumptions of constant variance and independence may not

be realistic.

• For example, recall the treadmill example, where Yj was oxygen intake rate after 20 minutes on

the treadmill for man j with covariates (age, weight, baseline characteristics) xj . Now each Yj was

measured on a different man, so the assumption of independence among the Yj seems realistic.

• However, the assumption of constant variance may be suspect. Young men in their 20s will all

tend to be relatively fit, simply by virtue of their age, so we might expect their rates of oxygen

intake to not vary too much. Older men in their 50s and beyond, on the other hand, might be

quite variable in their fitness – some may have exercised regularly, while others may be quite

sedentary. Thus, we might expect oxygen intake rates for older men to be more variable than for

younger men. More formally, we might expect the distributions of possible values of Yj at different

settings of xj to exhibit different variances as the ages of men differ.
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• Recall the pine seedling example. Suppose the seedling is planted and its height is measured on

each of n consecutive days. Here, Yj would be the height measured at time xj , say, where xj is

the time measured in days from planting. We might model the mean of Yj as a function of xj , e.g.

Yj = β0 + β1xj + β2x
2
j + ϵj ,

a quadratic function of time. After n days, we have the vector Y . As discussed earlier, however,

it may not be realistic to think that the elements of Y are all mutually independent. In fact, we

do not expect the height to follow the “smooth” quadratic trend; rather, it “fluctuates” about it;

e.g. the seedling may undergo “growth spurts” or “dormant periods” along the way. Thus, we

would expect to see a “large” value of Y on one day followed by a “large” value the next day.

Thus, the elements of Yj covary (are correlated).

In these situations, we still wish to consider a multiple linear regression model; however, the standard

assumptions do not apply. More formally, we may still believe that each Yj follows a normal distribution,

so that Y is multivariate normal, but the assumption that

var(Y ) = σ2I

for some constant σ2 is no longer relevant. Rather, we think that

var(Y ) = Σ

for some covariance matrix Σ that summarizes the variances of each Yj and the covariances thought to

exist among them. Under these conditions, we would rather assume

Y ∼ Nn(Xβ,Σ).

Clearly, the usual method of least squares, discussed above, is inappropriate for estimating β; it mini-

mizes an inappropriate distance criterion.

WEIGHTED LEAST SQUARES: The appropriate distance condition is

(Y − Xβ)′Σ−1(Y − Xβ). (3.20)

Ideally, we would rather estimate β by minimizing (3.20), because it takes appropriate account of the

possibly different variances and the covariances among elements of Y .

• In the constant variance/independence situation, recall that σ2, the assumed common variance,

is not involved in estimation of β.

PAGE 66



CHAPTER 3 ST 732, M. DAVIDIAN

• In addition, if σ2 is unknown, as is usually the case in practice, we saw that an intuitively appealing,

unbiased estimator σ̂2 may be derived, which is based on “pooling” information on the common

σ2.

• Here, however, with possibly different variances for different Yj , and different covariances among

different pairs (Yj , Yk), things seem much more difficult! As we will see momentarily, estimation

of β by minimizing (3.20) will now involve Σ, which further complicates matters.

• We will delay discussion of the issue of how to estimate Σ in the event that it is unknown until

we talk about longitudinal data from several individuals later.

For now, assume that Σ is known, which is clearly unrealistic in practice, to gain insight into the

principle of minimizing (3.20).

• Analogous to the simpler case of constant variance/independence, to determine the value β̂ that

minimizes (3.20), one may use calculus to derive a set of p simultaneous equations to solve, which

turn out to be

−2X ′Σ−1Y + 2X ′Σ−1Xβ = 0,

which leads to the solution

β̂ = (X ′Σ−1X)−1X ′Σ−1Y . (3.21)

β̂ in (3.21) is often called the weighted least squares estimator.

• Note that β̂ is still a linear function of the elements of Y .

• Thus, it is straightforward to derive its sampling distribution. β̂ is unbiased, as

E(β̂) = (X ′Σ−1X)−1X ′Σ−1Xβ = β.

var(β̂) = (X ′Σ−1X)−1X ′Σ−1ΣΣ−1X(X ′Σ−1X)−1 = (X ′Σ−1X)−1.

• Furthermore, because Y is multivariate normal, we have

β̂ ∼ Np{β, (X ′Σ−1X)−1}.

• Thus, if we knew Σ, we would be able to construct estimated standard errors for elements of β̂,

etc.

The notion of weighted least squares will play a major role in our subsequent development of methods

for longitudinal data. We will revisit it and tackle the issue of how to estimate Σ later.
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4 Introduction to modeling longitudinal data

We are now in a position to introduce a basic statistical model for longitudinal data. The models and

methods we discuss in subsequent chapters may be viewed as modifications of this model to incorporate

specific assumptions on sources of variation and the form of mean vectors.

We restrict our discussion here to the case of balanced data; i.e., where all units have repeated

measurements at the same n time points. Later, we will extend our thinking to handle the case of

unbalanced data.

4.1 Basic Statistical Model

Recall that the longitudinal (or more general repeated measurement data) situation involves observation

of the same response repeatedly over time (or some other condition) for each of a number of units

(individuals).

• In the simplest case, the units may be a random sample from a single population.

• More generally, the units may arise from different populations. Units may be randomly assigned

to different treatments or units may be of different types (e.g. male and female).

• In some cases, additional information on individual-unit characteristics like age and weight may

be recorded.

We first introduce a fundamental model for balanced longitudinal data for a single sample from a com-

mon population, and then discuss how it may be adapted to incorporate these more general situations.

MOST BASIC MODEL FOR BALANCED DATA: Suppose the response of interest is measured on

each individual at n times t1 < t2 < · · · < tn. The dental study (n = 4; t1, . . . , t4 = 8, 10, 12, 14) and

the guinea pig diet data (n = 6; t1, . . . , t6 = 1, 3, 4, 5, 6, 7) are balanced data sets (with units coming

from more than one population).

Consider the case where all the units are from a single population first. Corresponding to each tj ,

j = 1, . . . , n, there is a random variable Yj , j = 1, . . . , n, with a probability distribution that summarizes

the way in which responses at time tj among all units in the population take on their possible values.
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As we discuss in detail shortly, values of the response at any time tj may vary due to the effects of

relevant sources of variation.

We may think of the generic random vector

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

...

Yn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(4.1)

where the variables are arranged in increasing time order.

• Y in (4.1) has a multivariate probability distribution summarizing the way in which all responses

at times t1, . . . , tn among all units in the population take on their possible values jointly.

• This probability distribution has mean vector E(Y ) = µ with elements µj = E(Yj), j = 1, . . . , n,

and covariance matrix var(Y ) = Σ.

CONVENTION: Except when we discuss “classical” methods in the next two chapters, we will use i as

the subscript indexing units and j as the subscript indexing responses in time order within units.

We will also use m to denote the total number of units (across groups where relevant). E.g. for the

dental study and guinea pig diet data, m = 27 and m = 15, respectively.

Thus, in thinking about a random sample of units from a single population of interest, just as we do

for scalar response, we may thus think of m (n × 1) random vectors

Y 1, Y 2, . . . ,Y m,

corresponding to each of m individuals, each of which has features (e.g. multivariate probability distri-

bution) identical to Y in (4.1).

For the ith such vector,

Y i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Yi1

Yi2

...

Yin

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

such that

E(Y i) = µ, var(Y i) = Σ.

PAGE 69



CHAPTER 4 ST 732, M. DAVIDIAN

• It is natural to be concerned that components Yij , j = 1, . . . , n, are correlated.

• In particular, this may be due to the simple fact that observations on the same unit may tend to

be “more alike” than those compared across different units; e.g. a guinea pig with “low” weight at

any given time relative to other pigs will likely be “low” relative to other pigs at any other time.

• Alternatively, correlation may be due to biological “fluctuations” within a unit, as in the pine

seedling example of the last chapter.

We will discuss these sources of variation for longitudinal data shortly. For now, it is realistic to expect

that

cov(Yij , Yik) ̸= 0 for any j ̸= k = 1, . . . , n.

in general, so that Σ is unlikely to be a diagonal matrix.

INDEPENDENCE ACROSS UNITS: On the other hand, if each Y i corresponds to a different indi-

vidual, and individuals are not related in any way (e.g. different children or guinea pigs, treated and

handled separately), then it seems reasonable to suppose that the way any observation may turn out at

any time for unit i is unrelated to the way any observation may turn out for another unit ℓ ̸= i; that is,

observations from different vectors are independent.

• Under this view, the random vectors Y 1, Y 2, . . . ,Y m are all mutually independent.

• It follows that if Yij is a response from unit i and Yℓk is a response from unit ℓ, cov(Yij , Yℓk) = 0

even if j = k (same time point but different units).

BASIC STATISTICAL MODEL: Putting all this together, we have m mutually independent random

vectors Y i, i = 1, . . . , m, with E(Y i) = µ and var(Y i) = Σ.

• We may write this model equivalently similarly to the univariate case; specifically,

Y i = µ + ϵi, E(ϵi) = 0, var(ϵi) = Σ, (4.2)

where the ϵi, i = 1, . . . , m, are mutually independent.

• ϵi are random vector deviations such that ϵi = (ϵi1, . . . , ϵin)′, where each ϵij , j = 1, . . . , n,

E(ϵij) = 0 represents how Yij deviates from its mean µj due to aggregate effects of sources of

variation.
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• In addition, the ϵij are correlated, but ϵi are mutually independent across i.

Questions of scientific interest are characterized as questions about the elements of µ, as will be for-

malized in later chapters.

MULTIVARIATE NORMALITY: If the response is continuous, it may be reasonable to assume that

the Yij and ϵij are normally distributed. In this case, adding the further assumption that ϵi ∼ N (0,Σ),

(4.2) implies

Y i ∼ Nn(µ,Σ), i = 1, . . . ,m,

where the Y i are mutually independent.

EXTENSION TO MORE THAN ONE POPULATION: Suppose that individuals may be thought of as

sampled randomly from q different populations; e.g. q = 2 (males and females) in the dental study.

• We may again think of Y i, m independent random vectors, where, if Y i corresponds to a unit

from group ℓ, ℓ = 1, . . . , q, then Y i has a multivariate probability distribution with

E(Y i) = µℓ, var(Y i) = Σℓ.

That is, each population may have a different mean vector and covariance matrix.

• Equivalently, we may express this as

Y i = µℓ + ϵi, E(ϵi) = 0, var(ϵi) = Σℓ for i from group ℓ = 1, . . . , q.

• We might also assume ϵi ∼ N (0,Σℓ) for units in group ℓ, so that

Y i ∼ N (µℓ,Σℓ)

for i from group ℓ.

• If furthermore it is reasonable to assume that all sources of variation act similarly in each popu-

lation, we might assume that Σℓ = Σ, a common covariance matrix for all populations.

With univariate responses, it is often reasonable to assume that population membership may

imply a change in mean response but not affect the nature of variation; e.g. the primary effect

of a treatment may be to shift responses on average relative to those for another, but to leave

variability unchanged. This reduces to the assumption of equal variances.

For the longitudinal case, such an assumption may also be reasonable, but is more involved, as

assuming the same “variation” in all groups must take into account both variance and covaria-

tion.
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• Under this assumption, the model becomes

Y i = µℓ + ϵi, E(ϵi) = 0, var(ϵi) = Σ for i from group ℓ = 1, . . . , q,

for a covariance matrix Σ common to all groups.

• Note that even though Σ is common to all populations, the diagonal elements of Σ may be

different across j = 1, . . . , n, so that variance may be different at different times; however, at any

given time, the variance is the same for all groups.

• Similarly, the covariances in Σ between the jth and kth elements of Y i may be different for

different choices of j and k, but for any particular pair (j, k), the covariance is the same for all

groups.

EXTENSION TO INDIVIDUAL INFORMATION: We may extend this thinking to take into account

other individual covariate information besides population membership by analogy to regression models

for univariate response.

• E.g., suppose age ai at the first time point is recorded for each unit i = 1, . . . , m.

• We may envision for each age ai a multivariate probability distribution describing the possible

values of Y i. The mean vector of this distribution would naturally depend on ai.

• We write this for now as E(Y i) = µi, where µi is the mean of random vectors from the population

corresponding to age ai, and the subscript i implies that the mean is “unique” to i in the sense

that it depends on ai somehow.

• Assuming that variation is similar regardless of age, we may write

Y i = µi + ϵi, E(ϵi) = 0, var(ϵi) = Σ.

We defer discussion of how dependence of µi on ai (and other factors) might be characterized to

later chapters.

All of the foregoing models represent random vectors Y i in terms of a mean vector plus a random

deviation vector ϵi that captures the aggregate effect of all sources of variation. This emphasizes the

two key aspects of modeling longitudinal data:

(1) Characterizing mean vectors in these models in a way that best captures how mean response

changes with time and depends on other factors, such as group or age, in order to address questions

of scientific interest;
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(2) Taking into account important sources of variation by characterizing the nature of the random

deviations ϵi, so that these questions may be addressed by taking faithful account of all variation

in the data.

Models we discuss in subsequent chapters may be viewed as particular cases of this representation,

where (1) and (2) are approached differently.

We first take up the issue in (2), that of the sources of variation that ϵi may reflect.

4.2 Sources of variation in longitudinal data

For longitudinal data, potential sources of variation usually are thought of as being of two main types:

• Among-unit variation

• Within-units variation.

It is useful to conceptualize the way in which longitudinal response vectors may be thought to arise.

There are different perspectives on this; here, we consider one popular approach. For simplicity, consider

the case of a single population and the model

Y i = µ + ϵi.

The ideas are relevant more generally.

Figure 1 provides a convenient backdrop for thinking about the sources that might make up ϵi.

• Panel (a) shows the values actually observed for m = 3 units; these values include the effects of

all sources of variation.

• Panel (b) is a conceptual representation of possible underlying features of the situation.

The open circles on the thick, solid line represent the elements of µ at each of the n = 9 time

points. E.g., the leftmost circle represents the mean µ1 of all possible values that could be observed

at t1, thus averaging all deviations ϵi1 due to all among- and within-unit sources over all units i.

The means over time lie on a straight line, but this need not be true in general.

The solid diamonds represent the actual observations for each individual. If we focus on the first

time point, for example, it is clear that the observations for each i vary about µ1.
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Note that values on the dotted line that are very close in time tend to be “larger” or “smaller”

than the trend together, while those farther apart seem just as likely to be larger or smaller than

the trend, with no relationship.

• Finally, the observations for a unit (diamonds) do not lie exactly on the dotted lines, but vary

about them. This is due to measurement error. Again, such errors take place within the unit

itself in the sense that the measuring process occurs at the specific-unit level.

We may formalize this thinking by refining how we view the basic model Y i = µ + ϵi. The jth element

of Y i, Yij , may be thought of as being the sum of several components, each corresponding to a different

source of variation; i.e.

Yij = µj + ϵij = µj + bij + eij = µj + bij + e1ij + e2ij , (4.3)

where E(bij) = 0, E(e1ij) = 0, and E(e2ij) = 0.

• bij is a deviation representing among unit variation at time tj due to the fact that unit i “sits”

somewhere in the population relative to µj due to biological variation.

We may think of bij as dictating the “inherent trend” for i at tj .

• e1ij represents the additional deviation due to within-unit fluctuations about the trend.

• e2ij is the deviation due to measurement error (within-units).

• The sum eij = e1ij + e2ij denotes the aggregate deviation due to all within-unit sources.

• The sum ϵij = bij +e1ij +e2ij thus represents the aggregate deviation from µj due to all sources.

Stacking the ϵij , bij , and eij , we may write

ϵi = bi + ei = bi + e1i + e2i,

which emphasizes that ϵi includes components due to among- and within-unit sources of variation.

SOURCES OF CORRELATION: This representation provides a framework for thinking about assump-

tions on among- and within-unit variation and how correlation among the Yij (equivalently, among the

ϵij) may be thought to arise.

• The bij determines the “inherent trend” in the sense that µj + bij represents position of the

“inherent trajectory” for unit i at time j. The Yij thus all tend to be in the vicinity of this trend

across time (j) for unit i. As can be seen from Figure 1, this makes the observations on i “more

alike” relative to observations from units.
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Accordingly, we expect that the elements of ϵi (and hence those of Y i) are correlated due to the

fact that they share this common, underlying trend. We may refer to correlation arising in this

way as correlation due to among-unit sources.

In subsequent chapters, we will see that different longitudinal data models may make specific

assumptions about terms like bij that represent among-unit variation and hence this source of

correlation.

• Because e1ij are deviations due to the “fluctuation” process, it is natural to think that the e1ij

might be correlated across j. If the process is “high” relative to the inherent trend at time tj

(so e1ij is positive), it might be expected to be “high” at times tj′ close to tj (e1ij′ positive) as

well. Thus, we might expect the elements of ϵi and thus Y i to be correlated as a consequence

of such fluctuations (because the elements of e1i are correlated).

We may refer to correlation arising in this way as correlation due to within-unit sources.

Note that if the fluctuations occur in a very short time span relative to the spacing of the tj ,

whether the process is “high” at tj may have little or no relation to whether it is high at adjacent

times. In this case, we might believe such within-unit correlation is negligible. As we will see,

this is a common assumption, often justified by noting that the tj are far apart in time.

• The overall pattern of correlation for ϵi (and hence Y i) may be thought of as resulting from the

combined effects of these two sources (among- and within-units).

• As measuring devices tend to commit “haphazard” errors every time they are used, it may be

reasonable to assume that the e2ij are independent across j. Thus, we expect no contribution

to the overall pattern of correlation.

To complete the thinking, we must also consider the variances of the bij , e1ij , and e2ij . We defer

discussion of this to later chapters in the context of specific models.

4.3 Exploring mean and covariance structure

The aggregate effect of all sources of variation, such as those identified in the conceptual scheme of

Section 4.2, dictates the form of the covariance matrix of ϵi and hence that of Y i.
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SAMPLE MEAN VECTOR: As we have discussed, the natural estimator for the mean µj at the jth

time point is the sample mean

Y ·j = m−1
m∑

i=1

Yij ,

where the “dot” subscript indicates averaging over the first index i (i.e. across units). The sample mean

may be calculated for each time point j = 1, . . . , n, suggesting that the obvious estimator for µ is the

vector whose elements are the Y ·j , the sample mean vector given by

Y = m−1
m∑

i=1

Y i =

⎛

⎜⎜⎜⎜⎝

Y ·1

...

Y ·n

⎞

⎟⎟⎟⎟⎠
.

• It is straightforward to show that the random vector Y is an unbiased estimator for µ; i.e.

E(Y ) = µ.

We may apply this estimator to the dental study data on girls to obtain the estimate (rounded to three

decimal places)

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

21.182

22.227

23.091

24.091

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

In the left panel of Figure 2, these values are plotted for each age by the open circles.

• The thick solid line, which connects the Y ·j , gives a visual impression of a “smooth,” indeed

straight line, relationship over time among the µj .

• Of course, we have no data at ages intermediate to those in the study, so it is possible that mean

distance in the intervals between these times deviates from a straight line relationship. However,

from a biological point of view, it seems sensible to suppose that dental distance would increase

steadily over time, at least on average, rather than “jumping” around.

Graphical inspection of sample mean vectors is an important tool for understanding possible relation-

ships among means over time. When there are q > 1 groups an obvious strategy is to carry this out

separately for the data from each group, so that possible differences in means can be evaluated.

For the dental data on the 16 boys, the estimated mean turns out to be y = (22.875, 23.813, 25.719, 27.469)′;

this is shown as the thick solid line with open circles in the right panel of Figure 2. This estimate seems

to also look like a “straight line,” but with steepness possibly different from that for girls.
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SAMPLE COVARIANCE MATRIX: Gaining insight into the form of Σ may be carried out both

graphically and through an unbiased estimator for Σ and its associated correlation matrix.

• The diagonal elements of Σ are simply the variances σ2
j of the distributions of Yj values at each

time j = 1, . . . , n. Thus, based on m units, the natural estimator for σ2
j is the sample variance

at time j,

S2
j = (m − 1)−1

m∑

i=1

(Yij − Y ·j)
2,

which may be shown to be an unbiased estimator for σ2
j .

• The off-diagonal elements of Σ are the covariances

σjk = E{(Yj − µj)(Yk − µk)}.

Thus, a natural estimator for σjk is

Sjk = (m − 1)−1
m∑

i=1

(Yij − Y ·j)(Yik − Y ·k),

which may also be shown to be unbiased.

• The obvious estimator for Σ is thus the matrix in which the variances σ2
j and covariances σjk are

replaced by S2
j and Sjk. It is possible to represent this matrix succinctly (verify) as

Σ̂ = (m − 1)−1
m∑

i=1

(Y i − Y )(Y i − Y )′.

This is known as the sample covariance matrix.

• The sum
∑m

i=1(Y i − Y )(Y i − Y )′ is often called the sum of squares and cross-products

(SS&CP) matrix, as its entries are the sums of squared deviations and cross-products of deviations

from the sample mean.

• The sample covariance matrix is exactly as we would expect; recall that the covariance matrix

itself is defined as

Σ = E{(Y − µ)(Y − µ)′}.

The sample covariance matrix may be used to estimate the covariance matrix. However, although the

diagonal elements may provide information on the true variances at each time point, the off-diagonal ele-

ments may be difficult to interpret. Given the unitless nature of correlation, it may be more informative

to learn about associations from estimates of correlation.
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SAMPLE CORRELATION MATRIX: If Σ̂ is an estimator for a covariance matrix Σ with elements

Σ̂jk, j, k = 1, . . . , n, then the natural estimator for the associated correlation matrix Γ is Γ̂, the (n×n)

matrix Γ̂ with ones on the diagonal (as required for a correlation matrix) and (j, k) off-diagonal element

Σ̂jk√
Σ̂jjΣ̂kk

.

• For a single population, where Σ̂ is the sample covariance matrix, the off-diagonal elements are

Sjk

SjSk
, (4.4)

which are obvious estimators for the correlations

ρjk =
σjk

σjσk
.

• In this case, the estimated matrix Γ̂ is called the sample correlation matrix, as it is an estimate

of the correlation matrix corresponding to the sample covariance matrix for the single population.

• The expression in (4.4) is known as the sample correlation coefficient between the observations

at times tj and tk, as it estimates the correlation coefficient ρjk.

Shortly, we shall see how to estimate common covariance and correlation matrices based on data from

several populations.

For the 11 girls in the dental study, we obtain the estimated covariance and correlation matrices (rounded

to three decimal places)

Σ̂G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

4.514 3.355 4.332 4.357

3.355 3.618 4.027 4.077

4.332 4.027 5.591 5.466

4.357 4.077 5.466 5.941

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, Γ̂G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.830 0.862 0.841

0.830 1.000 0.895 0.879

0.862 0.895 1.000 0.948

0.841 0.879 0.948 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

• The diagonal elements of Σ̂G suggest that the aggregate variance in dental distances roughly

increases over time from age 8 to 14.

However, keep in mind that the values shown are estimates of the corresponding parameters based

on only m = 11 observations; thus, they are subject to the usual uncertainty of estimation. It is

thus sensible to not “over-interpret” the numbers but rather to only examine them for suggestive

features.
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• The off-diagonal elements of Γ represent the aggregate pattern of correlation due to among- and

within-girl sources. Here, the estimate of this correlation for any pair of time points is positive

and close to one, suggesting that “high” values at one time are strongly associated with “high”

values at another time, regardless of how far apart in time the observations occur.

In light of Figure 2, this is really not surprising. The data for individual girls in the figure show

pronounced trends that for the most part place a girl’s trajectory above or below the estimated

mean profile (thick line). Thus, a girl such as the topmost one is “high” throughout time, suggest-

ing a strong component of among-girl variation in the population, and the estimates of correlation

are likely reflecting this.

• Again, it is not prudent to attach importance to the numbers and differences among them, as they

are estimates from a rather small sample, so the observed difference between 0.948 and 0.830 may

or may not reflect a real difference in the true correlations.

SCATTERPLOT MATRICES: A useful supplement to numerical estimates is a graphical display of the

observed data known as a scatterplot matrix.

As correlation reflects associations among observations at different time points, initially one would think

that a natural way of graphically assessing these associations would be to make the following plot.

• For each pair of times tj and tk, graph the observed data values (yij , yik) for all i = 1, . . . , m units,

with yij values on the horizontal axis and yik values on the vertical axis. The observed pattern

might be suggestive of the nature of association among responses at times tj and tk.

• This is not exactly correct; in particular, if the means µj and µk and variances σ2
j and σ2

k are not

the same, the patterns in the pairwise plots will in part be a consequence of this. It would make

better sense to plot the “centered” and “scaled” versions of these; i.e. plot the pairs
(

yij − µj

σj
,
yik − µk

σk

)

.

• Given we do not know the µj or σj , a natural strategy is to replace these by estimates and instead

plot the pairs (
yij − y

·j

sj
,
yik − y

·k

sk

)

.

Following this reasoning, it is common to make these plots for all pairs (j, k), where j ̸= k.

Figure 3 shows the scatterplot matrix for the girls in the dental study.
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Figure 3: Scatterplot matrix for the girls in the dental study.
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In each panel, the apparent association among centered and scaled distance observations appears strong.

The fact that the trend is from lower left to upper right in each panel, so that large centered and scaled

values at one time correspond to large ones at another time, indicates that the association is positive

for each pair of time points. Moreover, the nature of the association seems fairly similar regardless

of the separation in time; i.e. the pattern of the plot corresponding to ages 8 and 14 shows a similar

qualitative trend to those corresponding to ages 8 and 10, ages 8 and 12, and so on.

The evidence in the plots coincides with the numerical summary provided by the sample correlation

matrix, which suggests that correlation is of similar magnitude and direction for any pair of times.

Some remarks:

• Visual display offers the data analyst another perspective on the likely pattern of aggregate cor-

relation in the data in addition to that provided by the estimated correlation matrix. This

information taken with that on variance in the sample covariance matrix can help the analyst to

identify whether the pattern of variation has systematic features. If such systematic features

are identified, it may be possible to adopt a model for var(ϵi) that embodies them, allowing an

accurate characterization. We take up this issue shortly.

• The same principles may be applied in more complicated settings; e.g. with more than one group.

Here, one could estimate the covariance matrix Σℓ and associated correlation matrix Γℓ, say, for

each group ℓ separately and construct a separate scatterplot matrix.

• In the case of q > 1 groups, a natural objective would be to assess whether in fact it is reasonable

to assume that the covariance matrix is the same for all groups.
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POOLED SAMPLE COVARIANCE AND CORRELATION MATRICES: To illustrate this last point,

consider the data for boys in the dental study. It may be shown that the sample covariance and

correlation matrices are

Σ̂B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

6.017 2.292 3.629 1.613

2.292 4.563 2.194 2.810

3.629 2.194 7.032 3.241

1.613 2.810 3.241 4.349

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, Γ̂B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.437 0.558 0.315

0.437 1.000 0.387 0.631

0.558 0.387 1.000 0.586

0.315 0.631 0.586 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

• Comparing to Σ̂G for girls, aggregate variance does not seem to increase over time and seems

larger than that for girls at all but the last time. (These estimates are based on small samples,

11 and 16 units, so should be interpreted with care.)

• Comparing to Γ̂G for girls suggests that correlation for boys, although positive, is of smaller

magnitude. Moreover, the estimated correlations for boys tend to “jump around” more than

those for girls.

Figure 4 shows the scatterplot matrix for boys.

Figure 4: Scatterplot matrix for the boys in the dental study.
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Comparing this figure to that for girls in Figure 3 reveals that the trend in each panel seems less

profound for boys, although it is still positive in every case.

Overall, there seems to be informal evidence that both the mean and pattern of variance and cor-

relation in the populations of girls and boys may be different. We will study longitudinal data models

that allow such features to be taken into account.
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Although this seems to be the case here, in many situations, the evidence may not be strong enough to

suggest a difference in variation across groups, or scientific considerations may dictate that an assump-

tion of a common pattern of overall variation is reasonable.

Under these conditions, it is natural to combine the information on variation across groups in order to

examine the features of the assumed common structure. Since ordinarily interest focuses on whether the

µℓ are the same, as we will see, such an assessment continues to assume that the µℓ may be different.

The assumed common covariance matrix Σ and its corresponding correlation matrix Γ from data for q

groups may be estimated as follows. Assume that there are rℓ units from the ℓth population, so that

m, the total number of units, is such that m = r1 + · · · + rq.

• As we continue to believe the µℓ are different, estimate these by the sample means Y ℓ, say, for

each group.

• Let Σ̂ℓ denote the sample covariance matrix calculated for each group separately (based on Y ℓ).

• A natural strategy if we believe that there is a common covariance matrix Σ is then to use as an

estimator for Σ a weighted average of the Σ̂ℓ, ℓ = 1, . . . , q, that takes into account the differing

amount of information from each group:

Σ̂ = (m − q)−1{(r1 − 1)Σ̂1 + · · · + (rq − 1)Σ̂q}.

This matrix is referred to as the pooled sample covariance matrix.

• If the number of units from each group is the same, so that rℓ ≡ r, say, then Σ̂ reduces to a

simple average; i.e. Σ̂ = (1/q)(Σ̂1 + · · · + Σ̂q).

• The quantity in braces is often called the Error SS&CP matrix, as we will see later.

• The pooled sample correlation matrix estimating the assumed common correlation matrix Γ

is naturally defined as the estimated correlation matrix corresponding to Σ̂.

From the definition, the diagonal elements of the pooled sample covariance matrix are weighted averages

of the sample variances from each group. That is, if S(ℓ)2
j is the sample variance of the observations

from group ℓ at time j, then the (j, j) element of Σ̂, Σ̂jj , say, is equal to

Σ̂jj = (m − q){(r1 − 1)S(1)2
j + · · · + (rq − 1)S(q)2

j },

the so-called pooled sample variance at time tj .
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If the analyst is willing to adopt the assumption of a common covariance matrix for all groups, then

inspection of the pooled estimate may be carried out as in the case of a single population. Similarly,

a pooled scatterplot matrix would be based on centered and scaled versions of the yij , where the

“centering” continues to be based on the sample means for each group but the “scaling” is based on

the common estimate of variance for yij from Σ̂. In particular, one would plot the observed pairs

⎛

⎝yij − y(ℓ)
·j√

Σ̂jj

,
yik − y(ℓ)

·k√
Σ̂kk

⎞

⎠

for all units i = 1, . . . , m from all groups ℓ = 1, . . . , q on the same graph for each pair of times tj and tk.

DENTAL STUDY: Although we are not convinced that it is appropriate to assume a common covariance

matrix for boys and girls in the dental study, for illustration we calculate the pooled sample covariance

and correlation matrix to obtain:

Σ̂ = (1/25)(10Σ̂G + 15Σ̂B) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

5.415 2.717 3.910 2.710

2.717 4.185 2.927 3.317

3.910 2.927 6.456 4.131

2.710 3.317 4.131 4.986

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and

Γ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.571 0.661 0.522

0.571 1.000 0.563 0.726

0.661 0.563 1.000 0.728

0.522 0.726 0.728 1.000

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

• Inspection of the diagonal elements shows that the pooled estimates seem to be a “compromise”

between the two group-specific estimates. This in fact illustrates how the pooled estimates combine

information across groups.

• For brevity, we do not display the combined scatterplot matrix for these data. Not surprisingly,

the pattern is somewhere “in between” those exhibited in Figures 3 and 4.

We have assumed throughout that we have balanced data. When the data are not balanced, either

because some individuals are missing observations at intended times or because the times are different

for different units, application of the above methods can be misleading. Later in the course, we consider

methods for unbalanced data.
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4.4 Popular models for covariance structure

As we have noted previously, if estimated covariance and correlation matrices show systematic fea-

tures, the analyst may be led to consider models for covariance and associated correlation matrices.

We will see later in the course that common models and associated methods for longitudinal data either

explicitly or implicitly involve adopting particular models for var(ϵi).

In anticipation this, here, we introduce some popular such covariance models that embody different sys-

tematic patterns that are often seen with longitudinal data. Each covariance model has a corresponding

correlation model. We consider these models for balanced data only; modification for unbalanced

data is discussed later.

UNSTRUCTURED COVARIANCE MODEL: In some situations, there may be no evidence of an ap-

parent systematic pattern of variance and correlation. In this case, the covariance matrix is said to

follow the unstructured model. The unstructured covariance model was adopted in the discussion of

the last section as an initial assumption to allow assessment of whether a model with more structure

could be substituted.

The unstructured covariance matrix allows n different variances, one for each time point, and n(n−1)/2

distinct off-diagonal elements representing the possibly different covariances for each pair of times, for

a total of n + n(n − 1)/2 = n(n + 1)/2 variances and covariances. (Because a covariance matrix is

symmetric, the off-diagonal elements at positions (j, k) and (k, j) are the same, so we need only count

each covariance once in totaling up the number of variances and covariances involved.)

Thus, if the unstructured model is assumed, there are numerous parameters describing variation that

must be estimated, particularly if n is large. E.g., if n = 5, which does not seem that large, there are

5(6)/2 =15 parameters involved. If there are q different groups, each with a different covariance matrix,

there will be q times this many variances and covariances.

If the pattern of covariance does show a systematic structure, then not acknowledging this by maintain-

ing the unstructured assumption involves estimation of many more parameters than might otherwise

be necessary, thus making inefficient use of the available data. We now consider models that represent

things in terms of far fewer parameters.

As we will see in the following, it is sometimes easier to discuss the correlation model first and then

discuss the covariance matrix models to which it may correspond.
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COMPOUND SYMMETRIC COVARIANCE MODELS: For both the boys and girls in the dental study,

the correlation between observations at any times tj and tk seemed similar, although the variances at

different times might be different.

These considerations suggest a covariance model that imposes equal correlation between all time points

but allows variance to differ at each time as follows. Suppose that ρ is a parameter representing the

common correlation for any two time points. For illustration, suppose that n = 5. Then the correlation

matrix is

Γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

the same structure generalizes to any n. Here, −1 < ρ < 1. This is often referred to as the compound

symmetric or exchangeable correlation model, where the latter term emphasizes that the correlation

is the same even if we “exchange” two time points for two others.

Two popular covariance models with this correlation matrix are as follows.

• If σ2
j and σ2

k are the overall variances at tj and tk (possibly different at different times), and σjk

is the corresponding covariance, then it must be that

ρ =
σjk

σjσk
or σjk = σjσkρ.

We thus have a covariance matrix of the form, in the case n = 5,

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 ρσ1σ2 ρσ1σ3 ρσ1σ4 ρσ1σ5

ρσ1σ2 σ2
2 ρσ2σ3 ρσ2σ4 ρσ2σ5

ρσ1σ3 ρσ2σ3 σ2
3 ρσ3σ4 ρσ3σ5

ρσ1σ4 ρσ2σ4 ρσ3σ4 σ2
4 ρσ4σ5

ρσ1σ5 ρσ2σ5 ρσ3σ5 ρσ4σ5 σ2
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which of course generalizes to any n. This covariance matrix is often said to have a heteroge-

neous compound symmetric structure – compound symmetric because it has corresponding

correlation as above and heterogeneous because it incorporates the assumption of different, or

heterogeneous, variances at each time point. Note that this model may be described with n + 1

parameters, the correlation ρ and the n variances.
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• In some settings, the evidence may suggest that the overall variance at each time point is the

same, so that σ2
j = σ2 for some common value σ2 for all j = 1, . . . , n. Under this condition,

ρ =
σjk

σ2
so that σjk = σ2ρ for all j, k.

Under these conditions, the covariance matrix is, in the case n = 5.

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 ρσ2 ρσ2 ρσ2 ρσ2

ρσ2 σ2 ρσ2 ρσ2 ρσ2

ρσ2 ρσ2 σ2 ρσ2 ρσ2

ρσ2 ρσ2 ρσ2 σ2 ρσ2

ρσ2 ρσ2 ρσ2 ρσ2 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σ2Γ.

This covariance matrix for any n is said to have the compound symmetric or exchangeable

structure with no qualification.

This model involves only two parameters, σ2 and ρ, for any n.

Remarks:

• From the diagnostic calculations and plots for the dental study data, the heterogeneous compound

symmetric covariance model seems like a plausible model for each of the boys and girls, although

the values of ρ and the variances at each time may be potentially different in each group.

• The unstructured and compound symmetric models do not emphasize the fact that observations

are collected over time; neither has “built-in” features that really only make sense when the n

observations are in a particular order. Recall the two sources of correlation that contribute to the

overall pattern: that arising from among-unit sources (e.g. units being “high” or “low”) and those

due to within-unit sources (e.g. “fluctuations” about a smooth trend and measurement error).

The compound symmetric models seem to emphasize the among-unit component.

The models we now discuss instead may be thought of as emphasizing the within-unit component

through structures that are plausible when correlation depends on the times of observation in some

way. As “fluctuations” determine this source of correlation, these models may be thought of as assuming

that the variation attributable to these fluctuations dominates that from other sources (among-units or

measurement error). These models have roots in the literature on time series analysis.
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ONE-DEPENDENT: Correlation due to within-unit fluctuation would be expected to be “stronger”

the closer observations are taken in time on a particular unit, as observations close in time would be

“more alike” than those far apart. Thus, we expect correlation due to within-unit sources to be largest

in magnitude among responses that are adjacent in time, that is, are at consecutive observation times,

and to become less pronounced as observations become farther apart. Relative to this magnitude

of correlation, that between two nonconsecutive observations might be for all practical purposes be

negligible.

A correlation matrix that reflects this (shown for n = 5) is

Γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ 0 0 0

ρ 1 ρ 0 0

0 ρ 1 ρ 0

0 0 ρ 1 ρ

0 0 0 ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, the correlation is the same, equal to ρ, −1 < ρ < 1, for any two consecutive observations. This

model is referred to as the one-dependent correlation structure, as dependence is nonnegligible only

for adjacent responses. Alternatively, such a matrix is also referred to as a banded Toeplitz matrix.

The one-dependent correlation model seems to make the most sense if observation times are equally-

spaced (separate by the same time interval).

If the overall variances σ2
j , j = 1, . . . , n, are possibly different at each time tj , the corresponding

covariance matrix (n = 5) looks like

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 ρσ1σ2 0 0 0

ρσ1σ2 σ2
2 ρσ2σ3 0 0

0 ρσ2σ3 σ2
3 ρσ3σ4 0

0 0 ρσ3σ4 σ2
4 ρσ4σ5

0 0 0 ρσ4σ5 σ2
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and is called a heterogeneous one-dependent or banded Toeplitz matrix, for obvious reasons. Of

course, this structure may be generalized to any n.
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If overall variance at each time point is the same, so that σ2
j = σ2 for all j, then this becomes

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 ρσ2 0 0 0

ρσ2 σ2 ρσ2 0 0

0 ρσ2 σ2 ρσ2 0

0 0 ρσ2 σ2 ρσ2

0 0 0 ρσ2 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σ2Γ,

which is usually called a one-dependent or banded Toeplitz matrix without qualification.

It is possible to extend this structure to a two-dependent or higher model. For example, two-

dependence implies that observations one or two intervals apart in time are correlated, but those farther

apart are not.

The one-dependent correlation model implies that correlation “falls off” as observations become farther

apart in time in a rather dramatic way, so that only consecutive observations are correlated. Alterna-

tively, it may be the case that correlation “falls off” more gradually.

AUTOREGRESSIVE STRUCTURE OF ORDER 1: Again, this model makes sense sense when the

observation times are equally spaced. The autoregressive, or AR(1), correlation model, formalizes the

idea that the magnitude of correlation among observations “decays” as they become farther apart. In

particular, for n = 5, the AR(1) correlation matrix has the form

Γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where −1 < ρ < 1.

• As ρ is less than 1 in magnitude as we take it to higher powers, the result is values closer and

closer to zero. Thus, as the number of time intervals between pairs of observations increases, the

correlation decreases toward zero.

• With equally-spaced data, the time interval between tj and tj+1 is the same for all j; i.e., |tj −

tj+1| = d for j = 1, . . . , n− 1, where d is the length of the interval. Note then that the power of ρ

corresponds to the number of intervals by which a pair of observations is separated.
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As with the compound symmetric and one-dependent models, both heterogeneous and “standard”

covariance matrices with corresponding AR(1) correlation matrix are possible. In the case of overall

variances σ2
j that may differ across j, the heterogeneous covariance matrix in the case n = 5 has the

form

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 ρσ1σ2 ρ2σ1σ3 ρ3σ1σ4 ρ4σ1σ5

ρσ1σ2 σ2
2 ρσ2σ3 ρ2σ2σ4 ρ3σ2σ5

ρ2σ1σ3 ρσ2σ3 σ2
3 ρσ3σ4 ρ2σ3σ5

ρ3σ1σ4 ρ2σ2σ4 ρσ3σ4 σ2
4 ρσ4σ5

ρ4σ1σ5 ρ3σ2σ5 ρ2σ3σ5 ρσ4σ5 σ2
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When the variance is assumed equal to the same value σ2 for all j = 1, . . . , n, the covariance matrix has

the form (n = 5)

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 ρσ2 ρ2σ2 ρ3σ2 ρ4σ2

ρσ2 σ2 ρσ2 ρ2σ2 ρ3σ2

ρ2σ2 ρσ2 σ2 ρσ2 ρ2σ2

ρ3σ2 ρ2σ2 ρσ2 σ2 ρσ2

ρ4σ2 ρ3σ2 ρ2σ2 ρσ2 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σ2Γ,

The one-dependent and AR(1) models really only seem sensible when the observation times are spaced at

equal intervals, as in the dental study data. This is not always the case; for instance, for longitudinal data

collected in clinical trials comparing treatments for disease, it is routine to collect responses frequently

at the beginning of therapy but then to take them at wider intervals later.

The following offers a generalization of the AR(1) model to allow the possibility of unequally-spaced

times.

MARKOV STRUCTURE: Suppose that the observation times t1, . . . , tn are not necessarily equally

spaced, and let

djk = |tj − tk|

be the length of time between times tj and tk for all j, k = 1, . . . , n. Then the Markov correlation

model has the form, shown here for n = 5,

Γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρd12 ρd13 ρd14 ρd15

ρd12 1 ρd23 ρd24 ρd25

ρd13 ρd23 1 ρd34 ρd35

ρd14 ρd24 ρd34 1 ρd45

ρd15 ρd25 ρd35 ρd45 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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• Here, we must have ρ ≥ 0 (why?).

• Comparing this to the AR(1) structure, the powers of ρ and thus the degree of decay of correlation

are also related to the length of the time interval between observations. Here, however, because

the time intervals djk are of unequal length, the powers are the actual lengths.

Corresponding covariance matrices are defined similarly to those in the one-dependent and AR(1) cases.

E.g., under the assumption of common variance σ2, we have

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 σ2ρd12 σ2ρd13 σ2ρd14 σ2ρd15

σ2ρd12 σ2 σ2ρd23 σ2ρd24 σ2ρd25

σ2ρd13 σ2ρd23 σ2 σ2ρd34 σ2ρd35

σ2ρd14 σ2ρd24 σ2ρd34 σ2 σ2ρd45

σ2ρd15 σ2ρd25 σ2ρd35 σ2ρd45 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σ2Γ,

This model has two parameters, σ2 and ρ, for any n.

These are not the only such models available, but give a flavor of the types of considerations involved.

The documentation for the SAS procedure proc mixed, the use of which we will demonstrate in subse-

quent chapters, offers a rich catalog of possible covariance models.

If one believes that one of the foregoing models or some other model provides a realistic representation

of the pattern of variation and covariation in the data, then intuition suggests that a “better” estimate

of var(ϵi) could be obtained by exploiting this information. We will see this in action shortly.

We will also see that these models may be used not only to represent var(ϵi), but to represent covariance

matrices of components of ϵi corresponding to among- and within-unit variation.

4.5 Diagnostic calculations under stationarity

The one-dependent, AR(1), and Markov structures are popular models when it is thought that the

predominant source of correlation leading to the aggregate pattern is from within-individual sources.

All of these models are such that the correlation between Yij and Yik for any j ̸= k depends only on

the time interval |tj − tk| and not only the specific times tj or tk themselves. This property is known

as stationarity.

• If stationarity is thought to hold, the analyst may wish to investigate which correlation structure

(e.g. one-dependent, AR(1), or other model for equally-spaced data) might be the best model.
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• Variance at each tj may be assessed by examining the sample covariance matrix.

• If one believes in stationarity, an investigation of correlation that takes this into account may offer

more refined information than one that does not, as we now demonstrate.

The rationale is as follows:

• When the tj , j = 1, . . . , n, are equally spaced, with time interval d, under stationarity, all pairs

of observations corresponding to times whose subscripts differ by 1, e.g. j and j + 1, are d time

units apart and are correlated in an identical fashion.

• Similarly, all pairs with subscripts differing by 2, e.g. j and j + 2 are 2d time units apart and

correlated in the same way. In general, pairs with subscripts j and j + u are ud time units apart

and share the same correlation.

• The value of subscripts for n time points must range between 1 and n. Thus, when we write j

and j + u, it is understood that the values of j and u are chosen so that all possible distinct pairs

of unequal subscripts in this range are represented. E.g. if j = 1, then u may take on the values

1, . . . , n− 1 to give all pairs corresponding to time t1 and all other times t2, . . . , tn. If j = 2, then

u may take on values 1, . . . , n−2, and so on. If j = n−1, then u = 1 gives the pair corresponding

to times tn−1, tn.

• For example, under the AR(1) model, for a particular u, pairs at times tj and tj+u for satisfy

corr(Yij , Yi,j+u) = ρu,

suggesting that the correlation between observations u time intervals apart may be assessed using

information from all such pairs.

AUTOCORRELATION FUNCTION: The autocorrelation function is just the correlation corre-

sponding to pairs of observations u time intervals apart thought of as a function of the number of

intervals. That is, for all j = 1, . . . , n − 1 and appropriate u,

ρ(u) = corr(Yij , Yi,j+u).

• This depends only on u and is the same for all j because of stationarity.

• The value of ρ(0) is taken to be equal to one, as with u = 0 ρ(0) is just the correlation between

an observation and itself.
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• The value u is often called the lag. The total number of possible lags is n − 1 for n time points.

• The autocorrelation function describes how correlation changes as the time between observations

gets farther apart, i.e. as u increases. As expected, the value of ρ(u) tends to decrease in

magnitude as u increases, reflecting the usual situation in which within-unit correlation “falls off”

as observations become more separated in time.

In practice, we may estimate the autocorrelation function if we are willing to assume that stationarity

holds. Inspection of the estimate can help the analyst decide which model might be appropriate; e.g. if

correlation falls off gradually with lag, it may suggest that an AR(1) model is appropriate.

For data from a single population, it is natural to base estimation of ρ(u) for each u = 1, . . . , n − 1 on

all pairs of observations (Yij , Yi,j+u) across all individuals i = 1, . . . , m and relevant choices of j.

• Care must be taken to ensure that the fact that responses have different means and overall

variances at each tj is taken into account, as with scatterplot matrices.

• Thus, we consider “centered” and “scaled” observations. In particular, ρ(u) for a particular lag

u may be estimated by calculating the sample correlation coefficient treating all pairs of the

form
Yij − Y ·j

Sj
,
Yi,j+u − Y ·j+u

Sj+u

as if they were observations on two random variables from a sample of m individuals, where each

individual contributes more than one pair.

• The resulting estimator as a function of u is called the sample autocorrelation function, which

we denote as ρ̂(u).

• ρ̂(u) may be calculated and plotted against u to provide the analyst with both numerical and

visual information on the nature of correlation if the stationarity assumption is plausible.

We illustrate using the data from girls in the dental study. Here, the time interval is of length d = 2

years, and n = 4, so u can take on values 1, . . . , n − 1 = 3.

• When u = 1, each girl has three pairs of values separated by d units (i.e. one time interval), the

values at (t1, t2), (t2, t3), and (t3, t4). Thus, there is a total of 33 possible pairs from all 11 girls.

• When u = 2, there are two pairs per girl, at (t1, t3) and (t2, t4), or 22 total pairs.
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Figure 6: Lag plots for data from girls in the dental study for lags u = 1, 2, and 3.
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When data are not equally spaced, extensions of the method for estimating the autocorrelation function

are available, but are beyond the scope of our discussion here. The reader is referred to Diggle, Heagerty,

Liang, and Zeger (2002).

It is important to recognize that whether stationarity holds is an assumption. The foregoing procedures

are relevant when this assumption is valid. Unfortunately, assessing with confidence whether stationarity

holds is not really possible in longitudinal data situations where the number of time points is usually

small. Because many popular models for correlation used in longitudinal data analysis embody the

stationarity assumption, it is often assumed without comment, and it is often reasonable.

4.6 Implementation with SAS

We demonstrate the use of various SAS procedures on the dental data. In particular, we show how the

following may be obtained:

• Sample mean vectors for each group (girls and boys)

• Group-specific sample covariance and correlation matrices

• Pooled sample covariance and correlation matrix

• Pairs for plotting scatterplot matrices for each group

• Autocorrelation functions for each gender and pairs for making lag plots
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There are actually numerous ways to obtain the pooled sample covariance and correlation matrices. We

show one way here, using SAS PROC DISCRIM. Additional ways can be found in the program on the

course web site.

EXAMPLE 1 – DENTAL STUDY DATA: The data are in the file dental.dat.

PROGRAM:

/*******************************************************************

EXAMPLE 1, CHAPTER 4

Using SAS to obtain sample mean vectors, sample covariance
matrices, and sample correlation matrices.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data are not in the correct from for use with the SAS procedures
CORR and DISCRIM we use below. These procedures require that the
data be in the form of one record (line) per experimental unit.
The data in the file dental.dat are in the form of one record per
observation (so that each child has 4 data records).

In particular, the data set looks like

1 1 8 21 0
2 1 10 20 0
3 1 12 21.5 0
4 1 14 23 0
5 2 8 21 0

.

.

.

column 1 observation number
column 2 child id number
column 3 age
column 4 response (distance)
column 5 gender indicator (0=girl, 1=boy)

We thus create a new data set such that each record in the data
set represents all 4 observations on each child plus gender
identifier. To do this, we use some data manipulation features
of the SAS data step. The second data step does this.

We redefine the values of AGE so that we may use AGE as an "index"
in creating the new data set DENT2. The DATA step that creates
DENT2 demonstrates one way (using the notion of an ARRAY) to
transform a data set in the form of one observation per record
(the original form) into a data set in the form of one record per
individual. The data must be sorted prior to this operation; we
invoke PROC SORT for this purpose.

In the new data set, the observations at ages 8, 10, 12, and 14
are placed in variables AGE1, AGE2, AGE3, and AGE4, respectively.

We use PROC PRINT to print out the first 5 records (so data for
the first 5 children, all girls) using the OBS= feature of the
DATA= option.

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

data dent1; set dent1;
if age=8 then age=1;
if age=10 then age=2;
if age=12 then age=3;
if age=14 then age=4;
drop obsno;

run;

proc sort data=dent1;
by gender child;

run;
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data dent2(keep=age1-age4 gender child);
array aa{4} age1-age4;
do age=1 to 4;
set dent1;
by gender child;
aa{age}=distance;
if last.child then return;

end;
run;

title "TRANSFORMED DATA -- 1 RECORD/INDIVIDUAL";
proc print data=dent2(obs=5); run;

/*******************************************************************

Here, we use PROC CORR to obtain the sample means at each
age (the means of the variables AGE1,...,AGE4 in DENT2 and to
calculate the sample covariance matrix and corresponding sample
correlation matrix separately for each group (girls and boys).
The COV option in the PROC CORR statement asks for the sample
covariance to be printed; without it, only the sample correlation
matrix would appear in the output.

*******************************************************************/

proc sort data=dent2; by gender; run;

title "SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER";
proc corr data=dent2 cov;
by gender; var age1 age2 age3 age4;
run;

/*******************************************************************

We now obtain the "centered" and "scaled" values
that may be used for plotting scatterplot matrices such as that
in Figure 3. Here, we call PROC MEANS to calculate the sample
mean (MAGE1,...,MAGE4) and standard deviation (SDAGE1,...,SDAGE4)
for each of the variables AGE1,...,AGE4 for each gender. These
are output to the data set DENTSTATS, which has two records, one
for each gender (see the output). We then MERGE this data set
with DENT2 BY GENDER, which has the effect of matching up the
appropriate gender mean and SD to each child. We print out the
first three records of the resulting data set to illustrate.
We use the NOPRINT option with PROC MEANS to suppress printing of
its output.

The variables CSAGE1,...,CSAGE4 contain the centered/scaled values.
These may be plotted against each other to obtain plots like Figure 3.
We have not done this here to save space.

*******************************************************************/

proc sort data=dent2; by gender child; run;

proc means data=dent2 mean std noprint; by gender;
var age1 age2 age3 age4;
output out=dentstats mean=mage1 mage2 mage3 mage4

std=sdage1 sdage2 sdage3 sdage4;
run;

title "SAMPLE MEANS AND SDS BY GENDER FROM PROC MEANS";
proc print data=dentstats; run;

data dentstats; merge dentstats dent2; by gender;
csage1=(age1-mage1)/sdage1;
csage2=(age2-mage2)/sdage2;
csage3=(age3-mage3)/sdage3;
csage4=(age4-mage4)/sdage4;

run;

title "INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER";
proc print data=dentstats(obs=3); run;

/*******************************************************************

One straightforward way to have SAS calculate the pooled sample
covariance matrix and the corresponding estimated correlation matrix
is using PROC DISCRIM. This procedure is focused on so-called
discriminant analysis, which is discussed in a standard text on
general multivariate analysis. The data are considered as
in the form of vectors; here, the elements of a data vector are
denoted as AGE1,...,AGE4.

Here, we only use PROC DISCRIM for its facility to print out the
sample covariance matrix and correlation matrix "automatically,"
and disregard other portions of the output.
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*******************************************************************/

proc discrim pcov pcorr data=dent2;
class gender;
var age1 age2 age3 age4;

run;

/*******************************************************************

Although it is a bit cumbersome, we may use some DATA step
manipulations and PROC CORR to obtain the values of the autocorrelation
function for each gender. We first drop variables
no longer needed from the data set DENTSTATS.

We create then three data sets, LAG1, LAG2, and LAG3, and describe
LAG1 here; the other two are similar. We create two new variables,
PAIR1 and PAIR2. For LAG1, PAIR1 and PAIR2 are the two values in (5.43)
for u=1. As there are 4 ages, each child has 3 such pairs. The output
of PROC PRINT for LAG1 shows this for the first 2 children.
We then sort the data by gender and call PROC CORR to find the
sample correlation between the two variables for each gender.

The same principle is used to obtain the correlation by gender for
lags 2 and 3 [u=2,3].

There are other, more sophisticated ways to obtain the values
of the autocorrelation function; however, for longitudinal data sets
where the number of time points is small, the "manual" approach
we have demonstrated here is easy to implement and understand.

PAIR1 versus PAIR2 may be plotted for each lag to obtain visual
presentation of the results as in Figure 6.

*******************************************************************/

data dentstats; set dentstats;
drop age1-age4 mage1-mage4 sdage1-sdage4;

run;

data lag1; set dentstats;
by child;
pair1=csage1; pair2=csage2; output;
pair1=csage2; pair2=csage3; output;
pair1=csage3; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 1";
proc print data=lag1(obs=6); run;
proc sort data=lag1; by gender;

proc corr data=lag1; by gender;
var pair1 pair2;

run;

data lag2; set dentstats;
by child;
pair1=csage1; pair2=csage3; output;
pair1=csage2; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 2";
proc print data=lag2(obs=6); run;
proc sort data=lag2; by gender;

proc corr data=lag2; by gender;
var pair1 pair2;

run;

data lag3; set dentstats;
by child;
pair1=csage1; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 3";
proc print data=lag3(obs=6); run;
proc sort data=lag3; by gender;

proc corr data=lag3; by gender;
var pair1 pair2;

run;
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OUTPUT: We have deleted some of the output of PROC DISCRIM that is irrelevant to our purposes here

to shorten the presentation. The full output from the call to this procedure is on the course web page.

TRANSFORMED DATA -- 1 RECORD/INDIVIDUAL 1

Obs age1 age2 age3 age4 child gender

1 21.0 20.0 21.5 23.0 1 0
2 21.0 21.5 24.0 25.5 2 0
3 20.5 24.0 24.5 26.0 3 0
4 23.5 24.5 25.0 26.5 4 0
5 21.5 23.0 22.5 23.5 5 0

SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER 2

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 10

age1 age2 age3 age4

age1 4.513636364 3.354545455 4.331818182 4.356818182
age2 3.354545455 3.618181818 4.027272727 4.077272727
age3 4.331818182 4.027272727 5.590909091 5.465909091
age4 4.356818182 4.077272727 5.465909091 5.940909091

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 11 21.18182 2.12453 233.00000 16.50000 24.50000
age2 11 22.22727 1.90215 244.50000 19.00000 25.00000
age3 11 23.09091 2.36451 254.00000 19.00000 28.00000
age4 11 24.09091 2.43740 265.00000 19.50000 28.00000

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.83009 0.86231 0.84136
0.0016 0.0006 0.0012

age2 0.83009 1.00000 0.89542 0.87942
0.0016 0.0002 0.0004

age3 0.86231 0.89542 1.00000 0.94841
0.0006 0.0002 <.0001

age4 0.84136 0.87942 0.94841 1.00000
0.0012 0.0004 <.0001

SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER 3

----------------------------------- gender=1 ----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 15

age1 age2 age3 age4

age1 6.016666667 2.291666667 3.629166667 1.612500000
age2 2.291666667 4.562500000 2.193750000 2.810416667
age3 3.629166667 2.193750000 7.032291667 3.240625000
age4 1.612500000 2.810416667 3.240625000 4.348958333

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 16 22.87500 2.45289 366.00000 17.00000 27.50000
age2 16 23.81250 2.13600 381.00000 20.50000 28.00000
age3 16 25.71875 2.65185 411.50000 22.50000 31.00000
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age4 16 27.46875 2.08542 439.50000 25.00000 31.50000

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.43739 0.55793 0.31523
0.0902 0.0247 0.2343

age2 0.43739 1.00000 0.38729 0.63092
0.0902 0.1383 0.0088

age3 0.55793 0.38729 1.00000 0.58599
0.0247 0.1383 0.0171

age4 0.31523 0.63092 0.58599 1.00000
0.2343 0.0088 0.0171

SAMPLE MEANS AND SDS BY GENDER FROM PROC MEANS 4

g _ _ s s s s
e T F m m m m d d d d
n Y R a a a a a a a a

O d P E g g g g g g g g
b e E Q e e e e e e e e
s r _ _ 1 2 3 4 1 2 3 4

1 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451 2.43740
2 1 0 16 22.8750 23.8125 25.7188 27.4688 2.45289 2.13600 2.65185 2.08542

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 5

Obs gender _TYPE_ _FREQ_ mage1 mage2 mage3 mage4 sdage1 sdage2 sdage3

1 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451
2 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451
3 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451

Obs sdage4 age1 age2 age3 age4 child csage1 csage2 csage3 csage4

1 2.43740 21.0 20.0 21.5 23.0 1 -0.08558 -1.17092 -0.67283 -0.44757
2 2.43740 21.0 21.5 24.0 25.5 2 -0.08558 -0.38234 0.38447 0.57811
3 2.43740 20.5 24.0 24.5 26.0 3 -0.32093 0.93196 0.59593 0.78325

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 6

The DISCRIM Procedure

Observations 27 DF Total 26
Variables 4 DF Within Classes 25
Classes 2 DF Between Classes 1

Class Level Information

Variable Prior
gender Name Frequency Weight Proportion Probability

0 _0 11 11.0000 0.407407 0.500000
1 _1 16 16.0000 0.592593 0.500000

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 7

The DISCRIM Procedure

Pooled Within-Class Covariance Matrix, DF = 25

Variable age1 age2 age3 age4

age1 5.415454545 2.716818182 3.910227273 2.710227273
age2 2.716818182 4.184772727 2.927159091 3.317159091
age3 3.910227273 2.927159091 6.455738636 4.130738636
age4 2.710227273 3.317159091 4.130738636 4.985738636

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 8

The DISCRIM Procedure

Pooled Within-Class Correlation Coefficients / Pr > |r|

Variable age1 age2 age3 age4

age1 1.00000 0.57070 0.66132 0.52158
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0.0023 0.0002 0.0063

age2 0.57070 1.00000 0.56317 0.72622
0.0023 0.0027 <.0001

age3 0.66132 0.56317 1.00000 0.72810
0.0002 0.0027 <.0001

age4 0.52158 0.72622 0.72810 1.00000
0.0063 <.0001 <.0001

AUTOCORRELATION FUNCTION AT LAG 1 11

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -1.17092
2 0 0 11 1 -1.17092 -0.67283
3 0 0 11 1 -0.67283 -0.44757
4 0 0 11 2 -0.08558 -0.38234
5 0 0 11 2 -0.38234 0.38447
6 0 0 11 2 0.38447 0.57811

AUTOCORRELATION FUNCTION AT LAG 1 12

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 33 0 0.96825 0 -2.20369 2.07616
pair2 33 0 0.96825 0 -1.88353 2.07616

Pearson Correlation Coefficients, N = 33
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.89130
<.0001

pair2 0.89130 1.00000
<.0001

AUTOCORRELATION FUNCTION AT LAG 1 13

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 48 0 0.97849 0 -2.39513 1.99154
pair2 48 0 0.97849 0 -1.55080 1.99154

Pearson Correlation Coefficients, N = 48
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.47022
0.0007

pair2 0.47022 1.00000
0.0007

AUTOCORRELATION FUNCTION AT LAG 2 14

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -0.67283
2 0 0 11 1 -1.17092 -0.44757
3 0 0 11 2 -0.08558 0.38447
4 0 0 11 2 -0.38234 0.57811
5 0 0 11 3 -0.32093 0.59593
6 0 0 11 3 0.93196 0.78325
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AUTOCORRELATION FUNCTION AT LAG 2 15

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 22 0 0.97590 0 -2.20369 1.56184
pair2 22 0 0.97590 0 -1.88353 2.07616

Pearson Correlation Coefficients, N = 22
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.87087
<.0001

pair2 0.87087 1.00000
<.0001

AUTOCORRELATION FUNCTION AT LAG 2 16

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 32 0 0.98374 0 -2.39513 1.96044
pair2 32 0 0.98374 0 -1.21378 1.99154

Pearson Correlation Coefficients, N = 32
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.59443
0.0003

pair2 0.59443 1.00000
0.0003

AUTOCORRELATION FUNCTION AT LAG 3 17

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -0.44757
2 0 0 11 2 -0.08558 0.57811
3 0 0 11 3 -0.32093 0.78325
4 0 0 11 4 1.09115 0.98839
5 0 0 11 5 0.14977 -0.24243
6 0 0 11 6 -0.55627 -0.65271

AUTOCORRELATION FUNCTION AT LAG 3 18

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 11 0 1.00000 0 -2.20369 1.56184
pair2 11 0 1.00000 0 -1.88353 1.60380

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

pair1 pair2
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pair1 1.00000 0.84136
0.0012

pair2 0.84136 1.00000
0.0012

AUTOCORRELATION FUNCTION AT LAG 3 19

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 16 0 1.00000 0 -2.39513 1.88553
pair2 16 0 1.00000 0 -1.18382 1.93307

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.31523
0.2343

pair2 0.31523 1.00000
0.2343

PAGE 104



CHAPTER 5 ST 732, M. DAVIDIAN

5 Univariate repeated measures analysis of variance

5.1 Introduction

As we will see as we progress, there are a number of approaches for representing longitudinal data in

terms of a statistical model. Associated with these approaches are appropriate methods of analysis

that focus on questions that are of interest in the context of longitudinal data. As noted previously, one

way to make distinctions among these models and methods has to do with what they assume about the

covariance structure of a data vector from an unit. Another has to do with what is assumed about

the form of the mean of an observation and thus the mean vector for a data vector.

We begin our investigation of the different models and methods by considering a particular statistical

model for representing longitudinal data. This model is really only applicable in the case where the

data are balanced; that is, where the measurements on each unit occur at the same n times for all

units, with no departures from these times or missing values for any units. Thus, each individual has

associated an n-dimensional random vector, whose jth element corresponds to the response at the jth

(common) time point.

Although, as we will observe, the model may be put into the general form discussed in Chapters 3 and

4, where we think of the data in terms of vectors for each individual and the means and covariances

of these vectors, it is motivated by considering a model for each individual observation separately.

Because of this motivation, the model and the associated method of analysis is referred to as univariate

repeated measures analysis of variance.

• This model imposes a very specific assumption about the covariances of the data vectors, one that

may often not be fulfilled for longitudinal data.

• Thus, because the method exploits this possibly incorrect assumption, there is the potential for

erroneous inferences in the case that the assumption made is not relevant for the data at hand.

• The model also provides a simplistic representation for the mean of a data vector that does not

exploit the fact that each vector represents what might appear to be a systematic trajectory

that appears to be a function of time (recall the examples in Chapter 1 and the sample mean

vectors for the dental data in the last chapter).
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• However, because of its simplicity and connection to familiar analysis of variance techniques, the

model and method are quite popular, and are often adopted by default, sometimes without proper

attention to the validity of the assumptions.

We will first describe the model in the way it is usually represented, which will involve slightly different

notation than that we have discussed. This notation is conventional in this setting, so we begin by

using it. We will then make the connection between this representation and the way we have discussed

thinking about longitudinal data, as vectors.

5.2 Basic situation and statistical model

Recall Examples 1 and 2 in Chapter 1:

• In Example 1, the dental study, 27 children, 16 boys and 11 girls, were observed at each of ages 8,

10, 12, and 14 years. At each time, the response, a measurement of the distance from the center

of the pituitary to the pterygomaxillary fissure was made. Objectives were to learn whether there

is a difference between boys and girls with respect to this measure and its change over time.

• In Example 2, the diet study, 15 guinea pigs were randomized to receive zero, low, or high dose of

a vitamin E diet supplement. Body weight was measured at each of several time points (weeks 1,

3, 4, 5, 6, and 7) for each pig. Objectives were to determine whether there is a difference among

pigs treated with different doses of the supplement with respect to body weight and its change

over time.

Recall from Figures 1 and 2 of Chapter 1 that, each child or guinea pig exhibited a profile over time

(age or weeks) that appeared to increase with time; Figure 1 of Chapter 1 is reproduced in Figure 1

here for convenience.

In these examples, the response of interest is continuous (distance, body weight).
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• For simplicity, we will consider in detail the case where there is a single factor making up the

groups (e.g. gender, dose); however, it is straightforward to extend the development to the case

where the groups are determined by a factorial design; e.g. if in the diet study there had been

q = 6 groups, determined by the factorial arrangement of 3 doses and 2 genders.

SOURCES OF VARIATION: As discussed in Chapter 4, the model recognizes two possible sources of

variation that may make observations on units in the same group taken at the same time differ:

• There is random variation in the population of units due to, for example, biological variation. For

example, if we think of the population of all possible guinea pigs if they were all given the low dose,

they would produce different responses at week 1 simply because guinea pigs vary biologically and

are not all identical.

We may thus identify random variation among individuals (units).

• There is also random variation due to within-unit fluctuations and measurement error, as

discussed in Chapter4.

We may thus identify random variation within individuals (units).

It is important that any statistical model take these two sources of variation into appropriate account.

Clearly, these sources will play a role in determining the nature of the covariance matrix of a data

vector; we will see this for the particular model we now discuss in a moment.

MODEL: To state the model in the usual way, we will use notation different from that we have discussed

so far. We will then show how the model in the standard notation may also be represented as we have

discussed. Define the random variable

Yhℓj = observation on unit h in the ℓth group at time j.

• h = 1, . . . , rℓ, where rℓ denotes the number of units in group ℓ. Thus, in this notation, h indexes

units within a particular group.

• ℓ = 1, . . . , q indexes groups

• j = 1, . . . , n indexes the levels of time
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• Thus, the total number of units involved is m =
q∑

ℓ=1

rℓ. Each is observed at n time points.

The model for Yhℓj is given by

Yhℓj = µ + τℓ + bhℓ + γj + (τγ)ℓj + ehℓj (5.1)

• µ is an “overall mean”

• τℓ is the deviation from the overall mean associated with being in group ℓ

• γj is the deviation associated with time j

• (τγ)ℓj is an additional deviation associated with group ℓ and time j; (τγ)ℓj is the interaction

effect for group ℓ, time j

• bhℓ is a random effect with E(bhℓ) = 0 representing the deviation caused by the fact that Yhℓj

is measured on the hth particular unit in the ℓth group. That is, responses vary because of

random variation among units. If we think of the population of all possible units were they to

receive the treatment of group ℓ, we may think of each unit as having its own deviation simply

because it differs biologically from other units. Formally, we may think of this population as

being represented by a probability distribution of all possible bhℓ values, one per unit in the

population. bhℓ thus characterizes the source of random variation due to among-unit causes. The

term random effect is customary to describe a model component that addresses among-unit

variation.

• ehℓj is a random deviation with E(ehℓj) = 0 representing the deviation caused by the aggregate

effect of within-unit fluctuations and measurement error (within-unit sources of variation). That

is, responses also vary because of variation within units. Recalling the model in Chapter 4, if we

think of the population of all possible combinations of fluctuations and measurement errors that

might happen, we may represent this population by a probability distribution of all possible

ehℓj values. The term “random error” is usually used to describe this model component, but,

as we have remarked previously, we prefer random deviation, as this effect may be due to more

than just measurement error.
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REMARKS:

• Model (5.1) has exactly the same form as the statistical model for observations arising from an

experiment conducted according to a split plot design. Thus, as we will see, the analysis is

identical; however, the interpretation and further analyses are different.

• Note that the actual values of the times of measurement (e.g. ages 8, 10, 12, 14 in the dental

study) do not appear explicitly in the model. Rather, a separate deviation parameter γj and

and interaction parameter (τγ)ℓj is associated with each time. Thus, the model takes no explicit

account of where the times of observation are chronologically; e.g. are they equally-spaced?

MEAN MODEL: The model (5.1) represents how we believe systematic factors like time and treatment

(group) and random variation due to various sources may affect the way a response turns out. To

exhibit this more clearly, it is instructive to re-express the model as

Yhℓj = µ + τℓ + γj + (τγ)ℓj︸ ︷︷ ︸
µℓj

+ bhℓ + ehℓj︸ ︷︷ ︸
ϵhℓj

(5.2)

• Because bhℓ and ehℓj have mean 0, we have of course

E(Yhℓj) = µℓj = µ + τℓ + γj + (τγ)ℓj .

Thus, µℓj = µ+τℓ+γj+(τγ)ℓj represents the mean for a unit in the ℓth group at the jth observation

time. This mean is the sum of deviations from an overall mean caused by a fixed systematic effect

on the mean due to group ℓ that happens at all time points (τℓ), a fixed systematic effect on the

mean that happens regardless of group at time j (γj), and an additional fixed systematic effect

on the mean that occurs for group ℓ at time j ((τγ)ℓj).

• ϵhℓj = bhℓ + ehℓj the sum of random deviations that cause Yhℓj to differ from the mean at time j

for the hth unit in group ℓ. ϵhℓj summarizes all sources random variation.

• Note that bhℓ does not have a subscript “j.” Thus, the deviation that “places” the hth unit in

group ℓ in the population of all such units relative to the mean response is the same for all time

points. This represents an assumption: if a unit is “high” at time j relative to the group mean

at j, it is “high” by the same amount at all other times.

This may or not be reasonable. For example, recall Figure 1 in Chapter 4, reproduced here as

Figure 2.
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The fact that this normal distribution is identical for all ℓ = 1, . . . , q reflects an assumption

that units vary similarly among themselves in all q populations. The independence assumption

represents the reasonable view that the response one unit in the population gives at any time is

completely unrelated to that given by another unit.

• ehℓj ∼ N (0, σ2
e) and are all independent. This says that the distribution of deviations due to

within-unit causes is centered about 0 (some negative, some positive), with variation character-

ized by the (common) variance component σ2
e .

That this distribution is the same for all ℓ = 1, . . . , q and j = 1, . . . , n again is an assumption.

The variance σ2
e represents the “aggregate” variance of the combined fluctuation and measurement

error processes, and is assumed to be constant over time and group. Thus, the model assumes

that the combined effect of within-unit sources of variation is the same at any time in all groups.

E.g. the magnitude of within-unit fluctuations is similar across groups and does not change with

time, and the variability associated with errors in measurement is the same regardless of the size

of the thing being measured.

The independence assumption is something we must think about carefully. It is customary to

assume that the error in measurement introduced by, say, an imperfect scale at one time point

is not related to the error in measurement that occurs at a later time point; i.e. measurement

errors occur “haphazardly.” Thus, if ehℓj represents mostly measurement error, the independence

assumption seems reasonable. However, fluctuations within a unit may well be correlated, as

discussed in the last chapter. Thus, if the time points are close enough together so that correlations

are not negligible, this may not be reasonable. (recall our discussion of observations close in time

tending to be “large” or “small” together).

• The bhℓ and ehℓj are assumed to all be mutually independent. This represents the view that

deviations due to within-unit sources are of similar magnitude regardless of the the magnitudes

of the deviations bhℓ associated with the units on which the observations are made. This is often

reasonable; however, as we will see later in the course, there are certain situations where it may

not be reasonable.

With these assumptions it will follow that the Yhℓjs are normally distributed, as we will now demonstrate.

VECTOR REPRESENTATION AND COVARIANCE MATRIX: Now consider the data on a particular

unit. With this notation, the subscripts h and ℓ identify a particular unit as the hth unit in the ℓth

group.
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For this unit, we may summarize the observations at the n times in a vector and write

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Yhℓ1

Yhℓ2

...

Yhℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

µ + τℓ + γ1 + (τγ)ℓ1

µ + τℓ + γ2 + (τγ)ℓ2

...

µ + τℓ + γn + (τγ)ℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

bhℓ

bhℓ

...

bhℓ

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ehℓ1

ehℓ2

...

ehℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.3)

Y hℓ = µℓ + 1bhℓ + ehℓ,

where 1 is a (n × 1) vector of 1s, or more succinctly,

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Yhℓ1

Yhℓ2

...

Yhℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

µℓ1

µℓ2

...

µℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ϵhℓ1

ϵhℓ2

...

ϵhℓn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

Y hℓ = µℓ + ϵhℓ,

so, for the data vector from the hth unit in group ℓ,

E(Y hℓ) = µℓ.

We see that the model implies a very specific representation of a data vector. Note that for all units

from the same group (ℓ) µℓ is the same.

We will now see that the model implies something very specific about how observations within and

across units covary and about the structure of the mean of a data vector.

• Because bhℓ and ehℓj are independent, we have

var(Yhℓj) = var(bhℓ) + var(ehℓj) + 2cov(bhℓ, ehℓj) = σ2
b + σ2

e + 0 = σ2
b + σ2

e .

• Furthermore, because each random component bhℓ and ehℓj is normally distributed, each Yhℓj is

normally distributed.

• In fact, the Yhℓj values making up the vector Y hℓ are jointly normally distributed.

Thus, a data vector Y hℓ under the assumptions of this model has a multivariate (n-dimensional) normal

distribution with mean vector µℓ. We now turn to the form of the covariance matrix of Y hℓ.
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FACT: First we note the following result. If b and e are two random variables with means µb and µe,

then cov(b, e) = 0 implies that E(be) = E(b)E(e) = µbµe. This is shown as follows:

cov(b, e) = E(b − µb)(e − µe) = E(be) − E(b)µe − µbE(e) + µbµe = E(be) − µbµe.

Thus, cov(b, e) = 0 = E(be) − µbµe, and the result follows.

• We know that if b and e are jointly normally distributed and independent, then cov(b, e) = 0.

• Thus, b and e independent and normal implies E(be) = µbµe. If furthermore b and e have means

0, i.e. E(b) = 0, E(e) = 0, then in fact

E(be) = 0.

We now use this result to examine the covariances.

• First, let Yhℓj and Yh′ℓ′j′ be two observations taken from different units (h and h′) from different

groups (ℓ and ℓ′) at different times (j and j ′).

cov(Yhℓj , Yh′ℓ′j′) = E(Yhℓj − µℓj)(Yh′ℓ′j′ − µℓ′j′) = E(bhℓ + ehℓj)(bh′ℓ′ + eh′ℓ′j′)

= E(bhℓbh′ℓ′) + E(ehℓjbh′ℓ′) + E(bhℓeh′ℓ′j′) + E(ehℓjeh′ℓ′j′) (5.5)

Note that, since all the random components are assumed to be mutually independent with 0

means, by the above result, we have that each term in (5.5) is equal to 0! Thus, (5.5) implies that

two responses from different units in different groups at different times are not correlated.

• In fact, the same argument goes through if ℓ = ℓ′, i.e. the observations are from two different

units in the same group and/or j = j ′, i.e. the observations are from two different units at the

same time. That is (try it!),

cov(Yhℓj , Yh′ℓj′) = 0, cov(Yhℓj , Yh′ℓ′j) = 0, cov(Yhℓj , Yh′ℓj) = 0.

• Thus, we may conclude that the model (5.1) automatically implies that any two observations

from different units have 0 covariance. Furthermore, because these observations are all normally

distributed, this implies that any two observations from different units are independent! Thus,

two vectors Y hℓ and Y h′ℓ′ from different units, where ℓ ̸= ℓ′ or ℓ = ℓ′, are independent under

this model!

Recall that at the end of Chapter 3, we noted that it seems reasonable to assume that data vectors

from different units are indeed independent; this model automatically induces this assumption.
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• Now consider 2 observations on the same unit, say the hth unit in group ℓ, Yhℓj and Yhℓj′ . We

have

cov(Yhℓj , Yhℓj′) = E(Yhℓj − µℓj)(Yhℓj′ − µℓj′) = E(bhℓ + ehℓj)(bhℓ + ehℓj′)

= E(bhℓbhℓ) + E(ehℓjbhℓ) + E(bhℓehℓj′) + E(ehℓjehℓj′)

= σ2
b + 0 + 0 + 0 = σ2

b . (5.6)

This follows because all of the random variables in the last three terms are mutually independent

according to the assumptions and

E(bhℓbhℓ) = E(bhℓ − 0)2 = var(bhℓ) = σ2
b

by the assumptions.

COVARIANCE MATRIX: Summarizing this information in the form of a covariance matrix, we see

that

var(Y hℓ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ2
b + σ2

e σ2
b · · · σ2

b

σ2
b σ2

b + σ2
e · · · σ2

b
...

...
...

...

σ2
b σ2

b · · · σ2
b + σ2

e

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.7)

• Actually, we could have obtained this matrix more directly by using matrix operations applied to

the matrix form of (5.3). Specifically, because bhℓ and the elements of ehℓ are independent and

normal, 1bhℓ and ehℓ are independent, multivariate normal random vectors,

var(Y hℓ) = var(1bhℓ) + var(ehℓ) = 1var(bhℓ)1
′ + var(ehℓ). (5.8)

Now var(bhℓ) = σ2
b . Furthermore (try it),

11′ = Jn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1

1 · · · 1
...

...
...

1 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and var(ehℓ) = σ2
eIn;

applying these to (5.8) gives

var(Y hℓ) = σ2
bJn + σ2

eIn = Σ. (5.9)

It is straightforward to observe by writing out (5.9) in detail that it is just a compact way, in

matrix notation, to state (5.7).
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• It is customary to use J to denote a square matrix of all 1s, where we add the subscript when we

wish to emphasize the dimension.

• We thus see that we may summarize the assumptions of model (5.1) in matrix form: The m data

vectors Y hℓ, h = 1, . . . , rℓ, ℓ = 1, . . . , q are all independent and multivariate normal with

Y hℓ ∼ Nn(µℓ,Σ),

where Σ is given in (5.9).

COMPOUND SYMMETRY: We thus see from given in (5.7) and (5.9) is that this model assumes that

the covariance of a random data vector has the compound symmetry or exchangeable correlation

structure (see Chapter 4).

• Note that the off-diagonal elements of this matrix (the covariances among elements of Y hℓ) are

equal to σ2
b . Thus, if we compute the correlations, they are all the same and equal to (verify)

σ2
b/(σ2

b + σ2
e). This is called the intra-class correlation in some contexts.

• As we noted earlier, this model says that no matter how far apart or near in time two elements

of Y hℓ were taken, the degree of association between them is the same. Hence, with respect to

association, they are essentially interchangeable (or exchangeable).

• Moreover, the association is positive; i.e. because both σ2
b and σ2

e are variances, both are

positive. Thus, the correlation, which depends on these two positive quantities, must also be

positive.

• The diagonal elements of are also all the same, implying that the variance of each element of Y hℓ

is the same.

• This covariance structure is a special case of something called a Type H covariance structure.

More on this later.

• As we have noted previously, the compound symmetric structure may be a rather restrictive

assumption for longitudinal data, as it tends to emphasize among-unit sources of variation. If

the within-unit source of correlation (due to fluctuations) is non-negligible, this may be a poor

representation. Thus, assuming the model (5.1) implies this fairly restrictive assumption on the

nature of variation within a data vector.
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• The implied covariance matrix (5.7) is the same for all units, regardless of group.

As we mentioned earlier, using model (5.1) as the basis for analyzing longitudinal data is quite common

but may be inappropriate. We now see why – the model implies a restrictive and possibly unrealistic

assumption about correlation among observations on the same unit over time!

ALTERNATIVE NOTATION: We may in fact write the model in our previous notation. Note that h

indexes units within groups, and ℓ indexes groups, for a total of m =
∑q

ℓ=1 rℓ units. We could thus

reindex units by a single index, i = 1, . . . , m, where the value of i for any given unit is determined by

its (unique) values of h and ℓ. We could reindex bhℓ and ehℓ in the same way. Thus, let Y i, i = 1, . . . , m,

i.e.

Y i =

⎛

⎜⎜⎜⎜⎝

Yi1

...

Yin

⎞

⎟⎟⎟⎟⎠
,

denote the vectors Y hℓ, h = 1, . . . , rℓ, ℓ = 1, . . . , q reindexed, and similarly write bi and ei. To express

the model with this indexing, the information on group membership must somehow be incorporated

separately, as it is no longer explicit from the indexing. To do this, it is common to write the model as

follows.

Let M denote the matrix of all means µℓj implied by the model (5.1), i.e.

M =

⎛

⎜⎜⎜⎜⎝

µ11 µ12 · · · µ1n

...
...

...
...

µq1 µq2 · · · µqn

⎞

⎟⎟⎟⎟⎠
. (5.10)

The ℓth row of the matrix M in (5.10) is thus the transpose of the mean vector µℓ (n × 1), i.e.

M =

⎛

⎜⎜⎜⎜⎝

µ′

1
...

µ′

q

⎞

⎟⎟⎟⎟⎠
.
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Also, using the new indexing system, let, for ℓ = 1, . . . , q,

aiℓ = 1 if unit i is from group ℓ

= 0 otherwise

Thus, the aiℓ record the information on group membership. Now let ai be the vector (q × 1) of aiℓ

values corresponding to the ith unit, i.e.

a′

i = (ai1, ai2, . . . , aiq);

because any unit may only belong to one group, ai will be a vector of all 0s except for a 1 in the position

corresponding to i’s group. For example, if there are q = 3 groups and n = 4 times, then

M =

⎛

⎜⎜⎜⎜⎝

µ11 µ12 µ13 µ14

µ21 µ22 µ23 µ24

µ31 µ32 µ33 µ34

⎞

⎟⎟⎟⎟⎠

and if the ith unit is from group 2, then

a′

i = (0, 1, 0),

so that (verify)

a′

iM = (µ21, µ22, µ23, µ24) = µ′

i,

say, the mean vector for the ith unit. The particular elements of µi are determined by the group

membership of unit i, and are the same for all units in the same group.

Using these definitions, it is straightforward (try it) to verify that we may rewrite the model in (5.3)

and (5.4) as

Y ′

i = a′

iM + 1′bi + e′

i, i = 1, . . . ,m.

and

Y ′

i = a′

iM + ϵ′i, i = 1, . . . ,m. (5.11)

This one standard way of writing the model when indexing units is done with a single subscript (i in

this case).

In particular, this way of writing the model is used in the documentation for SAS PROC GLM. The

convention is to put the model “on its side,” which can be confusing.
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Another way of writing the model that is more familiar and more germane to our later development is

as follows. Let β be the vector of all parameters in the model (5.1) for all groups and times; i.e. all of

µ, the τℓ, γj , and (τγ)ℓj , ℓ = 1, . . . , q, j = 1, . . . , n. For example, with q = 2 groups and n = 3 time

points,

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ

τ1

τ2

γ1

γ2

γ3

(τγ)11

(τγ)12

(τγ)13

(τγ)21

(τγ)22

(τγ)23

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now E(Y i) = µi. If, for example, i is in group 2, then

µi =

⎛

⎜⎜⎜⎜⎝

µ21

µ22

µ23

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

µ + τ2 + γ1 + (τγ)21

µ + τ2 + γ2 + (τγ)22

µ + τ2 + γ3 + (τγ)23

⎞

⎟⎟⎟⎟⎠
.

Note that if we define

Xi =

⎛

⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 0 0 1 0 0

1 0 1 0 1 0 0 0 0 0 1 0

1 0 1 0 0 1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
,

then (verify), we can write

µi = X iβ.

Thus, in any general model, we see that, if we define β and X i appropriately, we can write the model

as

Y i = X iβ + 1bi + ei or Y i = Xiβ + ϵi, i = 1, . . . , m.

Xi would be the appropriate matrix of 0s and 1s, and would be the same for each i in the same group.
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PARAMETERIZATION: Just as with any model of this type, we note that representing the means µℓj

in terms of parameters µ, τℓ, γj , and (τγ)ℓj leads to a model that is overparameterized. That is,

while we do have enough information to figure out how the means µℓj differ, we do not have enough

information to figure out how they break down into all of these components. For example, if we had 2

treatment groups, we can’t tell where all of µ, τ1, and τ2 ought to be just from the information at hand.

To see what we mean, suppose we knew that µ + τ1 = 20 and µ + τ2 = 10. Then one way this could

happen is if

µ = 15, , τ1 = 5, τ2 = −5;

another way is

µ = 12, , τ1 = 8, τ2 = −2;

in fact, we could write zillions of more ways. Equivalently, this issue may also be seen by realizing that

the matrix X i is not of full rank.

Thus, the point is that, although this type of representation of a mean µℓj used in the context of analysis

of variance is convenient for helping us think about effects of different factors as deviations from an

“overall” mean, we can’t identify all of these components. In order to identify them, it is customary to

impose constraints that make the representation unique by forcing only one of the possible zillions of

ways to hold:
q∑

ℓ=1

τℓ = 0,
n∑

j=1

γj = 0,
q∑

ℓ=1

(τγ)ℓj = 0 =
n∑

j=1

(τγ)ℓj for all j, ℓ.

Imposing these constraints is equivalent to redefining the vector of parameters β and the matrices X i

so that X i will always be a full rank matrix for all i.

REGRESSION INTERPRETATION: The interesting feature of this representation is that it looks like

we have a set of m “regression” models, indexed by i, each with its own “design matrix” X i and

“deviations” ϵi. We will see later that more flexible models for repeated measurements are also of this

form; thus, writing (5.1) this way will allow us to compare different models and methods directly.

Regardless of how we write the model, it is important to remember that an important assumption of

the model is that all data vectors are multivariate normal with the same covariance matrix having a

very specific form; i.e. with this indexing, we have

Y i ∼ Nn(µi,Σ), Σ = σ2
bJn + σ2

eIn.
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5.3 Questions of interest and statistical hypotheses

We now focus on how questions of scientific interest may be addressed in the context of such a model

for longitudinal data. Recall that we may write the model as in (5.11), i.e.

Y ′

i = a′

iM + ϵ′i, i = 1, . . . ,m, (5.12)

where

M =

⎛

⎜⎜⎜⎜⎝

µ11 µ12 · · · µ1n

...
...

...
...

µq1 µq2 · · · µqn

⎞

⎟⎟⎟⎟⎠

and

µℓj = µ + τℓ + γj + (τγ)ℓj . (5.13)

The constraints
q∑

ℓ=1

τℓ = 0,
n∑

j=1

γj = 0,
q∑

ℓ=1

(τγ)ℓj = 0 =
n∑

j=1

(τγ)ℓj

are assumed to hold.

The model (5.12) is sometimes written succinctly as

Y = AM + ϵ, (5.14)

where Y is the (m × n) matrix with ith row Y ′

i and similarly for ϵ, and A is the (m × q) matrix with

ith row a′

i. We will not make direct use of this way of writing the model; we point it out as it is the

way the model is often written in texts on general multivariate models. It is also the way the model is

referred to in the documentation for PROC GLM in the SAS software package.

GROUP BY TIME INTERACTION: As we have noted, a common objective in the analysis of longi-

tudinal data is to assess whether the way in which the response changes over time is different across

treatment groups. This is usually phrased in terms of means. For example, in the dental study, is the

profile of distance over time different on average for boys and girls? That is, is the pattern of change

in mean response different for different groups?

This is best illustrated by picture. For the case of q = 2 groups and n = 3 time points, Figure 3 shows

two possible scenarios. In each panel, the lines represent the mean responses µℓj for each group. In

both panels, the mean response at each time is higher for group 2 than for group 1 at all time points,

and the pattern of change in mean response seems to follow a straight line. However, in the left panel,

the rate of change of the mean response over time is the same for both groups.
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Under the constraints
q∑

ℓ=1

(τγ)ℓj = 0 =
n∑

j=1

(τγ)ℓj for all ℓ, j,

if (τγ)ℓj are all the same for all ℓ, j, then it must be that

(τγ)ℓj = 0 for all ℓ, j.

Thus, if we wished to discern between a situation like that in the left panel, of parallel profiles, and

that in the right panel (lack of parallelism), addressing the issue of a common rate of change over time,

we could state the null hypothesis as

H0 : all (τγ)ℓj = 0.

There are qn total parameters (τγ)ℓj ; however, if the constraints above hold, then having (q−1)(n−1) of

the (τγ)ℓj equal to 0 automatically requires the remaining ones to be zero as well. Thus, the hypothesis

is really one about the behavior of (q − 1)(n − 1) parameters, hence there are (q − 1)(n − 1) degrees

of freedom associated with this hypothesis.

GENERAL FORM OF HYPOTHESES: It turns out that, with the model expressed in the form (5.12),

it is possible to express H0 and other hypotheses of scientific interest in a unified way. This unified

expression is not necessary to appreciate the hypotheses of interest; however, it is used in many texts

on the subject and in the documentation for PROC GLM in SAS, so we digress for a moment to describe

it.

Specifically, noting that M is the matrix whose rows are the mean vectors for the different treatment

groups, it is possible to write formal statistical hypotheses as linear functions of the elements of M .

Let

• C be a (c × q) matrix with c ≤ q of full rank.

• U be a (n × u) matrix with u ≤ n of full rank.

Then it turns out that the null hypothesis corresponding to questions of scientific interest may be written

in the form

H0 : CMU = 0.

Depending on the choice of the matrices C and U , the linear function CMU of the elements of

M (the individual means for different groups at different time points) may be made to address these

different questions.
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We now exhibit this for H0 for the group by time interaction. For definiteness, consider the situation

where there are q = 2 groups and n = 3 time points. Consider

C =
(

1 −1

)
,

so that c = 1 = q − 1. Then note that

CM =
(

1 −1

)
⎛

⎜⎝
µ11 µ12 µ13

µ21 µ22 µ23

⎞

⎟⎠ =
(

µ11 − µ21, µ12 − µ22, µ13 − µ23

)

=
(

τ1 − τ2 + (τγ)11 − (τγ)21, τ1 − τ2 + (τγ)12 − (τγ)22, τ1 − τ2 + (τγ)13 − (τγ)23

)

Thus, this C matrix has the effect of taking differences among groups.

Now let

U =

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
,

so that u = 2 = n − 1. It is straightforward (try it) to show that

CMU =
(

µ11 − µ21 − µ12 + µ22, µ12 − µ22 − µ13 + µ23

)

=
(

(τγ)11 − (τγ)21 − (τγ)12 + (τγ)22, (τγ)12 − (τγ)22 − (τγ)13 + (τγ)23

)
.

It is an exercise in algebra to verify that, under the constraints, if each of these elements equals zero,

then H0 follows.

In the jargon associated with repeated measurements, the test for group by time interaction is sometimes

called the test for parallelism. Later, we will discuss some further hypotheses involving different

choices of U that allow one to investigate different aspects of the change in mean response over time

and how it differs across groups. Generally, in the analysis of longitudinal data from different groups,

testing the group by time interaction is of primary interest, as it addresses whether the change in mean

response differs across groups.

It is important to recognize that parallelism does not necessarily mean that the mean response over

time is restricted to look like a straight line in each group. In Figure 4, the left panel exhibits

parallelism; the right panel does not.

PAGE 124







CHAPTER 5 ST 732, M. DAVIDIAN

Thus, the hypothesis may be expressed as

H0 : τ1 − τ2 = 0.

Furthermore, under the constraint
∑q

ℓ=1 τℓ = 0, if the τℓ are equal as in H0, then they must satisfy

τℓ = 0 for each ℓ. Thus, the hypothesis may be rewritten as

H0 : τ1 = τ2 = 0.

For general q and n, the reasoning is the same; we have

H0 : τ1 = . . . = τq = 0.

The appropriate null hypothesis that addresses this issue may also be stated in the general form H0 :

CMU = 0 for suitable choices of C and U . The form of U in particular shows the interpretation as

that of “averaging” over time. Continuing to take q = 2 and n = 3, let

C =
(

1 −1

)
,

so that c = 1 = q − 1. Then note that

CM =
(

1 −1

)
⎛

⎜⎝
µ11 µ12 µ13

µ21 µ22 µ23

⎞

⎟⎠ =
(

µ11 − µ21, µ12 − µ22, µ13 − µ23

)

=
(

τ1 − τ2 + (τγ)11 − (τγ)21, τ1 − τ2 + (τγ)12 − (τγ)22, τ1 − τ2 + (τγ)13 − (τγ)23

)

Now let (n = 3 here)

U =

⎛

⎜⎜⎜⎜⎝

1/n

1/n

1/n

⎞

⎟⎟⎟⎟⎠
.

It is straightforward to see that, with n = 3,

CMU = τ1 − τ2 + n−1
n∑

j=1

(τγ)1j − n−1
n∑

j=1

(τγ)2j .

That is, this choice of U dictates an averaging operation across time. Imposing the constraints as

above, we thus see that we may express H0 in the form H0 : CMU = 0 with these choices of C

and U . For general q and n, one may specify appropriate choices of C and U , where the latter is a

column vector of 1’s implying the “averaging” operation across time, and arrive at the general hypothesis

H0 : τ1 = . . . = τq = 0.
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MAIN EFFECT OF TIME: Another question of interest may be whether the mean response is in fact

constant over time. If the profiles are parallel, then this is like asking whether the mean response

averaged across groups is the same at each time. If the profiles are not parallel, then this may or may

not be interesting. For example, note that in the left panel of Figure 5, the average of mean responses for

groups 1 and 2 are the same at each time point. However, the mean response is certainly not constant

across time for either group. If the groups represent things like genders, then what happens on average

is something that can never be achieved.

Consider again the special case of q = 2 and n = 3. The average of mean responses across groups for

time j is

q−1
q∑

ℓ=1

µℓj = γj + q−1
q∑

ℓ=1

τℓ + q−1
q∑

ℓ=1

(τγ)ℓj = γj

using the constraints
∑q

ℓ=1 τℓ = 0 and
∑q

ℓ=1(τγ)ℓj = 0. Thus, having all these averages be the same at

each time is equivalent to

H0 : γ1 = γ2 = γ3.

Under the constraint
∑n

j=1 γj = 0, then, we have H0 : γ1 = γ2 = γ3 = 0.

For general q and n, the hypothesis is of the form

H0 : γ1 = . . . = γn = 0.

We may also state this hypothesis in the form H0 : CMU = 0. In the special case q = 2, n = 3, taking

U =

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
, C =

(
1/2 1/2

)

gives

MU =

⎛

⎜⎝
µ11 µ12 µ13

µ21 µ22 µ23

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎝
µ11 − µ12 µ12 − µ13

µ21 − µ22 µ22 − µ23

⎞

⎟⎠

=

⎛

⎜⎝
γ1 − γ2 + (τγ)11 − (τγ)12, γ2 − γ3 + (τγ)12 − (τγ)13

γ1 − γ2 + (τγ)21 − (τγ)22, γ2 − γ3 + (τγ)22 − (τγ)23

⎞

⎟⎠ .

from whence it is straightforward to derive, imposing the constraints, that (verify)

CMU =
(

γ1 − γ2, γ2 − γ3

)
.

Setting this equal to zero gives H0 : γ1 = γ2 = γ3. For general q and n, we may choose the matrices C

and U in a similar fashion. Note that this type of C matrix averages across groups.
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OBSERVATION: These are, of course, exactly the hypotheses that one tests for a split plot experiment,

where, here, “time” plays the role of the “split plot” factor and “group” is the “whole plot factor.” What

is different lies in the interpretation; because “time” has a natural ordering (longitudinal), what is

interesting may be different; as noted above, of primary interest is whether the change in mean response

is different over (the levels of) time. We will see more on this shortly.

5.4 Analysis of variance

Given the fact that the statistical model and hypotheses in this setup are identical to that of a split

plot experiment, it should come as no surprise that the analysis performed is identical. That is, under

the assumption that the model (5.1) is correct and that the observations are normally distributed, it is

possible to show that the usual F ratios one would construct under the usual principles of analysis of

variance provide the basis for valid tests of the hypotheses above. We write out the analysis of variance

table here using the original notation with three subscripts, i.e., Yhℓj represents the measurement at the

j time on the hth unit in the ℓth group.

Define

• Y hℓ· = n−1 ∑n
j=1 Yhℓj , the sample average over time for the hth unit in the ℓth group (over all

observations on this unit)

• Y ℓj = r−1
ℓ

∑rℓ

h=1 Yhℓj , the sample average at time j in group ℓ over all units

• Y ℓ· = (rℓn)−1 ∑rℓ

h=1

∑n
j=1 Yhℓj , the sample average of all observations in group ℓ

• Y ··j = m−1 ∑q
ℓ=1

∑rℓ

h=1 Yhℓj , the sample average of all observations at the jth time

• Y ··· = the average of all mn observations.

Let

SSG =
q∑

ℓ=1

nrℓ(Y ℓ· − Y ···)
2, SSTot,U = n

q∑

ℓ=1

rℓ∑

h=1

(Y hℓ· − Y ···)
2

SST = m
n∑

j=1

(Y ··j − Y ···)
2, SSGT =

n∑

j=1

q∑

ℓ=1

rℓ(Y ·ℓj − Y ···)
2 − SST − SSG

SSTot,all =
q∑

ℓ=1

rℓ∑

h=1

n∑

j=1

(Yhℓj − Y ···)
2.

Then the following analysis of variance table is usually constructed.
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Source SS DF MS F

Among Groups SSG q − 1 MSG FG = MSG/MSEU

Among-unit Error SSTot,U − SSG m − q MSEU

Time SST n − 1 MST FT = MST /MSE

Group × Time SSGT (q − 1)(n − 1) MSGT FGT = MSGT /MSE

Within-unit Error SSE (m − q)(n − 1) MSE

Total SSTot,all nm − 1

where SSE = SSTot,all − SSGT − SST − SSTot,U .

“ERROR”: Keep in mind that, although it is traditional to use the term “error” in analysis of variance,

the among-unit error term includes variation due to among-unit biological variation and the

within-unit error term includes variation due to both fluctuations and measurement error.

F-RATIOS: It may be shown that, as long as the model is correct and the observations are normally

distributed, the F ratios in the above table do indeed have sampling distributions that are F distribu-

tions under the null hypotheses discussed above. It is instructive to state this another way. If we think

of the data in terms of vectors, then this is equivalent to saying that we require that

Y i ∼ Nn(µi,Σ), Σ = σ2
bJn + σ2

eIn. (5.15)

That is, as long as the data vectors are multivariate normal and exhibit the compound symmetry

covariance structure, then the F ratios above, which may be seen to be based on calculations on

individual observations, do indeed have sampling distributions that are F with the obvious degrees of

freedom.

EXPECTED MEAN SQUARES: In fact, under (5.15), it is possible to derive the expectations of the

mean squares in the table. That is, we find the average over all data sets we might have ended up

with, of the MSs that are used to construct the F ratios by applying the expectation operator to each

expression (which is a function of the data).

The calculations are messy (one place where they are done is in section 3.3 of Crowder and Hand, 1990),

so we do not show them here. The following summarizes the expected mean squares under (5.15).
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Source MS Expected mean square

Among Groups MSG σ2
e + nσ2

b + n
∑q

ℓ=1 rℓτ2
ℓ /(q − 1)

Among-unit error MSEU σ2
e + nσ2

b

Time MST σ2
e + m

∑n
j=1 γ2

j /(n − 1)

Group × Time MSGT σ2
e +

∑q
ℓ=1 rℓ

∑n
j=1(τγ)2ℓj/(q − 1)(n − 1)

Within-unit Error MSE σ2
e

It is critical to recognize that these calculations are only valid if the model is correct, i.e. if (5.15)

holds.

Inspection of the expected mean squares shows informally that we expect the F ratios in the analysis

of variance table to test the appropriate issues. For example, we would expect FGT to be large if

the (τγ)ℓj were not all zero. Note that FG uses the appropriate denominator; intuitively, because we

base our assessment on averages of across all units and time points, we would wish to compare the

mean square for groups against an “error term” that takes into account all sources of variation among

observations we have on the units – both that attributable to the fact that units vary in the population

(σ2
b ) and that attributable to the fact that individual observations vary within units (σ2

e). The other

two tests are on features that occur within units; thus, the denominator takes account of the relevant

source of variation, that within units (σ2
e).

We thus have the following test procedures.

• Test of the Group by Time interaction (parallelism).

H0 : (τγ)ℓj = 0 for all j, ℓ vs. H1 : at least one (τγ)ℓj ̸= 0.

A valid test rejects H0 at level of significance α if

FGT > F(q−1)(n−1),(n−1)(m−q),α

or, equivalently, if the probability is less than α that one would see a value of the test statistic as

large or larger than FGT if H0 were true (that is, the p-value is less than α).
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• Test of Main effect of Time (constancy).

H0 : γj = 0 for all j vs. H1 : at least one γj ̸= 0.

A valid test rejects H0 at level α if

FT > Fn−1,(n−1)(m−q),α

or, equivalently, if the probability is less than α that one would see a value of the test statistic as

large or larger than FT if H0 were true.

• Test of Main effect of Group (coincidence).

H0 : τℓ = 0 for all ℓ vs. H1 : at least one τℓ ̸= 0.

A valid test rejects H0 at level of significance α if

FG > Fq−1,m−q,α

or, equivalently, if the probability is less than α that one would see a value of the test statistic as

large or larger than FG if H0 were true.

In the above, Fa,b,α critical value corresponding to α for an F distribution with a numerator and b

denominator degrees of freedom.

In section 5.8, we show how one may use SAS PROC GLM to perform these calculations.

5.5 Violation of covariance matrix assumption

In the previous section, we emphasized that the procedures based on the analysis of variance are only

valid if the assumption of compound symmetry holds for the covariance matrix of a data vector. In

reality, these procedures are still valid under slightly more general conditions. However, the important

issue remains that the covariance matrix must be of a special form; if it is not, the tests above will be

invalid and may lead to erroneous conclusions. That is, the F ratios FT and FGT will no longer have

exactly an F distribution.
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A (n × n) matrix Σ is said to be of Type H if it may be written in the form

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ + 2α1 α1 + α2 · · · α1 + αn

α2 + α1 λ + 2α2 · · · α2 + αn

...
...

...
...

αn + α1 αn + α2 · · · λ + 2αn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (5.16)

It is straightforward (convince yourself) that a matrix that exhibits compound symmetry is of Type

H.

It is possible to show, although we will not pursue this here, that, as long as the data vectors Y i are

multivariate normal with common covariance matrix Σ that is of the form (5.16), the F tests discussed

above will be valid. Thus, because (5.16) includes the compound symmetry assumption as a special

case, these F tests will be valid if model (5.1) holds (along with normality).

• If the covariance matrix Σ is not of Type H, but these F tests are conducted nonetheless, they

will be too liberal; that is, they will tend to reject the null hypothesis more often then they

should.

• Thus, one possible consequence of using the analysis of variance procedures when they are not

appropriate is to conclude that group by time interactions exist when they really don’t.

TEST OF SPHERICITY: It is thus of interest to be able to test whether the true covariance structure of

data vectors in a repeated measurement context is indeed of Type H. One such test is known as Mauchly’s

test for sphericity. The form and derivation of this test are beyond the scope of our discussion here; a

description of the test is given by Vonesh and Chinchilli (1997, p. 85), for example. This test provides

a test statistic for testing the null hypothesis

H0 : Σ is of Type H,

where Σ is the true covariance matrix of a data vector.

The test statistic, which we do not give here, has approximately a χ2 (chi-square) distribution when

the number of units m on test is “large” with degrees of freedom equal to (n − 2)(n + 1)/2. Thus, the

test is performed at level of significance α by comparing the value of the test statistic to the χ2
α critical

value with (n− 2)(n + 1)/2 degrees of freedom. SAS PROC GLM may be instructed to compute this test

when repeated measurement data are being analyzed; this is shown in section 5.8.
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The test has some limitations:

• It is not very powerful when the numbers of units in each group is not large

• It can be misleading if the data vectors really do not have a multivariate normal distribution.

These limitations are one of the reasons we do not discuss the test in more detail; it may be of limited

practical value.

In section 5.7, we will discuss one approach to handling the problem of what to do if the null hypothesis

is rejected or if one is otherwise dubious about the assumption of Type H covariance.

5.6 Specialized within-unit hypotheses and tests

The hypotheses of group by time interaction (parallelism) and main effect of time have to do with

questions about what happens over time; as time is a within-unit factor, these tests are often referred

to as focusing on within-unit issues. These hypotheses address these issues in an “overall” sense; for

example, the group by time interaction hypothesis asks whether the pattern of mean response over time

is different for different groups.

Often, it is of interest to carry out a more detailed study of specific aspects of how the mean response

behaves over time, as we now describe. We first review the following definition.

CONTRASTS: Formally, if c is a (n × 1) vector and µ is a (n × 1) vector of means, then the linear

combination

c′µ = µ′c

is called a contrast if c is such that its elements sum to zero.

Contrasts are of interest in the sense that hypotheses about differences of means can be expressed in

terms of them. In particular, if c′µ = 0, there is no difference.
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For example, consider q = 2 and n = 3. The contrasts

µ11 − µ12 and µ21 − µ22 (5.17)

compare the mean response at the first and second time points for each of the 2 groups; similarly, the

contrasts

µ12 − µ13 and µ22 − µ23 (5.18)

compare the mean response at the second and third time points for each group. Thus, these contrasts

address the issue of how the mean differs from one time to the next in each group.

Recalling

µ′

1 =
(

µ11 µ12 µ13

)
, µ′

2 =
(

µ21 µ22 µ23

)
,

we see that the contrasts in (5.17) result from postmultiplying these mean vectors for each group by

c =

⎛

⎜⎜⎜⎜⎝

1

−1

0

⎞

⎟⎟⎟⎟⎠
;

similarly, those in (5.18) result from postmultiplying by

c =

⎛

⎜⎜⎜⎜⎝

0

1

−1

⎞

⎟⎟⎟⎟⎠
.

Specialized questions of interest pertaining to how the mean differs from one time to the next may then

be stated.

• We may be interested in whether the way in which the mean differs from, say, time 1 to time 2

is different for different groups. This is clearly part of the overall group by time interaction,

focusing particularly on what happens between times 1 and 2.

For our two groups, we would thus be interested in the difference of the contrasts in (5.17).

We may equally well wish to know whether the way in which the mean differs from time 2 to time

3 is different across groups; this is of course also a part of the group by time interaction, and is

represented formally by the difference of the contrasts in (5.18).

• We may be interested in whether there is a difference in mean from, say, time 1 to time 2, averaged

across groups. This is clearly part of the main effect of time and would be formally represented

by averaging the contrasts in (5.17). For times 2 and 3, we would be interested in the average

of the contrasts in (5.18).
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Specifying these specific contrasts and then considering their differences among groups or averages across

groups is a way of “picking apart” how the overall group by time effect and main effect of time occur

and can thus provide additional insight on how and whether things change over time.

It turns out that we may express such contrasts succinctly through the representation CMU ; indeed,

this is the way in which such specialized hypotheses are presented documentation for PROC GLM in SAS.

To obtain the contrasts in (5.17) and (5.18), in the case q = 2 and n = 3, consider the n×(n−1) matrix

U =

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
.

Then note that

MU =

⎛

⎜⎝
µ11 µ12 µ13

µ21 µ22 µ23

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎝
µ11 − µ12 µ12 − µ13

µ21 − µ22 µ22 − µ23

⎞

⎟⎠ . (5.19)

Each element of the resulting matrix is one of the above contrasts. This choice of the contrast matrix

U thus summarizes contrasts that have to do with differences in means from one time to the next. Each

column represents a different possible contrast of this type.

Note that the same matrix U would be applicable for larger q – the important point is that it has n− 1

columns, each of which applies one of the n− 1 possible comparisons of a mean at a particular time to

that subsequent. For general n, the matrix would have the form

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

−1 1 · · · 0

0 −1 · · · 0
...

...
...

...

0 · · · · · · 1

0 · · · 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.20)

with n and n− 1 columns. Postmultiplication of M by the general form of contrast matrix U in (5.20)

is often called the profile transformation of within-unit means.

Other contrasts may be of interest. Instead of asking what happens from one time to the next, we may

focus on how the mean at each time differs from what happens over all subsequent times. This may

help us to understand at what point in time things seem to change (if they do).
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For example, taking q = 2 and n = 4, consider the contrast

µ11 − (µ12 + µ13 + µ14)/3.

This contrast compares, for group 1, the mean at time 1 to the average of the means at all other times.

Similarly

µ12 − (µ13 + µ14)/2

compares for group 1 the mean at time 2 to the average of those at subsequent times. The final contrast

of this type for group 1 is

µ13 − µ14,

which compares what happens at time 3 to the “average” of what comes next, which is the single mean

at time 4.

We may similarly specify such contrasts for the other group.

We may express all such contrasts by a different contrast matrix U . In particular, let

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

−1/3 1 0

−1/3 −1/2 1

−1/3 −1/2 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (5.21)

Then if q = 2 (verify),

MU =

⎛

⎜⎝
µ11 − µ12/3 − µ13/3 − µ14/3, µ12 − µ13/2 − µ14/2, µ13 − µ14

µ21 − µ22/3 − µ23/3 − µ24/3, µ22 − µ23/2 − µ24/2, µ23 − µ24

⎞

⎟⎠ ,

which expresses all such contrasts; the first row gives the ones for group 1 listed above.

For general n, the (n×n−1) matrix whose columns define contrasts of this type is the so-called Helmert

transformation matrix of the form

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−1/(n − 1) 1 0 · · · 0

−1/(n − 1) −1/(n − 2) 1 · · · 0
...

... −1/(n − 3)
...

...

−1/(n − 1) −1/(n − 2)
... · · · 1

−1/(n − 1) −1/(n − 2) −1/(n − 3) · · · −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.22)

Postmultiplication of M by a matrix of the form (5.22) in contrasts representing comparisons of each

mean against the average of means at all subsequent times.
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It is straightforward to verify (try it!) that with n = 3 and q = 2, this transformation would lead to

MU =

⎛

⎜⎝
µ11 − µ12/2 − µ13/2 µ12 − µ13

µ21 − µ22/2 − µ23/2 µ22 − µ23

⎞

⎟⎠ (5.23)

How do we use all of this?

OVERALL TESTS: We have already seen the use of the CMU representation for the overall tests of

group by time interaction and main effect of time. Both contrast matrices U in (5.19) (profile) and

(5.23) (Helmert) contain sets of n− 1 contrasts that “pick apart” all possible differences in means over

time in different ways. Thus, intuitively we would expect that either one of them would lead us to the

overall tests for group by time interaction and main effect of time given the right C matrix (one that

takes differences over groups or one that averages over groups, respectively).

This is indeed the case: It may be shown that premultiplication of either (5.19) or (5.23) by the same

matrix C will lead to the same overall hypotheses in terms of the model components γj and (τγ)ℓj . For

example, we already saw that premultiplying (5.19) by C = (1, 1) gives with the constraints on (τγ)ℓj

CMU =
(

γ1 − γ2, γ2 − γ3

)
= 0.

It may be shown that premultiplying (5.23) by the same matrix C yields (try it)

CMU =
(

γ1 − 0.5γ2 − 0.5γ3, γ2 − γ3

)
= 0.

It is straightforward to verify that, these both imply the same thing, namely, that we are testing

γ1 = γ2 = γ3.

OVERALL TESTS: This shows the general phenomenon that the choice of the matrix of contrasts U

is not important for dictating the general tests of Time main effects and Group by Time interaction.

As long as the matrix is such that it yields differences of mean responses at different times, it will give

the same form of the overall hypotheses.

The choice of U matrix is important when we are interested in “picking apart” these overall effects, as

above.

We now return to how we might represent hypotheses for and conduct tests of issues like those laid

out on page 135. for a given contrast matrix U of interest. Premultiplication of U by M will yield

the q × (n− 1) matrix MU whose ℓth row contains whatever contrasts are of interest (dictated by the

columns of U) for group ℓ.
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• If we premultiply MU by the (q − 1) × q matrix

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(we considered earlier the special case where q = 2), then for each contrast defined in U , the

result is to consider how that contrast differs across groups. The contrast considers a specific part

of the way that mean response differs among the times, so is a component of the Group by Time

interaction (how the difference in mean across groups is different at different times.)

• If we premultiply by C = (1/q, 1/q, . . . , 1/q), each of the n−1 elements of the resulting 1× (n−1)

matrix correspond to the average of each of these contrasts over groups, which all together

constitute the Time main effect. If we consider one of these elements on its own, we see that it

represents the contrast of mean response at time j to average mean response at all times after j,

averaged across groups. If that contrast were equal to zero, it would say that, averaged across

groups, the mean response at time j, is equal to the average of subsequent mean responses.

As we noted earlier, we may wish to look at each of these separately to explore particular aspects of

how the mean response over time behaves. That is, we may wish to consider separate hypothesis tests

addressing these issues.

SEPARATE TESTS: Carrying out separate hypothesis tests for each contrast in U may be accomplished

operationally as follows. Consider the kth column of U , ck, k = 1, . . . , n − 1.

• Apply the function dictated by that column of U to each unit’s data vector. That is, for each

vector Y hℓ, the operation implied is

y′

hℓck = c′kY hℓ.

This distills down the repeated measurements on each unit to a single number representing the

value of the contrast for that unit. If each unit’s data vector has the same covariance matrix Σ,

then each of these “distilled” data values has the same variance across all units (see below).

• Perform analyses on the resulting “data;” e.g. to test whether the contrast differs across groups,

one may conduct a usual one-way analysis of variance on these “data.”

• To test whether the contrast is zero averaged across groups, test whether the overall mean of the

“data” is equal to zero using using a standard t test (or equivalently, the F test based on the

square of the t statistic).
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• These tests will be valid regardless of whether compound symmetry holds; all that matters

is that Σ, whatever it is, is the same for all units. The variance of a distilled data value c′

kY hℓ

for the hth unit in group ℓ is

var c′kY hℓ = c′kΣck.

This is a constant for all h and ℓ as long as Σ is the same. Thus, the usual assumption of

constant variance that is necessary for a one-way analysis of variance is fulfilled for the “data”

corresponding to each contrast.

ORTHOGONAL CONTRASTS: In some instances, note that the contrasts making up one of these

transformation matrices have an additional property. Specifically, if c1 and c2 are any two columns for

the matrix, then if

c′1c2 = 0;

i.e. the sum of the product of corresponding elements of the two columns is zero, the vectors c1 and c2

are said to be orthogonal. The contrasts corresponding to these vectors are said to be orthogonal

contrasts.

• The contrasts making up the profile transformation are not orthogonal (verify).

• The contrasts making up the Helmert transformation are orthogonal (verify).

The advantage of having a transformation whose contrasts are orthogonal is as follows.

NORMALIZED ORTHOGONAL CONTRASTS: For a set of orthogonal contrasts, the separate

tests for each have a nice property not possessed by sets of nonorthogonal contrasts. As intuition

might suggest, if contrasts are indeed orthogonal, they ought to partition the total Group by Time

interaction and Within-Unit Error sums of squares into n−1 distinct or “nonoverlapping” components.

This means that the outcome of one of the tests may be viewed without regard to the outcome of the

others.

It turns out that if one works with a properly “normalized” version of a U matrix whose columns are

orthogonal, then this property can be seen very clearly. In particular, the sums of squares for group

in each separate ANOVA for each contrasts add up to the sum of squares SSGT ! Similarly, the error

sums of squares add up to SSE .
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To appreciate this, consider the Helmert matrix in (5.21),

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

−1/3 1 0

−1/3 −1/2 1

−1/3 −1/2 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Each column corresponds to a different function to be applied to the data vectors for each unit, i.e.

the kth column describes the kth contrast function c′kY hℓ of a data vector. Now the constants that

make up each ck are different for each k; thus, the values of c′kY hℓ for each k are on different scales

of measurement. They are not comparable across all n−1 contrasts, and thus the sums of squares from

each individual ANOVA are not comparable, because they each work with “data” on different scales.

It is possible to modify each contrast without affecting the orthogonality condition or the issue addressed

by each contrast so that the resulting “data” are scaled similarly. Note that the sums of the squared

elements of each column are different, i.e. the sums of squares of the first, second, and third columns

are

12 + (−1/3)2 + (−1/3)2 + (−1/3)2 = 4/3,

3/2 and 2, respectively. This illustrates that the contrasts are indeed not scaled similarly and suggests

the modification.

• Multiply each contrast by an appropriate constant so that the sums of the squared elements is

equal to 1.

• In our example, note that if we multiply the first column by
√

3/4, the second by
√

2/3, and the

third by
√

1/2, then it may be verified that the sum of squares of the modified elements is equal

to 1 in each case; e.g. {
√

3/4(1)}2 + {
√

3/4(−1/3)}2 + {
√

3/4(−1/3)}2 + {
√

3/4(−1/3)}2 = 1.

• Note that multiplying each contrast by a constant does not change the spirit of the hypothesis

tests to which it corresponds; e.g. for the first column, testing

H0 : µ11 − µ12/3 − µ13/3 − µ14/3 = 0

is the same as testing H0 :
√

3/4µ11 −
√

3/4µ12/3 −
√

3/4µ13/3 −
√

3/4µ14/3 = 0. When all

contrasts in an orthogonal transformation are scaled similarly in this way, then they are said to

be orthonormal.
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In this situation, it would be advantageous to be able to consider behavior of the mean response over

time (averaged across and among groups) in a way that acknowledges this kind of pattern. For example,

in the dental study, we might like to ask

• Averaged across genders, is there a linear (straight line) trend over time? Is there a quadratic

trend?

• Does this linear or quadratic trend differ across genders?

There is a particular type of contrast that focuses on this issue, whose coefficients are referred to as

orthogonal polynomial coefficients.

If we have data at n time points on each unit, then, in principle, it would be possible to fit up to a

(n− 1) degree polynomial in time. Thus, for such a situation, it is possible to define n− 1 orthogonal

polynomial contrasts, each measuring the strength of the linear, quadratic, cubic, and so on contri-

bution to the n − 1 degree polynomial. This is possible both for time points that are equally spaced

over time and unequally spaced. The details of how these contrasts are defined are beyond our scope

here. For equally-spaced times, the coefficients of the n − 1 orthogonal polynomials are available in

tables in many statistics texts (e.g. Steel, Torrie, and Dickey, 1997, p. 390); for unequally-spaced times

points, the computations depend on the time points themselves.

Statistical software such as SAS PROC GLM offers computation of orthogonal polynomial contrasts, so

that the user may focus on interpretation rather than nasty computation. As an example, the following

U matrix has columns corresponding to the n− 1 orthogonal polynomial contrasts (in the order linear,

quadratic, cubic) in the case n = 4:

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 −1

−1 −1 3

1 −1 −3

3 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

With the appropriate set of orthogonal polynomial contrasts, one may proceed as above to conduct

hypothesis tests addressing the strength of the linear, quadratic, and so on components of the profile

over time. The orthogonal polynomial transformation may also be “normalized” as discussed above.
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5.7 Adjusted tests

We now return to the issue discussed in section 5.5. Suppose that we have reason to doubt that Σ

is of Type H. This may be because we do not believe that the limitations of the test for sphericity

discussed in section 5.5 are too serious, and we have rejected the null hypothesis when performing this

test. Alternatively, this may be because we question the assumption of Type H covariance to begin with

as being unrealistic (more in a moment). In any event, we do not feel comfortable assuming that Σ is of

Type H (thus, certainly does not exhibit compound symmetry, as stated by the model). Thus, the

usual F tests for Time and Group by Time are invalid. Several suggestions are available for “adjusting”

the usual F tests.

Define

ϵ =
tr2(U ′ΣU)

(n − 1)tr(U ′ΣUU ′ΣU)
,

where U is any (n×n−1) (so u = n−1) matrix whose columns are normalized orthogonal contrasts.

It may be shown that the constant ϵ defined in this way must satisfy

1/(n − 1) ≤ ϵ ≤ 1

and that

ϵ = 1

if, and only if, Σ is of Type H.

Because the usual F tests are too liberal (see above) if Σ is not of Type H, one suggestion is as follows.

Rather than compare the F ratios to the usual critical values with a and b numerator and denominator

degrees of freedom, say, compare them to F critical values with ϵa and ϵb numerator and denominator

degrees of freedom instead. This will make the degrees of freedom smaller than usual. A quick look

at a table of F critical values shows that, as the numerator and denominator degrees of freedom get

smaller, the value of the critical value gets larger. Thus, the effect of this “adjustment” would be

to compare F ratios to larger critical values, making it harder to reject the null hypothesis and thus

making the test less liberal.

• Of course, ϵ is not known, because it depends on the unknown Σ matrix.

• Several approaches are based on estimating Σ (to be discussed in the next chapter of the course)

and then using the result to form an estimate for ϵ.
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• This may be done in different ways; two such approaches are known as the Greenhouse-Geisser

and Huynh-Feldt adjustments. Each estimates ϵ in a different way; the Huynh-Feldt estimate

is such that the adjustment to the degrees of freedom is not as severe as that of the Greenhouse-

Geisser adjustment. These adjustments are available in most software for analyzing repeated

measurements; e.g. SAS PROC GLM computes the adjustments automatically, as we will see in the

examples in section 5.8. They are, however, approximate.

• The general utility of these adjustments is unclear, however. That is, it is not necessarily the case

that making the adjustments in a real situation where the numbers of units are small will indeed

lead to valid tests.

SUMMARY: The spirit of the methods discussed above may be summarized as follows. One adopts a

statistical model that makes a very specific assumption about associations among observations on the

same unit (compound symmetry). If this assumption is correct, then familiar analysis of variance

methods are available. It is possible to test whether it is correct; however, the testing procedures

available are not too reliable. In the event that one doubts the compound symmetry assumption,

approximate methods are available to still allow “adjusted” versions of the methods to be used. However,

these adjustments are not necessarily reliable, either.

This suggests that, rather then try to “force” the issue of compound symmetry, a better approach might

be to start back at the beginning, with a more realistic statistical model! In later chapters we will

discuss other methods for analyzing longitudinal data that do not rely on the assumption of compound

symmetry (or more generally, Type H covariance). We will also see that it is possible to adopt much

more general representations for the form of the mean of a data vector.

5.8 Implementation with SAS

We consider two examples:

1. The dental study data. Here, q = 2 and n = 4, with the “time” factor being the age of the children

and equally-spaced “time” points at 8, 10, 12, and 14 years of age.

2. the guinea pig diet data. Here, q = 3 and n = 6, with the “time” factor being weeks and

unequally-spaced “time” points at 1, 3, 4, 5, 6, and 7 weeks.

PAGE 145



CHAPTER 5 ST 732, M. DAVIDIAN

In each case, we use SAS PROC GLM to carry out the computations. These examples thus serve to

illustrate how this SAS procedure may be used to conduct univariate repeated measures analysis of

variance.

Each program carries out construction of the analysis of variance table in two ways

• Using the same specification that would be used for the analysis of a split plot experiment

• Using the special REPEATED statement in PROC GLM. This statement and its associated options allow

the user to request various specialized analyses, like those involving contrasts discussed in the last

section. A full description of the features available may be found in the SAS documentation for

PROC GLM.
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EXAMPLE 1 – DENTAL STUDY DATA: The data are read in from the file dental.dat.

PROGRAM:

/*******************************************************************

CHAPTER 5, EXAMPLE 1

Analysis of the dental study data by repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data set looks like

1 1 8 21 0
2 1 10 20 0
3 1 12 21.5 0
4 1 14 23 0
5 2 8 21 0

.

.

.

column 1 observation number
column 2 child id number
column 3 age
column 4 response (distance)
column 5 gender indicator (0=girl, 1=boy)

The second data step changes the ages from 8, 10, 12, 14
to 1, 2, 3, 4 so that SAS can count them when it creates a
different data set later

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

data dent1; set dent1;
if age=8 then age=1;
if age=10 then age=2;
if age=12 then age=3;
if age=14 then age=4;
drop obsno;

run;

/*******************************************************************

Create an alternative data set with the data record for each child
on a single line.

*******************************************************************/

proc sort data=dent1;
by gender child;

data dent2(keep=age1-age4 gender);
array aa{4} age1-age4;
do age=1 to 4;
set dent1;
by gender child;
aa{age}=distance;
if last.child then return;

end;
run;

proc print;

/*******************************************************************

Find the means of each gender-age combination and plot mean
vs. age for each gender

*******************************************************************/

proc sort data=dent1; by gender age; run;
proc means data=dent1; by gender age;
var distance;
output out=mdent mean=mdist; run;
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proc plot data=mdent; plot mdist*age=gender; run;

/*******************************************************************

Construct the analysis of variance using PROC GLM
via a "split plot" specification. This requires that the
data be represented in the form they are given in data set dent1.

Note that the F ratio that PROC GLM prints out automatically
for the gender effect (averaged across age) will use the
MSE in the denominator. This is not the correct F ratio for
testing this effect.

The RANDOM statement asks SAS to compute the expected mean
squares for each source of variation. The TEST option asks
SAS to compute the test for the gender effect (averaged across
age), treating the child(gender) effect as random, giving the
correct F ratio. Other F-ratios are correct.

In older versions of SAS that do not recognize this option,
this test could be obtained by removing the TEST option
from the RANDOM statement and adding the statement

test h=gender e = child(gender);

to the call to PROC GLM.

*******************************************************************/

proc glm data=dent1;
class age gender child;
model distance = gender child(gender) age age*gender;
random child(gender) / test;

run;

/*******************************************************************

Now carry out the same analysis using the REPEATED statement in
PROC GLM. This requires that the data be represented in the
form of data set dent2.

The option NOUNI suppresses individual analyses of variance
for the data at each age value from being printed.

The PRINTE option asks for the test of sphericity to be performed.

The NOM option means "no multivariate," which means just do
the univariate repeated measures analysis under the assumption
that the exchangable (compound symmetry) model is correct.

*******************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender / nouni;
repeated age / printe nom;

/*******************************************************************

This call to PROC GLM redoes the basic analysis of the last.
However, in the REPEATED statement, a different contrast of
the parameters is specified, the POLYNOMIAL transformation.
The levels of "age" are equally spaced, and the values are
specified. The transformation produced is orthogonal polynomials
for polynomial trends (linear, quadratic, cubic).

The SUMMARY option asks that PROC GLM print out the results of
tests corresponding to the contrasts in each column of the U
matrix.

The NOU option asks that printing of the univariate analysis
of variance be suppressed (we already did it in the previous
PROC GLM call).

THE PRINTM option prints out the U matrix corresponding to the
orthogonal polynomial contrasts. SAS calls this matrix M, and
actuallly prints out its transponse (our U’).

For the orthogonal polynomial transformation, SAS uses the
normalized version of the U matrix. Thus, the SSs from the
individual ANOVAs for each column will add up to the Gender by
Age interaction SS (and similarly for the within-unit error SS).

*******************************************************************/

proc glm data=dent2;
class gender;
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model age1 age2 age3 age4 = gender / nouni;
repeated age 4 (8 10 12 14) polynomial /summary nou nom printm;

run;

/*******************************************************************

For comparison, we do the same analysis as above, but use the
Helmert matrix instead.

SAS does NOT use the normalized version of the Helmert
transformation matrix. Thus, the SSs from the individual ANOVAs
for each column will NOT add up to the Gender by Age interaction
SS (similarly for within-unit error). However, the F ratios
are correct.

********************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender / nouni;
repeated age 4 (8 10 12 14) helmert /summary nou nom printm;

run;

/*******************************************************************

Here, we manually perform the same analysis, but using the
NORMALIZED version of the Helmert transformation matrix.
We get each individual test separately using the PROC GLM
MANOVA statement.

********************************************************************/

proc glm data=dent2;
model age1 age2 age3 age4 = gender /nouni;
manova h=gender

m=0.866025404*age1 - 0.288675135*age2- 0.288675135*age3 - 0.288675135*age4;
manova h=gender m= 0.816496581*age2-0.40824829*age3-0.40824829*age4;
manova h=gender m= 0.707106781*age3- 0.707106781*age4;
run;

/*******************************************************************

To compare, we apply the contrasts (normalized version) to each
child’s data. We thus get a single value for each child corresponding
to each contrast. These are in the variables AGE1P -- AGE3P.
We then use PROC GLM to perform each separate ANOVA. It may be
verified that the separate gender sums of squares add up to
the interaction SS in the analysis above.

********************************************************************/

data dent3; set dent2;
age1p = sqrt(0.75)*(age1-age2/3-age3/3-age4/3);
age2p = sqrt(2/3)*(age2-age3/2-age4/2);
age3p = sqrt(1/2)*(age3-age4);

run;

proc glm; class gender; model age1p age2p age3p = gender;
run;

OUTPUT: One important note – it is important to always inspect the result of the Test for Sphericity

using Mauchly’s Criterion applied to Orthogonal Components. The test must be performed using an

orthogonal, normalized transformation matrix. If the selected transformation (e.g. helmert) is not

orthogonal and normalized, SAS will both do the test anyway, which is not appropriate, and do it

using an orthogonal, normalized transformation, which is appropriate.

1

Obs age1 age2 age3 age4 gender

1 21.0 20.0 21.5 23.0 0
2 21.0 21.5 24.0 25.5 0
3 20.5 24.0 24.5 26.0 0
4 23.5 24.5 25.0 26.5 0
5 21.5 23.0 22.5 23.5 0
6 20.0 21.0 21.0 22.5 0
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7 21.5 22.5 23.0 25.0 0
8 23.0 23.0 23.5 24.0 0
9 20.0 21.0 22.0 21.5 0

10 16.5 19.0 19.0 19.5 0
11 24.5 25.0 28.0 28.0 0
12 26.0 25.0 29.0 31.0 1
13 21.5 22.5 23.0 26.5 1
14 23.0 22.5 24.0 27.5 1
15 25.5 27.5 26.5 27.0 1
16 20.0 23.5 22.5 26.0 1
17 24.5 25.5 27.0 28.5 1
18 22.0 22.0 24.5 26.5 1
19 24.0 21.5 24.5 25.5 1
20 23.0 20.5 31.0 26.0 1
21 27.5 28.0 31.0 31.5 1
22 23.0 23.0 23.5 25.0 1
23 21.5 23.5 24.0 28.0 1
24 17.0 24.5 26.0 29.5 1
25 22.5 25.5 25.5 26.0 1
26 23.0 24.5 26.0 30.0 1
27 22.0 21.5 23.5 25.0 1

2

-------------------------------- gender=0 age=1 --------------------------------

The MEANS Procedure

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
11 21.1818182 2.1245320 16.5000000 24.5000000
-------------------------------------------------------------------

-------------------------------- gender=0 age=2 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
11 22.2272727 1.9021519 19.0000000 25.0000000
-------------------------------------------------------------------

-------------------------------- gender=0 age=3 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
11 23.0909091 2.3645103 19.0000000 28.0000000
-------------------------------------------------------------------

-------------------------------- gender=0 age=4 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
11 24.0909091 2.4373980 19.5000000 28.0000000
-------------------------------------------------------------------

-------------------------------- gender=1 age=1 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
16 22.8750000 2.4528895 17.0000000 27.5000000
-------------------------------------------------------------------

3

-------------------------------- gender=1 age=2 --------------------------------
The MEANS Procedure

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
16 23.8125000 2.1360009 20.5000000 28.0000000
-------------------------------------------------------------------

-------------------------------- gender=1 age=3 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
16 25.7187500 2.6518468 22.5000000 31.0000000
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-------------------------------------------------------------------

-------------------------------- gender=1 age=4 --------------------------------

Analysis Variable : distance

N Mean Std Dev Minimum Maximum
-------------------------------------------------------------------
16 27.4687500 2.0854156 25.0000000 31.5000000
-------------------------------------------------------------------

4

Plot of mdist*age. Symbol is value of gender.

mdist |
|

28 +
|
|
| 1
|
|

27 +
|
|
|
|
|

26 +
|
| 1
|
|
|

25 +
|
|
|
|
| 0

24 +
| 1
|
|
|
| 0

23 +
| 1
|
|
|
| 0

22 +
|
|
|
|
| 0

21 +
|
---+------------------+------------------+------------------+--

1 2 3 4

age
5

The GLM Procedure

Class Level Information

Class Levels Values

age 4 1 2 3 4
gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27

Number of observations 108

6

The GLM Procedure

Dependent Variable: distance

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 32 769.5642887 24.0488840 12.18 <.0001
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Error 75 148.1278409 1.9750379

Corrected Total 107 917.6921296

R-Square Coeff Var Root MSE distance Mean

0.838587 5.850026 1.405360 24.02315

Source DF Type I SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 71.12 <.0001
child(gender) 25 377.9147727 15.1165909 7.65 <.0001
age 3 237.1921296 79.0640432 40.03 <.0001
age*gender 3 13.9925295 4.6641765 2.36 0.0781

Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 71.12 <.0001
child(gender) 25 377.9147727 15.1165909 7.65 <.0001
age 3 209.4369739 69.8123246 35.35 <.0001
age*gender 3 13.9925295 4.6641765 2.36 0.0781

7

The GLM Procedure

Source Type III Expected Mean Square

gender Var(Error) + 4 Var(child(gender)) + Q(gender,age*gender)

child(gender) Var(Error) + 4 Var(child(gender))
age Var(Error) + Q(age,age*gender)

age*gender Var(Error) + Q(age*gender)
8

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: distance

Source DF Type III SS Mean Square F Value Pr > F

* gender 1 140.464857 140.464857 9.29 0.0054

Error 25 377.914773 15.116591
Error: MS(child(gender))

* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr > F

child(gender) 25 377.914773 15.116591 7.65 <.0001
* age 3 209.436974 69.812325 35.35 <.0001

age*gender 3 13.992529 4.664176 2.36 0.0781

Error: MS(Error) 75 148.127841 1.975038

* This test assumes one or more other fixed effects are zero.
9

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27
10

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable age1 age2 age3 age4

Level of age 1 2 3 4

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 25 age1 age2 age3 age4

age1 1.000000 0.570699 0.661320 0.521583
0.0023 0.0002 0.0063

age2 0.570699 1.000000 0.563167 0.726216

PAGE 152



CHAPTER 5 ST 732, M. DAVIDIAN

0.0023 0.0027 <.0001

age3 0.661320 0.563167 1.000000 0.728098
0.0002 0.0027 <.0001

age4 0.521583 0.726216 0.728098 1.000000
0.0063 <.0001 <.0001

E = Error SSCP Matrix

age_N represents the contrast between the nth level of age and the last

age_1 age_2 age_3

age_1 124.518 41.879 51.375
age_2 41.879 63.405 11.625
age_3 51.375 11.625 79.500

Partial Correlation Coefficients from the Error SSCP Matrix of the
Variables Defined by the Specified Transformation / Prob > |r|

DF = 25 age_1 age_2 age_3

age_1 1.000000 0.471326 0.516359
0.0151 0.0069

age_2 0.471326 1.000000 0.163738
0.0151 0.4241

age_3 0.516359 0.163738 1.000000
0.0069 0.4241

11

The GLM Procedure
Repeated Measures Analysis of Variance

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.4998695 16.449181 0.0057
Orthogonal Components 5 0.7353334 7.2929515 0.1997

12

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 9.29 0.0054
Error 25 377.9147727 15.1165909

13

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

age 3 209.4369739 69.8123246 35.35 <.0001
age*gender 3 13.9925295 4.6641765 2.36 0.0781
Error(age) 75 148.1278409 1.9750379

Adj Pr > F
Source G - G H - F

age <.0001 <.0001
age*gender 0.0878 0.0781
Error(age)

Greenhouse-Geisser Epsilon 0.8672
Huynh-Feldt Epsilon 1.0156

14

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1
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Number of observations 27

15

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable age1 age2 age3 age4

Level of age 8 10 12 14

age_N represents the nth degree polynomial contrast for age

M Matrix Describing Transformed Variables

age1 age2 age3 age4

age_1 -.6708203932 -.2236067977 0.2236067977 0.6708203932
age_2 0.5000000000 -.5000000000 -.5000000000 0.5000000000
age_3 -.2236067977 0.6708203932 -.6708203932 0.2236067977

16

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 9.29 0.0054
Error 25 377.9147727 15.1165909

17

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

age_N represents the nth degree polynomial contrast for age

Contrast Variable: age_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 208.2660038 208.2660038 88.00 <.0001
gender 1 12.1141519 12.1141519 5.12 0.0326
Error 25 59.1673295 2.3666932

Contrast Variable: age_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.95880682 0.95880682 0.92 0.3465
gender 1 1.19954756 1.19954756 1.15 0.2935
Error 25 26.04119318 1.04164773

Contrast Variable: age_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.21216330 0.21216330 0.08 0.7739
gender 1 0.67882997 0.67882997 0.27 0.6081
Error 25 62.91931818 2.51677273

18

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

19

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable age1 age2 age3 age4
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Level of age 8 10 12 14

age_N represents the contrast between the nth
level of age and the mean of subsequent levels

M Matrix Describing Transformed Variables

age1 age2 age3 age4

age_1 1.000000000 -0.333333333 -0.333333333 -0.333333333
age_2 0.000000000 1.000000000 -0.500000000 -0.500000000
age_3 0.000000000 0.000000000 1.000000000 -1.000000000

20

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 9.29 0.0054
Error 25 377.9147727 15.1165909

21

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

age_N represents the contrast between the nth level of age and the mean of
subsequent levels

Contrast Variable: age_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 146.8395997 146.8395997 45.43 <.0001
gender 1 4.5679948 4.5679948 1.41 0.2457
Error 25 80.8106061 3.2324242

Contrast Variable: age_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 111.9886890 111.9886890 39.07 <.0001
gender 1 13.0998001 13.0998001 4.57 0.0425
Error 25 71.6548295 2.8661932

Contrast Variable: age_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 49.29629630 49.29629630 15.50 0.0006
gender 1 3.66666667 3.66666667 1.15 0.2932
Error 25 79.50000000 3.18000000

22

The GLM Procedure

Number of observations 27

23

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

age1 age2 age3 age4

MVAR1 0.866025404 -0.288675135 -0.288675135 -0.288675135

24

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent MVAR1
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0.05652717 100.00 0.12845032

MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall gender Effect

on the Variables Defined by the M Matrix Transformation
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

S=1 M=-0.5 N=11.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.94649719 1.41 1 25 0.2457
Pillai’s Trace 0.05350281 1.41 1 25 0.2457
Hotelling-Lawley Trace 0.05652717 1.41 1 25 0.2457
Roy’s Greatest Root 0.05652717 1.41 1 25 0.2457

25

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

age1 age2 age3 age4

MVAR1 0 0.816496581 -0.40824829 -0.40824829

26

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent MVAR1

0.18281810 100.00 0.14468480

MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall gender Effect

on the Variables Defined by the M Matrix Transformation
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

S=1 M=-0.5 N=11.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.84543853 4.57 1 25 0.0425
Pillai’s Trace 0.15456147 4.57 1 25 0.0425
Hotelling-Lawley Trace 0.18281810 4.57 1 25 0.0425
Roy’s Greatest Root 0.18281810 4.57 1 25 0.0425

27

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

age1 age2 age3 age4

MVAR1 0 0 0.707106781 -0.707106781

28

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent MVAR1

0.04612159 100.00 0.15861032
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MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall gender Effect

on the Variables Defined by the M Matrix Transformation
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

S=1 M=-0.5 N=11.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.95591182 1.15 1 25 0.2932
Pillai’s Trace 0.04408818 1.15 1 25 0.2932
Hotelling-Lawley Trace 0.04612159 1.15 1 25 0.2932
Roy’s Greatest Root 0.04612159 1.15 1 25 0.2932

29

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

30

The GLM Procedure

Dependent Variable: age1p

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 3.42599607 3.42599607 1.41 0.2457

Error 25 60.60795455 2.42431818

Corrected Total 26 64.03395062

R-Square Coeff Var Root MSE age1p Mean

0.053503 -73.36496 1.557022 -2.122297

Source DF Type I SS Mean Square F Value Pr > F

gender 1 3.42599607 3.42599607 1.41 0.2457

Source DF Type III SS Mean Square F Value Pr > F

gender 1 3.42599607 3.42599607 1.41 0.2457

31

The GLM Procedure

Dependent Variable: age2p

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 8.73320006 8.73320006 4.57 0.0425

Error 25 47.76988636 1.91079545

Corrected Total 26 56.50308642

R-Square Coeff Var Root MSE age2p Mean

0.154561 -76.82446 1.382315 -1.799317

Source DF Type I SS Mean Square F Value Pr > F

gender 1 8.73320006 8.73320006 4.57 0.0425

Source DF Type III SS Mean Square F Value Pr > F

gender 1 8.73320006 8.73320006 4.57 0.0425

32

The GLM Procedure

Dependent Variable: age3p
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Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 1.83333333 1.83333333 1.15 0.2932

Error 25 39.75000000 1.59000000

Corrected Total 26 41.58333333

R-Square Coeff Var Root MSE age3p Mean

0.044088 -123.4561 1.260952 -1.021376

Source DF Type I SS Mean Square F Value Pr > F

gender 1 1.83333333 1.83333333 1.15 0.2932

Source DF Type III SS Mean Square F Value Pr > F

gender 1 1.83333333 1.83333333 1.15 0.2932

EXAMPLE 2 – GUINEA PIG DIET DATA: The data are read in from the file diet.dat.

PROGRAM:

/*******************************************************************

CHAPTER 5, EXAMPLE 2

Analysis of the vitamin E data by univariate repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is week (time)

- there is one "treatment" factor, dose

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data set looks like

1 455 460 510 504 436 466 1
2 467 565 610 596 542 587 1
3 445 530 580 597 582 619 1
4 485 542 594 583 611 612 1
5 480 500 550 528 562 576 1
6 514 560 565 524 552 597 2
7 440 480 536 484 567 569 2
8 495 570 569 585 576 677 2
9 520 590 610 637 671 702 2
10 503 555 591 605 649 675 2
11 496 560 622 622 632 670 3
12 498 540 589 557 568 609 3
13 478 510 568 555 576 605 3
14 545 565 580 601 633 649 3
15 472 498 540 524 532 583 3

column 1 pig number
columns 2-7 body weights at weeks 1, 3, 4, 5, 6, 7
column 8 dose group (1=zero, 2 = low, 3 = high dose

*******************************************************************/

data pigs1; infile ’diet.dat’;
input pig week1 week3 week4 week5 week6 week7 dose;

/*******************************************************************

Create a data set with one data record per pig/week -- this
repeated measures data are often recorded in this form.

Create a new variable "weight" containing the body weight
at time "week."

The second data step fixes up the "week" values, as the weeks
of observations were not equally spaced but rather have the
values 1, 3, 4, 5, 6, 7.

*******************************************************************/
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data pigs2; set pigs1;
array wt(6) week1 week3 week4 week5 week6 week7;
do week = 1 to 6;

weight = wt(week);
output;

end;
drop week1 week3-week7;

run;

data pigs2; set pigs2;
if week>1 then week=week+1;

run;

proc print; run;

/*******************************************************************

Find the means of each dose-week combination and plot mean
vs. week for each dose;

*******************************************************************/

proc sort data=pigs2; by dose week; run;
proc means data=pigs2; by dose week;
var weight;
output out=mpigs mean=mweight; run;

proc plot data=mpigs; plot mweight*week=dose; run;

/*******************************************************************

First construct the analysis of variance using PROC GLM
via a "split plot" specification. This requires that the
data be represented in the form they are given in data set pigs2.

Note that the F ratio that PROC GLM prints out automatically
for the dose effect (averaged across week) will use the
MSE in the denominator. This is not the correct F ratio for
testing this effect.

The RANDOM statement asks SAS to compute the expected mean
squares for each source of variation. The TEST option asks
SAS to compute the test for the dose effect (averaged across
week), treating the pig(dose) effect as random, giving the
correct F ratio. Other F-ratios are correct.

In older versions of SAS that do not recognize this option,
this test could be obtained by removing the TEST option
from the RANDOM statement and adding the statement

test h=dose e=pig(gender)

to the call to PROC GLM.

*******************************************************************/

proc glm data=pigs2;
class week dose pig;
model weight = dose pig(dose) week week*dose;
random pig(dose) / test;

run;

/*******************************************************************

Now carry out the same analysis using the REPEATED statement in
PROC GLM. This requires that the data be represented in the
form of data set pigs1.

The option NOUNI suppresses individual analyses of variance
at each week value from being printed.

The PRINTE option asks for the test of sphericity to be performed.

The NOM option means "no multivariate," which means univariate
tests under the assumption that the compound symmetry model
is correct.

*******************************************************************/

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week / printe nom;

run;

/*******************************************************************

These calls to PROC GLM redo the basic analysis of the last.
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However, in the REPEATED statement, different contrasts of
the parameters are specified.

The SUMMARY option asks that PROC GLM print out the results of
tests corresponding to the contrasts in each column of the U
matrix.

The NOU option asks that printing of the univariate analysis
of variance be suppressed (we already did it in the previous
PROC GLM call).

THE PRINTM option prints out the U matrix corresponding to the
contrasts being used . SAS calls this matrix M, and
actually prints out its transpose (our U’).

*******************************************************************/

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week 6 (1 3 4 5 6 7) polynomial /summary printm nom;

run;

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week 6 (1 3 4 5 6 7) profile /summary printm nom ;

run;

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week 6 helmert /summary printm nom;

run;

OUTPUT: The same warning about the test for sphericity applies here.

1

Obs pig dose week weight

1 1 1 1 455
2 1 1 3 460
3 1 1 4 510
4 1 1 5 504
5 1 1 6 436
6 1 1 7 466
7 2 1 1 467
8 2 1 3 565
9 2 1 4 610

10 2 1 5 596
11 2 1 6 542
12 2 1 7 587
13 3 1 1 445
14 3 1 3 530
15 3 1 4 580
16 3 1 5 597
17 3 1 6 582
18 3 1 7 619
19 4 1 1 485
20 4 1 3 542
21 4 1 4 594
22 4 1 5 583
23 4 1 6 611
24 4 1 7 612
25 5 1 1 480
26 5 1 3 500
27 5 1 4 550
28 5 1 5 528
29 5 1 6 562
30 5 1 7 576
31 6 2 1 514
32 6 2 3 560
33 6 2 4 565
34 6 2 5 524
35 6 2 6 552
36 6 2 7 597
37 7 2 1 440
38 7 2 3 480
39 7 2 4 536
40 7 2 5 484
41 7 2 6 567
42 7 2 7 569
43 8 2 1 495
44 8 2 3 570
45 8 2 4 569
46 8 2 5 585
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47 8 2 6 576
48 8 2 7 677
49 9 2 1 520
50 9 2 3 590
51 9 2 4 610
52 9 2 5 637
53 9 2 6 671
54 9 2 7 702
55 10 2 1 503

2

Obs pig dose week weight

56 10 2 3 555
57 10 2 4 591
58 10 2 5 605
59 10 2 6 649
60 10 2 7 675
61 11 3 1 496
62 11 3 3 560
63 11 3 4 622
64 11 3 5 622
65 11 3 6 632
66 11 3 7 670
67 12 3 1 498
68 12 3 3 540
69 12 3 4 589
70 12 3 5 557
71 12 3 6 568
72 12 3 7 609
73 13 3 1 478
74 13 3 3 510
75 13 3 4 568
76 13 3 5 555
77 13 3 6 576
78 13 3 7 605
79 14 3 1 545
80 14 3 3 565
81 14 3 4 580
82 14 3 5 601
83 14 3 6 633
84 14 3 7 649
85 15 3 1 472
86 15 3 3 498
87 15 3 4 540
88 15 3 5 524
89 15 3 6 532
90 15 3 7 583

3

-------------------------------- dose=1 week=1 ---------------------------------

The MEANS Procedure

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 466.4000000 16.7272233 445.0000000 485.0000000
------------------------------------------------------------------

-------------------------------- dose=1 week=3 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 519.4000000 40.6423425 460.0000000 565.0000000
------------------------------------------------------------------

-------------------------------- dose=1 week=4 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 568.8000000 39.5878769 510.0000000 610.0000000
------------------------------------------------------------------

-------------------------------- dose=1 week=5 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 561.6000000 42.8404015 504.0000000 597.0000000
------------------------------------------------------------------
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-------------------------------- dose=1 week=6 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 546.6000000 66.8789952 436.0000000 611.0000000
------------------------------------------------------------------

4

-------------------------------- dose=1 week=7 ---------------------------------

The MEANS Procedure

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 572.0000000 61.8182821 466.0000000 619.0000000
------------------------------------------------------------------

-------------------------------- dose=2 week=1 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 494.4000000 31.9108132 440.0000000 520.0000000
------------------------------------------------------------------

-------------------------------- dose=2 week=3 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 551.0000000 41.8927201 480.0000000 590.0000000
------------------------------------------------------------------

-------------------------------- dose=2 week=4 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 574.2000000 27.9946423 536.0000000 610.0000000
------------------------------------------------------------------

-------------------------------- dose=2 week=5 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 567.0000000 62.0604544 484.0000000 637.0000000
------------------------------------------------------------------

5

-------------------------------- dose=2 week=6 ---------------------------------

The MEANS Procedure

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 603.0000000 53.3057220 552.0000000 671.0000000
------------------------------------------------------------------

-------------------------------- dose=2 week=7 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 644.0000000 57.5499783 569.0000000 702.0000000
------------------------------------------------------------------
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-------------------------------- dose=3 week=1 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 497.8000000 28.6740301 472.0000000 545.0000000
------------------------------------------------------------------

-------------------------------- dose=3 week=3 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 534.6000000 29.7623924 498.0000000 565.0000000
------------------------------------------------------------------

-------------------------------- dose=3 week=4 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 579.8000000 29.9532970 540.0000000 622.0000000
------------------------------------------------------------------

6

-------------------------------- dose=3 week=5 ---------------------------------

The MEANS Procedure

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 571.8000000 39.2390112 524.0000000 622.0000000
------------------------------------------------------------------

-------------------------------- dose=3 week=6 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 588.2000000 43.7058349 532.0000000 633.0000000
------------------------------------------------------------------

-------------------------------- dose=3 week=7 ---------------------------------

Analysis Variable : weight

N Mean Std Dev Minimum Maximum
------------------------------------------------------------------
5 623.2000000 35.3723056 583.0000000 670.0000000
------------------------------------------------------------------
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7

Plot of mweight*week. Symbol is value of dose.

mweight |
|

660 +
|
|
| 2

640 +
|
|
| 3

620 +
|
|
| 2

600 +
|
| 3
|

580 + 3
| 2
| 1 3 1
| 2

560 + 1
|
| 2
| 1

540 +
| 3
|
|

520 + 1
|
|
|

500 + 3
| 2
|
|

480 +
|
|
| 1

460 +
|
---+----------+----------+----------+----------+----------+----------+--

1 2 3 4 5 6 7

week
8

The GLM Procedure

Class Level Information

Class Levels Values

week 6 1 3 4 5 6 7

dose 3 1 2 3

pig 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of observations 90
9

The GLM Procedure

Dependent Variable: weight

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 29 276299.5000 9527.5690 17.56 <.0001

Error 60 32552.6000 542.5433

Corrected Total 89 308852.1000

R-Square Coeff Var Root MSE weight Mean

0.894601 4.166081 23.29256 559.1000

Source DF Type I SS Mean Square F Value Pr > F
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dose 2 18548.0667 9274.0333 17.09 <.0001
pig(dose) 12 105434.2000 8786.1833 16.19 <.0001
week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 17.09 <.0001
pig(dose) 12 105434.2000 8786.1833 16.19 <.0001
week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801

10

The GLM Procedure

Source Type III Expected Mean Square

dose Var(Error) + 6 Var(pig(dose)) + Q(dose,week*dose)

pig(dose) Var(Error) + 6 Var(pig(dose))

week Var(Error) + Q(week,week*dose)

week*dose Var(Error) + Q(week*dose)

11

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: weight

Source DF Type III SS Mean Square F Value Pr > F

* dose 2 18548 9274.033333 1.06 0.3782

Error: MS(pig(dose)) 12 105434 8786.183333
* This test assumes one or more other fixed effects are zero.

Source DF Type III SS Mean Square F Value Pr > F

pig(dose) 12 105434 8786.183333 16.19 <.0001
* week 5 142555 28511 52.55 <.0001

week*dose 10 9762.733333 976.273333 1.80 0.0801

Error: MS(Error) 60 32553 542.543333
* This test assumes one or more other fixed effects are zero.

12

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

13

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 2 3 4 5 6

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12 week1 week3 week4 week5 week6 week7

week1 1.000000 0.707584 0.459151 0.543739 0.492366 0.502098
0.0068 0.1145 0.0548 0.0874 0.0804

week3 0.707584 1.000000 0.889996 0.874228 0.676753 0.834899
0.0068 <.0001 <.0001 0.0111 0.0004

week4 0.459151 0.889996 1.000000 0.881217 0.789575 0.847786
0.1145 <.0001 <.0001 0.0013 0.0003
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week5 0.543739 0.874228 0.881217 1.000000 0.803051 0.919350
0.0548 <.0001 <.0001 0.0009 <.0001

week6 0.492366 0.676753 0.789575 0.803051 1.000000 0.895603
0.0874 0.0111 0.0013 0.0009 <.0001

week7 0.502098 0.834899 0.847786 0.919350 0.895603 1.000000
0.0804 0.0004 0.0003 <.0001 <.0001

E = Error SSCP Matrix

week_N represents the contrast between the nth level of week and the last

week_1 week_2 week_3 week_4 week_5

week_1 25083.6 13574.0 12193.2 4959.0 2274.8
week_2 13574.0 10638.4 9099.2 4354.6 -968.2
week_3 12193.2 9099.2 11136.8 4293.8 1623.6
week_4 4959.0 4354.6 4293.8 5194.4 -365.8
week_5 2274.8 -968.2 1623.6 -365.8 7425.2

14

The GLM Procedure
Repeated Measures Analysis of Variance

Partial Correlation Coefficients from the Error SSCP Matrix of the
Variables Defined by the Specified Transformation / Prob > |r|

DF = 12 week_1 week_2 week_3 week_4 week_5

week_1 1.000000 0.830950 0.729529 0.434442 0.166684
0.0004 0.0047 0.1380 0.5863

week_2 0.830950 1.000000 0.835959 0.585791 -0.108936
0.0004 0.0004 0.0354 0.7231

week_3 0.729529 0.835959 1.000000 0.564539 0.178544
0.0047 0.0004 0.0444 0.5595

week_4 0.434442 0.585791 0.564539 1.000000 -0.058901
0.1380 0.0354 0.0444 0.8484

week_5 0.166684 -0.108936 0.178544 -0.058901 1.000000
0.5863 0.7231 0.5595 0.8484

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 14 0.0160527 41.731963 0.0001
Orthogonal Components 14 0.0544835 29.389556 0.0093

15

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833

16

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801
Error(week) 60 32552.6000 542.5433

Adj Pr > F
Source G - G H - F

week <.0001 <.0001
week*dose 0.1457 0.1103
Error(week)

Greenhouse-Geisser Epsilon 0.4856
Huynh-Feldt Epsilon 0.7191
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17

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

18

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 3 4 5 6 7

week_N represents the nth degree polynomial contrast for week

M Matrix Describing Transformed Variables

week1 week3 week4

week_1 -.6900655593 -.2760262237 -.0690065559
week_2 0.5455447256 -.3273268354 -.4364357805
week_3 -.2331262021 0.6061281254 0.0932504808
week_4 0.0703659384 -.4817360399 0.5196253913
week_5 -.0149872662 0.2248089935 -.5994906493

week_N represents the nth degree polynomial contrast for week

M Matrix Describing Transformed Variables

week5 week6 week7

week_1 0.1380131119 0.3450327797 0.5520524475
week_2 -.3273268354 0.0000000000 0.5455447256
week_3 -.4196271637 -.4662524041 0.4196271637
week_4 0.2760509891 -.6062296232 0.2219233442
week_5 0.6744269805 -.3596943896 0.0749363312

19

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833

20

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801
Error(week) 60 32552.6000 542.5433

Adj Pr > F
Source G - G H - F

week <.0001 <.0001
week*dose 0.1457 0.1103
Error(week)

Greenhouse-Geisser Epsilon 0.4856
Huynh-Feldt Epsilon 0.7191

21

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

week_N represents the nth degree polynomial contrast for week
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Contrast Variable: week_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 131764.8029 131764.8029 87.35 <.0001
dose 2 2495.2133 1247.6067 0.83 0.4608
Error 12 18100.8743 1508.4062

Contrast Variable: week_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2011.479365 2011.479365 6.67 0.0240
dose 2 4489.677778 2244.838889 7.45 0.0079
Error 12 3617.509524 301.459127

Contrast Variable: week_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2862.193623 2862.193623 9.19 0.0104
dose 2 694.109855 347.054928 1.11 0.3597
Error 12 3736.192174 311.349348

Contrast Variable: week_4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 3954.881058 3954.881058 17.28 0.0013
dose 2 1878.363604 939.181802 4.10 0.0439
Error 12 2746.984214 228.915351

Contrast Variable: week_5

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 1961.143097 1961.143097 5.41 0.0384
dose 2 205.368763 102.684382 0.28 0.7583
Error 12 4351.039802 362.586650

22

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

23

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 3 4 5 6 7

week_N represents the nth successive difference in week

M Matrix Describing Transformed Variables

week1 week3 week4

week_1 1.000000000 -1.000000000 0.000000000
week_2 0.000000000 1.000000000 -1.000000000
week_3 0.000000000 0.000000000 1.000000000
week_4 0.000000000 0.000000000 0.000000000
week_5 0.000000000 0.000000000 0.000000000

week_N represents the nth successive difference in week

M Matrix Describing Transformed Variables

week5 week6 week7

week_1 0.000000000 0.000000000 0.000000000
week_2 0.000000000 0.000000000 0.000000000
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week_3 -1.000000000 0.000000000 0.000000000
week_4 1.000000000 -1.000000000 0.000000000
week_5 0.000000000 1.000000000 -1.000000000

24

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833

25

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801
Error(week) 60 32552.6000 542.5433

Adj Pr > F
Source G - G H - F

week <.0001 <.0001
week*dose 0.1457 0.1103
Error(week)

Greenhouse-Geisser Epsilon 0.4856
Huynh-Feldt Epsilon 0.7191

26

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

week_N represents the nth successive difference in week

Contrast Variable: week_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 35721.60000 35721.60000 50.00 <.0001
dose 2 1112.40000 556.20000 0.78 0.4810
Error 12 8574.00000 714.50000

Contrast Variable: week_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 23128.06667 23128.06667 77.59 <.0001
dose 2 1980.13333 990.06667 3.32 0.0711
Error 12 3576.80000 298.06667

Contrast Variable: week_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 836.266667 836.266667 1.30 0.2772
dose 2 2.133333 1.066667 0.00 0.9983
Error 12 7743.600000 645.300000

Contrast Variable: week_4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2331.26667 2331.26667 2.10 0.1734
dose 2 6618.53333 3309.26667 2.97 0.0893
Error 12 13351.20000 1112.60000

Contrast Variable: week_5

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 17136.60000 17136.60000 27.69 0.0002
dose 2 619.20000 309.60000 0.50 0.6184
Error 12 7425.20000 618.76667
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27

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

28

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 2 3 4 5 6

week_N represents the contrast between the nth
level of week and the mean of subsequent levels

M Matrix Describing Transformed Variables

week1 week3 week4

week_1 1.000000000 -0.200000000 -0.200000000
week_2 0.000000000 1.000000000 -0.250000000
week_3 0.000000000 0.000000000 1.000000000
week_4 0.000000000 0.000000000 0.000000000
week_5 0.000000000 0.000000000 0.000000000

week_N represents the contrast between the nth
level of week and the mean of subsequent levels

M Matrix Describing Transformed Variables

week5 week6 week7

week_1 -0.200000000 -0.200000000 -0.200000000
week_2 -0.250000000 -0.250000000 -0.250000000
week_3 -0.333333333 -0.333333333 -0.333333333
week_4 1.000000000 -0.500000000 -0.500000000
week_5 0.000000000 1.000000000 -1.000000000

29

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833

30

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

week 5 142554.5000 28510.9000 52.55 <.0001
week*dose 10 9762.7333 976.2733 1.80 0.0801
Error(week) 60 32552.6000 542.5433

Adj Pr > F
Source G - G H - F

week <.0001 <.0001
week*dose 0.1457 0.1103
Error(week)

Greenhouse-Geisser Epsilon 0.4856
Huynh-Feldt Epsilon 0.7191

31

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables
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week_N represents the contrast between the nth level of week and the mean of
subsequent levels

Contrast Variable: week_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 114791.2560 114791.2560 93.69 <.0001
dose 2 343.6960 171.8480 0.14 0.8705
Error 12 14701.9680 1225.1640

Contrast Variable: week_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 35065.83750 35065.83750 64.01 <.0001
dose 2 481.90000 240.95000 0.44 0.6541
Error 12 6574.32500 547.86042

Contrast Variable: week_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2200.185185 2200.185185 3.10 0.1037
dose 2 3888.059259 1944.029630 2.74 0.1046
Error 12 8512.755556 709.396296

Contrast Variable: week_4

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 12936.01667 12936.01667 20.93 0.0006
dose 2 8797.73333 4398.86667 7.12 0.0092
Error 12 7416.50000 618.04167

Contrast Variable: week_5

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 17136.60000 17136.60000 27.69 0.0002
dose 2 619.20000 309.60000 0.50 0.6184
Error 12 7425.20000 618.76667
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6 Multivariate repeated measures analysis of variance

6.1 Introduction

The statistical model underlying the univariate repeated measures analysis of variance procedures dis-

cussed in the last chapter involves a very restrictive assumption about the form of the covariance matrix

of a data vector. Specifically, if yi is the data vector of observations at the n time points from the ith

unit, then the model may be written as

Y ′

i = a′

iM + ϵ′i, i = 1, . . . ,m, (6.1)

where ai and M are defined in Chapter 5 as, respectively, the (1×q) indicator vector of group member-

ship and the (q×n) matrix whose rows are the transposes of the mean vectors for each group. The error

vector ei associated with the ith unit has, by virtue of the way the model is constructed, covariance

matrix

Σ = σ2
bJn + σ2

eIn;

that is, the model implies the assumption of compound symmetry. With the normality assumptions,

the model also implies that each data vector has a multivariate normal distribution:

Y i ∼ Nn(µi,Σ), µ′

i = a′

iM .

The elements of µi under the model have a very specific form; if unit i is from the ℓth group, the jth

element of this vector, j = 1, . . . , n, has the form

µ + τℓ + γj + (τγ)ℓj .

We saw that, as long as the assumption of compound symmetry is correct, valid tests of statistical

hypotheses of interest based on familiar analysis of variance techniques are available. The test of great

interest is that of whether there exists a Group by Time interaction, addressing the issue of whether the

change in mean response over time differs among groups (“parallelism”). As long as the assumptions

of compound symmetry and normality hold, the usual test statistic based on the ratio of two mean

squares has an F sampling distribution, so that the value of the statistic may be compared with F

critical values to conduct the test. However, if the assumption of compound symmetry does not hold,

this is no longer true, and application of the testing procedure may lead to erroneous conclusions.

PAGE 172



CHAPTER 6 ST 732, M. DAVIDIAN

One approach discussed in Chapter 5 to address this problem was to “adjust” the tests. However, this is

a somewhat unsatisfying approach, as it skirts the real problem, which is that the compound symmetry

assumption is not appropriate. The simple fact is that this assumption is too restrictive to characterize

the kind of correlation patterns that might be seen with longitudinal data. Thus, a more appealing

alternative to “adjustment” of tests that are not correct is to return to the statistical model, make a less

restrictive assumption, and develop new procedures appropriate for the model under this assumption.

MORE GENERAL MODEL: The most general alternative to the compound symmetry is to go entirely

in the opposite direction and assume very little about the nature of the covariance structure of a data

vector. Recall that in Chapter 5, the deviation ϵi in (6.1) had a very specific form,

ϵ′i = 1′bi + e′

i,

which implied the compound symmetry structure. An alternative view is to consider the model (6.1) as

the starting point and make an assumption directly about the covariance structure associated with ϵi.

We may still believe that the covariance matrix of the data vectors Y i is the same for all i, regardless

of group membership; however, we may not believe that this matrix exhibits the compound symmetry

structure. We may state this formally by considering the model

Y ′

i = a′

iM + ϵ′i, i = 1, . . . ,m, ϵi ∼ N (0,Σ), (6.2)

where Σ is now an arbitrary covariance matrix assumed to possess no particular structure. That is,

the most we are willing to say about Σ is that it is a symmetric matrix with the unstructured form

(see Chapter 4)

Σ =

⎛

⎜⎜⎜⎜⎝

σ2
1 σ12 · · · σ1n

...
...

...
...

σn1 σn2 · · · σ2
n

⎞

⎟⎟⎟⎟⎠

and is the same for all i.

• This modeling perspective does not explicitly acknowledge how among-unit and within-unit

sources of variation contribute to the overall variation of observations in a data vector. Rather,

it is assumed that the aggregate of both sources produces a covariance structure of arbitrary,

unstructured form; nothing specific about how the two sources combine is characterized.

• The resulting unstructured matrix depends on n(n + 1)/2 parameters (rather than the two

parameters σ2
b and σ2

e under the compound symmetry assumption. Thus, a great many more

parameters are required to describe how observations within a data vector vary and covary.
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MULTIVARIATE PROCEDURES: With model (6.2) as the starting point, it is possible to develop

valid testing procedures for hypotheses of interest. However, the model is much more complicated

because there is no longer a nice, simple assumption about covariance. The result is that it is no

longer possible as it was under compound symmetry to think on an individual observation basis

and be able to obtain nice results about ratios of simple mean squares. Thus, familiar procedures

based on simple F ratios no longer apply. It is necessary instead to consider the data in the form of

vectors. Hence, the procedures we now discuss are known as multivariate repeated measures analysis

of variance methods. This is because they arise as a particular case of a way of thinking about general

multivariate problems, known as multivariate analysis of variance methods (MANOVA). These

may be viewed as extensions of usual analysis of variance methods, where now, an “observation” is an

entire vector from an unit rather than just a single, scalar response.

PERSPECTIVE: Although a lengthy exposition on multivariate analysis of variance methods and mod-

els is possible, we will consider these methods only briefly. A full, general treatment would be found in

a full course on multivariate analysis; a typical reference would be Johnson and Wichern (2002).

• This is because, just as the univariate methods of the previous chapter make too restrictive an

assumption about covariance for many longitudinal data problems, multivariate methods make

too general an assumption. Indeed, the overall covariance matrix in many longitudinal data

settings has some sort of systematic pattern.

• The consequence is that they may not be very powerful in the statistical sense for detecting

departures from null hypotheses of interest, because they must allow for the possibility that

the covariance matrix of a data vector may be virtually anything! There are now n(n + 1)/2

parameters defining the covariance structure rather than just 2.

• Thus, the perspective of this instructor is that these methods may be of limited practical utility

for longitudinal data problems.

As we will see in subsequent chapters, although we may not be willing to be as narrow as assuming

compound symmetry, we may have some basis for assuming something about the covariance structure

of a data vector, for example, how among- and within-sources of variation affect the response. By taking

advantage of what we are willing to assume, we may be able to construct more powerful statistical

procedures. Moreover, although the model (6.2) gets away from compound symmetry, it still uses a

restrictive assumption about the form of the mean vector, not incorporating time explicitly. Other

models we will see later will address all of these issues and lead to more interpretable methods.
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6.2 General multivariate problem

GENERAL SET-UP: In order to appreciate the perspective behind the multivariate approach, we

consider a general case of a multivariate problem, that usually addressed in a full course on multivariate

analysis. Consider the following situation; we use the notation with two subscripts for convenience later.

• Units are randomized into q groups.

• Data vector Y hℓ is observed for the hth unit in the ℓth group.

• Y hℓ is assumed to satisfy

Y hℓ ∼ N (µℓ,Σ),

where µℓ is the mean response vector for group ℓ and Σ is an arbitrary covariance matrix assumed

to be the same for each group.

• There are rℓ units in each group, so for group ℓ, h = 1, . . . , rℓ.

• The components of Y hℓ may not necessarily all be measurements of the same response.

Instead, each component of Y hℓ may represent the measurement of a different response. For

example, suppose the units are birds of two species. Measurements on n different features of the

birds may be taken and collected into a vector Y hℓ; e.g. yhℓ1 may be tail length, yhℓ2 may be wing

span, yhℓ3 may be body weight, and so on. That is, the elements Yhℓj , j = 1, . . . , n, may consist

of measurements of different characteristics.

• Of course, the longitudinal data situation is a special case of this set-up where the Yhℓj happen to

be measurements on the same response (over time).

COMPARISON OF INTEREST: Clearly, the main interest is focused on comparing the groups on

the basis of the responses that make up a data vector somehow.

• Recall in our discussion of univariate methods, we noted that when the responses are all the same

within a data vector, a natural approach is to think of averaging the responses over time and

comparing the averages. This was the interpretation of the hypotheses developed for testing the

main effect of groups. (Of course, this may be dubious if the profiles are not parallel, as discussed

in Chapter 5).
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• Here, however, it is clear that averaging over all responses and comparing the averages across

groups would be nonsensical. In the example above, we would be averaging tail length, wing span,

body weight, etc, variables that measure entirely different characteristics on different scales!

• Thus, the best we can hope for is to compare all the different responses “simultaneously” somehow.

In doing this, it would naturally be important to take into account that observations on the same

unit are correlated.

FORMALLY: In our statistical model, µℓ is the mean for data vectors (composed of the n different

responses) observed on units in the ℓth group. Thus, we may formally state our desire to compare the

n responses “simultaneously” as the desire to compare the q mean vectors µℓ, ℓ = 1, . . . , q, on the basis

of all their components. That is, we are interested in testing the null hypothesis

H0 : µ1 = · · · = µq (6.3)

versus the alternative that H0 is not true. As long as the n responses that make up a data vector are

different and hence not comparable (e.g. cannot be “averaged”), this is the best we can do to address

our general question.

6.3 Hotelling’s T 2

The standard methods to test the null hypothesis (6.3) are simply generalizations of standard methods

in the case where the data on each unit are just scalar observations yhℓ, say. That is, Y hℓ is a vector of

length n = 1. In this section, we give brief statements of these generalizations without much justification.

A more in-depth treatment of the general multivariate problem may be found in Johnson and Wichern

(1992).

First, consider the case of just q = 2 groups.

SCALAR CASE: If the observations were just scalars rather than vectors, then we would be interested

in the comparison of two scalar means µℓ, ℓ = 1, 2, and H0 would reduce to

H0 : µ1 = µ2 or µ1 − µ2 = 0.

Furthermore, the unknown covariance matrix Σ would reduce to a single scalar variance value, σ2,

say. Under our normality assumption, the standard test of H0 would be the two-sample t test.
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• Because σ2 is unknown, it must be estimated. This is accomplished by estimating σ2 based on

the observations for each group and then “pooling” the result. That is, letting Y ℓ denote the

sample mean of the rℓ observations yhℓ for group ℓ, find the sample variance

S2
ℓ = (rℓ − 1)−1

rℓ∑

h=1

(Yhℓ − Y ·ℓ)
2

and construct the estimate of σ2 from data in both groups as the “weighted average”

S2 = (r1 + r2 − 2)−1{(r1 − 1)S2
1 + (r2 − 1)S2

2}.

• Now, form the test statistic

t =
Y ·1 − Y ·2√

(r−1
1 + r−1

2 )s2
.

The statistic t may be shown to have a Student’s t distribution with r1 +r2−2 degrees of freedom.

MULTIVARIATE CASE: The hypothesis is now

H0 : µ1 = µ2 or µ1 − µ2 = 0. (6.4)

A natural approach is to seek a multivariate analogue to the t test.

• The analogue of the assumed common variance σ2 is now the assumed common covariance

matrix Σ, which is of course unknown. We would like to estimate this matrix for each group

and then “pool” the results as in Chapter 4.

• In particular, we may calculate the pooled sample covariance matrix. If we collect the sample

means Y ·ℓj , j = 1, . . . , n into a vector

Y ·ℓ =

⎛

⎜⎜⎜⎜⎝

y ℓ1

...

y ℓn

⎞

⎟⎟⎟⎟⎠
,

then the sample covariance matrix for group ℓ is the (n × n) matrix

Σ̂ℓ = (rℓ − 1)−1
rℓ∑

h=1

(Y hℓ − Y ·ℓ)(Y hℓ − Y ℓ)
′. (6.5)

Recall that the sum in 6.5) is called a sum of squares and cross-products (SS&CP) matrix.

• The overall pooled sample covariance, an estiamtor for Σ, is then the “weighted average”

Σ̂ = (r1 + r2 − 2)−1{(r1 − 1)Σ̂1 + (r2 − 1)Σ̂2}.
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• The test statistic analogous to the (square of) the t statistic is known as Hotelling’s T 2 statistic

and is given by

T 2 = (r−1
1 + r−1

2 )−1(Y ·1 − Y ·2)
′Σ̂

−1
(Y ·1 − Y ·2).

It may be shown that
r1 + r2 − n − 1

(r1 + r2 − 2)n
T 2 ∼ Fn,r1+r2−n−1.

Thus, the test of H0 may be carried out at level α by comparing this version of T 2 to the

appropriate α critical value.

Note that if n = 1, the multiplicative factor is equal to 1 and the statistic has an F distribution

with 1 and r1 + r2 − 2 degrees of freedom, which is just the square of the tr1+r2−2 distribution.

That is, the multivariate test reduces to the scalar t test if the dimension of a data vector n = 1.

EXAMPLE: For illustration, consider the dental data. Here, the q = 2 groups are genders, r1 = 11

(girls), r2 = 16 (boys), and n = 4 ages (8, 10, 12, 14). Recall that we found

Y ·1 = (21.182, 22.227, 23.091, 24.091)′,

Y ·2 = (22.875, 23.813, 25.719, 27.469)′.

The estimates of Σ for each group are, from Chapter 4,

Σ̂1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

4.514 3.355 4.332 4.357

3.355 3.618 4.027 4.077

4.332 4.027 5.591 5.466

4.357 4.077 5.466 5.9401

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

Σ̂2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

6.017 2.292 3.629 1.613

2.292 4.563 2.194 2.810

3.629 2.194 7.032 3.241

1.613 2.810 3.241 4.349

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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The pooled estimate is then easily calculated (Chapter 4) as

Σ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

5.415 2.717 3.910 2.710

2.717 4.185 2.927 3.317

3.910 2.927 6.456 4.131

2.710 3.317 4.131 4.986

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

From these quantities, it is straightforward to calculate

r1 + r2 − n − 1

(r1 + r2 − 2)n
T 2 = 3.63,

which under our assumptions has an F distribution with 4 and 22 degrees of freedom. F4,22,0.05 = 2.816;

thus, we would reject H0 at level α = 0.05.

In section 6.6 we will see these calculations done using SAS PROC GLM.

HYPOTHESIS IN MATRIX FORM: It is worth noting that the hypothesis in (6.4) may be expressed

in the form we have used previously. Specifically, if we define M as before as the (2× n) matrix whose

rows are the transposed mean vectors µ′

1 and µ′

2, i.e.

M =

⎛

⎜⎝
µ11 · · · µ1n

µ21 · · · µ2n

⎞

⎟⎠ ,

it should be clear that, defining C = (1,−1), we have (verify)

CM =
(

µ11 − µ21, · · · , µ1n − µ2n

)
= (µ1 − µ2)

′.

Thus, we may express the hypothesis in the form

H0 : CMU = 0, U = In.

6.4 One-way MANOVA

Just as the case of comparing 2 group means for scalar response may be generalized to q > 2 groups

using analysis of variance techniques, the multivariate analysis above also may be generalized.
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SCALAR CASE: Again, if the observations were just scalars, we would be interested in the comparison

of q scalar means µℓ, ℓ = 1, . . . , q, and H0 would reduce to

H0 : µ1 = · · · = µq,

and again the unknown covariance matrix Σ would reduce to a single scalar variance value σ2. Under

the normality assumption, the standard test of H0 via one-way analysis of variance is based on the

ratio of two estimators for σ2. The following is the usual one-way analysis of variance; recall that

m =
∑q

ℓ=1 rℓ is the total number of units:

ANOVA Table

Source SS DF MS F

Among Groups SSG =
∑q

ℓ=1 rℓ(Y ·ℓ − Y ··)2 q − 1 MSG MSG/MSE

Among-unit Error SSE =
∑q

ℓ=1

∑rℓ

h=1(Yhℓ − Y ℓ)2 m − q MSE

Total
∑q

ℓ=1

∑rℓ

h=1(Yhℓ − Y ··)2 m − 1

Note that the “error” sum of squares SSE may be written as (try it)

SSE = (r1 − 1)S2
1 + · · · + (rq − 1)S2

q , S2
ℓ = (rℓ − 1)−1

rℓ∑

h=1

(Yhℓ − Y ℓ)
2,

where S2
ℓ is the sample variance for the ℓth group, so that MSE has the interpretation as the pooled

sample variance estimator for σ2 across all q groups. MSG is an estimator for σ2 based on deviations of

the group means from the overall mean, and will overestimate σ2 if the means are different. It may be

shown that the ratio F has sampling distribution that is F with (q−1) and (m− q) degrees of freedom,

so that the test is conducted at level α by comparing the calculated value of F to Fq−1,m−q,α.
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MULTIVARIATE CASE: The hypothesis is now H0 : µ1 = · · · = µq.

As in the case of q = 2 groups above, the multivariate generalization involves the fact that there

is now an entire covariance matrix Σ to estimate rather than just a single variance. Consider the

following analogue to the scalar one-way analysis of variance above. Let Y ··j be the sample mean of all

observations across all units and groups for the jth element and define the overall mean vector

Y ·· =

⎛

⎜⎜⎜⎜⎝

Y ··1

...

Y ··n

⎞

⎟⎟⎟⎟⎠
.

MANOVA Table

Source SS&CP DF

Among Groups QH =
∑q

ℓ=1 rℓ(Y ·ℓ − Y ··)(Y ℓ − Y ··)′ q − 1

Among-unit Error QE =
∑q

ℓ=1

∑rℓ

h=1(Y hℓ − Y ·ℓ)(Y hℓ − Y ℓ)′ m − q

Total QH + QE =
∑q

ℓ=1

∑rℓ

h=1(Y hℓ − Y ··)(Y hℓ − Y ··)′ m − 1

Comparing the entries in this table to those in the scalar ANOVA table, we see that they appear to be

multivariate generalizations. In particular, the entries are now matrices. Each may be viewed as an

attempt to estimate Σ.

It is straightforward to verify (try it) that the Among-unit Error sum of squares and cross products

matrix QE may be written

QE = (r1 − 1)Σ̂1 + · · · + (rq − 1)Σ̂q,

where Σ̂ℓ is the estimate (6.5) of Σ based on the data vectors from group ℓ. Thus, just as in the scalar

case, this quantity divided by its degrees of freedom has the interpretation as a “pooled” estimate of Σ

across groups.

MULTIVARIATE TESTS: Unfortunately, because these entries are matrices, it is no longer straight-

forward to construct a unique generalization of the F ratio that may be used to test H0. Clearly, one

would like to compare the “magnitude” of the SS&CP matrices QH and QE somehow, but there is no

one way to do this. There are a number of statistics that have been proposed based on these quantities

that have this interpretation.
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• The most commonly discussed statistic is known as Wilks’ lambda and may be motivated

informally as follows. In the scalar case, the F ratio is

SSG/(q − 1)

SSE/(m − q)
;

thus, in the scalar case, H0 is rejected when the ratio SSG/SSE is large. This is equivalent to

rejecting for large values of 1 + SSG/SSE or small values of

1

1 + SSG/SSE
=

SSE

SSG + SSE
.

For the multivariate problem, the Wilks’ lambda statistic is the analogue of this quantity,

TW =
|QE |

|QH + QE |
;

here, the determinant of each SS&CP matrix is taken, reducing the matrix to a single number.

This number is often referred to as the generalized sample variance; see Johnson and Wichern

(2002) for a deeper discussion. One rejects H0 for small values of TW (how small will be discussed

in a moment).

• Another statistic is referred to as the Lawley-Hotelling trace; reject H0 for large values of

TLH = tr(QHQ−1
E ).

• Other statistics are Pillai’s trace and Roy’s greatest root.

• None of these approaches been shown to be superior to the others in general. In addition, all are

equivalent to using the Hotelling T 2 statistic in the case q = 2.

A full discussion of the theoretical underpinnings of these methods is beyond the scope of our discussion.

Here, we note briefly the salient points:

• It is possible in certain special cases to work out the exact sampling distribution of these statistics.

As mentioned above, when q = 2 and we are testing whether the two means are the same, all

of these statistics may be shown to be the same and equivalent to conducting the test based on

Hotelling’s T 2 statistics.

• When n = 1, 2 and q ≥ 2 or when n ≥ 1 and q = 2, 3, it is possible to show that certain functions

of TW have an F sampling distribution, and this may be used to conduct the test exactly. These

are listed in Johnson and Wichern (2002).
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• In other situations, it is possible to show that the sampling distributions may be approximated

by F or other distributions.

• SAS PROC GLM calculates all of these statistics and provides either exact or approximate p-values,

depending on the situation.

We will consider the application of these methods to the dental study data and the guinea pig diet data

in section 6.6.

HYPOTHESIS IN MATRIX FORM: It is again worth noting that the hypothesis of interest (6.3) may

be expressed in the form H0 : CMU = 0 for suitable choice of C and with U = In. For example,

consider the case q = 3, with

M =

⎛

⎜⎜⎜⎜⎝

µ11 · · · µ1n

µ21 · · · µ2n

µ31 · · · µ3n

⎞

⎟⎟⎟⎟⎠
, C =

⎛

⎜⎝
1 −1 0

1 0 −1

⎞

⎟⎠ , (6.6)

CM =

⎛

⎜⎝
µ11 − µ21 · · · µ1n − µ2n

µ11 − µ31 · · · µ1n − µ3n

⎞

⎟⎠ =

⎛

⎜⎝
(µ1 − µ2)

′

(µ1 − µ3)
′

⎞

⎟⎠ .

Setting this equal to 0 may thus be seen to be equivalent to saying that all of the mean vectors µℓ are

the same.

SUMMARY: We have seen that, in situations where a data vector consists of n observations on possibly

different characteristics on different scales, it is possible to test whether the entire mean vectors

for each group are the same using what are usually called one-way MANOVA methods.

• If the null hypothesis (6.3) is rejected, then this means we have evidence to suggest that at least

one of the q mean vectors differs from the others in at least one of the n components. This is not

particularly informative, particularly if q and/or n are somewhat large.

• In addition, it seems intuitively that it would be difficult to detect such a difference – with q

vectors and n components, there are a lot of comparisons that must be taken into account when

looking for a difference.

• Furthermore, the methods are requiring estimation of all n(n + 1)/2 elements of the (assumed

common across groups) covariance matrix Σ.

• Thus, the basis for our earlier remark that multivariate procedures may lack power for detecting

differences should now be clear.
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• Furthermore, when the n elements of a data vector are all observations on the same characteristic

as in the case of longitudinal data, these methods do not seem to really get at the heart of matters.

Focusing on H0 in (6.3) ignores the questions of interest, such as that of parallelism.

6.5 Profile Analysis

It turns out that one can conduct more focused multivariate tests that make no particular assumption

about the form of Σ. Recall that the MANOVA test of (6.3), H0 : µ1 = · · · = µq could be regarded as

testing a particular hypothesis of the form

H0 : CMU = 0

for suitable choice of C and with U = In. It should thus come as no surprise that it is possible to

develop such multivariate procedures for more general choices of C and U .

HYPOTHESIS OF PARALLELISM: Of particular interest in the case of longitudinal data is the test

of parallelism or group by time interaction. In the last chapter, we saw that the null hypothesis

corresponding to parallelism could be expressed in terms of the elements of the mean vectors µℓ or

equivalently in terms of the taugamℓj :

H0 : all (τγ)ℓj = 0.

In particular, in the case of q = 2 and n = 3, we saw that this test could be represented with

C =
(

1 −1

)
, U =

⎛

⎜⎜⎜⎜⎝

1 0

−1 1

0 −1

⎞

⎟⎟⎟⎟⎠
, M =

⎛

⎜⎝
µ11 µ12 µ13

µ21 µ22 µ23

⎞

⎟⎠ .

For general q and n, we may write this in a streamlined fashion. If we let jp denote a column vector of

1’s of length p, then (try it!) choosing

C =
(

jq−1 −Iq−1

)
(q − 1 × q), U =

⎛

⎜⎝
j′n−1

−In−1

⎞

⎟⎠ (n × n − 1) (6.7)

gives the null hypothesis of parallelism.

MULTIVARIATE TEST FOR PARALLELISM: Recall that the univariate test of this null hypothesis

discussed in Chapter 5 was predicated on the assumption of compound symmetry. Here, we seek a

test in the same spirit of those in the last section that make no assumption about the form of Σ.
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To understand this, we first consider the multivariate test of (6.3). Recall in the MANOVA table of the

last section that this test boiled down to making a comparison between 2 SS&CP matrices, QH and

QE that focused on the particular issue of the hypothesis.

• QE effectively measured the distance of individual data vectors from the means for their group.

• QH measured the distance of group mean vectors from the overall mean vector.

• We would expect QH to be “large” relative to QE if there really were a difference among the q

means µℓ, ℓ = 1 . . . , q.

We would clearly like to do something similar for the null hypothesis of parallelism.

HEURISTIC DESCRIPTION: It turns out that for the test of (6.3), H0 : µ1 = . . . = µq, which may be

expressed in the form H0 : CMU = 0 with C as in (6.6) and U = In, we may express QH and QE in

an alternative form as functions of C, M , and U (= In here). Specifically, recall that we may express

the underlying statistical model as in (6.1), i.e.

Y ′

i = a′

iM + ϵ′i, i = 1, . . . ,m.

We saw in Chapter 5 that this may be written more succinctly as (5.14), i.e.

Y = AM + ϵ,

where Y is the (m × n) matrix with rows Y ′

i and similarly for ϵ, and A (m × q) has rows a′

i. It is an

exercise in matrix algebra to show that we may write QH and QE in terms of this model as

QH = (CM̂U)′{C(A′A)−1C ′}−1(CM̂U) (6.8)

QE = U ′Y ′{In − A(A′A)−1A′}YU (6.9)

with

M̂ = (A′A)−1A′Y , U = In.

A technical justification of (6.8) and (6.9) may be found in, for example, Vonesh and Chinchilli (1997, p.

50); they show that this representation and the form of the Wilks’ lambda statistic TW may be derived

using the principles of maximum likelihood, which we will discuss later in the course in a different

context.
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The above results are in fact valid for any suitable choice of C and U , such as those corresponding to

the null hypothesis of parallelism.

• That is, for a null hypothesis of the form H0 : CMU = 0, one may construct corresponding

SS&CP matrices QH and QE . These are often called the hypothesis and error SS&CP matrices,

respectively.

• One may then construct any of the test statistics such as Wilks’ lambda TW discussed in the last

section. It may be shown that these will provide either approximate or exact tests, depending on

the circumstances, for the null hypothesis corresponding to the choice of C and U .

• These test are multivariate in the sense that no assumption of a particular structure for Σ is

made.

PROFILE ANALYSIS: In the particular context of repeated measurement data, where the n observa-

tions in a data vector are all on the same characteristic, conducting appropriate multivariate tests

for parallelism and other issues of interest is known as profile analysis. This is usually carried out in

practice as follows.

• The test of primary interest is that of parallelism or Group by Time interaction. This may be

represented in the form H0 : CMU = 0 with C and U as in(6.7), so that suitable QH and QE

may be calculated. Thus, test statistics such as Wilks’ lambda, Pillai’s trace, and so on may be

used to conduct the test. Depending on the dimensions q and n, these tests may be exact or

approximate and may or may not coincide.

• The next test is usually only conducted if the hypothesis of parallelism is not rejected.

The test of H0 : µ1 = · · · = µq may be written in the form H0 : CMU = 0 with C as in

(6.7) U = In. This is just the usual MANOVA test discussed in the last section; when repeated

measurements are involved, this test is often called the test for coincidence. Clearly, if the

profiles are not parallel, then testing coincidence seems ill-advised, as it is not clear what it

means.
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As we discussed in Chapter 5, if the profiles are parallel, then it turns out that we may refine

this test. Specifically, it may be shown that testing this H0 with the additional assumption that

the profiles are parallel is equivalent to testing the hypothesis H0 : CMU = 0 with C as in (6.7)

but with U = jn/n. Note that this is exactly the same hypothesis we discussed in Chapter 5 – if

the profiles are parallel, then testing whether they in fact coincide is the same as testing whether

the averages of the means over time is the same for each group; that is, the test we called main

effect of group.

It turns out that, for testing this hypothesis, the multivariate tests are all equivalent. Fur-

thermore, they reduce to the univariate F test for the main effect of groups we discussed in

Chapter 5! Intuitively, this makes sense – we are basing the test on averaging observations over

time, thus effectively “distilling” the data for each unit down to a single average. The “distilling”

operation averages across time, so how observations within a data vector are correlated is being

“averaged away.” As long as Σ is the same for all data vectors, these “distilled” data are all have

the same variance, so we would expect an ordinary F ratio to apply.

• This test is also usually conducted only if the hypothesis of parallelism is not rejected.

It is also of interest to know whether the profiles are in fact constant over time. It may be shown

(try it!) that this may be represented in the form H0 : CMU = 0 with U as in (6.7) and C = Iq.

As with the test for coincidence, if the profiles are not parallel, then testing whether they are

constant over time seems inappropriate.

If there is strong evidence of parallelism, then we may refine this test also. It may be shown

that testing H0 for constancy with the additional assumption that the profiles are parallel is

equivalent to testing H0 : CMU = 0 with the choices U as in (6.7) and C = j ′

q/q, a (1 × q)

vector of 1/q’s. Note (try it) that this is the exactly the same hypothesis discussed for the main

effect of time discussed in Chapter 5 – if we know the profiles are parallel, then asking whether

the means are constant over time is the same as asking whether the mean response averaged

across groups is the same at each time.

It turns out that, for testing this hypothesis, the multivariate tests are again all equivalent.

However, the multivariate test is different from the univariate tests. Intuitively, this also

makes sense – we are basing the test on averaging observations across groups. Thus, although

we are again “distilling” the data, we are now doing it over groups, so that time, and how

observations are correlated over time, is not being “averaged away.” As a result, what is being

assumed about the form of Σ still plays a role.
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The (common) multivariate test statistic boils down to a statistic that is a generalization of

the form of the Hotelling’s T 2 statistic, and it may be shown that this statistic multiplied by a

suitable factor thus has exactly an F distribution. It is important to recognize that, although

both the univariate and multivariate test statistics both have F sampling distributions, they

are different tests, being based on different assumptions on the form of Σ. Which one is more

appropriate depends on the true form of Σ.

6.6 Implementation with SAS

We consider again the two examples of Chapter 5:

1. The dental study data. Here, q = 2 and n = 4, with the “time” factor being the age of the children

and equally-spaced “time” points at 8, 10, 12, and 14 years of age.

2. the guinea pig diet data. Here, q = 3 and n = 6, with the “time” factor being weeks and

unequally-spaced “time” points at 1, 3, 4, 5, 6, and 7 weeks.

In each case, we use SAS PROC GLM and its various options to carry out both the one-way MANOVA

analysis comparing the group mean vectors and the refined hypotheses of profile analysis. These

examples thus serve to illustrate how this SAS procedure may be used to conduct multivariate repeated

measures analysis of variance.

EXAMPLE 1 – DENTAL STUDY DATA: The data are read in from the file dental.dat.

PROGRAM:

/*******************************************************************

CHAPTER 6, EXAMPLE 1

Analysis of the dental study data by multivariate repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

See Example 1 in Chapter 4 for the form of the input data set.
It is not in the correct from for the analysis; thus we create
a new data set such that each record in the data set represents
the observations from a different unit.

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;
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data dent1; set dent1;
if age=8 then age=1;
if age=10 then age=2;
if age=12 then age=3;
if age=14 then age=4;
drop obsno;

run;

proc sort data=dent1;
by gender child;

data dent2(keep=age1-age4 gender);
array aa{4} age1-age4;
do age=1 to 4;
set dent1;
by gender child;
aa{age}=distance;
if last.child then return;

end;
run;

/*******************************************************************

The sample mean vectors for each gender were found in Example 1
of Chapter 4. Here, we use PROC CORR to calculate the estimates
of Sigma, the assumed common covariance matrix, separately for
each group. The COV option asks for the covariance matrix
to be printed.

*******************************************************************/

proc sort data=dent2; by gender; run;
proc corr data=dent2 cov; by gender; var age1 age2 age3 age4; run;

/*******************************************************************

Use PROC GLM to carry out the multivariate analysis.

First, call PROC GLM and use the MANOVA statement to get the
MANOVA test of equality of gender means. Here, this is
equivalent to Hotelling’s T^2 test because there are 2 groups.

The PRINTH and PRINTE options print the SS&CP matrices
Q_H and Q_E corresponding to the null hypothesis of equal means.

The option NOUNI suppresses individual analyses of variance
for the data at each age value from being printed. Without
the NOUNI option in the MODEL statement, note that PROC GLM does
a separate univariate ANOVA on the data at each age separately.

*******************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender;
manova h=gender / printh printe;

/*******************************************************************

Now use the REPEATED option to do profile analysis. The
"between subjects" (units) test is that for coincidence assuming
profiles are parallel, based on averaging across times.
Thus, as discussed in section 5.5, it is the same as the
univariate test.

The tests for age and age*gender resulting from this analysis
are the multivariate tests for profile constancy and parallelism,
respectively. The test for constancy (age effect here) is the
multivariate test for constancy assuming that the profiles are
parallel, as discussed in section 5.5 Both of these tests are
different from the corresponding univariate tests we saw in
section 4.8 that are based on the assumption of compound symmetry.

The NOU option in the REPEATED statement suppresses printing of the
univariate tests of these factors.

The within-unit analyses using different contrast matrices will
be the same as in the univariate case (see the discussion in
section 4.6. Thus, we do not do this analysis here.

*******************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender / nouni;
repeated age / nou;
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OUTPUT:

1

----------------------------------- gender=0 -----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 10

age1 age2 age3 age4

age1 4.513636364 3.354545455 4.331818182 4.356818182
age2 3.354545455 3.618181818 4.027272727 4.077272727
age3 4.331818182 4.027272727 5.590909091 5.465909091
age4 4.356818182 4.077272727 5.465909091 5.940909091

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 11 21.18182 2.12453 233.00000 16.50000 24.50000
age2 11 22.22727 1.90215 244.50000 19.00000 25.00000
age3 11 23.09091 2.36451 254.00000 19.00000 28.00000
age4 11 24.09091 2.43740 265.00000 19.50000 28.00000

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.83009 0.86231 0.84136
0.0016 0.0006 0.0012

age2 0.83009 1.00000 0.89542 0.87942
0.0016 0.0002 0.0004

age3 0.86231 0.89542 1.00000 0.94841
0.0006 0.0002 <.0001

age4 0.84136 0.87942 0.94841 1.00000
0.0012 0.0004 <.0001

2

----------------------------------- gender=1 -----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 15

age1 age2 age3 age4

age1 6.016666667 2.291666667 3.629166667 1.612500000
age2 2.291666667 4.562500000 2.193750000 2.810416667
age3 3.629166667 2.193750000 7.032291667 3.240625000
age4 1.612500000 2.810416667 3.240625000 4.348958333

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 16 22.87500 2.45289 366.00000 17.00000 27.50000
age2 16 23.81250 2.13600 381.00000 20.50000 28.00000
age3 16 25.71875 2.65185 411.50000 22.50000 31.00000
age4 16 27.46875 2.08542 439.50000 25.00000 31.50000

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.43739 0.55793 0.31523
0.0902 0.0247 0.2343

age2 0.43739 1.00000 0.38729 0.63092
0.0902 0.1383 0.0088

age3 0.55793 0.38729 1.00000 0.58599
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0.0247 0.1383 0.0171

age4 0.31523 0.63092 0.58599 1.00000
0.2343 0.0088 0.0171

3

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

4

The GLM Procedure

Dependent Variable: age1

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 18.6877104 18.6877104 3.45 0.0750

Error 25 135.3863636 5.4154545

Corrected Total 26 154.0740741

R-Square Coeff Var Root MSE age1 Mean

0.121290 10.48949 2.327113 22.18519

Source DF Type I SS Mean Square F Value Pr > F

gender 1 18.68771044 18.68771044 3.45 0.0750

Source DF Type III SS Mean Square F Value Pr > F

gender 1 18.68771044 18.68771044 3.45 0.0750

5

The GLM Procedure

Dependent Variable: age2

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 16.3806818 16.3806818 3.91 0.0590

Error 25 104.6193182 4.1847727

Corrected Total 26 121.0000000

R-Square Coeff Var Root MSE age2 Mean

0.135378 8.830238 2.045672 23.16667

Source DF Type I SS Mean Square F Value Pr > F

gender 1 16.38068182 16.38068182 3.91 0.0590

Source DF Type III SS Mean Square F Value Pr > F

gender 1 16.38068182 16.38068182 3.91 0.0590

6

The GLM Procedure

Dependent Variable: age3

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 45.0139415 45.0139415 6.97 0.0141

Error 25 161.3934659 6.4557386
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Corrected Total 26 206.4074074

R-Square Coeff Var Root MSE age3 Mean

0.218083 10.30834 2.540815 24.64815

Source DF Type I SS Mean Square F Value Pr > F

gender 1 45.01394150 45.01394150 6.97 0.0141

Source DF Type III SS Mean Square F Value Pr > F

gender 1 45.01394150 45.01394150 6.97 0.0141

7

The GLM Procedure

Dependent Variable: age4

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 74.3750526 74.3750526 14.92 0.0007

Error 25 124.6434659 4.9857386

Corrected Total 26 199.0185185

R-Square Coeff Var Root MSE age4 Mean

0.373709 8.557512 2.232877 26.09259

Source DF Type I SS Mean Square F Value Pr > F

gender 1 74.37505261 74.37505261 14.92 0.0007

Source DF Type III SS Mean Square F Value Pr > F

gender 1 74.37505261 74.37505261 14.92 0.0007

8

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

age1 age2 age3 age4

age1 135.38636364 67.920454545 97.755681818 67.755681818
age2 67.920454545 104.61931818 73.178977273 82.928977273
age3 97.755681818 73.178977273 161.39346591 103.26846591
age4 67.755681818 82.928977273 103.26846591 124.64346591

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 25 age1 age2 age3 age4

age1 1.000000 0.570699 0.661320 0.521583
0.0023 0.0002 0.0063

age2 0.570699 1.000000 0.563167 0.726216
0.0023 0.0027 <.0001

age3 0.661320 0.563167 1.000000 0.728098
0.0002 0.0027 <.0001

age4 0.521583 0.726216 0.728098 1.000000
0.0063 <.0001 <.0001

9

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for gender

age1 age2 age3 age4

age1 18.687710438 17.496212121 29.003577441 37.281355219
age2 17.496212121 16.380681818 27.154356061 34.904356061
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age3 29.003577441 27.154356061 45.013941498 57.861163721
age4 37.281355219 34.904356061 57.861163721 74.375052609

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent age1 age2 age3 age4

0.66030051 100.00 0.01032388 -0.04593889 -0.01003125 0.11841126
0.00000000 0.00 -0.07039943 0.13377597 0.00249339 -0.02943257
0.00000000 0.00 -0.08397385 -0.01167207 0.12114416 -0.04667529
0.00000000 0.00 0.05246789 0.05239507 0.05062221 -0.09027154

MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall gender Effect

H = Type III SSCP Matrix for gender
E = Error SSCP Matrix

S=1 M=1 N=10

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.60230061 3.63 4 22 0.0203
Pillai’s Trace 0.39769939 3.63 4 22 0.0203
Hotelling-Lawley Trace 0.66030051 3.63 4 22 0.0203
Roy’s Greatest Root 0.66030051 3.63 4 22 0.0203

10

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

11

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable age1 age2 age3 age4

Level of age 1 2 3 4

Manova Test Criteria and Exact F Statistics for the Hypothesis of no age Effect
H = Type III SSCP Matrix for age

E = Error SSCP Matrix

S=1 M=0.5 N=10.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.19479424 31.69 3 23 <.0001
Pillai’s Trace 0.80520576 31.69 3 23 <.0001
Hotelling-Lawley Trace 4.13362211 31.69 3 23 <.0001
Roy’s Greatest Root 4.13362211 31.69 3 23 <.0001

Manova Test Criteria and Exact F Statistics
for the Hypothesis of no age*gender Effect
H = Type III SSCP Matrix for age*gender

E = Error SSCP Matrix

S=1 M=0.5 N=10.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.73988739 2.70 3 23 0.0696
Pillai’s Trace 0.26011261 2.70 3 23 0.0696
Hotelling-Lawley Trace 0.35155702 2.70 3 23 0.0696
Roy’s Greatest Root 0.35155702 2.70 3 23 0.0696

12

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects
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Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 9.29 0.0054
Error 25 377.9147727 15.1165909

EXAMPLE 2 – GUINEA PIG DIET DATA: The data are read in from the file diet.dat.

PROGRAM:

/*******************************************************************

CHAPTER 6, EXAMPLE 2

Analysis of the vitamin E data by multivariate repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is week (time)

- there is one "treatment" factor, dose

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data set is shown in Example 2 of Chapter 5. It is
already in the form required for PROC GLM to perform the
multivariate analysis; that is, each line in the data set
contains all the data for a given unit. Thus,
we need only input the data as is and do not need to create
a new data set.

*******************************************************************/

data pigs1; infile ’diet.dat’;
input pig week1 week3 week4 week5 week6 week7 dose;

/*******************************************************************

We use PROC CORR to calculate the estimates of Sigma, the assumed
common covariance matrix, separately for each dose group. The COV
option asks for the covariance matrix to be printed.

*******************************************************************/

proc sort data=pigs1; by dose; run;
proc corr data=pigs1 cov; by dose;
var week1 week3 week4 week5 week6 week7; run;

/*******************************************************************

Use PROC GLM to carry out the multivariate analysis and profile
analysis, respectively. The description is exactly the same as
for Example 1 (the dental study). In the first call, we also show
use of the MEANS statement to calculate the means for each dose
group at each time.

*******************************************************************/

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
means dose;
manova h=dose / printh printe;

run;

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week / printe nou;

run;
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OUTPUT:

1

------------------------------------ dose=1 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7

Covariance Matrix, DF = 4

week1 week3 week4

week1 279.800000 158.550000 167.100000
week3 158.550000 1651.800000 1606.100000
week4 167.100000 1606.100000 1567.200000
week5 -34.800000 1625.200000 1592.900000
week6 476.950000 1972.950000 2010.900000
week7 252.500000 2076.250000 2077.500000

Covariance Matrix, DF = 4

week5 week6 week7

week1 -34.800000 476.950000 252.500000
week3 1625.200000 1972.950000 2076.250000
week4 1592.900000 2010.900000 2077.500000
week5 1835.300000 2081.550000 2251.750000
week6 2081.550000 4472.800000 3989.000000
week7 2251.750000 3989.000000 3821.500000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 466.40000 16.72722 2332 445.00000 485.00000
week3 5 519.40000 40.64234 2597 460.00000 565.00000
week4 5 568.80000 39.58788 2844 510.00000 610.00000
week5 5 561.60000 42.84040 2808 504.00000 597.00000
week6 5 546.60000 66.87900 2733 436.00000 611.00000
week7 5 572.00000 61.81828 2860 466.00000 619.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.23322 0.25234 -0.04856 0.42634 0.24419
0.7058 0.6822 0.9382 0.4741 0.6922

week3 0.23322 1.00000 0.99823 0.93341 0.72585 0.82639
0.7058 <.0001 0.0204 0.1650 0.0845

week4 0.25234 0.99823 1.00000 0.93923 0.75952 0.84891
0.6822 <.0001 0.0178 0.1363 0.0689

2

------------------------------------ dose=1 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 -0.04856 0.93341 0.93923 1.00000 0.72651 0.85026
0.9382 0.0204 0.0178 0.1645 0.0680

week6 0.42634 0.72585 0.75952 0.72651 1.00000 0.96484
0.4741 0.1650 0.1363 0.1645 0.0079

week7 0.24419 0.82639 0.84891 0.85026 0.96484 1.00000
0.6922 0.0845 0.0689 0.0680 0.0079

3

------------------------------------ dose=2 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7
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Covariance Matrix, DF = 4

week1 week3 week4

week1 1018.300000 1270.750000 738.900000
week3 1270.750000 1755.000000 998.500000
week4 738.900000 998.500000 783.700000
week5 1450.500000 2182.500000 1654.250000
week6 769.750000 1105.000000 1298.000000
week7 1232.500000 1978.750000 1430.750000

Covariance Matrix, DF = 4

week5 week6 week7

week1 1450.500000 769.750000 1232.500000
week3 2182.500000 1105.000000 1978.750000
week4 1654.250000 1298.000000 1430.750000
week5 3851.500000 2800.750000 3519.500000
week6 2800.750000 2841.500000 2394.000000
week7 3519.500000 2394.000000 3312.000000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 494.40000 31.91081 2472 440.00000 520.00000
week3 5 551.00000 41.89272 2755 480.00000 590.00000
week4 5 574.20000 27.99464 2871 536.00000 610.00000
week5 5 567.00000 62.06045 2835 484.00000 637.00000
week6 5 603.00000 53.30572 3015 552.00000 671.00000
week7 5 644.00000 57.54998 3220 569.00000 702.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.95057 0.82713 0.73243 0.45252 0.67113
0.0131 0.0840 0.1593 0.4442 0.2149

week3 0.95057 1.00000 0.85140 0.83946 0.49482 0.82074
0.0131 0.0672 0.0753 0.3967 0.0886

week4 0.82713 0.85140 1.00000 0.95216 0.86981 0.88806
0.0840 0.0672 0.0125 0.0553 0.0442

4

------------------------------------ dose=2 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 0.73243 0.83946 0.95216 1.00000 0.84661 0.98542
0.1593 0.0753 0.0125 0.0704 0.0021

week6 0.45252 0.49482 0.86981 0.84661 1.00000 0.78038
0.4442 0.3967 0.0553 0.0704 0.1194

week7 0.67113 0.82074 0.88806 0.98542 0.78038 1.00000
0.2149 0.0886 0.0442 0.0021 0.1194

5

------------------------------------ dose=3 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7

Covariance Matrix, DF = 4

week1 week3 week4

week1 822.200000 705.400000 298.950000
week3 705.400000 885.800000 718.650000
week4 298.950000 718.650000 897.200000
week5 712.700000 1061.400000 1022.200000
week6 930.800000 1180.600000 1013.050000
week7 632.050000 953.850000 916.050000

Covariance Matrix, DF = 4
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week5 week6 week7

week1 712.700000 930.800000 632.050000
week3 1061.400000 1180.600000 953.850000
week4 1022.200000 1013.050000 916.050000
week5 1539.700000 1674.300000 1385.050000
week6 1674.300000 1910.200000 1493.450000
week7 1385.050000 1493.450000 1251.200000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 497.80000 28.67403 2489 472.00000 545.00000
week3 5 534.60000 29.76239 2673 498.00000 565.00000
week4 5 579.80000 29.95330 2899 540.00000 622.00000
week5 5 571.80000 39.23901 2859 524.00000 622.00000
week6 5 588.20000 43.70583 2941 532.00000 633.00000
week7 5 623.20000 35.37231 3116 583.00000 670.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.82657 0.34807 0.63343 0.74273 0.62316
0.0844 0.5659 0.2513 0.1505 0.2614

week3 0.82657 1.00000 0.80613 0.90885 0.90760 0.90604
0.0844 0.0994 0.0326 0.0332 0.0341

week4 0.34807 0.80613 1.00000 0.86971 0.77383 0.86459
0.5659 0.0994 0.0553 0.1246 0.0586

6

------------------------------------ dose=3 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 0.63343 0.90885 0.86971 1.00000 0.97628 0.99789
0.2513 0.0326 0.0553 0.0044 0.0001

week6 0.74273 0.90760 0.77383 0.97628 1.00000 0.96602
0.1505 0.0332 0.1246 0.0044 0.0075

week7 0.62316 0.90604 0.86459 0.99789 0.96602 1.00000
0.2614 0.0341 0.0586 0.0001 0.0075

7

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

8

The GLM Procedure

Level of ------------week1----------- ------------week3-----------
dose N Mean Std Dev Mean Std Dev

1 5 466.400000 16.7272233 519.400000 40.6423425
2 5 494.400000 31.9108132 551.000000 41.8927201
3 5 497.800000 28.6740301 534.600000 29.7623924

Level of ------------week4----------- ------------week5-----------
dose N Mean Std Dev Mean Std Dev

1 5 568.800000 39.5878769 561.600000 42.8404015
2 5 574.200000 27.9946423 567.000000 62.0604544
3 5 579.800000 29.9532970 571.800000 39.2390112

Level of ------------week6----------- ------------week7-----------
dose N Mean Std Dev Mean Std Dev
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1 5 546.600000 66.8789952 572.000000 61.8182821
2 5 603.000000 53.3057220 644.000000 57.5499783
3 5 588.200000 43.7058349 623.200000 35.3723056

9

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

week1 week3 week4

week1 8481.2 8538.8 4819.8
week3 8538.8 17170.4 13293
week4 4819.8 13293 12992.4
week5 8513.6 19476.4 17077.4
week6 8710 17034.2 17287.8
week7 8468.2 20035.4 17697.2

E = Error SSCP Matrix

week5 week6 week7

week1 8513.6 8710 8468.2
week3 19476.4 17034.2 20035.4
week4 17077.4 17287.8 17697.2
week5 28906 26226.4 28625.2
week6 26226.4 36898 31505.8
week7 28625.2 31505.8 33538.8

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12 week1 week3 week4 week5 week6 week7

week1 1.000000 0.707584 0.459151 0.543739 0.492366 0.502098
0.0068 0.1145 0.0548 0.0874 0.0804

week3 0.707584 1.000000 0.889996 0.874228 0.676753 0.834899
0.0068 <.0001 <.0001 0.0111 0.0004

week4 0.459151 0.889996 1.000000 0.881217 0.789575 0.847786
0.1145 <.0001 <.0001 0.0013 0.0003

week5 0.543739 0.874228 0.881217 1.000000 0.803051 0.919350
0.0548 <.0001 <.0001 0.0009 <.0001

week6 0.492366 0.676753 0.789575 0.803051 1.000000 0.895603
0.0874 0.0111 0.0013 0.0009 <.0001

week7 0.502098 0.834899 0.847786 0.919350 0.895603 1.000000
0.0804 0.0004 0.0003 <.0001 <.0001

10

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for dose

week1 week3 week4

week1 2969.2 2177.2 859.4
week3 2177.2 2497.6 410
week4 859.4 410 302.53333333
week5 813 411.6 280.4
week6 4725.2 4428.8 1132.1333333
week7 5921.6 5657.6 1392.5333333

H = Type III SSCP Matrix for dose

week5 week6 week7

week1 813 4725.2 5921.6
week3 411.6 4428.8 5657.6
week4 280.4 1132.1333333 1392.5333333
week5 260.4 1096.4 1352
week6 1096.4 8550.9333333 10830.933333
week7 1352 10830.933333 13730.133333

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for dose

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent week1 week3 week4 week5

week6 week7
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2.76663572 57.81 0.01008494 -0.00856690 0.00598260 -0.01350074
-0.00631967 0.01895546

2.01931265 42.19 0.02377927 -0.04047800 0.03355915 0.00129118
-0.01481413 0.01295337

0.00000000 0.00 -0.00022690 -0.00372379 -0.01380715 0.01173179
-0.00015021 0.00199588

0.00000000 0.00 -0.00425334 0.00094691 0.00882637 -0.00027390
-0.00381939 0.00358891

0.00000000 0.00 -0.00592948 -0.00835257 0.00451460 -0.00286298
-0.00450358 0.00937569

0.00000000 0.00 -0.00257775 -0.00142122 0.00128210 -0.00084350
0.01035699 -0.00651966

11

The GLM Procedure
Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall dose Effect

H = Type III SSCP Matrix for dose
E = Error SSCP Matrix

S=2 M=1.5 N=2.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.08793025 2.77 12 14 0.0363
Pillai’s Trace 1.40330988 3.14 12 16 0.0176
Hotelling-Lawley Trace 4.78594837 2.63 12 8.2712 0.0852
Roy’s Greatest Root 2.76663572 3.69 6 8 0.0464

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

12

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

13

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 2 3 4 5 6

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12 week1 week3 week4 week5 week6 week7

week1 1.000000 0.707584 0.459151 0.543739 0.492366 0.502098
0.0068 0.1145 0.0548 0.0874 0.0804

week3 0.707584 1.000000 0.889996 0.874228 0.676753 0.834899
0.0068 <.0001 <.0001 0.0111 0.0004

week4 0.459151 0.889996 1.000000 0.881217 0.789575 0.847786
0.1145 <.0001 <.0001 0.0013 0.0003

week5 0.543739 0.874228 0.881217 1.000000 0.803051 0.919350
0.0548 <.0001 <.0001 0.0009 <.0001

week6 0.492366 0.676753 0.789575 0.803051 1.000000 0.895603
0.0874 0.0111 0.0013 0.0009 <.0001

week7 0.502098 0.834899 0.847786 0.919350 0.895603 1.000000
0.0804 0.0004 0.0003 <.0001 <.0001

E = Error SSCP Matrix

week_N represents the contrast between the nth level of week and the last

week_1 week_2 week_3 week_4 week_5
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week_1 25083.6 13574.0 12193.2 4959.0 2274.8
week_2 13574.0 10638.4 9099.2 4354.6 -968.2
week_3 12193.2 9099.2 11136.8 4293.8 1623.6
week_4 4959.0 4354.6 4293.8 5194.4 -365.8
week_5 2274.8 -968.2 1623.6 -365.8 7425.2

14

The GLM Procedure
Repeated Measures Analysis of Variance

Partial Correlation Coefficients from the Error SSCP Matrix of the
Variables Defined by the Specified Transformation / Prob > |r|

DF = 12 week_1 week_2 week_3 week_4 week_5

week_1 1.000000 0.830950 0.729529 0.434442 0.166684
0.0004 0.0047 0.1380 0.5863

week_2 0.830950 1.000000 0.835959 0.585791 -0.108936
0.0004 0.0004 0.0354 0.7231

week_3 0.729529 0.835959 1.000000 0.564539 0.178544
0.0047 0.0004 0.0444 0.5595

week_4 0.434442 0.585791 0.564539 1.000000 -0.058901
0.1380 0.0354 0.0444 0.8484

week_5 0.166684 -0.108936 0.178544 -0.058901 1.000000
0.5863 0.7231 0.5595 0.8484

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 14 0.0160527 41.731963 0.0001
Orthogonal Components 14 0.0544835 29.389556 0.0093

Manova Test Criteria and Exact F Statistics for the Hypothesis of no week Effect
H = Type III SSCP Matrix for week

E = Error SSCP Matrix

S=1 M=1.5 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.03881848 39.62 5 8 <.0001
Pillai’s Trace 0.96118152 39.62 5 8 <.0001
Hotelling-Lawley Trace 24.76092347 39.62 5 8 <.0001
Roy’s Greatest Root 24.76092347 39.62 5 8 <.0001

15

The GLM Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and F Approximations
for the Hypothesis of no week*dose Effect
H = Type III SSCP Matrix for week*dose

E = Error SSCP Matrix

S=2 M=1 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.17905151 2.18 10 16 0.0793
Pillai’s Trace 1.07058517 2.07 10 18 0.0856
Hotelling-Lawley Trace 3.19076786 2.42 10 9.6 0.0937
Roy’s Greatest Root 2.66824588 4.80 5 9 0.0205

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

16

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833
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7 Drawbacks and limitations of classical methods

7.1 Introduction

It is worth noting that both the univariate and multivariate “classical” methods we have discussed so

far may be extended to more complicated situations. For example

• The group designations may in fact be the result of a factorial arrangement, e.g. in an

experiment to compare the change over time of body weight of rats, the groups may be defined by

the (2×3) factorial arrangement of genders and drugs. Interest may focus on how the rate of change

in body weight over time differs across genders averaged over drugs and doses averaged across

genders. Interest may also focus on whether the way this change differs across drugs is different

for the two genders (the drug by gender interaction). These are “between-unit” comparisons.

• The “time” factor may in fact be the result of a factorial arrangement, e.g. in an agricultural

study, plots may be randomized to different rates of fertilizer. Then, at each of 4 different time

points, core samples are taken from each plot at 3 different depths, and a measurement of nutrient

content is recorded for each. Here, then, each plot is seen under 4 × 3 = 12 different conditions.

We do not discuss these extensions; see, for example, Vonesh and Chinchilli (1997, section 3.3).

The fact that these fancy extensions are possible still does not alter the fact that the “classical” models

and methods have some serious limitations, some of which we have remarked upon in our development

so far. Now that we are familiar with these so-called “classical” methods and the statistical models

underlying them, we are in a position to be more specific about these limitations.

7.2 Assumptions and restrictions of classical methods

Here, we provide a “laundry list” of the assumptions made by classical methods and the restrictions

that they impose. The rest of the course will be devoted to statistical models and associated analysis

methods that seek to address some or all of these restrictions.
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1. BALANCE. A prominent feature both of the univariate and multivariate classical models and meth-

ods is the requirement that all units be observed at the same n “time” points. That is, not only must

each data vector Y i be of the same length, n, for all units, but each element Yij , j = 1, . . . , n must

have been observed at the same set of times t1, . . . , tn, say.

• In some situations, this may not be much of a restriction. For example, in agricultural or industrial

experimentation where it is possible to have a good deal of control over experimental conditions,

an experiment may be carefully planned and executed. It may thus be perfectly reasonable to

expect that observations expected to be taken at certain times would be available.

• However, even in the best of situations, it is often the case that things may go awry. For example,

suppose that the Yij are are responses on plots planted with different varieties of soybean over the

growing season. At a given time, 3 plants from a plot are sampled, their leaves are harvested, ag-

gregated, and ground up, and the resulting leaf sample is assayed for concentration of a particular

chemical substance. It is an unfortunate fact of life that samples may be misplaced or mistakenly

discarded or that error may be made in conducting the assay, leading to erroneous measurements.

In such circumstances, measurements may thus be unavailable at certain time points for certain

plots, thus destroying the balance necessary for classical models and methods to be applied.

• When the units are humans, this becomes even more of a problem, even if a study is carefully

designed. For example, suppose that a study is conducted to compare several cholesterol-lowering

drugs. Subjects are randomly assigned to take regular doses of one of the drugs and are required

to return at 3 month intervals for 2 years so that a measure of serum cholesterol may be taken from

blood samples drawn at each visit. Thus, if “time” for each subject is measured from the subject’s

entry into the study, the subject should have observations on serum cholesterol at n = 8 times 3,

6, 9, 12, . . . , 21, and 24 months. However, reality may cause this ideal set-up to be compromised.

– Subjects may move away during the course of the study, so that only measurements up to

their last visit before moving are available.

– A subject may be out of town and miss his 9 month visit but come to the clinic at 10.5

months instead.
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– Blood samples may be mislabelled or dropped in the lab, so that observations on serum

cholesterol for some times for some subjects may be impossible to obtain.

– Errors by technicians in performing the analytic laboratory techniques required to measure

the cholesterol level may render other measurements erroneous or unavailable.

The bottom line is that real life often conspires to make balance an unachievable ideal for many

longitudinal studies. Although some researchers have discussed ways to “adjust” the classical approaches

to handle some types of imbalance, just as with the “adjusted” F tests in univariate analysis, these

“fix-ups” skirt the real issue, which is that a model that requires balance may simply be too restrictive

to represent real life!

2. FORM OF COVARIANCE MATRIX. Both the “classical” univariate and multivariate procedures

we have discussed assume that the covariance matrix of each data vector Y i, i = 1, . . . , m is the same

for all i, regardless of group membership or anything else; we discuss this assumption below. Provided

we believe this assumption is reasonable, and take Σ to be this common (n× n) covariance matrix, we

are still faced with the issue of what we assume about the structure of Σ.

• The univariate methods make the assumption of compound symmetry, which implies a very

specific pattern of correlation among observations taken on the same unit at different times, one

that may be quite unrealistic for longitudinal data. This model says that the correlation among

all observations on a given unit is the same regardless of how near or far apart the observations

are taken in time. Thus, the univariate methods are based on an assumption about the covariance

structure that may be too restrictive if within-unit sources of correlation are not negligible.

• The multivariate methods make no assumption about the structure of Σ. Thus, these methods

do not attempt to take into account at all the way in which observations arise in the longitudinal

setting. There are two acknowledged sources of variation:

– Random (biological) variation among units

– Within-unit variation due to the way in which measurements are taken on a unit (error in

measuring device, correlation due to time separation, etc)
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The model underlying the multivariate methods does not explicitly recognize these two distinct sources.

Rather, the methods allow for the possibility that the covariance structure could be virtually anything,

thus including as possibilities structures that are unlikely to represent data subject to the two distinct

sources above. Thus, the multivariate methods are based on an assumption about the covariance

structure that is likely too vague.

3. COMMON COVARIANCE MATRIX. Both the univariate and multivariate approaches assume that

the covariance matrix of a data vector is the same for all units, regardless of group or anything else.

(This is akin to making the usual assumption in linear regression or scalar analysis of variance that

variance is the same for all scalar observations.) This is often adopted without much thought; however,

it is quite reasonable to expect that this assumption may be incorrect.

For example, suppose the units are human subjects and the groups are determined by assignment to

either a particular hypertension medication or placebo. A common observation with such data is that

subjects with “high” systolic blood pressure tend to exhibit much more variability in their within-

individual measured pressures than do subjects with “low” systolic blood pressure. That is, in terms

of the conceptual model in Chapter 4, the within-subject “flucutations” for subjects with high blood

pressure tend to be of greater magnitude than those for subjects with low blood pressure. More formally,

var(e1ij is smaller for subjects with low blood pressure than for those with high blood pressure. This

would lead to overall variance of Yij that is smaller for lower values of Yij .

Suppose the drug is quite effective in lowering systolic blood pressure. We would thus expect observa-

tions on subjects in the drug group, particularly toward the end of the study, to be “lower” than those

for the placebo group. In symbols, if Y i is a data vector for a subject in the drug group (1), we might

expect

Y i =

⎛

⎜⎜⎜⎜⎝

Yi1

...

Yin

⎞

⎟⎟⎟⎟⎠
, var(Yin) = σ2

n(1),

while for a subject in the placebo group (0), we might expect

Y i =

⎛

⎜⎜⎜⎜⎝

Yi1

...

Yin

⎞

⎟⎟⎟⎟⎠
, var(Yin) = σ2

n(0),

σ2
n(1) < σ2

n(0).
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Under these conditions, assuming that Y i from both groups have the same covariance matrix Σ would

be inappropriate, because we would doubt that the (n, n) element is the same for data vectors from both

groups. A better model would say that there are two different covariance matrices, i.e. var(Y i) = Σ0

is subject i is in the placebo group, and var(Y i) = Σ1 is subject i is in the drug group.

It is possible to modify the classical models and methods to handle this situation. One common approach

is to work on a transformed scale on which one believes variances may be similar; e.g. one may model

the logarithmically transformed data. A problem with this approach is that the results may be difficult

to interpret, as inferences about what happens on the original scale of measurement are of interest.

Alternatively, methods such as Hotelling’s T 2 may be modified to allow a different covariance matrix for

each group. However, this may make statistical power even lower – now, we must estimate a separate

covariance matrix for each group. Later in the course we will see methods that address the issue of lack

of common covariance matrix in more realistic ways.

4. INCORPORATION OF INFORMATION. A characteristic shared both by the univariate and mul-

tivariate classical methods we have discussed is that, because balance is assumed, time itself does not

appear explicitly in the model for the mean of a data vector. Rather, “time” enters the model only

through the specification of separate parameters γj and (τγ)ℓj . As will become clear when we study

more flexible models, this can pose an obstacle to answering some key questions of interest (see 5. be-

low, too). This problem may be partially addressed by inspecting, for example, orthogonal polynomial

contrasts in time, but a more direct representation of time in the model is much more useful.

In addition, we may wish to incorporate other covariate information. For example, in the cholesterol

study in 1. above, we may believe that a subject’s age at the start of the study may play a role in

how he/she responds to cholesterol-lowering medication. Or we may believe that this response over

time may be affected by a subject’s systolic blood pressure, which may also be changing over time.

Just as ordinary analysis of variance is modified to incorporate covariates by analysis of covariance, one

may wish to do something similar in the case of repeated measurements. Things are more complicated,

however.

• In the first example, the covariate, age at start of study, is something that is time-

independent, or fixed over the time points at which the unit is observed, being measured only

once (at the start of the study). Both univariate and multivariate analyses may be modified to

take account of time-independent covariates; these are discussed in sections 2.6 and 3.4 of Vonesh

and Chinchilli (1997).
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We do not discuss them here because, as discussed above, they still require balance; moreover, the

way in which the covariates may be included in the model is limited. Models we will discuss later

in the course allow more flexibility to address common questions about the effect of covariates.

• In the second example, the covariate, systolic blood pressure, may be measured at each of

the same time points as the response, and thus is time-dependent, or changing with time.

Incorporation of such covariate information poses difficult conceptual challenges. The models

we have discussed represent the mean response at each time point as a function of information

such as group membership; i.e. possibly different means for each group. If we consider models

that incorporate changing information, important questions arise. For example, does the mean

cholesterol at a particular time only depend on systolic blood pressure at that time? Or does it

depend on systolic blood pressure at several previous times as well?

We will return to this issue later; for now, note that although it is possible to introduce time-

dependent covariates into modeling of repeated measurements, a key issue is this conceptual

one. It is possible to modify the univariate analysis to incorporate time-dependent covariates;

however, modification of the MANOVA analyses is not possible.

Still another issue arises in the inclusion of group information. Recall the guinea pig diet example.

Here, dose groups were labelled “zero,” “low,” and “high.” In the model, the parameters τℓ and (τγ)ℓj

incorporate different groups. Suppose, however, that the actual numerical dose values were available,

say 0, 100, and 500 µg/g. As we discuss in 5. below, it might be useful if the actual dose levels rather

than just classifications were incorporated in the model.

We will discuss other models and methods where inclusion of such covariate information is more direct

and interpretable.

5. QUESTIONS OF INTEREST AND INTERPRETATION. The analysis based on “classical” methods

focuses on hypothesis testing, i.e. general questions of interest are stated in terms of the model and

the quality of the evidence in the data to refute the null hypothesis is assessed. A pronouncement is

then made (we do or don’t reject the null hypothesis).

However, in many situations, this does not really address the objectives of the investigator. For example,

consider the cholesterol study described in 1. above. The investigators may wish to do more than just

claim that the way in which cholesterol changes on average over time on the different drugs is different.

They may actually wish to use the results of their study to make recommendations on how to treat

future patients. Thus, they may wish to make more specialized inferences.
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• How different is the rate of cholesterol lowering among the drugs? E.g. if they knew that Drug

1 lowered cholesterol at the rate of 5 mm Hg per month and Drug 2 lowered cholesterol at rate

15 mm Hg per month, this information might help them to decide which drug (mild Drug 1 or

aggressive Drug 2) might be more appropriate for a certain patient. Thus, the investigators might

be interested in actually estimating the rate of change in the mean response over time for each

group!

• What would the cholesterol trajectory look like for a new male patient 45 years of age after

8 months on one of the drugs? That is, before treatment, the investigators might wish to be

able to predict what the cholesterol profile might look like over 8 months for a patient with

specific characteristics and what his cholesterol level might be at the end of that time based on

his measurement at time zero. Note that 8 months is not even one of the time points (every 3

months) included in the original study.

Clearly, in order to address such questions, a more flexible model that incorporates time and rate of

change in a more explicit way is needed.

A further illustration is provided by the guinea pig diet example as discussed in 4. above. Suppose the

investigators would like to be able to understand how the rate of change in body weight of the pigs over

time is associated with the actual numerical dose. Does rate of change increase as we change the dose?

By how much per unit change of dose? If the actual dose amount could be incorporated explicitly in

the model, these questions could be addressed.

It should be clear from this brief discussion that the “classical” models and methods have serious

limitations with respect to these important issues. A serious drawback alone is that of the need for

balance. Another is failure of the models to represent explicitly important features like rate of change

with time. We begin our discussion in the next chapter with models and methods that seek to address

these problems..

PAGE 207



CHAPTER 8 ST 732, M. DAVIDIAN

8 General linear models for longitudinal data

8.1 Introduction

We have seen that the classical methods of univariate and multivariate repeated measures analysis

of variance may be thought of as being based on a statistical model for a data vector from the ith

individual, i = 1, . . . ,m. So far, we have written this model in different ways. Following convention, we

wrote the model as

Y ′

i = a′

iM + ϵ′i,

where M is the (q × n) matrix

M =

⎛

⎜⎜⎜⎜⎝

µ11 · · · µ1n

...
...

...

µq1 · · · µqn

⎞

⎟⎟⎟⎟⎠
,

and the individual means µℓj are for the ℓth group at the jth time.

We could equally well write this model as

Y i = µℓ + ϵi

for unit i coming from the ℓth population, ℓ = 1, . . . , q. Regardless of how we write the model, we note

that it represents Y i as having two components:

• a systematic component, which describes the mean response over time (depending on group

membership). The individual elements of µℓ, µℓj for the ℓth group at the jth time, are further

represented in terms of an overall mean and deviations as

µℓj = µ + τℓ + γj + (τγ)ℓj

along with constraints
∑q

ℓ=1 τℓ = 0, etc in order to give a unique representation.

As noted in the last chapter, this representation

(i) Requires that the length of each data vector Y i be the same, n.

(ii) Does not explicitly incorporate the actual times of measurement or other information.
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• an overall random deviation ϵi which describes how observations within a data vector vary

about the mean and covary among each other. Both univariate and multivariate ANOVA models

assume that

var(ϵi) = Σ

is the same (n × n) matrix for all data vectors. Furthermore,

(i) Σ is assumed to have the compound symmetry structure in the univariate model. This

came from the assumption that each element of ϵi is actually the sum of two random terms,

i.e.

ϵij = bi + eij ,

where the random effect bi has to do with variation among units and eij has to do with

variation within units.

(ii) Σ is assumed to have no particular structure in the multivariate model.

We also noted in Chapter 5 that this model could be written in an alternative way. Specifically, we

defined β as the column vector containing all of µ, τℓ, γj , (τγ)ℓj stacked and X i to be a matrix of 0’s

and 1’s with n rows that “picks” off the appropriate elements of β for each element of Y i. We wrote

the model in the alternative form

Y i = X iβ + ϵi, (8.1)

where again ϵi is the “overall deviation” vector with var(ϵi) = Σ. Note that both the univariate and

multivariate ANOVA models could be written in this way; what would distinguish them would again

be the assumption on Σ. This model, along with the usual constraints, has the flavor of a “regression”

model for the ith unit.

Regardless of how we write the model, it says that, for a unit in group ℓ,

Yij = µ + τℓ + γj + (τγ)ℓj + ϵij , (8.2)

so that E(Yij) is taken to have this specific form.

As we will now discuss, a representation like (8.1) offers a convenient framework for thinking about

more general model for longitudinal data. In this chapter, we will discuss such a model, writing it in the

form (8.1). We will see that we will be able to address several of the issues raised in the last chapter:

• Alternative definitions of X i and β will allow for unbalanced data and explicit incorporation of

time and other covariates
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The sample means suggest that the true means µj at each time point may very well fall on a straight

line.

This observation suggests that we may be able to refine our view about the means. Rather than

thinking of the mean vector as simply as set of n unrelated means µj , we might think of these means

as satisfying

µj = β0 + β1tj ;

that is, the means fall on the line with intercept β0 and slope β1.

This suggests replacing (8.2) by

Yij = β0 + β1tj + ϵij . (8.3)

Model (8.3) says that, at the jth time tj , Yij values we might see have mean β0 + β1tj and vary about

it according to the overall deviations ϵij .

• In contrast to (8.2), this model represents the mean as explicitly depending on the time of

measurement tj . (With just one group, ℓ and hence τℓ would be the same for all units in that

model, and the mean depends on time through γj and (τγ)ℓj .)

• Instead of requiring n=4 separate parameters µj , j = 1, . . . , n to describe the means at each

time, (8.3) requires only two (the intercept and slope). Thus,if we are willing to believe that the

true means do indeed fall on a straight line, (8.3) is a more parsimonious representation of the

systematic component.

• Under the new model (8.3), we are automatically including the belief that the trajectory of means

should be a straight line. Our best guess (estimate) for this trajectory would be, intuitively,

found by estimating the intercept and slope β0 and β1 (coming up).

• An additional possible advantage would be as follows. If we wanted to use these data to learn

about, for example, mean distance at age 11 years, the straight line provides us with a natural

estimate, while it is not clear what to do with the sample means to get such an estimate (connect

the dots?). How would we assess the quality of such an estimate (e.g. provide a standard error)?

To summarize, if we really believe that the mean trajectory follows a straight line, model (8.3) seems

more appropriate, because it exploits this assumption.

PAGE 211



CHAPTER 8 ST 732, M. DAVIDIAN

MATRIX REPRESENTATION: The model (8.3) may be written in matrix form. With Y i as usual

the (n × 1) data vector, defining

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 t1

1 t2
...

...

1 tn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, β =

⎛

⎜⎝
β0

β1

⎞

⎟⎠ ,

we can write the model as

Y i = Xβ + ϵi. (8.4)

This has the form of model (8.1). Because all units are seen at the same n times, the matrix X is the

same for all units.

COVARIANCE MATRIX: The above development offers an alternative way to represent mean response.

To complete the model, we need to also make an assumption about the covariance matrix of the random

vector ϵi. For example, as in the classical models, we could assume that this matrix is the same for all

data vectors, i.e.

var(ϵi) = Σ,

for some matrix Σ. Momentarily, we will address the issue of specification of Σ more carefully; for now,

as we consider the situation of only a single population, it is natural to take this matrix to be the same

for all units.

MULTIVARIATE NORMALITY: Suppose we further assume that the responses Yij are normally dis-

tributed at each time point, so that the Y i are multivariate normal. Thus, we may summarize the

model as

Y i ∼ Nn(Xβ,Σ),

where X and β are as above.

8.3 General case – several groups, unbalanced data, covariates

The modeling strategy for the mean above may be generalized. We consider several possibilities:

• units from more than one group

• different numbers/times of observations for each unit

• other covariates
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MORE THAN ONE GROUP: For definiteness, suppose there are q = 2 groups, as in the dental study

example. From Figure 1, the data support a model that says, for each group, the means at each age

fall on a straight line, but perhaps the straight line is different depending on group (gender). This

suggests that if unit i is a girl, we might have

Yij = β0,G + β1,Gtj + ϵij , (8.5)

where β0,G and β1,G are the intercept and slope, respectively, describing the means at each time for

girls as a function of time. Similarly, if unit i is a boy, we might have

Yij = β0,B + β1,Btj + ϵij , (8.6)

where β0,B and β1,B are the intercept and slope, possibly different from β0,G and β1,G.

Defining for the ith unit

δi = 0 if unit i is a girl

= 1 if unit i is a boy,

note that we can write (8.5) and (8.6) together as

Yij = (1 − δi)β0,G + δiβ0,B + (1 − δi)tjβ1,G + δitjβ1,B + ϵij (8.7)

This may be summarized in matrix form as follows. The full set of intercept and slopes β0,G, β1,G β0,B,

and β1,B characterize the means under these models for both groups. Define the parameter vector

summarizing these:

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β0,G

β1,G

β0,B

β1,B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(8.8)

Then define

Xi =

⎛

⎜⎜⎜⎜⎝

(1 − δi) (1 − δi)t1 δi δit1
...

...
...

...

(1 − δi) (1 − δi)tn δi δitn

⎞

⎟⎟⎟⎟⎠
(8.9)
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It is straightforward to see that this is a slick way of noting that if i is a girl or boy, respectively, we are

defining

Xi =

⎛

⎜⎜⎜⎜⎝

1 t1 0 0
...

...
...

...

1 tn 0 0

⎞

⎟⎟⎟⎟⎠
, Xi =

⎛

⎜⎜⎜⎜⎝

0 0 1 t1
...

...
...

...

0 0 1 tn

⎞

⎟⎟⎟⎟⎠
,

respectively.

With these definitions, it is a simple matrix exercise to verify that X iβ yields the (n× 1) vector whose

elements are β0,G + β1,Gtj or β0,B + β1,Btj , depending on whether i is a boy or girl. We may thus write

the model succinctly as

Y i = X iβ + ϵi,

where β and X i are defined in (8.8) and (8.9), respectively.

• Note that the matrix X i is different depending group membership.

• Note that X i is not of full rank (a boy does not have information about the mean for girls, and

vice versa).

• Note that β contains all parameters describing the mean trajectory for both groups.

MULTIVARIATE NORMALITY: With the additional assumption of normality, each Y i under this

model is n-variate normal with mean X iβ, where X i depends on group membership. With some

additional assumption about the covariance matrix, e.g. var(ϵi) = Σ for all i, we have

Y i ∼ Nn(Xiβ,Σ).

IMBALANCE: It is possible to be even more general. For definiteness, we consider two examples.

ULTRAFILTRATION DATA FOR LOW FLUX DIALYZERS: These data are given in Vonesh and

Chinchilli (1997, section 6.6). Low flux dialyzers are used to treat patients with end stage renal disease

to remove excess fluid and waste from their blood. In low flux hemodialysis, the ultrafiltration rate

(ml/hr) at which fluid is removed is thought to follow a straight line relationship with the transmembrane

pressure (mmHg) applied across the dialyzer membrane. A study was conducted to compare the average

ultrafiltration rate (the response) of such dialyzers across three dialysis centers where they are used on

patients. A total of m = 41 dialyzers (units) were involved. The experiment involved recording the

ultrafiltration rate at several transmembrane pressures for each dialyzer.
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Defining

β = (β1, β2, . . . ,β6)
′,

we can define a separate (n × 1) X i matrix for each unit, based on its group membership and unique

set of times tij ; for example, for unit i from the first center,

X i =

⎛

⎜⎜⎜⎜⎝

1 ti1 0 0 0 0
...

...
...

...

1 tin 0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

We may thus again write the model (8.10) as

Y i = X iβ + ϵi,

where X i is defined appropriately for each unit and β is defined as above.

HIP-REPLACEMENT STUDY: These data are adapted from Crowder and Hand (1990, section 5.2).

30 patients underwent hip-replacement surgery, 13 males and 17 females. Hæmatocrit, the ratio of

volume packed red blood cells relative to volume of whole blood recorded on a percentage basis, was

supposed to be measured for each patient at week 0, before the replacement, and then at weeks 1, 2,

and 3, after the replacement.

The primary interest was to determine whether there are possible differences in mean response following

replacement for men and women. Spaghetti plots of the profiles for each patient are shown in the left-

hand panels of Figure 3. (We will discuss the right-hand panels later.)
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To determine an appropriate parsimonious representation for the mean of a data vector for each group,

we could calculate the sample means at each time point for males and females. We must be a bit careful,

however; because of the missingness, the sample means at different times will be of different quality.

Nonetheless, it seems clear from the figure that a model that says the means fall on a straight line

for either gender would be inappropriate. For almost all patients, the pre-replacement reading is high;

then, following replacement, the hæmatocrit goes down and then slowly rebounds over the next 3 weeks.

This suggests that the relationship of the means with time might look more like a quadratic function

of time. These observations suggest the following model:

Yij = β1 + β2tij + β3t
2
ij + ϵij , males

Yij = β4 + β5tij + β6t
2
ij + ϵij , females. (8.11)

In (8.11), we have allowed for the possibility that the times for each i are not the same, writing tij . For

this data set, the times that are potentially available for each individual are the same; however, as we

saw in the dialyzer example above, this need not be the case.

To write the model in matrix form, define

β = (β1, . . . ,β6)
′.

Clearly, the matrix X i for a given unit will depend on the times of observation for that unit and will

have number of rows ni, each row corresponding to one of the ni elements of Yij . For example, for a

male with ni observations, we have

Xi =

⎛

⎜⎜⎜⎜⎝

1 ti1 t2i1 0 0 0
...

...
...

...
...

...

1 tini
t2ini

0 0 0

⎞

⎟⎟⎟⎟⎠
.

We may thus summarize the model as

Y i = X iβ + ϵi, (ni × 1),

where X i is the (ni × 6) matrix defined appropriately for individual i.
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COVARIANCE MATRIX: We have to be a little more careful here. Because now we are dealing with

data vectors Y i of different lengths ni, note that the corresponding covariance matrices must be of

dimension (ni × ni). Thus, it is not possible to assume that the covariance matrix of all data vectors

is identical across i. For now, we will write

var(ϵi) = Σi

to recognize this issue – the i subscript indicates that, at the very least, the covariance matrix depends

on i through its dimension ni.

For example, suppose we believed that the assumption of compound symmetry was reasonable such

that all observations Yij have the same overall variance σ2, say, and all are equally correlated, no

matter where they are taken in time. Thus, this would be a valid choice even for a situation where the

times are different somehow on different units, either as in the dialyzer example or because of missing

observations. As in Chapter 4, to represent this, we would have a second parameter ρ. For a data vector

of length ni, then, no matter where its ni observations in time were taken, the matrix Σi would be the

(ni × ni) matrix

Σi = σ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ · · · ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

No matter what the dimension or the time points, under this assumption, the matrix Σi would depend

on the 2 parameters σ2 and ρ for all i, and depend only on i because of the dimension.

We will discuss covariance matrices more shortly.

MULTIVARIATE NORMALITY: With the assumption of normality, we can thus write the model

succinctly as

Y i ∼ Nni
(Xiβ,Σi).

ADDITIONAL COVARIATES: We in fact can write even more general models, which allow for the

possibility that we may wish to incorporate the effect of other covariates. In reality, this does not

represent a further extension of the type of models we have already considered, as group membership

is of course itself a covariate. Recall that we wrote in (8.9) the X i matrix in terms of a group membership

indicator δi; technically, this is just a covariate like any other. The point we emphasize here is that

there is nothing preventing us from incorporating several covariates into a model for the mean. These

covariates may be indicators of other things or continuous.
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HIP REPLACEMENT, CONTINUED: In the hip replacement study, the age of each participant was

also recorded, and in fact an objective of the investigators was not only to understand differences in

hæmatocrit response across genders but also to elucidate whether the age of the patient has an effect

on response. It turns out that the sample mean age for males was 65.52 years and that for females was

66.07 years. From Figure 3, the patterns look pretty similar for both genders; of course, there is no

easy way of discerning from the plot whether age affects the response.

To illustrate inclusion of the age covariate, consider the following modified model, where ai is the age

of the ith patient:

Yij = β1 + β2tij + β3t
2
ij + β7ai + ϵij , males

Yij = β4 + β5tij + β6t
2
ij + β7ai + ϵij , females. (8.12)

Model (8.12) says that, regardless of whether a person is male or female, the mean hæmatocrit response

at any time increases by β7 for every year increase in age (keep in mind that β7 could be negative).

One can envision fancier models where this also depends on gender. It is straightforward to write this

in matrix notation as before; with

β = (β1, . . . ,β7)
′,

we can define appropriate X i matrices, i.e. for a male of age ai

Xi =

⎛

⎜⎜⎜⎜⎝

1 ti1 t2i1 0 0 0 ai

...
...

...
...

...
...

1 tini
t2ini

0 0 0 ai

⎞

⎟⎟⎟⎟⎠
.

PARAMETERIZATION: It is possible to represent models like those above in different ways. For

definiteness, consider the dialyzer example. We wrote the model in (8.10) as

Yij = β1 + β2tij + ϵij , dialyzer i in center 1

Yij = β3 + β4tij + ϵij , dialyzer i in center 2

Yij = β5 + β6tij + ϵij , dialyzer i in center 3

It is sometimes more convenient, although entirely equivalent, to write the model in an alternative

parameterization. As we have discussed, a question of interest is often to compare the rate of change

of the mean response over time (pressure here) among groups. In this situation, we would like to

compare the three slopes β2, β4, and β6.
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Define

δi1 = 1 unit i from center 1; = 0 o.w.

δi2 = 1 unit i from center 2; = 0 o.w.

Then write the model as

Yij = β1 + β2δi1 + β3δi2 + β4tij + β5δi1tij + β6δi2tij + ϵij (8.13)

There are still 6 parameters overall, but the ones in (8.13) have an entirely different interpretation

from those in the first model.

It is straightforward to observe by simply plugging in the values of δi1 and δi2 for each center that the

following is true:

Center Intercept Slope

1 β1 + β2 β4 + β5

2 β1 + β3 β4 + β6

3 β1 β4

Note that β2 and β3 have the interpretation of the difference in intercept between Centers 1 and 3

and Centers 2 and 3, respectively, and β1 is the intercept for Center 3. Similarly, β5 and β6 have the

interpretation of the difference in slope between Centers 1 and 3 and Centers 2 and 3, respectively, and

β1 is the slope for Center 3. This parameterization allows us to estimate, as we will talk about shortly,

the differences of interest directly. This same type of parameterization is used in ordinary linear

regression for similar reasons.

This type of parameterization is the default used by SAS PROC GLM and PROC MIXED, which we will use

to implement the analyses we will discuss shortly. The different parameterizations yield equivalent

models; the only thing that differs is the interpretation of the parameters.
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8.4 Models for covariance

In the last section, we noted in gory detail how one may model the mean of each element of a data vector

in very flexible and general ways. We did not say much about the assumption on covariance matrix,

except to note that, when the data are unbalanced with possibly different numbers of observations for

each i, it is not possible to think in terms of an assumption where the covariance matrix is strictly

identical for all i, at least in terms of its dimension.

We have noted previously that the classical methods make assumptions about the covariance matrix in

the balanced case that are either too restrictive or too vague. For the approach we are taking in

this chapter, in contrast to the “classical” models and methods, as we will soon see, there is nothing

really stopping us from making other assumptions about the covariance matrix in the sense that we

will be able to estimate parameters of interest, obtain (approximate) sampling distributions for the

estimators, and carry out tests of hypotheses regardless of the assumption we make.

In Chapter 4 we reviewed a number of covariance structures. Here, we consider using these as possible

models for var(ϵi) = Σi. We will be using SAS PROC MIXED to fit the models in this chapter using

the method of maximum likelihood to be discussed in section 8.5. Thus, it is useful to recall these

structures and note how they are accessed in PROC MIXED.

Note that by modeling var(ϵi) directly, we do not explicitly distinguish between among-unit and

within-unit sources of variation. In this strategy, we just consider models for the aggregate of

all sources. In the next two chapters, we will discuss a refined version of our regression model for

longitudinal data that explictly acknowledges these sources.

BALANCED CASE: It is easiest to discuss first the case of balanced data. Suppose we have a model

Y i = Xiβ + ϵi, (n × 1).

Under these conditions, we may certainly consider the same assumptions of covariance matrix as in the

classical case. That is, assume that the covariance matrix var(ϵi) is the same for all i and equal to Σ,

where Σ has the form of

• Compound symmetry. SAS PROC MIXED uses the designation type = cs to refer to this as-

sumption.

• Completely unstructured. SAS PROC MIXED uses the designation type = un to refer to this

assumption.
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ALTERNATIVE MODELS: We now recall the other models. Actually, there is nothing stopping us

from allowing var(ϵi) to be different for different groups; e.g., in the dental study, allow different

covariance matrices for each gender. We discuss this further below.

• One-dependent. Recall that it seems reasonable that observations taken more closely together

in time might tend to be “more alike” than those taken farther apart. If the observation times are

spaced so that the time between 2 nonconsecutive observations is fairly long, we might conjecture

that correlation is likely to be the largest among observations that are adjacent in time; that is,

occur at consecutive times. Relative to the magnitude of this correlation, the correlation between

observations separated by two time intervals might for all practical purposes be negligible.

An example of a one-dependent model embodying this assumption is

Σ = var(ϵi) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ2 ρσ2 0 · · · 0

ρσ2 σ2 ρσ2 · · · 0
...

...
...

...
...

0 0 · · · ρσ2 σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

This model would make sense even if the times are not equally-spaced in time (as they are, for

example, in the dental study: 8, 10, 12, 14). It is possible to extend this to a two-dependent or

higher dependent model or to heterogeneous variances over time, as discussed in Chapter 4.

SAS PROC MIXED uses the designation type = toep(2) (for “Toeplitz” with 2 diagonal bands) to

refer to this assumption with the same variance at all times.

With groups, we could believe the one-dependent assumption holds for each group, but allow the

possibility that the variance σ2 and correlation ρ are different in each group. The same holds true

for the rest of the models we consider.

• Autoregressive of order 1 (equally-spaced in time). This model says that correlation drops

off as observations get farther apart from each other in time. The following model really only

makes sense if the times of observation are equally-spaced. The so-called AR(1) model with

homogeneous variance over time is

Σ = var(ϵi) = σ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

...

ρn−1 ρn−2 · · · ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

SAS PROC MIXED uses the designation type = ar(1) to refer to this assumption.
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• Markov (unequally spaced in time). The AR(1) model may be generalized to times that are

unequally-spaced. (e.g. 1, 3, 4, 5, 6, 7 as in the guinea pig diet data). The powers of ρ are

taken to be the distances in time between the observations. That is, if

djk = |tij − tik|, j, k = 1, . . . , n,

then the model is

Σ = var(ϵi) = σ2

⎛

⎜⎜⎜⎜⎝

1 ρd12 · · · ρd1n

...
...

...
...

ρdn1 ρdn2 · · · 1

⎞

⎟⎟⎟⎟⎠
.

SAS PROC MIXED allows this type of model to be implemented in more than one way, e.g with the

type = sp(pow)(.) designation.

We will consider examples of fitting these structures to several of our examples in section 8.8. The SAS

PROC MIXED documentation, as well as the books by Diggle, Heagerty, Liang, and Zeger (2002) and

Vonesh and Chinchilli (1997), discuss other assumptions.

DECIDING AMONG COVARIANCE STRUCTURES: In the balanced case, one may use the tech-

niques discussed in Chapter 4 to gain informal insight into the structure of var(ϵi). Inspection of sample

covariance matrices, scatterplot matrices, autocorrelation functions, and lag plots can aid the analyst

in identifying possible reasonable models.

These methods can be modified to take into account the fact that one believes that the mean vectors

follow smooth trajectories over time, such as a straight line. For instance, instead of using the sample

means for “centering” in these approaches, one might estimate β somehow; e.g. by least squares

treating all the individual responses from all units as if they were independent (even though we know

they are probably not). Least squares is clearly not the best way to estimate β (recall our discussion

in Chapter 3); however, this estimator may be “good enough” to provide reasonable estimates of the

means at each time tj that take advantage of our willingness to believe they follow a smooth trajectory,

so might be preferred to using sample means at each j on this account. In particular, if

µj = β0 + β1tj ,

say, for a single group, we would estimate µj by β̂0 + β̂1tj and use this in place of the sample mean.

A complete discussion of graphical and other techniques along these lines may be found in Diggle,

Heagerty, Liang, and Zeger (2002).
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It is also possible to use other methods to deduce which structure might give an appropriate model; we

will see this shortly. Later in the course, we will discuss a popular way of thinking about the problem of

modeling covariance and a popular way of taking into account the possibility that we might be wrong

when adopting a particular covariance model.

UNBALANCED CASE: Suppose first that we are in a situation like that of the hip-replacement data;

i.e., all times of observation are the same for all units; however, some observations are missing on some

units. For definiteness, suppose as in the hip data we have times (t1, t2, t3, t4) = (0, 1, 2, 3), and suppose

we have a unit i for which the observation at time t3 is not available. Thus, the vector Y i for this unit

is of length ni = 3. We could represent this situation notationally two different ways:

(i) For this unit, write Y i = (Yi1, Yi2, Yi3)′ to denote the observations at times (ti1, ti2, ti3)′ = (0, 1, 3)′.

Thus, in this notation, j indexes the number of observations within the unit, regardless of the

actual values of the times. There are 3 times for this unit, so j = 1, 2, 3. This is the standard way

of representing things generically.

(ii) To think more productively about covariance modeling, consider an alternative. Here, let j index

the intended times of observation. This unit is missing time j = 3; thus, represent things as

Y i = (Yi1, Yi2, Yi4)
′, at times (t1, t2, t4)

′ = (0, 1, 3). (8.14)

Now consider the models discussed above and the alternative notation. Assume we believe that

var(Yij) = σ2 for all j. We thus want a model for

Σi = var(Y i) =

⎛

⎜⎜⎜⎜⎝

σ2 cov(Yi1, Yi2) cov(Yi1, Yi4)

cov(Yi2, Yi1) σ2 cov(Yi2, Yi4)

cov(Yi4, Yi1) cov(Yi4, Yi2) σ2

⎞

⎟⎟⎟⎟⎠
.

• The compound symmetry assumption would be represented in the same way regardless of the

missing value; all it says is that observations any distance apart have the same correlation. Thus,

under this assumption, Σi would be the (3 × 3) version of this matrix.

• Under an unstructured assumption, this matrix becomes (convince yourself!)

Σi =

⎛

⎜⎜⎜⎜⎝

σ2
1 σ12 σ14

σ12 σ2
2 σ24

σ14 σ24 σ2
4

⎞

⎟⎟⎟⎟⎠
.
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• Under the one-dependent model, which says that only observations adjacent in time are corre-

lated, this matrix becomes (convince yourself!)

Σi =

⎛

⎜⎜⎜⎜⎝

σ2 ρσ2 0

ρσ2 σ2 0

0 0 σ2

⎞

⎟⎟⎟⎟⎠
.

• Under the AR(1) model, this matrix becomes (convince yourself!)

Σi = σ2

⎛

⎜⎜⎜⎜⎝

1 ρ ρ3

ρ 1 ρ2

ρ3 ρ2 1

⎞

⎟⎟⎟⎟⎠
.

These examples illustrate the main point – if all observations were intended to be taken at the same

times, but some are not available, the covariance matrix must be carefully constructed according to the

particular time pattern for each unit, using the convention of the assumed covariance model.

Now consider the situation of the ultrafiltration data. Here, the actual times of observation are different

for each unit. Consider again the above models.

• Here, the unstructured assumptions are difficult to justify. Because each unit was seen at a

different set of times, they cannot share the same covariance parameters, so the matrix Σi must

depend on entirely different quantities for each i.

• The compound symmetry assumption could still be used, as it does not pay attention to the

actual values of the times. Of course, it still suffers from the drawbacks for longitudinal data we

have already noted.

• We might still be willing to adopt something like the one-dependent assumption in the same

spirit as with compound symmetry, saying that observations that are adjacent in time, regardless

of how far apart they might be, are correlated, but those farther are not. However, it is possible

that the distance in time for adjacent observations for one unit might be longer than the distance

for nonconsecutive observations for another unit, making this seem pretty nonsensical!

• The AR(1) assumption is clearly inappropriate by the same type of reasoning.

• The so-called Markov assumption seems more promising in this situation – the correlation among

observations within a unit would depend on the time distances between observations within a

unit.
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Clearly, with different times for different units, modeling covariance is more challenging! In fact, it is

even hard to investigate the issue informally, because the information from each unit is different. In

the next two chapters of the course, we will talk about another approach to modeling longitudinal data

that obviates the need to think quite so hard about all of this!

INDEPENDENCE ASSUMPTION: An alternative to all of the above, in both cases of balanced and

unbalanced data, is the assumption that observations within a unit are uncorrelated, which, with the

assumption of multivariate normality implies that they are independent. That is, if we believe that

all observations have constant variance var(Yij) = σ2, take

Σi = var(ϵi) = σ2Ini
.

• This assumption seems incredibly unrealistic for longitudinal data. It says that observations on

the same unit are no more alike than those compared across units! In a practical sense, it implies

variation among units must be negligible; otherwise, we would expect observations on the same

individual to be correlated due to this source.

• It also says that there is no correlation induced by within-unit fluctuations over time. This

might be okay if the observations are all taken sufficiently far apart in time from one another,

however, may be unrealistic if they are close in time.

• Occasionally, this model might be sensible, e.g. suppose the units are genetically-engineered mice,

bred specifically to be as alike as possible. Under such conditions, we might expect that the

component of variation due to variation among mice might indeed be so small as to be regarded

as negligible. If furthermore the observations on a given mouse are all far apart in time, then we

would expect no correlation for this reason, either.

• In most situations, however, this assumption represents an obvious model misspecification, i.e.

the model almost certainly does not accurately represent the truth.

• However, sometimes, this assumption is adopted nonetheless, even though the data analyst is

fully aware it is likely to be incorrect. The rationale will be discussed later in the course.

SUMMARY: The important message is that, by thinking about the situation at hand, it is possible to

specify models for covariance that represent the main features in terms of a few parameters. Thus,

just as we model the systematic component in terms of a regression parameter β, we may model

the random component.
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With models like those above, this is accomplished through a few covariance parameters (sometimes

called variance or covariance components), which are the distinct elements of the covariance matrix

or matrices assumed in the model.

8.5 Inference by maximum likelihood

We have devoted considerable discussion to the idea of modeling longitudinal data directly. However,

we have not tackled the issue of how to address questions of scientific interest within the context of such

a model:

• With a more flexible representation of mean response, we have more latitude for stating such

questions, as we have already mentioned.

• For example, consider the dental study. A question of interest has to do with the rate of change

of distance over time – is it the same for boys and girls? In the context of the classical ANOVA

models discussed earlier, we phrased this question as one of whether or not the mean profiles are

parallel, and expressed this in terms of the (τγ)ℓj . Of course, in the context of the model given

in (8.5) and (8.6), the assumption of parallelism is still the focus, but it may be stated more

clearly directly in terms of slope parameters, i.e.

H0 : β1,G = β1,B.

• Furthermore, we can do more. Because we have an explicit representation of the notion of “rate of

change” in these slopes, we can also estimate the slopes for each gender and provide an estimate

of the difference! If the evidence in the data is not strong enough to conclude the need for 2

separate slopes, we could estimate a common slope.

• Even more than this is possible. Because we have a representation for the entire trajectory as a

function of time, we can estimate the mean distance at any age for a boy or girl.

To carry out these analyses formally, then, we need to develop a framework for estimation in our model

and a procedure to do hypothesis testing. The standard approach under the assumption of multivariate

normality is to use the method of maximum likelihood.

MAXIMUM LIKELIHOOD: This is a general method, although we state it here specifically for our

model. Maximum likelihood inference is the cornerstone of much of statistical methodology.

PAGE 228



CHAPTER 8 ST 732, M. DAVIDIAN

The basic premise of maximum likelihood is as follows. We would like to estimate the parameters that

characterize our model based on the data we have. One approach would be to use as the estimator a

value that “best explains” the data we saw. To formalize this

• Find the parameter value that maximizes the probability, or “likelihood” that the observations

we might see for a situation like the one of interest would be end up being equal to the data we

saw.

• That is, find the value of the parameter that is best supported by the data we saw.

Recall that we have a general model of the form

Y i ∼ Nni
(Xiβ,Σi),

where Σi is a (ni × ni) covariance model depending on some parameters.

• The regression parameter β characterizes the mean. Suppose it has dimension p.

• Denote the parameters that characterize Σi as ω.

• For example, in the AR(1) model, ω = (σ2, ρ).

For us, the data are the collection of data vectors Y i, i = 1, . . . , m, one from each unit. It will prove

convenient to summarize all the data together in a single, long vector of length N (recall N is the total

number of observations
∑m

i=1 ni), which “stacks” them on one another:

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Y 1

Y 2

...

Y m

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

INDEPENDENCE ACROSS UNITS: Recall that we have argued that a reasonable assumption is that

the way the data turn out for one unit should be unrelated to how they turn out for another. Formally,

this may be represented as the assumption that the Y i, i = 1, . . . , m are independent.

• This assumption is standard in the context of longitudinal data, and we will adopt it for the rest

of the course.

• Recall that this assumption also underlied the univariate and multivariate classical methods.
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JOINT DENSITY OF Y : We may represent the probability of seeing data we saw as a function of the

values of the parameters β and ω by appealing to our multivariate normal assumption. Specifically,

recall that if we believe Y i ∼ Nni
(Xiβ,Σi), then the probability that this data vector takes on the

particular value yi is represented by the joint density function for the multivariate normal (recall

Chapter 3).

For our model, this is

fi(yi) = (2π)−ni/2|Σi|−1/2 exp{−(yi − X iβ)′Σ−1
i (yi − Xiβ)/2} (8.15)

Because the Y i are independent, the joint density function for Y is the product of the m individual

joint densities (8.15); i.e. letting f(y) be the joint density function for all the data Y (thus representing

probabilities of all the data vectors taking on the values in y together)

f(y) =
m∏

i=1

fi(yi) =
m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − X iβ)′Σ−1
i (yi − Xiβ)/2}. (8.16)

MAXIMUM LIKELIHOOD ESTIMATORS: The method of maximum likelihood for our problem thus

boils down to maximizing f(y) (evaluated at the data values we saw) in the unknown parameters

β and ω. The maximizing values will be functions of y. These functions applied to the random vector

Y yield the so-called maximum likelihood (ML) estimators.

• (8.16) is a complicated function of β and ω. Thus, finding the values that maximize it for a given

set of data is not something that can be done in closed form in general. Rather, fancy numerical

algorithms, the details of which are beyond the scope of this course, are used. These algorithms

form the “guts” of software for this purpose, such as SAS PROC MIXED and others.

SPECIAL CASE – ω KNOWN: We first consider an “ideal” situation unlikely to occur in practice.

Suppose we were lucky enough to know ω; e.g., if the covariance model were AR(1), this means we

know σ2 and ρ. In this case, all the elements of the matrix Σi for all i are known. In this case, it is

possible to show using matrix calculus that the maximizer of f(y) in β, evaluated at Y , is

β̂ =

(
m∑

i=1

X ′

iΣ
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ
−1
i Y i. (8.17)

WEIGHTED LEAST SQUARES: Note that this has a similar flavor to the weighted least squares

estimator we discussed in Chapter 3. In fact, the estimator β̂ is usually called weighted least squares

estimator in this context as well!
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• In fact, it may be shown that maximizing the likelihood (8.16) evaluated at Y is equivalent to

minimizing the sum of quadratic forms
m∑

i=1

(Y i − X iβ)′Σ−1
i (Y i − Xiβ). (8.18)

ALTERNATIVE REPRESENTATION: The following alternative representation makes this even more

clear. Define

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (N × p).

With this. definition, and defining ϵ as the N -vector of ϵi stacked as in Y , we may write the model

succinctly as (convince yourself)

Y = Xβ + ϵ.

Note that we thus have E(Y ) = Xβ.

• This way of representing the general model is standard and is used in most texts on longitudinal

data analysis. It is also used in SAS documentation.

Also define the (N × N) matrix

Σ̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
...

...

0 0 · · · Σm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

the block diagonal matrix with the m (ni × ni) covariance matrices along the “diagonal.”

• It is a matrix exercise to realize that we may thus write the assumption on the covariance matrices

of all m Y i succinctly as (try it)

var(Y ) = Σ̃.

• It may then be shown that the weighted least squares estimator β̂ may be written (try it!)

β̂ = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Y .

Compare this to the form for usual regression in Chapter 3.

• It may be shown in this notation that β̂ minimizes the quadratic form (rewrite (8.18)

(Y − Xβ)′Σ̃
−1

(Y − Xβ).
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INTERPRETATION: In either form, the weighted least squares estimator β̂ has the same interpretation.

Consider (8.17). Note that the contribution of each data vector to β̂ is being weighted in accordance

with its covariance matrix. Data vectors with “more variation” as measured through the covariance

matrix get weighted less, and conversely. The same interpretation may be made from inspection of

the alternative representation. Here, we see how this weighting is occurring across the entire data set;

each part of Y is getting weighted by its covariance matrix, so that the data vector as a whole is being

weighted by the overall covariance matrix Σ̃.

SAMPLING DISTRIBUTION: By identical arguments as used in Chapter 3, it may thus be shown that

β̂ is unbiased and the sampling distribution of β̂ is multivariate normal, i.e.

E(β̂) = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Xβ = β.

var(β̂) = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Σ̃Σ̃
−1

X(X ′Σ̃
−1

X)−1 = (X ′Σ̃
−1

X)−1.

It thus follows that

β̂ ∼ Np{β, (X ′Σ̃
−1

X)−1}.

• This fact could be used to construct standard errors for the elements of β̂. For example, we could

attach a standard error to the estimate of the slope of the distance-age relationship for boys in

the dental study.

ω UNKNOWN: Of course, the chances that we would actually know ω are pretty remote. The more

relevant case is where both β and ω are unknown. In this situation, we would have to maximize(8.16)

in both to obtain the ML estimators. Unlike the case above, it is not possible to write down nice

expressions for the estimators; rather, their values must be found by numerical algorithms. However, it

is possible to show that the ML estimator for β̂ may be written, in the original notation

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i

where Σ̂i is the covariance matrix for Y i with the estimator for ω plugged in.

• It is not possible to write down an expression for the estimator for ω, ω̂; thus, the expression for

β̂ is really not a closed form expression, either, despite its tidy appearance.

• This estimator is often called the (estimated) generalized least squares estimator for β. The

designation “generalized” emphasizes that Σi is not known and its parameters estimated.
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LARGE SAMPLE THEORY: It is a standard problem in statistical methodology that estimators for

complicated models often cannot be written down in a nice compact, closed form. There is a further

implication.

• In our problem, note that when ω was known, it was possible to derive the sampling distribu-

tion of β̂ exactly and to show that it is an unbiased estimator for β.

• With ω unknown, the matrices Σi are replaced by Σ̂i in the form of β̂. The result is that it is no

longer possible to calculate the mean, covariance matrix, or anything else for β̂ exactly; e.g.

E(β̂) = E

⎧
⎨

⎩

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i

⎫
⎬

⎭ .

Because Σ̂i depends on ω̂, which in turn depends on the data Y i, it is generally the case that it

is not possible to do this calculation in closed form. Similarly, it is no longer necessarily the case

that β̂ has exactly a p-variate normal sampling distribution.

In situations such as these, it is hopeless to try to derive these needed quantities. The best that can be

hoped for is to try to approximate them under some simplifying conditions. The usual simplifying

conditions involve letting the sample size (i.e. number of units m in our case) get large. That is, the

behavior of β̂ is evaluated under the mathematical condition that

m → ∞.

• It turns out that, mathematically, under this condition, it is possible to evaluate the sampling

distribution of β̂ and show that β̂ is “unbiased” in a certain sense.

• Such results are not exact. Rather, they are approximations in the following sense. We find

what happens in the “ideal” situation where the sample size grows infinitely large. We then hope

that this will be approximately true if the sample size m is finite. Often, if m is moderately

large, the approximation is very good; however, how “large” is “large” is difficult to determine.

Such arguments are far beyond our scope here, but be aware that all but the most basic statistical

methodology relies on them. We now state the large sample theory results applicable to our problem.

It may be shown that, approximately, for m “large,”

β̂
·∼ Np{β, (X ′Σ̃

−1
X)−1}. (8.19)
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That is, the sampling distribution of β̂ may be approximated by a multivariate normal distribution

with mean β and covariance matrix (X ′Σ̃
−1

X)−1, which may be written in the alternative form

(
m∑

i=1

X ′

iΣ
−1
i Xi

)
−1

.

• Note that the form of the covariance matrix depends on the true values of the Σi matrices,

which in turn depend on the unknown parameter ω.

• Thus, for practical use, a further approximation is made. The covariance matrix of the sampling

distribution of β̂ is approximated by

V̂ β =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1

, (8.20)

where as before Σ̂i denote the matrices Σi with the estimated value for ω plugged in. We will use

the symbol V̂ β in the sequel to refer to this estimator for the covariance matrix of the sampling

distribution of β̂.

• Standard errors for the components of β̂ are then found in practice by evaluating (8.20) at the

data and taking the square roots of the diagonal elements.

• It is important to recognize that these standard errors and other inferences based on this ap-

proximation are exactly that, approximate! Thus, one should not get too carried away – as we

now discuss, if a test statistic gives borderline evidence of a different for a particular level of

significance α (e.g. = 0.05), it is best to state that the evidence is inconclusive. This is in fact

true even for statistical methods where the sampling distributions are known exactly. In any case,

the data may not really satisfy all assumptions exactly, so it is always best to interpret borderline

evidence with care.

It is also possible to derive an approximate sampling distribution for ω̂; however, usually, interest

focuses on hypotheses about β and its elements, so this is not often done. Moreover, any inference

on parameters that describe covariance matrices, exact or approximate, is usually quite sensitive to

the assumption of multivariate normality being exactly correct. If it is not, the tests can be quite

misleading. For these reasons, we will focus on inference about β.

QUESTIONS OF INTEREST: Often, questions of interest may be phrased in terms of a linear func-

tion of the elements of β. For example, consider the dental study data.
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• Suppose we wish to investigate the difference between the slopes β1,G and β1,B for boys and girls

and have parameterized the model explicitly in terms of these values. Then we are interested in

the quantity

β1,G − β1,B .

With β defined as in (8.8),

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β0,G

β1,G

β0,B

β1,B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

we may write this as Lβ, where L = (0, 1, 0,−1) (verify).

• Suppose we want to investigate whether the two lines coincide; that is, both intercepts and slopes

are the same for both genders. We are thus interested in the two contrasts

β0,G − β0,B, β1,G − β1,B

simultaneously. We may state this as Lβ, where L is the (2 × 4) matrix

L =

⎛

⎜⎝
1 0 −1 0

0 1 0 −1

⎞

⎟⎠ .

• Suppose we are interested in the mean distance for a boy 11 years of age; that is, we are interested

in the quantity

β0,B + β1,Bt0, t0 = 11.

We can write this in the form Lβ by defining

L = (0, 0, 1, t0).

It should be clear that, given knowledge of how a model has been parameterized, one may specify

appropriate matrices L of dimension (r × p) to represent various questions of interest.

ESTIMATION: The natural estimate of a quantity or quantities represented as Lβ is to substitute the

estimator for β; i.e. Lβ̂.

• For example, in the final example above, we may wish to obtain an estimate of the mean distance

for a boy 11 years of age.

• To accompany the estimate, we would like an estimated standard error. This would also allow us

to construct confidence intervals for the quantity of interest.
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If we treat the approximate covariance matrix (8.20) and the multivariate normality of β̂ as exactly

correct, then we may apply standard results to obtain the following:

• The approximate covariance matrix of Lβ̂ is given by

var(Lβ̂) = Lvar(β̂)L′ = LV̂ βL′.

• Thus, we approximate the sampling distribution of the linear function Lβ̂ as

Lβ̂
·∼ Nr(Lβ, LV̂ βL′). (8.21)

The approximation (8.21) may be used as follows:

• If L is a single row vector (r = 1), as in the case of estimating the mean for 11 year old boys,

then LV̂ βL′ is a scalar, and is thus the estimated sampling variance of Lβ̂. The square root of

this quantity is thus an estimated standard error for Lβ̂. Based on the approximate normality, we

might form a confidence interval in the usual way; letting SE(Lβ̂) be the estimated standard

error, form the interval as

Lβ̂ ± zα/2SE(Lβ̂)

where zα/2 is the value with with α/2 area to the right under the standard normal probability

density curve. Some people use a t critical value in place of the normal critical value, with degrees

of freedom chosen in various ways. Because of the large sample approximation, it is not clear

which method gives the most accurate intervals for any given problem.

WALD TESTS OF STATISTICAL HYPOTHESES: For a given choice of L, we might be interested in

a test of the issue addressed by L; e.g. testing whether the girl and boy slopes are different.

In general, we may interested in a test of the hypotheses

H0 : Lβ = h vs. H1 : Lβ ̸= h,

where h is a specified (r × 1) vector. Most often, h will be equal to 0.

• If r = 1 so that L is a row vector, then the obvious approach (approximate, of course) is to form

the test statistic

z =
Lβ̂ − h

SE(Lβ̂)

and compare z to the critical values of the standard normal distribution. (Some people compare

z to the t distribution with degrees of freedom picked in different ways.)
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• Recall that if Z is a standard normal random variable, then Z2 has a χ2 distribution with one

degree of freedom. Thus, we could conduct the identical test by comparing z2 to the appropriate

χ2
1 critical value. In fact, we can write z2 equivalently as

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h).

• This may be generalized to L of row dimension r, representing simultaneous testing of r separate

contrasts. If L is of full rank (so that none of the contrasts duplicates the others) then

TL = (Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

is still a scalar, of course. Because Lβ̂ is approximately normally distributed, it may be argued

that a generic statistic of form TL has approximately a χ2 distribution with r degrees of freedom.

Thus, a test of such hypotheses may be conducted by comparing TL to the appropriate χ2
r critical

value: Reject H0 in favor of H1 at level α if TL > χ2
r,1−α, where χ2

r,1−α is the value such that the

area under the χ2 distribution to the right is equal to α.

The above methods exploit the multivariate normal approximation (8.19) to the sampling distribution

of β̂ (and hence Lβ̂). These approaches treat this approximation as exact and then construct familiar

test statistics that would have a χ2 distribution if it were. This is usually referred to in this context as

Wald inference. Unfortunately, Wald inferential methods may have a drawback.

• When the sample size m is not too large, the resulting inferences may not be too reliable. This

is because they rely on a normal approximation to the sampling distribution that may be a lousy

approximation unless m is relatively large.

• Sometimes, the χ2 distribution is replaced with an F distribution to make the test more reliable

in small samples (PROC MIXED implements this).

LIKELIHOOD RATIO TEST: An alternative to Wald approximate methods is that of the likelihood

ratio test. This is also an approximate method, also based on large sample theory (i.e large m);

however, it has been observed that this approach tends to be more reliable when m is not too large

than the Wald approach.

The likelihood ratio test is applicable in the situation in which we wish to test what are often called

“reduced” versus “full” model hypotheses. For example, consider the dental data. Suppose we are

interested in testing whether the slopes for boys and girls are the same, i.e.

H0 : β1,G − β1,B = 0 versus H1 : β1,G − β1,B ̸= 0.

PAGE 237



CHAPTER 8 ST 732, M. DAVIDIAN

These hypotheses allow the intercepts to be anything, focusing only on the slopes. If we think of the

alternative hypothesis H1 as specifying the “full” model, i.e. with no restrictions on any of the values

of intercepts or slopes, then the null hypothesis H0 represents a “reduced” model in the sense that it

requires two of the parameters (the slopes) to be the same.

• The “reduced” model is just a special instance of the “full” model. Thus, the “reduced” model

and the null hypothesis are said to be nested within the “full” model and alternative hypothesis.

When hypotheses are nested in this way, so that we may think naturally of a “full” (H1) and “reduced”

(H0) model, a fundamental result of statistical theory is that one may construct an approximate test

of H0 vs. H1 based on the likelihoods for the two nested models under consideration. Suppose the

model for the mean of a data vector Y i under the “full” model is X iβ. Recall that the likelihood is

Lfull(β, ω) =
m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − Xiβ)′Σ−1
i (yi − Xiβ)/2}.

Under the “reduced” model, the likelihood is the same except that the mean of a data vector is

restricted to have the form specified under H0. For our dental example, the restriction is that the two

slope parameters are the same; thus, the regression parameter β for the reduced model contains

one less element than does the full model, and the matrices X i must be adjusted accordingly; e.g. if

β1 equals the common slope value, then

Yij = β0,G + β1tj + eij for girls,

Yij = β0,B + β1tj + eij for boys.

Let β0 denote the new definition of regression parameter if the restriction of H0 is imposed. Then let

Lred(β0, ω)

denote the likelihood for this reduced model.

Suppose now that we fit each model by the method of maximum likelihood by maximizing the likelihoods

Lfull(β, ω) and Lred(β0, ω),

respectively. For the reduced model, this means estimating β0 and ω corresponding to the reduced

model. Let L̂full and L̂red denote the values of the likelihoods with the estimates plugged in:

L̂full = Lfull(β̂, ω̂) and L̂red = Lred(β̂0, ω̂).
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Then the likelihood ratio statistic is given by

TLRT = −2{log L̂red − log L̂full} = −2 log L̂red + 2 log L̂full (8.22)

Technical arguments may be used to show that, for m → ∞, TLRT has approximately a χ2 distribution

with degrees of freedom equal to the difference in number of parameters in two models (# in full model

− # in reduced model). Thus, if this difference is equal to r, say, then we reject H0 in favor of H1 at

level of significance α if

TLRT > χ2
r,1−α.

• The likelihood ratio test is an approximate test, as it is based on using the large sample approx-

imation. Thus, it is unwise to get too excited about “borderline” evidence on the basis of this

test.

• The test is often thought to be more reliable than Wald-type tests when m is not too large.

• It is in fact the case that Wilks’ lambda is the likelihood ratio test statistic for the MANOVA

model.

ALTERNATIVE METHODS FOR MODEL COMPARISON: One drawback of the likelihood ratio test

is that it requires the model under the null hypothesis to be nested within that of the alternative. Other

approaches to comparing models have been proposed that do not require this restriction. These are

based on the notion of comparing penalized versions of the logarithm of the likelihoods obtained under

H0 and H1, where that “penalty” adjusts each log-likelihood according to the number of parameters

that must be fitted. It is a fact that, the more parameters we add to a model, the larger the (log)

likelihood becomes. Thus, if we wish to compare two models with different numbers of parameters

fairly, it seems we must take this fact into account. Then, one compares the “penalized” versions of the

log-likelihoods. Depending on how these “penalized” versions are defined, one prefers the model that

gives either the smaller or larger value.

Let log L̂ denote a log-likelihood for a fitted model. Two such “penalized” versions of the log-likelihood

are

• Akaike’s information criterion (AIC). The penalty is to subtract the number of parameters

fitted for each model. That is, if s is the number of parameters in the model,

AIC = log L̂ − s;

one would prefer the model with the larger AIC value.
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• Schwarz’s Bayesian information criterion (BIC). The penalty is to subtract the number

of parameters fitted further adjusted for the number of observations. If as before N is the total

number of observations,

BIC = log L̂ − s log N/2.

One would prefer the model with the larger BIC value.

In the current version of SAS PROC MIXED, a negative version of these is used, so that one prefers the

model with the smaller value instead; see Section 8.8.

A full discussion of this approach and the theory underlying these methods is beyond our scope. Com-

parison of AIC and BIC values is often used as follows: one might fit the same mean model with

several different covariance models, and choose the covariance model the seems to “do best” in terms

of giving the “largest” AIC, BIC, and (log) likelihood values overall. Here, s would be the number

of covariance parameters. It is customary to consider the logarithm of the likelihood rather than the

likelihood itself, partly because of the form of the likelihood ratio test. Because log is a monotone

transformation (meaning it preserves order), operating on the log scale instead doesn’t change anything.

8.6 Restricted maximum likelihood

A widely acknowledged problem with maximum likelihood estimation has to do with the estimation of

the parameters ω that characterize the covariance structure. Although the ML estimates of β for a

particular model are (approximately) unbiased, the estimators for ω have been observed to be biased

when m is not too large; for parameters that represent variances, it is usually the case that the

estimated values are too small, thus giving an optimistic picture of how variable things really are.

LINEAR REGRESSION: The problem may be appreciated by recalling the simpler problem of linear

regression; here, we use the notation in the way it was used in Chapter 3. Recall in this model that we

the data y (n × 1) are assumed to have covariance matrix σ2I, so that the elements of y are assumed

independent, each with variance σ2. If β̂ is the least squares estimator for the (p × 1) regression

parameter, then the usual estimator for σ2 is

σ̂2 = (n − p)−1(Y − Xβ̂)′(Y − Xβ̂).
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• Thus, σ̂2 has the form of the average of a sum of n squared deviations, with the exception that

we divide by (n− p) rather than n to form the average. We showed in Chapter 3 that this is done

so that the estimator is unbiased; recall we showed

E(Y − Xβ̂)′(Y − Xβ̂) = (n − p)σ2.

• If we divided by n instead, note that we would be dividing by something that is too big, leading

to an estimator that is too small

• Informally, the reason for this bias has to do with the fact that we have replaced β with the

estimator β̂ in the quadratic form above. It is straightforward to see that if we knew β and

replaced β̂ by β in the quadratic form, we have

E(Y − Xβ)′(Y − Xβ) = nσ2

(convince yourself). Thus, the fact that we don’t know β requires us to divide the quadratic form

by (n − p) rather than n.

It is not surprising that it is desirable to do something similar when estimating covariance parameters

ω in our more complicated regression models for longitudinal data. A detailed treatment of the more

technical aspects may be found in Diggle, Heagerty, Liang, and Zeger (2002). Here, we just give a

heuristic rationale for an “adjusted” form of maximum likelihood that acts in the same spirit as “using

(n − p) rather then n” in the ordinary regression model.

• It turns out that the ML estimator for ω in our longitudinal data regression model has the form

we would use if we knew β. Thus, it does not acknowledge the fact that β must be estimated

along with ω. The result is the biased estimation mentioned above.

• The “adjustment” involves replacing the usual likelihood

m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − Xiβ)′Σ−1
i (yi − X iβ)/2}

by
m∏

i=1

(2π)−ni/2|Σi|−1/2|X ′

iΣ
−1
i Xi|−1/2 exp{−(yi − Xiβ)′Σ−1

i (yi − X iβ)/2}. (8.23)

The “extra” determinant term in (8.23) serves to “automatically” introduce the necessary correc-

tion in a manner similar to changing the divisor as in linear regression above.
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• It may be shown by matrix calculus that the form estimator for β found by maximizing (8.23) is

identical to that before; i.e.

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i

where now Σ̂i is the covariance matrix for Y i with the estimator for ω found by maximizing (8.23)

jointly plugged in.

• The difference is that the estimator for ω found by maximizing (8.23) jointly with β instead of

the usual likelihood is used.

• The resulting estimator for ω has been observed to be less biased for for finite values of m than

the ML estimator.

The objective function (8.23) and the resulting estimation method are known as restricted maxi-

mum likelihood, or REML.

• Estimates of ω obtained by this approach are often preferred in practice. In fact, PROC MIXED in

SAS uses this method as the default method for finding estimates if the user does not specify

otherwise (see section 8.8.

• Formulæ for standard errors for β̂ obtained this way are identical to those for the ML estimator,

except that the REML estimator is used to form Σi instead. Wald tests may be constructed in

the same way and are valid tests (except for the concern about the quality of the large sample

approximation just as for tests based on ML).

• Some people use the REML function in place of the usual likelihood to form likelihood ratio tests

and the AIC and BIC criteria. If the test concerns different mean models, this is generally not

recommended, as it is not clear that the “restricted likelihood ratio” statistic ought to have a

χ2 distribution when m is large. Thus, it has been advocated to carry out tests involving the

components of β using ML to fit the model. However, if one’s main interest is in estimates of the

covariance parameters ω (e.g estimating σ2 and ρ in the AR(1) model), then REML estimators

should be employed because of they are likely to be less biased.

• Use of the AIC and BIC criteria based on the REML objective function to choose among covariance

models for the same mean model is often used. In this case, the number of parameters s is equal

to the number of covariance parameters only.

• There is really no “right” or “wrong” approach; most of what is done in practice is based on ad

hoc procedures and some subjectivity. We will exhibit this in section 8.8.
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8.7 Discussion

We have given a brief overview of the main features of taking a more direct regression modeling approach

to longitudinal data. In this approach, we are able to incorporate information in a straightforward

fashion. A key aspect is the flexibility allowed in choosing models for the covariance structure. Inference

within this model framework may be conducted using the standard techniques of maximum likelihood,

which gives approximate tests and standard errors.

Here, we comment on additional features, advantages, and disadvantages of this approach;

BALANCED DATA: When the data are balanced, so that each unit is seen at the same time points,

it turns out that, under certain conditions for certain models, the weighted and generalized least

squares estimators for β are identical to the estimator obtained by simply taking Σi = Σ = σ2I for

all i.

• This estimator may be thought of as the ordinary least squares estimator treating the combined

data vector y of all the data (N ×1) as if they came from one huge individual. That is, all the N

observations within and across all the Y i are being treated independent under the normality

assumption! In the sequel, we will call this estimator β̂OLS .

• Formally,

β̂OLS = (X ′X)−1X ′Y =

(
m∑

i=1

X ′

iXi

)
−1 m∑

i=1

X ′

iY i.

Thus, the weighted and generalized least squares estimators reduce to being the same as an

estimator that does no weighting by covariance matrices at all!

• This feature is exhibited in the dental study example analysis in section 8.8.

• It may seem curious that this is the case; we will say more about this curiosity in the next two

chapters. It turns out that when the covariance model has a certain form, this correspondence is

to be expected.
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• This feature might make one question the need to bother with worrying about covariance modeling

at all under these conditions! Why not just pretend the issue doesn’t exist, as the estimates of

β are the same? However, although the estimates of β have the same value, the standard

errors we calculate for them will not! I.e., the estimated covariance matrix calculated as if the

data were all independent would be

σ2(X ′X)−1 = σ2

(
m∑

i=1

X ′

iXi

)
−1

while that calculated using an assumed covariance structure acknowledging correlation would be

V̂ β =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1

.

Wald tests conducted using the first matrix to compute standard errors will be incorrect if the

data really are correlated as we expect.

• The same comment is true for likelihood and restricted likelihood inferences such as the likelihood

ratio test. If the data really are correlated within units as we expect, basing inferences on a

model that explicitly acknowledges this is preferred.

CHOOSING AN APPROPRIATE COVARIANCE MODEL: Because we are dealing with longitudinal

data, we fully expect that the covariance matrix of a data vector to be something that incorporates

correlations among observations within a vector that are thought to arise because of

• Variation among units – observations on the same unit are “more alike” than those compared

across units simply because they are from the same unit.

• Variation due to the way the observations within a unit were collected. A main feature is, of

course, that they are collected over time.

In the approach we have discussed here, a covariance model is to be chosen that hopefully characterizes

well the aggregate variation from both of these sources. We have discussed several covariance models;

many of these, such as the AR(1) model, seemed to focus primarily on the longitudinal aspect (how data

within a unit are collected). Obviously, identifying an appropriate model will be difficult, particularly

when it is supposed to represent all of the variation.

• Thus, choosing among models is to some extent an “art form.” Formal techniques, such as

inspection of the AIC and BIC criteria may be used to aid in this, but a good dose of subjectivity

is also involved.
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• Informal graphical and other techniques may be used based on a preliminary fit using ordinary

least squares, as described earlier. In the next chapter we will discuss a special class of models

that make the job of specifying covariance a bit easier.

• It may be that none of the models we have discussed is truly appropriate to capture all the sources

of variation. The models of the next chapters offer another approach.

We now summarize the main features of the general regression approach and its advantages over the

classical techniques. We also point out some of the possible pitfalls.

ADVANTAGES:

• The regression approach gives the analyst much flexibility in representing the form of the mean

response. The fact that the mean may be modeled as smoothly changing functions of time and

other covariates means that it is straightforward to obtain meaningful estimates of quantities of

interest, such as slopes representing rates of change and estimates of precision (standard errors)

for them. Tests of hypotheses are also straightforward. Moreover, this type of modeling readily

allows estimation of the mean response at any time point and covariate setting, not just those in

the experiment (as long as we think the model is reasonable).

• The approach does not require balance. Data vectors may be of different lengths, and observations

may have been made a different times for each unit. It is, however, important to note that if

imbalance is caused by data intended to be collected but missing at some time points, then

there may still be problems. If the missingness is completely unrelated to the issues under study

(e.g. a sample for a certain subject at a certain time is mistakenly destroyed or misplaced in the

lab), then the fact that the data are imbalanced does not raise any concerns – analysis using the

methods we have discussed will be valid. However, if missingness is suspected to be related to

the issues under study (e.g. in a study to compare 2 treatments for AIDS a subject does not show

up for scheduled visits because he is too sick to come to the clinic), then the fact that the data

are imbalanced itself has information in it about the issues! In this case, fancier methods that

acknowledge this may be needed. Such methods are an area of active statistical research and are

beyond our scope here. We discuss the issue of missing data again later in the course.
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• The regression approach offers the analyst much latitude in modeling the covariance matrix of

a data vector. The analyst may select from a variety of possible models based on knowledge of

the situation and the evidence in the data. In contrast, the classical methods “force” certain

structures to be assumed.

DISADVANTAGES:

• Although there is flexibility in modeling covariance, the approach forces the analyst to model the

aggregate variation from all sources together. The analyst is forced to think about this in the

context of specifying a single covariance matrix form for each unit. The standard models, such

as AR(1), seem to focus mainly on the part of correlation we might expect because of the way

the data were collected (over time). It is not clear how correlation induced because of among-

unit variation is captured in these models. The problem is that statistical model itself does not

acknowledge explicitly the two main sources of variation separately: within and among units.

The univariate ANOVA model does acknowledge these, but the form of the model assumed results

in a very restrictive form for the covariance matrices Σi (compound symmetry). In future chapters

we study models that do account for these sources in the model separately, but are more flexible

than the ANOVA model.

• The regression approach involves direct modeling of the mean response vector. That is, the

analyst focuses attention on the the means at each time point, and then how these means change

over time, and does not consider individual unit trajectories. However, an alternative perspective

arises from thinking about the conceptual model in Chapter 4. In particular, one might start

from the view that each unit has its own “inherent trajetory” over time and develop a model on

this basis. In the dental study, these might be thought of as straight lines, which may vary in

placement and steepness across children. Thinking about individual trajectories rather natural,

and leads to another class of models, covered in the next few chapters. The univariate ANOVA

model actually represents a crude way of trying to do this; the models we will discuss are more

sophisticated.
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• In fact, In some situations, scientific interest may not focus only on characterizing the mean

vector describing the “typical” response vector or covariance parameters describing the nature

of variation in the response. Investigators may be interested in characterizing trajectories for

individual units; we will discuss examples in the next chapters. The models we have discussed

up to now do not offer any framework for doing this. Those we consider next do.

• The inferences carried out on the basis of the model rely on large sample approximations.

It is in fact true that most inferential methods for complex statistical models are based on large

sample approximations, so this is not at all unusual. However, one is always concerned that the

approximation is not too good for the finite sample sizes of real life; thus, one has to be cautious

and pragmatic when interpreting results. The classical methods often produce exact tests; e.g. F

statistics have exactly F distributions for any sample size. However, these results are only true

if the assumptions, such as that of multivariate normality, hold exactly; otherwise, the results

may be unreliable. In contrast, the large sample results are a good approximation even if the

assumption of normality does not hold! The bottom line is that the complexity of modeling and

need for assumptions may make all methods subject to the disadvantage of possibly erroneous

conclusions!

8.8 Implementation with SAS

We illustrate how to carry out analyses based on general regression models for the three examples

discussed in this section:

1. The dental study data

2. The ultrafiltration data

3. The hip replacement study data

For each data set, we state some particular questions of interest, statistical models (e.g. “full” and

“reduced” models), give examples of how to carry out inferences on the regression parameter β and the

covariance parameter ω.
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In all cases, we use SAS PROC MIXED with the REPEATED statement to fit several regression models

for these data with different assumptions about the covariance structure. The capabilities of PROC

MIXED are much broader than illustrated here – the options available are much more extensive, and the

procedure is capable of fitting a much larger class of statistical models, including those we consider in

the next two chapters. Thus, the examples here only begin to show the possibilities.

IMPORTANT: Version 8.2 of SAS, used here, defines AIC and BIC as −2 times the definitions given

in Sections 8.5 and 8.6. Thus, one would prefer the smaller value. Older versions of SAS are different;

the user can deduce the differences by examining the output.

EXAMPLE 1 – DENTAL STUDY DATA: In the following program, we consider the following issues:

• Recall that these data are balanced. We remarked in the last section that for balanced data under

certain conditions for certain models, the generalized least squares estimator for β will be identical

to the ordinary least squares estimator. We thus obtain both to illustrate this phenomenon and

give a hint about the “certain conditions” that apply.

• Based on our previous observations, we consider a model that says the mean response vector is

a straight line over time. We first consider the “full” model that says this line is different for

different genders. This model may be written using different parameterizations as either

Yij = β0,B + β1,Btij + eij , boys

= β0,G + β1,Gtij + eij , girls

or

Yij = β0,B + β1,Btij + eij , boys

= (β0,B + β0,G−B) + (β1,B + β1,G−B)tij + eij , girls (8.24)

• We fit the “full” model for several different candidate covariance structures and use AIC and BIC

criteria to aid in selection.

• We then consider Wald, likelihood ratio tests, and the information criteria using the preferred

covariance structure. We compare the “full” model to a “reduced” model that says the slopes are

the same for both genders (we do this in the context of parameterization (8.24)). We use ML for

all fits, but show the REML fit of one of the models for comparison. We also consider estimation

of the mean response for a boy of 11 years of age under the preferred model.
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PROGRAM: The following program carries out many of these analyses and prints out information

enabling others to be carried out separately by hand. See the documentation for PROC MIXED for fancy

ways to do more of this in SAS.

/*******************************************************************

CHAPTER 8, EXAMPLE 1

Analysis of the dental study data by fitting a general linear
regression model in time and gender structures using PROC MIXED.

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

For each gender, the "full" mean model is a straight line in time.

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming several different
covariance structures.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set (See Example 1 of Chapter 4)

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;
ag = age*gender;

run;

/*******************************************************************

Sort the data so we can do gender-by-gender fits.

*******************************************************************/

proc sort data=dent1; by gender; run;

/*******************************************************************

First the straight line model separately for each gender and
simultaneously for both genders assuming that the covariance
structure of a data vector is diagonal with constant variance; that
is, use ordinary least squares for each gender separately and
then together.

*******************************************************************/

title "ORDINARY LEAST SQUARES FITS BY GENDER";
proc reg data=dent1; by gender;
model distance = age;

run;

title "ORDINARY LEAST SQUARES FIT WITH BOTH GENDERS";
proc reg data=dent1;
model distance = gender age ag;

run;

/*******************************************************************

Now use PROC MIXED to fit the more general regression model with
assumptions about the covariance matrix of a data vector. For all
of the fits, we use usual normal maximum likelihood (ML) rather
than restricted maximum likelihood (REML), which is the default.

We do this for each gender separately first using the unstructured
assumption. The main goal is to get insight into whether it might
be the case that the covariance matrix is different for each gender
(e.g. variation is different for each).

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. The
RCORR option requests that the corresponding correlation matrix
be printed.

*******************************************************************/
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* unstructured covariance matrix;

title "FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER";
proc mixed method=ml data=dent1; by gender;
class child;
model distance = age / solution;
repeated / type = un subject=child r rcorr;

run;

/*******************************************************************

Now do the same analyses with both genders simultaneously.
Consider several models, allowing the covariance matrix to
be either the same or different for each gender using the
GROUP = option, which allows for different covariance
parameters for each GROUP (genders here).

For the fit using TYPE = CS (Compound symmetry) assumed the
same for each group, we illustrate how to fit the two
different parameterizations of the full model. For all other
fits, we just use the second parameterization.

The CHISQ option in the MODEL statement requests that the Wald chi-square
test statistics be printed for certain contrasts of the regression
parameters (see the discussion of the OUTPUT). We only use this for
the second parameterization -- the TESTS OF FIXED EFFECTS are tests
of interest (different intercepts, slopes) in this case.

*******************************************************************/

* compound symmetry with separate intercept and slope for;
* each gender;

title "COMMON COMPOUND SYMMETRY STRUCTURE";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution ;
repeated / type = cs subject = child r rcorr;

run;

* compound symmetry with the "difference" parameterization;
* same for each gender;

title "COMMON COMPOUND SYMMETRY STRUCTURE";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age gender*age / solution chisq;
repeated / type = cs subject = child r rcorr;

run;

* ar(1) same for each gender;

title "COMMON AR(1) STRUCTURE";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = ar(1) subject=child r rcorr;

run;

* one-dependent same for each gender;

title "COMMON ONE-DEPENDENT STRUCTURE";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = toep(2) subject=child r rcorr;

run;

* compound symmetry, different for each gender;

title "SEPARATE COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = cs subject=child r rcorr group=gender;

run;

* ar(1), different for each gender;

title "SEPARATE AR(1) FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = ar(1) subject=child r rcorr group=gender;

run;
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* one-dependent, different for each gender;

title "SEPARATE ONE-DEPENDENT FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age age*gender / solution chisq;
repeated / type = toep(2) subject=child r rcorr group=gender;

run;

/*******************************************************************

Examination of the AIC, BIC, and loglikelihood ratios from the
above fits indicates that

- a model that allows a separate covariance matrix of the same
type for each gender is preferred

- the compound symmetry structure for each gender is preferred

Thus, for this model, we fit

- the full model again, now asking for the covariance matrix
of beta-hat to be printed using the COVB option;

- the reduced model (equal slopes)

- the full model using REML

This will allow a "full" vs. "reduced" likelihood ratio test of
equal slopes to be performed (by hand from the output).

We fit the first parameterization this time, so that the estimates
are interpreted as the gender-specific intercepts and slopes.
Thus, the TESTS OF FIXED EFFECTS in the output should be disregarded.

*******************************************************************/

* full model again with covariance matrix of betahat printed;

title "FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;

run;

* reduced model;

title "REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;

run;

* full model using REML (the default, so no METHOD= is specified);
* use ESTIMATE statement to estimate the mean for a boy of age 11;

title "FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML";
proc mixed data=dent1;
class gender child;
model distance = gender gender*age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;
estimate ’boy at 11’ gender 0 1 gender*age 0 11;

run;

* also fit full model in first parameterization to get chi-square tests;

title "FULL MODEL, DIFFERENCE PARAMETERIZATION";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age gender*age / solution chisq covb;
repeated / type=cs subject=child r rcorr group=gender;

run;
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OUTPUT: First we display the output; following this, we interpret the output.

ORDINARY LEAST SQUARES FITS BY GENDER 1

---------------------------------- gender=0 -----------------------------------

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 44
Number of Observations Used 44

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 50.59205 50.59205 10.80 0.0021
Error 42 196.69773 4.68328
Corrected Total 43 247.28977

Root MSE 2.16409 R-Square 0.2046
Dependent Mean 22.64773 Adj R-Sq 0.1856
Coeff Var 9.55543

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 17.37273 1.63776 10.61 <.0001
age 1 0.47955 0.14590 3.29 0.0021

ORDINARY LEAST SQUARES FITS BY GENDER 2

----------------------------------- gender=1 -----------------------------------

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 64
Number of Observations Used 64

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 196.87813 196.87813 36.65 <.0001
Error 62 333.05938 5.37193
Corrected Total 63 529.93750

Root MSE 2.31774 R-Square 0.3715
Dependent Mean 24.96875 Adj R-Sq 0.3614
Coeff Var 9.28257

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 16.34063 1.45437 11.24 <.0001
age 1 0.78438 0.12957 6.05 <.0001

ORDINARY LEAST SQUARES FIT WITH BOTH GENDERS 3

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 108
Number of Observations Used 108

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 387.93503 129.31168 25.39 <.0001
Error 104 529.75710 5.09382
Corrected Total 107 917.69213

Root MSE 2.25695 R-Square 0.4227
Dependent Mean 24.02315 Adj R-Sq 0.4061
Coeff Var 9.39489

Parameter Estimates
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Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 17.37273 1.70803 10.17 <.0001
gender 1 -1.03210 2.21880 -0.47 0.6428
age 1 0.47955 0.15216 3.15 0.0021
ag 1 0.30483 0.19767 1.54 0.1261

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 4

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

child 11 1 2 3 4 5 6 7 8 9 10 11

Dimensions

Covariance Parameters 10
Columns in X 2
Columns in Z 0
Subjects 11
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 44
Number of Observations Used 44
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 190.75564656
1 2 130.64154698 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.1129 3.0512 3.9496 3.9689
2 3.0512 3.2894 3.6632 3.7080
3 3.9496 3.6632 5.0966 4.9788

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 5

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

4 3.9689 3.7080 4.9788 5.4076

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8295 0.8627 0.8416
2 0.8295 1.0000 0.8946 0.8792
3 0.8627 0.8946 1.0000 0.9484
4 0.8416 0.8792 0.9484 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 4.1129
UN(2,1) child 3.0512
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UN(2,2) child 3.2894
UN(3,1) child 3.9496
UN(3,2) child 3.6632
UN(3,3) child 5.0966
UN(4,1) child 3.9689
UN(4,2) child 3.7080
UN(4,3) child 4.9788
UN(4,4) child 5.4076

Fit Statistics

-2 Log Likelihood 130.6
AIC (smaller is better) 154.6
AICC (smaller is better) 164.7
BIC (smaller is better) 159.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 60.11 <.0001

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 6

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 17.4220 0.6930 10 25.14 <.0001
age 0.4823 0.06144 10 7.85 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

age 1 10 61.62 <.0001

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 7

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

child 16 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27

Dimensions

Covariance Parameters 10
Columns in X 2
Columns in Z 0
Subjects 16
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 64
Number of Observations Used 64
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 287.18814467
1 2 264.37833982 0.00000565
2 1 264.37792193 0.00000000
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Convergence criteria met.

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 8

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.7813 2.0152 3.3585 1.4987
2 2.0152 4.4035 2.0982 2.6472
3 3.3585 2.0982 6.6064 3.0421
4 1.4987 2.6472 3.0421 4.0783

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.3994 0.5434 0.3086
2 0.3994 1.0000 0.3890 0.6247
3 0.5434 0.3890 1.0000 0.5861
4 0.3086 0.6247 0.5861 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 5.7813
UN(2,1) child 2.0152
UN(2,2) child 4.4035
UN(3,1) child 3.3585
UN(3,2) child 2.0982
UN(3,3) child 6.6064
UN(4,1) child 1.4987
UN(4,2) child 2.6472
UN(4,3) child 3.0421
UN(4,4) child 4.0783

Fit Statistics

-2 Log Likelihood 264.4
AIC (smaller is better) 288.4
AICC (smaller is better) 294.5
BIC (smaller is better) 297.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 22.81 0.0066
FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 9

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 15.8282 1.1179 15 14.16 <.0001
age 0.8340 0.09274 15 8.99 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

age 1 15 80.86 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 10

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within
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Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306

COMMON COMPOUND SYMMETRY STRUCTURE 11

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6178 0.6178 0.6178
2 0.6178 1.0000 0.6178 0.6178
3 0.6178 0.6178 1.0000 0.6178
4 0.6178 0.6178 0.6178 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS child 3.0306
Residual 1.8746

Fit Statistics

-2 Log Likelihood 428.6
AIC (smaller is better) 440.6
AICC (smaller is better) 441.5
BIC (smaller is better) 448.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1615 25 14.96 <.0001
gender 1 16.3406 0.9631 25 16.97 <.0001
age*gender 0 0.4795 0.09231 79 5.20 <.0001
age*gender 1 0.7844 0.07654 79 10.25 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 12
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 255.79 <.0001
age*gender 2 79 66.01 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 13

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306

COMMON COMPOUND SYMMETRY STRUCTURE 14

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6178 0.6178 0.6178
2 0.6178 1.0000 0.6178 0.6178
3 0.6178 0.6178 1.0000 0.6178
4 0.6178 0.6178 0.6178 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS child 3.0306

PAGE 257



CHAPTER 8 ST 732, M. DAVIDIAN

Residual 1.8746

Fit Statistics

-2 Log Likelihood 428.6
AIC (smaller is better) 440.6
AICC (smaller is better) 441.5
BIC (smaller is better) 448.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001
gender 0 1.0321 1.5089 25 0.68 0.5003
gender 1 0 . . . .
age 0.7844 0.07654 79 10.25 <.0001
age*gender 0 -0.3048 0.1199 79 -2.54 0.0130
age*gender 1 0 . . . .

COMMON COMPOUND SYMMETRY STRUCTURE 15

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.47 0.47 0.4940 0.5003
age 1 79 111.10 111.10 <.0001 <.0001
age*gender 1 79 6.46 6.46 0.0110 0.0130

COMMON AR(1) STRUCTURE 16

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Autoregressive
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 440.68100623 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4
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1 4.8910 2.9696 1.8030 1.0947
2 2.9696 4.8910 2.9696 1.8030

COMMON AR(1) STRUCTURE 17

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 1.8030 2.9696 4.8910 2.9696
4 1.0947 1.8030 2.9696 4.8910

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6071 0.3686 0.2238
2 0.6071 1.0000 0.6071 0.3686
3 0.3686 0.6071 1.0000 0.6071
4 0.2238 0.3686 0.6071 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) child 0.6071
Residual 4.8910

Fit Statistics

-2 Log Likelihood 440.7
AIC (smaller is better) 452.7
AICC (smaller is better) 453.5
BIC (smaller is better) 460.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 37.56 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5920 1.3299 25 12.48 <.0001
gender 0 0.7297 2.0836 25 0.35 0.7291
gender 1 0 . . . .
age 0.7696 0.1147 79 6.71 <.0001
age*gender 0 -0.2858 0.1797 79 -1.59 0.1157
age*gender 1 0 . . . .

COMMON AR(1) STRUCTURE 18

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.12 0.12 0.7262 0.7291
age 1 79 48.63 48.63 <.0001 <.0001
age*gender 1 79 2.53 2.53 0.1117 0.1157

COMMON ONE-DEPENDENT STRUCTURE 19

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Toeplitz
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

PAGE 259



CHAPTER 8 ST 732, M. DAVIDIAN

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 589.03603775 0.16283093
2 1 545.67380444 0.15138564
3 1 510.19059372 0.12467398
4 1 484.30189351 0.08645876
5 1 468.14463315 0.04649605
6 1 460.20520640 0.01592441
7 1 457.72394860 0.00214984
8 1 457.42200558 0.00004120
9 1 457.41660393 0.00000002

10 1 457.41660197 0.00000000

COMMON ONE-DEPENDENT STRUCTURE 20

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.5294 1.6120
2 1.6120 4.5294 1.6120
3 1.6120 4.5294 1.6120
4 1.6120 4.5294

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.3559
2 0.3559 1.0000 0.3559
3 0.3559 1.0000 0.3559
4 0.3559 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

TOEP(2) child 1.6120
Residual 4.5294

Fit Statistics

-2 Log Likelihood 457.4
AIC (smaller is better) 469.4
AICC (smaller is better) 470.2
BIC (smaller is better) 477.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 20.83 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.6208 1.4167 25 11.73 <.0001
gender 0 0.6827 2.2195 25 0.31 0.7609
gender 1 0 . . . .
age 0.7629 0.1253 79 6.09 <.0001

COMMON ONE-DEPENDENT STRUCTURE 21

The Mixed Procedure

PAGE 260



CHAPTER 8 ST 732, M. DAVIDIAN

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

age*gender 0 -0.2773 0.1964 79 -1.41 0.1619
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.09 0.09 0.7584 0.7609
age 1 79 40.42 40.42 <.0001 <.0001
age*gender 1 79 1.99 1.99 0.1580 0.1619

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 22

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 23

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12
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Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 24

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
gender 0 1.0321 1.3890 25 0.74 0.4644
gender 1 0 . . . .
age 0.7844 0.09283 79 8.45 <.0001
age*gender 0 -0.3048 0.1063 79 -2.87 0.0053
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.55 0.55 0.4575 0.4644
age 1 79 141.37 141.37 <.0001 <.0001
age*gender 1 79 8.22 8.22 0.0041 0.0053

SEPARATE AR(1) FOR EACH GENDER 25

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Autoregressive
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
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24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 475.71968065 0.20025573
2 1 440.38814030 0.08967756
3 1 426.69925492 0.04134123
4 1 420.38697948 0.02792114
5 1 416.67736557 0.00923733
6 1 415.50565786 0.00083428
7 1 415.41014131 0.00000671
8 1 415.40940946 0.00000000

SEPARATE AR(1) FOR EACH GENDER 26

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6591 4.1730 3.7377 3.3477
2 4.1730 4.6591 4.1730 3.7377
3 3.7377 4.1730 4.6591 4.1730
4 3.3477 3.7377 4.1730 4.6591

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8957 0.8022 0.7185
2 0.8957 1.0000 0.8957 0.8022
3 0.8022 0.8957 1.0000 0.8957
4 0.7185 0.8022 0.8957 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.1724 2.2912 1.0149 0.4496
2 2.2912 5.1724 2.2912 1.0149
3 1.0149 2.2912 5.1724 2.2912
4 0.4496 1.0149 2.2912 5.1724

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4430 0.1962 0.08692
2 0.4430 1.0000 0.4430 0.1962
3 0.1962 0.4430 1.0000 0.4430
4 0.08692 0.1962 0.4430 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 4.6591
AR(1) child gender 0 0.8957
Variance child gender 1 5.1724
AR(1) child gender 1 0.4430

SEPARATE AR(1) FOR EACH GENDER 27

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 415.4
AIC (smaller is better) 431.4
AICC (smaller is better) 432.9
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BIC (smaller is better) 441.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 62.83 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5245 1.4558 25 11.35 <.0001
gender 0 0.7817 1.8123 25 0.43 0.6699
gender 1 0 . . . .
age 0.7729 0.1276 79 6.06 <.0001
age*gender 0 -0.2882 0.1513 79 -1.90 0.0605
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.19 0.19 0.6662 0.6699
age 1 79 69.07 69.07 <.0001 <.0001
age*gender 1 79 3.63 3.63 0.0569 0.0605

SEPARATE ONE-DEPENDENT FOR EACH GENDER 28

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Toeplitz
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 465.00494081 280.11418099
2 1 458.88438919 49.85385575
3 1 453.61695810 7.33335163
4 1 445.15025755 0.00347991
5 1 444.66243888 0.00028171
6 1 444.62522997 0.00000436
7 1 444.62468768 0.00000000

SEPARATE ONE-DEPENDENT FOR EACH GENDER 29

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4
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1 3.7093 2.0415
2 2.0415 3.7093 2.0415
3 2.0415 3.7093 2.0415
4 2.0415 3.7093

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5504
2 0.5504 1.0000 0.5504
3 0.5504 1.0000 0.5504
4 0.5504 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 4.9891 1.3289
2 1.3289 4.9891 1.3289
3 1.3289 4.9891 1.3289
4 1.3289 4.9891

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.2664
2 0.2664 1.0000 0.2664
3 0.2664 1.0000 0.2664
4 0.2664 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 3.7093
TOEP(2) child gender 0 2.0415
Variance child gender 1 4.9891
TOEP(2) child gender 1 1.3289

SEPARATE ONE-DEPENDENT FOR EACH GENDER 30

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 444.6
AIC (smaller is better) 460.6
AICC (smaller is better) 462.1
BIC (smaller is better) 471.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 33.62 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5091 1.4797 25 11.16 <.0001
gender 0 0.5832 2.0126 25 0.29 0.7744
gender 1 0 . . . .
age 0.7719 0.1312 79 5.88 <.0001
age*gender 0 -0.2673 0.1772 79 -1.51 0.1354
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.08 0.08 0.7720 0.7744
age 1 79 51.92 51.92 <.0001 <.0001
age*gender 1 79 2.28 2.28 0.1314 0.1354

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 31

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
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Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 32

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
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AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 33

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.8311 25 20.90 <.0001
gender 1 16.3406 1.1130 25 14.68 <.0001
age*gender 0 0.4795 0.05179 79 9.26 <.0001
age*gender 1 0.7844 0.09283 79 8.45 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4

1 gender 0 0.6907 -0.02950
2 gender 1 1.2388 -0.09480
3 age*gender 0 -0.02950 0.002682
4 age*gender 1 -0.09480 0.008618

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 326.26 <.0001
age*gender 2 79 78.57 <.0001

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 34

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 3
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 480.68362161
1 4 416.64891361 0.00045640
2 1 416.59716984 0.00000276
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3 1 416.59686755 0.00000000

Convergence criteria met.

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 35

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4937 3.8726 3.8726 3.8726
2 3.8726 4.4937 3.8726 3.8726
3 3.8726 3.8726 4.4937 3.8726
4 3.8726 3.8726 3.8726 4.4937

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8618 0.8618 0.8618
2 0.8618 1.0000 0.8618 0.8618
3 0.8618 0.8618 1.0000 0.8618
4 0.8618 0.8618 0.8618 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.4838 2.3530 2.3530 2.3530
2 2.3530 5.4838 2.3530 2.3530
3 2.3530 2.3530 5.4838 2.3530
4 2.3530 2.3530 2.3530 5.4838

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4291 0.4291 0.4291
2 0.4291 1.0000 0.4291 0.4291
3 0.4291 0.4291 1.0000 0.4291
4 0.4291 0.4291 0.4291 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.6211
CS child gender 0 3.8726
Variance child gender 1 3.1308
CS child gender 1 2.3530

Fit Statistics

-2 Log Likelihood 416.6
AIC (smaller is better) 430.6
AICC (smaller is better) 431.7

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 36

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 439.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 64.09 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 16.6218 0.7945 25 20.92 <.0001
gender 1 18.9429 0.6790 25 27.90 <.0001
age 0.5478 0.04681 80 11.70 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3

1 gender 0 0.6313 0.2651 -0.02410
2 gender 1 0.2651 0.4611 -0.02410
3 age -0.02410 -0.02410 0.002191
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 423.41 <.0001
age 1 80 136.97 <.0001

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 37

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 483.55911746
1 1 414.66636550 0.00000000

Convergence criteria met.

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 38

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.8870 4.2786 4.2786 4.2786
2 4.2786 4.8870 4.2786 4.2786
3 4.2786 4.2786 4.8870 4.2786
4 4.2786 4.2786 4.2786 4.8870

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8755 0.8755 0.8755
2 0.8755 1.0000 0.8755 0.8755
3 0.8755 0.8755 1.0000 0.8755
4 0.8755 0.8755 0.8755 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.4571 2.6407 2.6407 2.6407
2 2.6407 5.4571 2.6407 2.6407
3 2.6407 2.6407 5.4571 2.6407
4 2.6407 2.6407 2.6407 5.4571

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4
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1 1.0000 0.4839 0.4839 0.4839
2 0.4839 1.0000 0.4839 0.4839
3 0.4839 0.4839 1.0000 0.4839
4 0.4839 0.4839 0.4839 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.6085
CS child gender 0 4.2786
Variance child gender 1 2.8164
CS child gender 1 2.6407

Fit Statistics

-2 Res Log Likelihood 414.7
AIC (smaller is better) 422.7
AICC (smaller is better) 423.1

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 39

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 427.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 68.89 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.8587 25 20.23 <.0001
gender 1 16.3406 1.1287 25 14.48 <.0001
age*gender 0 0.4795 0.05259 79 9.12 <.0001
age*gender 1 0.7844 0.09382 79 8.36 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4

1 gender 0 0.7374 -0.03042
2 gender 1 1.2740 -0.09681
3 age*gender 0 -0.03042 0.002766
4 age*gender 1 -0.09681 0.008801

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 309.43 <.0001
age*gender 2 79 76.53 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

boy at 11 24.9688 0.4572 79 54.61 <.0001

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 40

The Mixed Procedure

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

both diff 2 79 16.84 8.42 0.0002 0.0005

FULL MODEL, DIFFERENCE PARAMETERIZATION 41

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
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Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

FULL MODEL, DIFFERENCE PARAMETERIZATION 42

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
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AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

FULL MODEL, DIFFERENCE PARAMETERIZATION 43

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
gender 0 1.0321 1.3890 25 0.74 0.4644
gender 1 0 . . . .
age 0.7844 0.09283 79 8.45 <.0001
age*gender 0 -0.3048 0.1063 79 -2.87 0.0053
age*gender 1 0 . . . .

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4 Col5

1 Intercept 1.2388 -1.2388 -0.09480 0.09480
2 gender 0 -1.2388 1.9294 0.09480 -0.1243
3 gender 1
4 age -0.09480 0.09480 0.008618 -0.00862
5 age*gender 0 0.09480 -0.1243 -0.00862 0.01130
6 age*gender 1

Covariance
Matrix for

Fixed Effects

Row Col6

1
2
3
4
5
6

FULL MODEL, DIFFERENCE PARAMETERIZATION 44

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.55 0.55 0.4575 0.4644
age 1 79 141.37 141.37 <.0001 <.0001
age*gender 1 79 8.22 8.22 0.0041 0.0053
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INTERPRETATION:

• Comparison with ordinary least squares (independence assumption). Pages 1–3 of the

output show the results of fitting the straight line model separately for each gender and then for

both genders together using ordinary least squares. Thus, these fits do not take correlation into

account, but rather assume that all observations across all children are independent. Because the

information on the straight line for each gender comes only from the data from that gender, the

estimates of intercept and slope for each are the same regardless of whether the model is fitted

separately or simultaneously. The ordinary least squares estimates are

β̂0,G,OLS = 17.3273, β̂1,G,OLS = 0.4795, β̂0,B,OLS = 16.3406, β̂1,B,OLS = 0.7844.

Pages 10–11 show the results of fitting the model with both genders simultaneously but assuming

the same compound symmetry structure for both genders. Note that the estimates of β are

identical to the ordinary least squares estimates. Pages 22-24 show the results of fitting the

same model, but in the second “difference” parameterization and assuming a separate compound

symmetry structure for each gender. Again, the estimates for β are identical to the ordinary

least squares estimates. Both of these fits were carried out using maximum likelihood estimation

(method=ml).

Inspection of fits with other covariance structures shows that these lead to estimates for β that

are different from ordinary least squares. This reflects a result we will see later, that when the

covariance structure is of a certain form (of which compound symmetry is a special case), estimates

of β are the same as ordinary least squares. However, the standard errors computed under

the independence assumption will differ from those computed under the compound symmetry, so

that tests about β could lead to different conclusions. See the output to verify that the standard

error estimates are indeed different.

• Choice of covariance structure. Pages 4–9 show the results of fitting the straight line model

separately for each gender assuming that the covariance matrix is unstructured. This allows the

analyst to examine the “raw” evidence for whether it seems reasonable to assume that the structure

is the same for each gender or different. Page 4 shows the estimate for girls, page 8 for boys (R

Matrix for CHILD 1 or 12). PROC MIXED prints out the estimate for the first child in each group;

these are balanced data, so the matrix is the same for all other children. The corresponding

correlation matrices R Correlation Matrix) are also printed. Comparison of these shows that

the estimated pattern of correlation appears quite different for the two genders; observations on

girls seem to be more highly correlated.
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Pages 11–30 show the results of fits of several different covariance structures using maximum

likelihood. In the following table, we summarize the results (see the output for each fit):

Model −2 loglike AIC BIC

Compound symmetry, same 428.6 440.6 448.4

AR(1), same 440.7 452.7 460.5

One-dependent, same 457.4 469.4 477.2

Compound symmetry, different 408.8 424.8 435.2

AR(1), different 415.4 431.4 441.8

One-dependent, different 444.6 460.6 471.0

Inspection of the AIC and BIC values reveals that those for models where the covariance structure

is allowed to differ across genders are mostly smaller than those for models where the structure

is assumed to be the same. Both criteria are smallest in a fairly convincing way for the choice

of separate compound symmetry structures for each gender. As both criteria agree, a sensible

approach would be to choose this model to represent the covariance structure.

• Hypothesis of common slopes. Having decided upon the covariance model, we now turn to

hypotheses of interest. Tests of these hypotheses will be based on the fit of this model. On pages

31–33, the fit of the full model using the first parameterization is shown. The covb option results

in printing of the estimates covariance matrix V̂ β for this fit (Covariance Matrix for Fixed

Effects on page 33). The matrix is

V̂ β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0.6907 0.0000 −0.0295 0.0000

0.0000 1.2388 0.0000 −0.0948

−0.0295 0.0000 0.0027 0.0000

0.0000 −0.0948 0.0000 0.0086

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

It is straightforward to verify that the estimated standard errors printed in the table Solution

for Fixed Effects are the square roots of the diagonal elements of this matrix. Also from the

output, we find that −2 times the log-likelihood is equal to 408.8.

On pages 34–36, we fit the “reduced” model which assumes the slope is the same and equal to

β1 for both genders:

Yij = β0,B + β1tij + eij for boys

= β0,G + β1tij + eij for girls

The estimate of β1 is 0.5478. The log-likelihood multiplied by −2 is 416.6.
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The likelihood ratio test statistic for testing the null hypothesis that the slopes are the same is

416.6 − 408.8 = 7.8. The difference in number of parameters between the “full” and “reduced”

models is r = 1. Thus, we compare the test statistic value to χ2
1,0.95 = 3.84. As the statistic is

much larger than the critical value, we have strong evidence to suggest that the slopes are indeed

different; we reject the null hypothesis at level α = 0.05.

We may also conduct this test using Wald methods. Define

L = (0, 0, 1,−1).

Then it may be verified (try it!) that, using V̂ β above from the full model fit on p.33 ,

TL = 8.22.

This test statistic also has a sampling distribution that is χ2
1; thus, we compare 8.22 to 3.84

and reject the null hypothesis on the basis of this procedure as well. For this parameterization,

the table Tests of Fixed Effects on page 39 in fact computes this test statistic (from the

chisq option); for a model with several straight lines and the “difference” parameterization, the

“interaction” test (AGE*GENDER here) is a test for equal slopes (the test for equal intercepts is the

“main effect” test for GENDER here). PROC MIXED by default produces an “adjusted” version of the

χ2 Wald statistic that is to be compared to an F distribution. This statistic is identical to the

Wald statistic when there are only 2 groups, as here. This table of Tests of Fixed Effects is

meaningless for this model in the first parameterization.

Alternatively, we see that PROC MIXED will computes this test for us in another place, too. On

pages 41–44, the results of fitting the full model using the second “difference” parameterization

are shown. In the table Solution for Fixed Effects, the estimate of β1,G−B = −0.3048 with

estimated standard error 0.1063. Note that when we parameterize the model this way, SAS displays

the results as if the model were overparameterized. One can reconstruct the estimates of intercept

and slope for girls from this table. The null hypothesis of common slope is H0 : β1,G−B = 0 in this

parameterization. We may construct a Wald test statistic as −0.3048/0.1063 = −2.87; actually,

SAS does this for us in the table.
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• Estimation of mean for boys at age 11. In the analysis using REML on pages 37–40, we

use an estimate statement to ask PROC MIXED to compute an estimate of the mean distance for

a boy of 11 years of age. The estimate and its standard error are 24.9688 (0.4572). This may be

verified manually; from the output,

V̂ β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0.7374 0.0000 −0.0304 0.0000

0.0000 1.2740 0.0000 −0.09681

−0.0304 0.0000 0.00276 0.0000

0.0000 −0.0968 0.0000 0.0088

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

With

L = (0, 1, 0, 11),

Lβ = β0,B + β1,B(11), the desired quantity. It may be verified that the matrix multiplication

Lβ̂ leads to the estimate above. Furthermore, the estimated standard error for Lβ̂ is given by

(LV̂ βL′)1/2, which may be verified to give the value above.
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EXAMPLE 2 – DIALYZER DATA: In the following program, we consider the model that assumes that

the mean response is a straight line as a function of time for each center.

• As with the dental data, we may parameterize this model with either (1) a separate intercept

and slope for each center as in equation (8.10) or (2) with the “difference” parameterization with

each center’s intercept and slope represented with a parameter that is the difference between the

intercept or slope for that center measured against that for center 3.

• This mean model is fitted using ordinary least squares (so assuming the independence covariance

structure) and then by restricted maximum likelihood (the default method used by PROC MIXED)

assuming the compound symmetry and Markov covariance structures. Recall that these data are

unbalanced in the sense that the “times” (transmembrane pressures in this case) are different for

each dialyzer; thus, it is not possible to consider a completely unstructured covariance structure

nor some of the models for covariance that only make sense if the data are balanced.

• The preferred covariance structure according to inspection of the AIC and BIC values is fitted

using both parameterizations (1) and (2); from the output for the latter fit, the Wald test statistics

may be examined to investigate whether rate of change of ultrafiltration rate with pressure differs

across centers.

• The variable tmp representing transmembrane pressure is rescaled by dividing its value by 100.

This is carried out to allow sensible and stable fitting of the Markov covariance structure. Recall

that for this structure, the correlation parameter ρ is raised to a power equal to the difference

between adjacent “times” within each unit. Because the pressures here are on the order of 100s,

these differences may be quite large (=100 or more). Computationally, raising a small number to a

power this large is not feasible, and will cause numerical algorithms used to carry out maximization

of likelihoods or restricted likelihoods to fail. By rescaling the pressures, and hence the differences,

we alleviate this difficulty. This does not alter the problem or our ability to draw valid conclusions;

all it does is put slope parameters on a scale of 100 mmHg/unit pressure rather than mmHg/unit

pressure.
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PROGRAM:

/*******************************************************************

CHAPTER 8, EXAMPLE 2

Analysis of the ultrafiltration data by fitting a general linear
regression model in transmembrane pressure (mmHg)

- the repeated measurement factor is transmembrane pressure (tmp)

- there is one "treatment" factor, center

- the response is ultrafiltration rate (ufr, ml/hr)

For each center, the mean model is a straight line in time.

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming various covariance structures.

These data are unbalanced both in the sense that the pressures
under which each dialyzer is observed are different.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data ultra; infile ’ultra.dat’;
input subject tmp ufr center;

* rescale the pressures;

tmp=tmp/100;

run;

/*******************************************************************

Fit the straight line model assuming that the covariance
structure of a data vector is diagonal with constant variance;
i.e. using ordinary least squares.

We use PROC GLM with the SOLUTION and NOINT options to fit
the three separate intercepts/slopes parameterization.

*******************************************************************/

title "FIT USING ORDINARY LEAST SQUARES";
proc glm data=ultra;
class center;
model ufr = center center*tmp / noint solution;

run;

/*******************************************************************

Now use PROC MIXED to fit the more general regression model with
assumptions about the covariance matrix of a data vector. We show
two, assuming the covariance is similar across centers.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. We also
print the correlation matrix using the RCORR option.

*******************************************************************/

* compound symmetry;

title "FIT WITH COMPOUND SYMMETRY";
proc mixed data=ultra method=ml;
class subject center ;
model ufr = center center*tmp / noint solution covb;
repeated / type = cs subject=subject r rcorr;

run;

* Markov;

title "FIT WITH MARKOV STRUCTURE";
proc mixed data=ultra method=ml;
class subject center ;
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model ufr = center center*tmp / noint solution covb;
repeated / type = sp(pow)(tmp) subject=subject r rcorr;

run;

* using the alternative parameterization to get the chi-square tests;

title "FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION";
proc mixed data=ultra method=ml;
class subject center ;
model ufr = center tmp center*tmp / solution covb chisq;
repeated / type = sp(pow)(tmp) subject=subject r rcorr;

run;

OUTPUT: First we display the output; following this is a brief interpretation.

FIT USING ORDINARY LEAST SQUARES 1

The GLM Procedure

Class Level Information

Class Levels Values

center 3 1 2 3

Number of Observations Read 164
Number of Observations Used 164

FIT USING ORDINARY LEAST SQUARES 2

The GLM Procedure

Dependent Variable: ufr
Sum of

Source DF Squares Mean Square F Value Pr > F

Model 6 243256296.5 40542716.1 14328.2 <.0001

Error 158 447071.5 2829.6

Uncorrected Total 164 243703368.0

R-Square Coeff Var Root MSE ufr Mean

0.987565 4.726174 53.19367 1125.512

Source DF Type I SS Mean Square F Value Pr > F

center 3 208388808.8 69462936.3 24549.0 <.0001
tmp*center 3 34867487.8 11622495.9 4107.52 <.0001

Source DF Type III SS Mean Square F Value Pr > F

center 3 514475.40 171491.80 60.61 <.0001
tmp*center 3 34867487.76 11622495.92 4107.52 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

center 1 -175.1259559 18.97989383 -9.23 <.0001
center 2 -168.7697782 21.19872031 -7.96 <.0001
center 3 -148.0350885 25.65223883 -5.77 <.0001
tmp*center 1 441.1821984 5.73604724 76.91 <.0001
tmp*center 2 411.5087473 6.66672020 61.73 <.0001
tmp*center 3 405.5340253 7.95819811 50.96 <.0001

FIT WITH COMPOUND SYMMETRY 3

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Compound Symmetry
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
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subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1697.47817418 0.00000000

Convergence criteria met.

FIT WITH COMPOUND SYMMETRY 4

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2723.81 1576.70 1576.70 1576.70
2 1576.70 2723.81 1576.70 1576.70
3 1576.70 1576.70 2723.81 1576.70
4 1576.70 1576.70 1576.70 2723.81

Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5789 0.5789 0.5789
2 0.5789 1.0000 0.5789 0.5789
3 0.5789 0.5789 1.0000 0.5789
4 0.5789 0.5789 0.5789 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS subject 1576.70
Residual 1147.12

Fit Statistics

-2 Log Likelihood 1697.5
AIC (smaller is better) 1713.5
AICC (smaller is better) 1714.4
BIC (smaller is better) 1727.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 65.27 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.32 15.4542 38 -11.28 <.0001
center 2 -171.51 17.4378 38 -9.84 <.0001
center 3 -150.40 20.2761 38 -7.42 <.0001
tmp*center 1 440.92 3.6528 120 120.71 <.0001
tmp*center 2 412.24 4.2494 120 97.01 <.0001
tmp*center 3 406.31 5.0777 120 80.02 <.0001

FIT WITH COMPOUND SYMMETRY 5

The Mixed Procedure

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5
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1 center 1 238.83 -41.5232
2 center 2 304.08 -53.8425
3 center 3 411.12
4 tmp*center 1 -41.5232 13.3433
5 tmp*center 2 -53.8425 18.0574
6 tmp*center 3 -78.9443

Covariance
Matrix for

Fixed Effects

Row Col6

1
2
3 -78.9443
4
5
6 25.7835

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 38 93.00 <.0001
tmp*center 3 120 10128.0 <.0001

FIT WITH MARKOV STRUCTURE 6

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Spatial Power
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1689.99200625 0.00000320
2 1 1689.98977683 0.00000000

Convergence criteria met.

FIT WITH MARKOV STRUCTURE 7

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2913.20 1954.28 1336.16 952.56
2 1954.28 2913.20 1991.78 1419.97
3 1336.16 1991.78 2913.20 2076.86
4 952.56 1419.97 2076.86 2913.20
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Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6708 0.4587 0.3270
2 0.6708 1.0000 0.6837 0.4874
3 0.4587 0.6837 1.0000 0.7129
4 0.3270 0.4874 0.7129 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

SP(POW) subject 0.6837
Residual 2913.20

Fit Statistics

-2 Log Likelihood 1690.0
AIC (smaller is better) 1706.0
AICC (smaller is better) 1706.9
BIC (smaller is better) 1719.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 72.76 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -171.68 18.9175 38 -9.08 <.0001
center 2 -166.60 21.5922 38 -7.72 <.0001
center 3 -144.92 25.5328 38 -5.68 <.0001
tmp*center 1 441.34 5.0608 120 87.21 <.0001
tmp*center 2 410.91 5.9007 120 69.64 <.0001
tmp*center 3 403.23 6.9137 120 58.32 <.0001

FIT WITH MARKOV STRUCTURE 8

The Mixed Procedure

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5

1 center 1 357.87 -79.7841
2 center 2 466.22 -105.84
3 center 3 651.93
4 tmp*center 1 -79.7841 25.6113
5 tmp*center 2 -105.84 34.8182
6 tmp*center 3 -150.66

Covariance
Matrix for

Fixed Effects

Row Col6

1
2
3 -150.66
4
5
6 47.7993

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 38 58.04 <.0001
tmp*center 3 120 5285.40 <.0001

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 9

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Spatial Power
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
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Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 8
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1689.99200625 0.00000320
2 1 1689.98977683 0.00000000

Convergence criteria met.

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 10

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2913.20 1954.28 1336.16 952.56
2 1954.28 2913.20 1991.78 1419.97
3 1336.16 1991.78 2913.20 2076.86
4 952.56 1419.97 2076.86 2913.20

Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6708 0.4587 0.3270
2 0.6708 1.0000 0.6837 0.4874
3 0.4587 0.6837 1.0000 0.7129
4 0.3270 0.4874 0.7129 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

SP(POW) subject 0.6837
Residual 2913.20

Fit Statistics

-2 Log Likelihood 1690.0
AIC (smaller is better) 1706.0
AICC (smaller is better) 1706.9
BIC (smaller is better) 1719.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 72.76 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

Intercept -144.92 25.5328 38 -5.68 <.0001
center 1 -26.7663 31.7773 38 -0.84 0.4049
center 2 -21.6836 33.4387 38 -0.65 0.5206
center 3 0 . . . .
tmp 403.23 6.9137 120 58.32 <.0001
tmp*center 1 38.1138 8.5680 120 4.45 <.0001
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tmp*center 2 7.6822 9.0894 120 0.85 0.3997

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 11

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

tmp*center 3 0 . . . .

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5

1 Intercept 651.93 -651.93 -651.93 -150.66
2 center 1 -651.93 1009.80 651.93 150.66
3 center 2 -651.93 651.93 1118.15 150.66
4 center 3
5 tmp -150.66 150.66 150.66 47.7993
6 tmp*center 1 150.66 -230.44 -150.66 -47.7993
7 tmp*center 2 150.66 -150.66 -256.49 -47.7993
8 tmp*center 3

Covariance Matrix for Fixed Effects

Row Col6 Col7 Col8

1 150.66 150.66
2 -230.44 -150.66
3 -150.66 -256.49
4
5 -47.7993 -47.7993
6 73.4106 47.7993
7 47.7993 82.6175
8

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

center 2 38 0.74 0.37 0.6917 0.6941
tmp 1 120 14563.8 14563.8 <.0001 <.0001
tmp*center 2 120 25.49 12.74 <.0001 <.0001
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INTERPRETATION:

• Comparison with ordinary least squares: Note that, because these data are not balanced,

none of the estimates of the mean parameters β are exactly the same across methods. However,

note from pages 2, 4, and 7 of the output that the estimates are similar across methods, and the

ordering of the size of slopes and intercepts is in the same direction for each. Because these are

longitudinal data, however, the estimates that are based on a model that take into account the

likely correlation among observations within the same unit is more credible, and the tests and

standard errors derived from such a model are more reliable.

• Choice of covariance structure: Inspection of the AIC and BIC values for each of the

compound symmetry and Markov fits shows that both criteria are smaller when the Markov

structure is assumed. This gives a rationale for preferring this covariance model, given the choice

between the two. Note that in this case we have fitted the models using ML; the same mean

model is used in each case.

• Hypothesis tests. The final call to PROC MIXED fits the “difference” parameterization with the

Markov structure. As discussed in the interpretation of the dental study analysis, the result is that

the Tests of Fixed Effects given on page 11 of the output provide a test of the null hypothesis

that the slopes are the same for all centers (TMP*CENTER). Here, we have used the chisq option to

ask PROC MIXED to calculate the Wald statistic TL and the p-value obtained by comparing this to

the appropriate χ2 distribution. Here, the degrees of freedom is r = 2; under the null hypothesis,

there is only 1 common slope versus 3 separate slopes for the “full” model that has been fitted.

From the output TL = 25.49, with an associated p-value of 0.0001. Thus, there is strong evidence

to suggest that at least one of the slopes differs from the others. The test associated with CENTER

considers the same question with respect to intercepts; as seen from the output, TL for this test is

0.74, with a p-value of 0.69, suggesting that there is not enough evidence in these data to conclude

that the intercepts are different across centers.

From page 10, the Solution for Fixed Effects table shows that the estimate of difference in

slope between centers 3 and 1 is 38.114, with a estimated standard error of 8.57. The corresponding

Wald test statistic is 4.45, which compared to a standard normal (or t as in the output) distribution

yields a p-value of 0.0001. The comparison between slopes for centers 3 and 2 has an estimated

difference of 7.68 (9.09); the corresponding Wald test statistic is 0.85, with a large p-value.
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These results seem to suggest that the rate of change in ultrafiltration rate with transmembrane

pressure is similar for centers 2 and 3, but is faster for center 1. One could also construct a test

of whether slope differs between centers 1 and 2 from the fit of parameterization (1) on page 7,

using the L matrix

L = (0, 0, 0, 1,−1, 0)

and the estimated covariance matrix for β̂ given on page 8; this could be done manually from the

output or by using the estimate statement

estimate ’slope 1 vs. 2’ center 0 0 0 center*tmp 1 -1 0;

(see the analysis of the dental data for an example).

EXAMPLE 3 – HIP REPLACEMENT DATA: In the following program, we consider the model in

(8.12),

Yij = β1 + β2tij + β3t
2
ij + β7ai + ϵij , males

Yij = β4 + β5tij + β6t
2
ij + β7ai + ϵij , females.

• The model is parameterized exactly as it is shown above. Each gender has its own intercept and

its own linear and quadratic coefficients, and there is a common effect of age regardless of gender.

We fit this model for illustrative purposes; one could entertain several other models and do “full”

versus “reduced” tests to zero in on an appropriate model.

• With this mean model, several covariance structures are considered: unstructured, compound

symmetry, AR(1), and one-dependence. Recall that these data are imbalanced in the sense that,

although all individuals were supposed to be seen at the same times (at 1, 2, 3, and 4 weeks), some

were missing at the least the week 3 measurement. To communicate this to PROC MIXED, the time

factor is incorporated as week in the mean model in the model statement and as a classification

factor time in the repeated statement (see the program below). Adding the class variable time

to the repeated statement has the effect of providing SAS with the information it needs about

the intended times of data collection so that it can set up each individual’s covariance matrix

appropriately. To see that this is indeed the case, the r and rcorr options of the repeated

statement are used to print out the covariance matrices for individuals 1, 10, and 15 (who have

different numbers of observations).
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• We show use of the contrast and estimate statements in the one-dependent fit; here, we ask

PROC MIXED to estimate the difference in mean response between females and males at week 3 and

test whether it is different from 0; in the notation above, this is

β4 + β5(3) + β6(9) − β1 − β2(3) − β3(9).

The appropriate L matrix would be

L = (−1,−3,−9, 1, 3, 9, 0).

In the program, females and males are coded 0 and 1, respectively; one may examine the output

from the fits to determine how SAS has represented the model and thus how this contrast should

be represented in the contrast and estimate statements.

• For all fits, we use the default REML method. We compare the AIC and BIC values for this

same mean model using this method to determine a suitable covariance model.

PROGRAM:

/*******************************************************************

CHAPTER 8, EXAMPLE 3

Analysis of the hip replacement data using a general
regression model in time and age

- the repeated measurement factor is time (weeks)

- there is one "treatment" factor, gender (0=female, 1 = male)

- an additional covariate, age, is also available

- the response is haematocrit

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming different covariate
structures.

These data are unbalanced both in the sense that some patients
were not observed at all times.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data hips; infile ’hips.dat’;
input patient gender age week h;
week2=week*week;
time=week;

/*******************************************************************

Use PROC MIXED to fit the general quadratic regression model with
assumptions about the covariance matrix of a data vector.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. Here,
because the data have unequal numbers of observations, we ask
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to see the matrices for 2 individuals with different numbers.
Similarly for the RCORR option, which prints the corresponding
correlation matrix.

With the ar(1) and one-dependent structures, we have to be
careful to communicate to PROC MIXED the fact that the data
are imbalanced in the sense that the times are all the same
for all patients, but some patients are not observed at some
of the times. In our mean model, we want WEEK, the time factor,
to be continuous; however, PROC MIXED needs also for the time
factor to be a classification factor so that it can properly figure out
the missingness pattern. We give it this information by defining
TIME = WEEK and letting TIME be a classification factor in the
REPEATED statement.

*******************************************************************/

* unstructured;

title "FIT WITH UNSTRUCTURED COMMON COVARIANCE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = un subject=patient r= 1,10,15 rcorr=1,10,15;

run;

* compound symmetry;

title "FIT WITH COMMON COMPOUND SYMMETRY";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = cs subject=patient rcorr=1,10,15;

run;

* ar(1);

title "FIT WITH COMMON AR(1) STRUCTURE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = ar(1) subject=patient rcorr=1,10,15;

run;

* one-dependent;
* and show use of CONTRAST statement;

title "FIT WITH COMMON ONE-DEPENDENT STRUCTURE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq covb;
repeated time / type = toep(2) subject=patient rcorr=1,10,15;
contrast ’f vs m, wk 3’ gender 1 -1

gender*week 3 -3 gender*week2 9 -9 /chisq;
estimate ’f vs m, wk 3’ gender 1 -1

gender*week 3 -3 gender*week2 9 -9;
run;
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OUTPUT:

FIT WITH UNSTRUCTURED COMMON COVARIANCE 1

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Unstructured
Subject Effect patient
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 10
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 551.06018998 0.00059380
2 1 549.70264000 0.01093915
3 1 546.99589520 0.00622014
4 1 545.54535711 0.00291074
5 1 544.84740510 0.00113789
6 1 544.58650911 0.00027063
7 1 544.52750285 0.00002504
8 1 544.52249433 0.00000029
9 1 544.52243938 0.00000000

FIT WITH UNSTRUCTURED COMMON COVARIANCE 2

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for patient 1

Row Col1 Col2 Col3

1 18.0680 4.6364 5.0947
2 4.6364 16.5021 0.4870
3 5.0947 0.4870 19.2076

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.2685 0.2735
2 0.2685 1.0000 0.02735
3 0.2735 0.02735 1.0000

Estimated R Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 18.0680 4.6364 -13.9213 5.0947
2 4.6364 16.5021 2.8483 0.4870
3 -13.9213 2.8483 67.8805 25.1818
4 5.0947 0.4870 25.1818 19.2076

Estimated R Correlation Matrix for patient 10

PAGE 289



CHAPTER 8 ST 732, M. DAVIDIAN

Row Col1 Col2 Col3 Col4

1 1.0000 0.2685 -0.3975 0.2735
2 0.2685 1.0000 0.08510 0.02735
3 -0.3975 0.08510 1.0000 0.6974
4 0.2735 0.02735 0.6974 1.0000

Estimated R Matrix
for patient 15

Row Col1 Col2

1 16.5021 0.4870
2 0.4870 19.2076

FIT WITH UNSTRUCTURED COMMON COVARIANCE 3

The Mixed Procedure

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.02735
2 0.02735 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) patient 18.0680
UN(2,1) patient 4.6364
UN(2,2) patient 16.5021
UN(3,1) patient -13.9213
UN(3,2) patient 2.8483
UN(3,3) patient 67.8805
UN(4,1) patient 5.0947
UN(4,2) patient 0.4870
UN(4,3) patient 25.1818
UN(4,4) patient 19.2076

Fit Statistics

-2 Res Log Likelihood 544.5
AIC (smaller is better) 564.5
AICC (smaller is better) 567.2
BIC (smaller is better) 578.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 16.60 0.0554

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 42.2823 3.1835 28 13.28 <.0001
gender 1 45.5650 3.1116 28 14.64 <.0001
week*gender 0 -11.4526 1.8018 28 -6.36 <.0001
week*gender 1 -15.8799 2.0222 28 -7.85 <.0001
week2*gender 0 2.9269 0.5640 28 5.19 <.0001
week2*gender 1 4.2369 0.6368 28 6.65 <.0001
age -0.04330 0.04465 28 -0.97 0.3405

FIT WITH UNSTRUCTURED COMMON COVARIANCE 4

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 214.58 107.29 <.0001 <.0001
week*gender 2 28 102.07 51.03 <.0001 <.0001
week2*gender 2 28 71.20 35.60 <.0001 <.0001
age 1 28 0.94 0.94 0.3322 0.3405

FIT WITH COMMON COMPOUND SYMMETRY 5

The Mixed Procedure
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Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Compound Symmetry
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.70472691 0.00000275
2 1 556.70418983 0.00000000

Convergence criteria met.

FIT WITH COMMON COMPOUND SYMMETRY 6

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.2079 0.2079
2 0.2079 1.0000 0.2079
3 0.2079 0.2079 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.2079 0.2079 0.2079
2 0.2079 1.0000 0.2079 0.2079
3 0.2079 0.2079 1.0000 0.2079
4 0.2079 0.2079 0.2079 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.2079
2 0.2079 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS patient 3.8016
Residual 14.4824

Fit Statistics

-2 Res Log Likelihood 556.7
AIC (smaller is better) 560.7
AICC (smaller is better) 560.8
BIC (smaller is better) 563.5

Null Model Likelihood Ratio Test
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DF Chi-Square Pr > ChiSq

1 4.42 0.0356

FIT WITH COMMON COMPOUND SYMMETRY 7

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 35.7027 3.8826 28 9.20 <.0001
gender 1 39.6756 3.8088 28 10.42 <.0001
week*gender 0 -9.5954 1.6604 64 -5.78 <.0001
week*gender 1 -14.2653 1.9229 64 -7.42 <.0001
week2*gender 0 2.5899 0.5180 64 5.00 <.0001
week2*gender 1 3.8392 0.6046 64 6.35 <.0001
age 0.03853 0.05562 64 0.69 0.4910

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 109.24 54.62 <.0001 <.0001
week*gender 2 64 88.53 44.26 <.0001 <.0001
week2*gender 2 64 65.36 32.68 <.0001 <.0001
age 1 64 0.48 0.48 0.4884 0.4910

FIT WITH COMMON AR(1) STRUCTURE 8

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Autoregressive
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.48035628 0.00000015
2 1 556.48032672 0.00000000

Convergence criteria met.

FIT WITH COMMON AR(1) STRUCTURE 9

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3
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1 1.0000 0.2910 0.02465
2 0.2910 1.0000 0.08469
3 0.02465 0.08469 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.2910 0.08469 0.02465
2 0.2910 1.0000 0.2910 0.08469
3 0.08469 0.2910 1.0000 0.2910
4 0.02465 0.08469 0.2910 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.08469
2 0.08469 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) patient 0.2910
Residual 18.3070

Fit Statistics

-2 Res Log Likelihood 556.5
AIC (smaller is better) 560.5
AICC (smaller is better) 560.6
BIC (smaller is better) 563.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 4.64 0.0312

FIT WITH COMMON AR(1) STRUCTURE 10

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 35.8838 3.7661 28 9.53 <.0001
gender 1 39.8949 3.6947 28 10.80 <.0001
week*gender 0 -9.8043 1.6356 64 -5.99 <.0001
week*gender 1 -14.6020 1.8736 64 -7.79 <.0001
week2*gender 0 2.6313 0.5094 64 5.17 <.0001
week2*gender 1 3.9150 0.5904 64 6.63 <.0001
age 0.03749 0.05369 64 0.70 0.4875

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 117.06 58.53 <.0001 <.0001
week*gender 2 64 96.75 48.37 <.0001 <.0001
week2*gender 2 64 70.68 35.34 <.0001 <.0001
age 1 64 0.49 0.49 0.4850 0.4875

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 11

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Banded Toeplitz
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30
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time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.12352167 0.00000002
2 1 556.12351849 0.00000000

Convergence criteria met.

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 12

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.3247
2 0.3247 1.0000
3 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.3247
2 0.3247 1.0000 0.3247
3 0.3247 1.0000 0.3247
4 0.3247 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000
2 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

TOEP(2) patient 6.0104
Residual 18.5118

Fit Statistics

-2 Res Log Likelihood 556.1
AIC (smaller is better) 560.1
AICC (smaller is better) 560.3
BIC (smaller is better) 562.9

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 5.00 0.0254

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 13

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 36.2941 3.7164 28 9.77 <.0001
gender 1 40.2860 3.6474 28 11.05 <.0001
week*gender 0 -9.9910 1.6592 64 -6.02 <.0001
week*gender 1 -14.8308 1.8879 64 -7.86 <.0001
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week2*gender 0 2.6610 0.5222 64 5.10 <.0001
week2*gender 1 3.9601 0.6025 64 6.57 <.0001
age 0.03354 0.05284 64 0.63 0.5279

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4 Col5

1 gender 0 13.8117 12.2645 -1.4234 0.05482 0.3004
2 gender 1 12.2645 13.3033 -0.4160 -1.1484 0.09378
3 week*gender 0 -1.4234 -0.4160 2.7531 -0.00186 -0.8263
4 week*gender 1 0.05482 -1.1484 -0.00186 3.5640 0.000419
5 week2*gender 0 0.3004 0.09378 -0.8263 0.000419 0.2727
6 week2*gender 1 -0.01425 0.2285 0.000483 -1.0835 -0.00011
7 age -0.1880 -0.1821 0.006377 -0.00081 -0.00144

Covariance Matrix
for Fixed Effects

Row Col6 Col7

1 -0.01425 -0.1880
2 0.2285 -0.1821
3 0.000483 0.006377
4 -1.0835 -0.00081
5 -0.00011 -0.00144
6 0.3630 0.000212
7 0.000212 0.002792

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 122.28 61.14 <.0001 <.0001
week*gender 2 64 98.03 49.01 <.0001 <.0001
week2*gender 2 64 69.19 34.60 <.0001 <.0001
age 1 64 0.40 0.40 0.5257 0.5279

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 14

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

f vs m, wk 3 -1.1649 1.6223 64 -0.72 0.4753

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

f vs m, wk 3 1 64 0.52 0.52 0.4727 0.4753
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INTERPRETATION:

• Choice of covariance structure: From the output, we have the following results on pages 3,

6, 9, and 12:

Model −2 res loglike AIC BIC

Unstructured 544.5 564.5 578.5

Compound symmetry 556.7 560.7 563.5

AR(1) 556.5 560.5 563.3

One-dependent 556.1 560.1 562.9

From the AIC and BIC values, it appears that assuming some kind of structure is better than

none (unstructured); however, the evidence is inconclusive about which structure, compound

symmetry, AR(1), or one-dependent provides a better characterization of covariance. Differences

in the criteria are small; because each fit requires a numerical method of finding the solution, the

values might end up slightly differently if a slightly different algorithm or machine had been used.

Thus, it is not sensible to make too much of these differences. We thus conclude that any of these

structures is probably capturing reasonably well the most important features of the covariance

structure; there is some correlation among observations, but the evidence is inconclusive about how

it “falls off” as they become farther apart in time. From the Solution for Fixed Effects for

each fit on pages 7, 10, and 13, the estimates of β differ very little across the different assumptions.

• Estimation of difference in mean response between males and females at week 3.

We illustrate use of the contrast and estimate statements for the one-dependent fit. On page

14, we have that the estimated mean difference is −1.165 with an estimated standard error of

1.622, so that the standard error exceeds the actual estimated difference in magnitude. The Wald

statistic of the form estimate divided by standard error is given in the result of the estimate

statement and is equal to -0.72. PROC MIXED compares this to a t distribution; alternatively, a

normal distribution could be used. The contrast statement with the chisq option produces the

identical test, but printing the statistic TL = 0.52 = (−0.72)2 instead. This is compared to a χ2

distribution with 1 degree of freedom (standard normal squared), as our contrast has one degree

of freedom. An alternative F test is also given by default, which involves an adjustment for finite

samples as discussed earlier.
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From the results, there is not enough evidence to suggest that there is a difference in mean response

between the genders at the third week. Given the small estimate, which is very small compared

to a typical response value in the 30’s to almost 50, it appears that we would be safe to conclude

that there is no practical difference in mean response.

FURTHER INFORMATION ON PROC MIXED: See the SAS documentation and the book SAS System

for Mixed Models by Littell, Milliken, Stroup, and Wolfinger (1996) for much more on the capabilities

of PROC MIXED for fitting general regression models for longitudinal data. We will see that PROC MIXED

can do much more in the next few chapters.

8.9 Parameterizing models in SAS: Use of the noint option in SAS model state-

ments in PROC GLM and PROC MIXED

An important skill using “canned” software such as proc glm or proc mixed in SAS is understanding

how the software allows the user to specify models for mean response in the model statement. Here, we

give more detail on the principles behind specifying model statements in order to obtain desired mean

models in different parameterizations.

To fix ideas, consider the dental data and the analyses in EXAMPLE 1. In particular, consider the two

models for mean response on page 248.

Model in the “explicit” parameterization:

Yij = β0,B + β1,Btij + eij , boys

= β0,G + β1,Gtij + eij , girls (8.25)

Model in the “difference” parameterization:

Yij = β0,B + β1,Btij + eij , boys

= (β0,B + β0,G−B) + (β1,B + β1,G−B)tij + eij , girls (8.26)

In all of the following, we use expressions like β0, β1, etc. as just “placeholders” to denote generic terms

in models.
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Consider the program. Recall that the variable gender takes on the numerical values 0 or 1 as a child

is a girl (0) or a boy (1). The variable age is a numerical value representing the time condition, and

the response is distance. The variable child is the unit indicator, and is ordinarily declared to be a

class variable (as SAS classifies observations as belonging to particular units on this basis).

It is demonstrated in the program and its output that the following statements lead to parameterization

of the model using the “difference” parameterization (8.26).

class gender child;

model distance = gender age gender*age / solution;

Here, notice that gender is also declared to be a class variable. Thus, SAS will treat gender as two

(in this case) categories corresponding to girls (gender 0) and boys (gender 1).

Representative output from such a call (in the Solution for Fixed Effects table) looks like:

Solution for Fixed Effects

Standard

Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001

gender 0 1.0321 1.5089 25 0.68 0.5003

gender 1 0 . . . .

age 0.7844 0.07654 79 10.25 <.0001

age*gender 0 -0.3048 0.1199 79 -2.54 0.0130

age*gender 1 0 . . . .

Let us consider more carefully what the model statement above is instructing SAS to do. In general, in

any model statement in proc glm or proc mixed, the presence of any effect (e.g. gender) causes SAS

to create a term or terms in the mean model. In this specific case, here is how this works.

As the noint option is not present, SAS automatically constructs an intercept term, call it β0 for now.
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The presence of the gender effect causes SAS to create some terms as follows: because gender is

declared to be a class variable, SAS will create a term for each classification (or category)

determined by gender. Here, there are two, girls (gender 0) and boys (gender 1). So including

gender in the model statement with gender has the effect of creating terms in the model as follows:

β1 I(gender=0) + β2 I(gender=1),

where, here, the notation “I(gender=x)” means “this term is present if gender=x” for x=0,1.

Now age is not a class variable, but just a variable that takes on numerical values (8,10,12,14 in this

case). As it is not a class variable, SAS simply creates a term of the form β3t, where we are using t

to represent the numerical values of age. Note that with numerical variables, SAS creates only a single

such term; it does not create a separate term for each value that t takes on.

Because gender is a class variable, the gender*age effect causes SAS to do something similar to the

above. In particular, SAS will again created a term for each classification (or category) determined

by gender (times age now). That is, including gender*age has the effect of creating terms in the model

as follows:

β4t I(gender=0) + β5t I(gender=1) (age).

Putting this all together, we have that the mean model created looks like

β0 + β1 I(gender=0) + β2 I(gender=1) + β3t + β4t I(gender=0) + β5t I(gender=1).

Note then that for a girl, the model is

(β0 + β1) + (β3 + β4)t,

and for a boy, the model is

(β0 + β2) + (β3 + β5)t.

In the table of Solution for Fixed Effects, we have the following correspondences:

Intercept β0

gender 0 β1

gender 1 β2

age β3

age*gender 0 β4

age*gender 1 β5
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Note that this is over-parameterized – there are only two intercepts and two slopes (four parameters)

that need to be described, but there are six parameters in the model! That is, it is not possible to

estimate all of β0, β1, . . . ,β5 from data that only tell us about two intercepts and two slopes. We really

don’t need all of β0, β1, β2 to determine two intercepts, and likewise we don’t need all of β3, β4, β5 to

determine two slopes.

SAS recognizes this automatically and imposes some constraints to get the number of parameters

down to a number that can be estimated. Practically speaking, by default, the way it chooses to do this

is to disregard one of β0, β1, β2 for the intercepts and β3, β4, β5 for the slopes. From the Solution for

Fixed Effects table, the “0” followed by dots corresponding to gender 1 and age*gender 1 indicate

that it chooses to disregard what we have called β2 and β5, essentially setting these equal to 0.

The result is that the implied model is, for a girl,

(β0 + β1) + (β3 + β4)t,

and for a boy,

β0 + β3t.

That is, SAS defaults to the “difference” parameterization, which may be seen by identifying β0 with

β0,B, β1 with β0,G−B , β3 with β1,B, β4 with β1,G−B in (8.26).

Now consider the case of the “explicit” parameterization. It is demonstrated in the program and

its output that the following statements lead to parameterization of the model using the “explicit”

parameterization (8.25).

class gender child;

model distance = gender gender*age / noint solution;

Again, gender is declared to be a class variable, so SAS will treat gender as two (in this case) categories

corresponding to girls (gender 0) and boys (gender 1). Note the use now of the noint option. Note

also that we do not include an age effect here; we will see why momentarily.
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Representative output from such a call (in the Solution for Fixed Effects table) looks like:

Solution for Fixed Effects

Standard

Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1615 25 14.96 <.0001

gender 1 16.3406 0.9631 25 16.97 <.0001

age*gender 0 0.4795 0.09231 79 5.20 <.0001

age*gender 1 0.7844 0.07654 79 10.25 <.0001

Let us consider more carefully what the model statement here is instructing SAS to do. As above,

in any model statement in proc glm or proc mixed, the presence of any effect (e.g. gender) causes

SAS to create a term in the mean model. As the noint option is present, SAS will not automatically

construct and intercept term. The presence of the gender effect causes SAS to create the same type

of terms as before; that is, because gender is declared to be a class variable, SAS will create a

term for each classification (or category) determined by gender, leading to terms of the form

β1 I(gender=0) + β2 I(gender=1).

As before, age is not a class variable, but just a variable that takes on numerical values (8,10,12,14 in

this case). As it is not a class variable, SAS simply creates a term of the form β3t.

Also as before, because gender is a class variable, the gender*age effect causes SAS to create a term

for each classification (or category) determined by gender (times age now); that is

β3t I(gender=0) + β4t I(gender=1).

Putting this all together, we have that the mean model created looks like

β1 I(gender=0) + β2 I(gender=1) + β3t I(gender=0) + β4t I(gender=1).

Note then that for a girl, the model is

β1 + β3t,

and for a boy, the model is

β2 + β4t.
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That is, the model as specified contains four parameters, two intercepts and two slopes, exactly what

is needed! It is not overparameterized.

In the table of Solution for Fixed Effects, we have the following correspondences:

gender 0 β1

gender 1 β2

age*gender 0 β3

age*gender 1 β4

There are no “zeroed out” elements, because each corresponding term is something that can be esti-

mated.

Thus, with an understanding of how SAS creates terms from effects specified in a model statement, we

see that this results in the parameterization of the model in (8.25), identifying β1 with β0,G, β2 with

β0,B, β3 with β1,G, β4 with β1,B .

Note that including the effect age in the model statement would have resulted in an overparameterization

– we do not need a single term of the form βt, as we already have all the parameters we need to

characterize the model. Knowing the way SAS constructs effects, the user can anticipate this and leave

the age term out. (Fun exercise: try putting it in and see what happens!)

Thus, note that, in either model statement, the way in which SAS creates terms is identical – including

a term in a model statement always has the same effect – it is the choice of terms to include that

dictates the resulting model and parameterization.

In general, then, the following principles apply:

• If a variable is declared to be a class variable and the variable appears in effects in a model

statement, SAS creates a term for that effect corresponding to each level (value taken on by) the

variable. In this example, gender has two such levels (girl and boy), so there are two terms.

• If a variable is not declared to be a class variable and the variable appears in a model statement,

it is treated as numeric. In this case, SAS creates a single term as in the example with age.

The above principles extend to more than two groups. For example, the dialyzer (ultrafiltration) data

discussed in EXAMPLE 2 have three groups (centers 1,2,3).
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Here, center is equal to 1, 2, or 3 depending on center, and tmp is the (numerical) “time” variable.

The two competing model statements are

class subject center;

model ufr = center tmp center*tmp / solution;

to obtain the “difference” parameterization and

class subject center;

model ufr = center center*tmp / noint solution;

to obtain the “explicit” parameterization. In either case, center will cause SAS to construct terms like

β1 I(center=1) + β2 I(center=2) + β3 I(center=3)

and, similarly, center*age will imply

β4t I(center=1) + β5t I(center=2) + β6t I(center=3)

You can go through the same reasoning as for the dental data to identify the parameterization each

model statement implies.

All of the above has to do with the declaration of the group variable as a class variable. In the case of

two groups, it is possible to obtain the same parameterizations fairly easily without such a declaration

as long as one makes sure the group variable is such that it takes on the values 0 and 1 (as for the

dental data).

To see this, consider the following model statement:

class child;

model distance = gender age gender*age / solution;
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Note we have not used the noint option. Here, gender is not declared to be a class variable; thus,

SAS interprets it as taking on numerical values (0 and 1 in this case). By the general principles, SAS

will create a term corresponding to each of the effects gender, age, and gender*age. But, because

gender is not a class variable, it will simply treat it the same way as age and create a single term

rather than terms for each category as it would if it were a class variable. That is, letting g be the

numerical value of gender, this model statement will result in

β0 + β1g + β2t + β3gt,

where the β0 is the “automatic” intercept. Thus, we see that the implied model here is

β0 + β1 + (β2 + β3)t

for g = 0 (girl) and

β0 + β2t

for g = 1 (boy). This is, of course, exactly in the form of the “difference” parameterization in (8.26).

We can in fact also get the “explicit” parameterization without treating gender as a class variable by

being clever as follows. Create a new variable revgender = 1-gender. Thus, revgender takes on the

value 1 for girls and 0 for boys (the “reverse” of gender). Consider the following model statement (note

we use the noint option here.

class child;

model distance = gender revgender gender*age revgender*age / noint solution;

By the above principles, as gender and revgender are just treated as variables taking numerical values,

SAS creates the following terms:

β1g + β2(1 − g) + β3tg + β4t(1 − g).
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Thus, we see that the implied model here is

β2 + β4t

for g = 0 (girl) and

β1 + β3t

for g = 1 (boy). This is, of course, in exactly the form of the “explicit” parameterization (8.25), making

the appropriate correspondences.

In the case of more than two groups, one may do the same thing, but it gets messier. One needs to

create “dummy” variables taking on values 0 or 1 for each group; thus, for the dialyzer data, we might

create variables as follows:

c1 = 1 if center=1

0 otherwise

c2 = 1 if center=2

0 otherwise

c3 = 1 if center=3

0 otherwise

To convince yourself of the following, just write out the implied models for each model statement:

You may verify that the “difference” parameterization may be obtained by the following code:

model ufr = c1 c2 tmp c1*tmp c2*tmp / solution;

Note that, here, we chose not to include c3 in the model statement. The effect of this is to make center

3 the “reference” center. We could have equally well have chosen another center as the “reference.”

We left out one of the center dummy variables (c3 here) because we knew in advance that to include

them all would lead to an overparameterization. You might want to try running the following code

to see what happens:

model ufr = c1 c2 c3 tmp c1*tmp c2*tmp c3*tmp / solution;

You should be able to see that, using the same considerations as above, this leads to an overparameter-

ized model.
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The “explicit” parameterization may be obtained by

model ufr = c1 c2 c3 c1*tmp c2*tmp c3*tmp / noint solution;

Note that, here, the model is not overparameterized.

It should be obvious that, as the number of groups grows, it becomes less and less convenient to define

all these variables. The class statement in SAS essentially does this for us.

8.10 Using SAS model, contrast, and estimate statements

This section gives more information how to use these statements with PROC MIXED in the context of

EXAMPLES 1–3. You may wish to add these statements to the example programs to see what output

they produce. We demonstrate the use of contrast and estimate statements more in the next chapter.

EXAMPLE 1 – DENTAL DATA. Consider the call to proc mixed for the fit of the “full model” with

the “explicit parameterization” using a separate compound symmetric covariance structure for each

gender on page 251.

From the Solution for Fixed Effects table in the output of this statement , β is defined as

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β0,G

β0,B

β1,G

β1,B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The null hypothesis of equal slopes may be written as H0 : Lβ = 0, where

L = (0, 0, 1,−1).

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’slp diff’ gender 0 0 gender*age 1 -1 / chisq;
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The null hypothesis of coincident lines (same intercepts and slopes in both groups) may be written as

H0 : Lβ = 0, where

L =

⎛

⎜⎝
1 −1 0 0

0 0 1 −1

⎞

⎟⎠ .

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’both diff’ gender 1 -1 gender*age 0 0,

gender 0 0 gender*age 1 -1 / chisq;

The results of such contrast statements appears in the output in a section labeled “Contrasts.”

EXAMPLE 2 – DIALYZER DATA. The call to proc mixed for the fit using the “explicit parameteri-

zation” with the Markov covariance model is at the bottom of page 278.

From the Solution for Fixed Effects table in the output, β is defined as, in obvious notation,

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0,1

β0,2

β0,3

β1,1

β1,2

β1,3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The null hypothesis of equal slopes across all three centers may be written as H0 : Lβ = 0, where

L =

⎛

⎜⎝
0 0 0 1 −1 0

0 0 0 1 0 −1

⎞

⎟⎠ .

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’slp diff’ center 0 0 0 center*tmp 1 -1 0,

center 0 0 0 center*tmp 1 0 -1 / chisq;
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EXAMPLE 3 – HIP REPLACEMENT DATA. The model statement syntax for fitting the model on

page 286 is given in the calls to proc mixed on page 288 – here, the “explicit parameterization” is used.

What if we wanted to fit a more complicated model? For example, consider the model

Yij = (β1 + β7ai) + (β2 + β8ai)tij + (β3 + β9ai)t
2
ij + eij for males

= (β4 + β10ai) + (β5 + β11ai)tij + (β6 + β12ai)t
2
ij + eij for females

This model says that the week-zero mean, the linear component, and the quadratic effect is different for

males and females, and, further, the way in which each of these depends on age is linear and different

for males and females. This is a rather complicated model.

The appropriate syntax may be found by multiplying out each expression; e.g., for males, the mean

expression is

β1 + β7ai + β2tij + β8aitij + β3t
2
ij + β9ait

2
ij ,

and there is a corresponding expression for females, where each term has a different coefficient; i.e.

β4 + β10ai + β5tij + β11aitij + β6t
2
ij + β12ait

2
ij ,

Multiplying things out makes the model syntax clear. We use the noint option, so that we can construct

the “intercept terms” β1 and β4 for males and females ourselves. The syntax is

model h = gender gender*age gender*week gender*age*week

gender*week2 gender*age*week2 /noint solution;

That is, there is a term corresponding to each term in the multiplied-out expression. The gender part

of each term ensures that the model includes different such terms for males and females.
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• However, the modeling approach acknowledges explicitly the two separate sources of variation

we have discussed. As a result, it “automatically” leads to covariance models that also acknowledge

these sources.

• The resulting statistical model, called a random coefficient model for reasons that will be clear

shortly, will be seen to imply a a model like the general linear regression models of the last chapter

with a particular covariance structure for each data vector. Thus, the inferential methods of that

chapter, namely maximum and restricted maximum likelihood, will apply immediately.

• In addition, this modeling strategy will allow us to address questions of scientific interest about

trajectories for individual units, either ones in the study or future units. For example, in a

study of AIDS patients, it may be of interest to physicians attending the patients to have an

estimate of a patient’s individual apparent trajectory, so that they may make clinical decisions

about his or her future care. There is no apparent way of doing this in the general modeling

approach we have just considered.

9.2 Random coefficient model

SUBJECT-SPECIFIC TRAJECTORY: Recall the conceptual model discussed in Chapter 4. For def-

initeness, again consider the dental study data. We take the view that each child has his/her own

underlying straight line inherent trend. Focusing on the ith child, this says that s/he has his/her

own intercept and slope, β0i and β1i, say, respectively, that determine this trend. This intercept and

slope are unique to child i.

WITHIN-INDIVIDUAL VARIATION: Continuing with conceptual perspective, the actual responses

observed for a given child do not fall exactly on a straight line (the inherent trajectory) due to

• The fact that the response cannot be measured perfectly, but is instead subject to measurement

error due to the measuring device.

• Individual “fluctuations;” although the overall trend for a given child is a straight line, the actual

responses, if we could observe them continuously over time, tend to fluctuate about the trend.

AMONG-INDIVIDUAL VARIATION: The inherent trajectories are “high” or “low” with different

steepness across children, suggesting that the child-specific intercepts β0i and slopes β1i vary across

children.

PAGE 310



CHAPTER 9 ST 732, M. DAVIDIAN

To formalize this thinking, a model is developed in two stages.

“INDIVIDUAL (FIRST STAGE)” MODEL: The first stage involves describing what we believe at the

level the ith child; specifically, we write a model for the random variables Yi1, . . . , Yini
for the ith child

taken at time points ti1, . . . , tini
. Although the particular dental study example is balanced, we write

things more generally to allow the possibility of imbalance. The model for child i is, i = 1, . . . , m is

Yij = β0i + β1itij + eij , j = 1, . . . , ni. (9.1)

In model (9.1), the observations on the ith child follow a straight line with child-specific intercept and

slope β0i and β1i. That actual observations vary about this inherent line due to within-unit sources is

represented explicitly by the deviation eij with mean 0. We say more about these deviations shortly.

• Thus, model (9.1) has the form of a straight line regression model unique to the ith child. Each

child has such a model.

• Each child has a regression parameter vector βi =

⎛

⎜⎝
β0i

β1i

⎞

⎟⎠ .

• We may write the model (9.1) concisely. Define Y i and ei as usual, and let

Zi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ti1

1 ti2
...

1 tini

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We may then write the model as

Y i = Ziβi + ei, i = 1, . . . , m. (9.2)

“POPULATION (SECOND STAGE)” MODEL: Model (9.1) only tells part of the story; it describes

what happens at the level of an individual child, and includes explicit mention (through eij) of within-

child variation. However, it does not by itself acknowledge among-child variation. We have recognized

that the inherent trends differ across children; for example, some children have a steeper slope for their

apparent trajectory than do others. For now, we downplay the fact that children are of two genders;

we will tackle this issue momentarily.

We may think of the children observed as arising from a population of all such children. Each child

has its own intercept and slope; thus, we may think abstractly of this population in terms of random

vectors βi, one for each child, as it is the unique intercept and slope for each child that distinguishes

his/her trajectory.
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• It is natural to think of this population as being “centered” about a “typical” value of intercept

and slope, with variation about this center value – some children have shallower or steeper slopes,

for example.

• More formally, we may think of the mean value of intercept and slope of the population of all

such βi vectors. Individual intercept/slope vectors vary about this mean. Thus, we may think

of a joint probability distribution of all possible values that a random vector of regression

parameters βi could take on. More on this momentarily.

This way of thinking suggests a model for this population as follows. Let β0 and β1 represent the

mean values of intercept and slope, and define

β =

⎛

⎜⎝
β0

β1

⎞

⎟⎠ . (9.3)

Thus β is the mean vector of the population of all βi. Then write

βi = β + bi, bi =

⎛

⎜⎝
b0i

b1i

⎞

⎟⎠ , (9.4)

which is a shorthand way of saying

β0i = β0 + b0i, β1i = β1 + b1i.

• Here, bi is a vector of random effects describing how the intercept and slope for the ith child

deviates from the mean value.

• Thus, (9.4) has the flavor of a regression-type model for the child-specific regression parameters,

with a systematic component, the mean, and a random component summarizing how things

vary about it.

• More formally, the vectors bi are assumed to have mean 0 and some covariance matrix that

describes the nature of this variation – how intercepts and slopes vary among children and how

they covary (e.g. do large intercepts and slopes tend to occur together?) In fact, as we discuss

shortly, the bi are assumed to have a multivariate probability distribution with this mean

and covariance matrix.
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• Thus, whereas the individual child model summarizes how things happen within a child, this

model characterizes variation among children, representing the population through intercepts

and slopes. Putting the models (9.1) and (9.4) together thus gives a complete description of

what we believe about each child and the population of children, acknowledging the two sources

of variation explicitly.

• Note that we may substitute the expressions for β0i and β1i in (9.1) to obtain

Yij = (β0 + b0i) + (β1 + b1i)tij + eij .

This shows clearly what we are assuming: each child has intercept and slope that varies about

the “typical,” or mean intercept and slope β0 and β1.

ACKNOWLEDGING GENDER: We can refine our model to allow for the fact that children are of

different genders as follows. We may think of children as coming from two populations, males and

females, each population with its own mean values of intercept and slope and possibly different pattern

of variation in these intercepts and slopes. Each child would still have his/her own individual regression

model as in (9.1), so this would not change. What would change to incorporate this refinement is the

population model. For example, if child i is a boy, then we might believe

β0i = β0,B + b0i. β1i = β1,B + b1i,

while if i is a girl,

β0i = β0,G + b0i. β1i = β1,G + b1i.

• Here, the fixed parameters β0,B , β1,B represent the mean intercept and slope for boys; similarly,

β0,G, β1,G represent the same for girls.

• bi = (b0i, b1i)′ represents the random effect for child i with mean 0 We may believe that the

populations of βi for boys and girls have different means but have similar variation. In this case,

we might say that the bi all have the same covariance matrix regardless of whether i is a boy

or girl. On the other hand, if we believe that the populations have different variation, we might

think of the bi of being of two types, with a different covariance matrix depending on the gender.

We will be more formal shortly.

• Let

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β0,G

β1,G

β0,B

β1,B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Define for each child a matrix Ai such that

Ai =

⎛

⎜⎝
1 0 0 0

0 1 0 0

⎞

⎟⎠ if child i is a girl

Ai =

⎛

⎜⎝
0 0 1 0

0 0 0 1

⎞

⎟⎠ if child i is a boy

Then it is straightforward to verify that we may write the model concisely for each child as

βi = Aiβ + bi. (9.5)

• Note that the simpler (“one-population”) model (9.4) could also be written in this way with β

defined as in (9.3) and Ai = I2 for all i (try it!)

Let us now be more specific about the nature of the two sources of variation being acknowledged

explicitly in this modeling approach.

WITHIN-UNIT VARIATION: In the “individual” model (9.2), the within-unit random vector ei has

mean zero and represents the deviations introduced solely by sources within an individual. This in-

cludes measurement error, biological “fluctuations,” or both. Thus, following the conceptual framework

in Chapter 4, we may think of ei as being decomposed as

ei = e1i + e2i,

where e1i represents the deviations due to within-subject fluctuations and e2i those due to measurement

error.

To characterize within-subject variation and correlation due to within-subject sources (fluctuations),

the approach is to specify a covariance structure model for var(ei). In general, write

Ri = var(ei),

where Ri is a (ni × ni) covariance matrix. We now discuss through review of some typical scenarios

considerations involved in identifying an appropriate Ri.

• Suppose we believe that, although there may be biological fluctuations over time, the observation

times are sufficiently far apart that correlation due to within-subject sources among the Yij may

be regarded as negligible.
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In this case, it is reasonable to assume that var(e1i) is a diagonal matrix. If we furthermore

believe that the magnitude of fluctuations is similar across time and units, we may represent this

by the assumption that var(e1ij) = σ2
1, say, for all i and j, so that

var(e1i) = σ2
1Ini

.

The assumption that this is similar across units may be viewed as reflecting the belief that the

e1ij are independent of βi and hence bi, which dictate how “large” the unit-specific trend is, so

that the magnitude of fluctuations is unrelated to any unit-specific response characteristics.

• As we have discussed previously, it may be reasonable to assume that errors in measurement are

uncorrelated over time; thus, taking var(e2i) to be a diagonal matrix would be appropriate.

Suppose we also believe that errors committed by the measuring device are of similar magnitude

regardless of the true size of the thing being measured, and are similar for all units (because the

same device is used). This suggests that var(e2ij) = σ2
2, say, for all j, so that

var(e2i) = σ2
2Ini

.

Now the true size of the thing being measured at time tij is

β0i + β1itij + e1ij ;

i.e. the actual response uncontaminated by measurement error. Under this belief, it is reasonable

to assume that the e2ij are independent of βi and thus bi.

• Putting this together, we would take

Ri = var(ei) = var(e1i) + var(e2i) = σ2
1Ini

+ σ2
2Ini

= σ2Ini
,

where σ2 is the aggregate variance reflecting variation due to both within-unit sources.

• The assumption that e1i and e2i are independent is standard, as is the assumption that e1i

and e2i (and hence ei) are independent of bi. We say more about these assumptions shortly.

• We may think of other situations. For example, suppose that the response is something like

height, which in all likelihood we can measure with very little if any error. Under this condition,

we may effectively eliminate e2i from the model and assume that ei = e1i; i.e. all within-unit

variation is due to things like “fluctuations.” In the model above, σ2 = σ2
1 would then represent

the variance due to this sole source.
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• Similarly, we may have a rather “noisy” measuring device such that, relative to errors in mea-

surement, deviations due to within-unit subjects are virtually negligible. Under this condition, as

long as we believe the times are far enough apart to render within-unit correlation negligible as

well, we may as well take ei = e2i, in which case σ2 = σ2
2 in the above model represents solely

measurement error variance.

• Now suppose that the times of observation are sufficiently close that correlation due to within-unit

sources cannot be viewed as negligible. In this event, it would be unreasonable to take var(e1i)

to be diagonal. It would instead be more realistic to adopt a model for var(e1i) that represents

correlation that decays as observations become farther apart. For example, with equally-spaced

observations and variance assumed constant as above, the AR(1) structure may be a suitable

model; i.e.

var(e1i) = σ2
1

⎛

⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρn−1

...
...

...
...

...

ρn−1 ρn−2 · · · ρ 1

⎞

⎟⎟⎟⎟⎠
.

In general, maintaining the common variance assumption, we might entertain models var(e1i) =

σ2
1Γi, where Γi is a suitable (ni × ni) correlation matrix.

• In this case, with the same assumptions on measurement error and independence as above, we

would instead have

Ri = var(ei) = σ2
1Γi + σ2

2Ini
. (9.6)

If measurement error were deemed negligible, this would be reduced to the assumption that

Ri = σ2Γi,

where σ2 = σ2
2 represents variance due solely to within-unit fluctuations.

• We could also modify the above models to incorporate the possibility that, for example, one

or both variances changes over time. In this situation, one could postulate a heterogeneous

covariance model, as described in Chapter 4. I.e., if we believed fluctuation variances are still

similar across subjects but change in magnitude over time, replace the assumption σ2
1Γi above by

the heterogeneous version of the correlation matrix.
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If we believe that there is a different variance at every time, this would make the most sense when

all units are seen potentially at the same time points, as in the hip replacement study of the last

chapter, so that there would be a finite number of variances to estimate. In this case, supposing

there are n potential times at which units are seen, let var(e1ij) = σ2
1j for the jth such time,

j = 1, . . . , n. Then for a unit seen at all n times, define

T
1/2
i = diag(σ11, σ12, . . . ,σ1n), (n × n),

where “diag” means a diagonal matrix with these values on the diagonal. We can then express

the covariance matrix of the fluctuation deviation as

var(e1i) = T
1/2
i ΓiT

1/2
i

using the notation defined on page 45 in Chapter 3. For a unit with some time points missing, the

considerations in the last chapter for specifying covariance matrices with unbalanced data would

be used to write down the model for var(e1i) for each subject.

• Alternatively, it is conceivable that if there are several populations, Ri could be different for each.

As an example, we could have

Ri = σ2
GIni

if i is a girl

and = Ri = σ2
BIni

if i is a boy, perhaps reflecting the belief that the magnitude of fluctuations is

different for each gender.

• It should be clear that, in specifying the matrix Ri, the analyst must consider carefully the features

of the situation at hand in regard to within-unit sources of variation and correlation. Ideally, s/he

would want to adopt a model that accurately characterizes the anticipated features.

• However, it turns out that, although not impossible, it may be difficult to fit a postulated model,

particularly if it is rather complicated.

For example, it is often problematic to fit models like (9.6) where both measurement error and

“fluctuation” are assumed nonnegligible. This is often because there is not sufficient information

to identify all the components of the model. A simplifying assumption that is thus often made

is that one of the two sources tends to dominate the other. Under this assumption, modeling of

Ri and fitting are simplified. The hope is that this may be a sufficiently good approximation to

provide reliable inferences.
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This sort of assumption is often made unknowingly; the analyst will choose a model for Ri

that embodies certain assumptions and emphasizes one source or another by default without

having thought about considerations like those above. In fact, the most common assumption is

Ri = σ2Ini
, where σ2 is the same for all units and groups, is usually made in this way (and is the

default in SAS PROC MIXED).

We discuss the consequences of a “wrong” model specification for Ri shortly.

• In general, Ri is a (ni × ni) matrix depending on a few variance and correlation parameters;

e.g. σ2 and ρ in the example above, chosen to at least approximate the anticipated features of

within-unit sources of variation and correlation.

• If we just focus on the response for individual i at any time point tij , if we believe a normal

distribution is a reasonable way to represent the population of responses we might see on this

individual at tij , then it would make sense to assume that each eij were normally distributed.

This of course implies that we assume

ei ∼ Nni
(0, Ri).

AMONG-UNIT VARIATION: In the “population” model (9.5), the random effects bi have mean 0

and represent variation resulting from the fact that individual units differ; i.e. exhibit biological or

other variation. The model says that this variation among individuals manifests itself by causing

the individual unit trajectories to be different (have different intercepts and slopes). Thus, var(bi)

characterizes this variation.

• Intercepts and slopes may tend to be large or small together, so that children with steeper slopes

tend to “start out” larger at age 0. Alternatively, large intercepts may tend to happen with

small slopes and vice versa; perhaps children who “start out” smaller experience a steeper growth

pattern to “catch up.” In either case, this suggests that it would not necessarily be prudent to

think of var(bi) as a diagonal matrix. Rather, we expect there to be some correlation between

intercepts and slopes, the nature of this correlation depending on what is being studied.

• As noted above, we may believe that the populations of intercept/slopes for boys and girls have

possibly different means, but that the variation in each population about the mean is similar.

Formally, we can represent this by assuming that

var(bi) = D

for some covariance matrix D regardless of whether i is a boy or girl.
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• Here, D is (2 × 2), and an unstructured model is really the only one that makes sense. In

particular, writing

D =

⎛

⎜⎝
D11 D12

D12 D22

⎞

⎟⎠ ,

we have

var(β0i) = var(b0i) = D11, var(β1i) = var(b1i) = D22, cov(β0i, β1i) = cov(b0i, b1i) = D12.

It should be clear that we would not expect D12 = 0 in general; e.g., steep slopes may be associated

with “high” intercepts.

It should also be clear that D11 = D22 would be unrealistic. The intercept is on the same

scale of measurement as the response, while the slope is on the scale “response scale per unit

time.” Thus, these parameters are representing variances that would be expected to be different

because they correspond to phenomena that are on different scales.

• If we believed that these populations exhibit possibly different variation, we can represent this by

assuming that

var(bi) = DB if i is a boy, var(bi) = DG if i is a girl,

where DB and DG are two (unstructured) covariance matrices.

• In either case, the assumption on var(bi) reflects solely the nature of variation at the level of the

population(s) of units; that is, that caused solely by variation among units due to biology or

other features. This is formally represented through the bi.

• It is often reasonable to assume that populations of intercepts and slopes are approximately

normally distributed; e.g. this says that slopes vary symmetrically about the mean, some

steeper, some shallower. Thus, a standard assumption is that the bi have a multivariate normal

distribution; e.g. in the case where the covariance matrix is assumed the same and equal to D

regardless of gender, the assumption would be

bi ∼ Nk(0, D),

where k is the dimension of bi (k = 2 here).
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REMARKS:

• As noted previously, it is usually assumed that ei and bi are independent. This says that the

magnitude of variation within a unit does not depend on the magnitude of βi for that unit.

As we have also discussed, if the device used to measure individual responses causes errors of similar

magnitude all the time, and fluctuations are of similar magnitude regardless of the characteristics

of the units, then this seems reasonable.

However, if measurement errors tend to get larger as the response being measured gets larger,

which is a characteristic of some measuring systems, then this may not be reasonable. In this

case, we would expect the deviations in e2i to be related to Ziβi which dictates how large the

responses on a particular unit are; we would also expect them to be related to the deviations in

e1i.

Similarly, if the magnitude of fluctuations is related to inherent unit characteristics (e.g., “high”

units tend to have larger fluctuations), the assumption would also be violated.

• We will assume for now that this assumption is reasonable, and take bi and ei to be independent,

as is customary. Later, we will discuss situations where this is definitely unreasonable in more

detail.

• We have also noted that specification of the within-units covariance matrix Ri to reflect reality is

desirable. However, computational issues and a tendency to not consider the issue carefully can

lead to choice of an unrealistic model.

• As we will see in a moment, the specifications on var(bi) and var(ei) combine to produce an

overall model for var(ϵi) that describes the aggregate effects of both sources of variation. The

hope is that this model is rich and flexible enough that it can still represent the true pattern of

overall variation even if one or both components are incorrectly modeled.

If interest focuses only on β, this may be adequate. However, if there is interest in how units

vary in the population, represented by var(bi), it seems clear that getting this model correct

is essential. We will say more later.
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SUMMARY: We now summarize the model suggested by these considerations. The model may be

thought of as a two-stage hierarchy: For i = 1, . . . , m,

Stage 1 – individual

Y i = Ziβi + ei (ni × 1), ei ∼ Nni
(0, Ri) (9.7)

This is like a “regression model” for the ith unit, with “design matrix” Z i and (k × 1) “regression

parameter” βi.

Stage 2 – population

βi = Aiβ + bi (k × 1), bi ∼ Nk(0, D). (9.8)

Here, we have taken var(bi) = D to be the same for all i, and we will continue to do so for definiteness

in our subsequent development. However, this could be relaxed as described above, and the features of

the model we point out shortly would still be valid. The matrix Ai summarizes information like group

membership, allowing the mean of βi to be different for different groups.

Variation in the model is explicitly acknowledged to come from two sources:

• Due to features within units, represented through the covariance matrix Ri.

• Due to biological variation among units, represented to the covariance matrix D.

• This is in marked contrast to the models of the previous chapter. These models required the

analyst to think of a single covariance matrix for a data vector, representing the aggregate effect

of both sources. The models that are typically used tend to focus on the time-ordered aspect.

IMPLICATION: We now see the contrast with the models of the last chapter more directly. Suppose

that we combine two parts of the model into a single representation by substituting the expression for

βi in (9.8) into (9.7); i.e.

Y i = Zi(Aiβ + bi) + ei = (ZiAi)β + Zibi + ei.

• Suppose first that there is only one group, so that Ai = Ik. Then we see that the model implied

is

Y i = Ziβ + Zibi + ei.

Note that we can write this in a more familiar form by letting X i = Zi and ϵi = Zibi + ei. With

these identifications, we have

Y i = X iβ + ϵi, i = 1, . . . ,m.
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This has exactly the form of the regression models of the previous chapter!

• The difference is that, here, the way we arrived at this model requires that the error vector ϵi

have the particular form above. Note that this implies that, using the independence of bi and

ei (and taking var(bi) = D for definiteness),

var(ϵi) = ZiDZ ′

i + Ri = Σi. (9.9)

Thus, the model implied by thinking in two stages implies that the covariance matrix of a data

vector is the sum of two pieces representing the separate effects of among-and within-unit vari-

ation.

• If there is more than one group, the same interpretation holds. Suppose β is (p× 1); p = 4 in the

dental example. With βi (k × 1), then Ai a (k × p) matrix; k = 2 in the dental example. Then

we see that the model implied is

Y i = X iβ + Zibi + ei = Xiβ + ϵi,

where X i = ZiAi. As above, var(ϵi) is as in (9.9). In the dental example, note that for boys

Xi = ZiAi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ti1

1 ti2
...

1 tini

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
0 0 1 0

0 0 0 1

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎝

0 0 1 ti1
...

...
...

...

0 0 1 tini

⎞

⎟⎟⎟⎟⎠

and similarly for girls,

Xi = ZiAi =

⎛

⎜⎜⎜⎜⎝

1 ti1 0 0
...

...
...

...

1 tini
0 0

⎞

⎟⎟⎟⎟⎠
.

Compare these with (8.9); they are the same.

RESULT: By thinking about individual trajectories, we see that we ultimately arrive at a regression

model that is of the same form as those in the last chapter.

• The similarity is that the mean of a data vector is of the same linear form; i.e.

E(Y i) = Xiβ,

where the form of the matrices X i is dictated by the thinking above (X i = ZiAi).
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The critical difference is that the covariance matrix of a data vector has the very specific form (9.9)

that explicitly acknowledges both sources of variation and allows them to be thought about separately.

Further features of note:

• The model does not allow the covariance matrix of a data vector to be the same for all units

in general. The only way that this matrix may be of the same form for all units is var(bi) and

var(ei) are the same for all units and the data are balanced (more on this shortly).

• The covariance matrix depends on the times of observation through the matrix Z i. Thus, if

different units are seen at different times, this information is automatically incorporated into

the model.

• Recall that we have noted that we expect observations on the same unit to be correlated even if

the repeated observations are taken very far apart in time; this is due to the simple fact that they

are from the same unit. Note that the implied form of the covariance matrix (9.9) accommodates

this naturally. Even if Ri = σ2I, say, which implies that we believe there is no correlation due

to within-unit sources, the entire matrix Σi is still not diagonal. Rather, it will be nondiagonal

because D is not diagonal in general. Thus, the model offers a natural way to represent correlation

among observations on the same unit that arises simply because they are on the same unit and

thus “more alike” than those compared across units.

• In this model, Σi depends on a finite set of parameters. For example, if Ri = σ2Ini
, then Σi

depends on σ2 and the distinct elements of the matrix D. We say distinct because, as D is a

covariance matrix, it is symmetric, so contains the same off-diagonal elements more than once;

e.g. if

D =

⎛

⎜⎝
D11 D12

D21 D22

⎞

⎟⎠ ,

then D depends on the three distinct values D11, D12, and D22, since D12 = D21 by symmetry.

We may in fact say even more. If we believe that both bi and ei are both well-represented by multivariate

normal distributions and are independent, then, using results in Chapter 4, we may conclude that

Y i ∼ Nni
(Xiβ,Σi), i = 1, . . . , m (9.10)

Xi = ZiAi, Σi = ZiDZ ′

i + Ri.

• As with the models of the previous chapter, if the units are completely unrelated, then it is

reasonable to assume that the Y i are independent random vectors, each multivariate normal

with the particular mean and covariance structure given above.
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TERMINOLOGY: These models are known as random coefficient models because they rely on think-

ing of individual-specific regression parameters, or coefficients of time, as being random, each

representing a draw from a population.

• The above reasoning is extended easily to the case where units come from more than two groups; for

example, for the dialyzer data, where the relationship between transmembrane pressure (“time”)

and ultrafiltration rate (response) was observed on dialyzers from 3 centers. We would thus think

of each dialyzer having its own straight line relationship, with its own intercept and slope (k = 2).

The vector β would represent the mean intercept and slope for each center stacked together, so

would have p = 6 elements.

• The reasoning is extended easily to the case where the “regression model” for an individual unit is

something other than a straight line; e.g. suppose a quadratic function is a better model (recall

the hip replacement data)

Yij = β0i + β1itij + β2it
2
ij + eij .

In this case, βi has k = 3 elements.

• All of these models are a particular case of the more general class of linear mixed effects models

we will describe in the next chapter.

9.3 Inference on regression and covariance parameters

Because this way of thinking leads ultimately to the model given in (9.10), the methods of maximum

likelihood and restricted maximum likelihood may be used to estimate the parameters that char-

acterize “mean” and “variation,” namely β, the distinct elements of D, and the parameters that make

up Ri. That is, the methods described in sections 8.5 and 8.6 may be used exactly as described. The

same considerations apply:

• The generalized least squares estimator for β and its large sample approximate sampling

distribution will have the same form, with X i and Σi defined as in (9.10).

• Questions of interest may be written in the identical fashion, and estimation of approximate

standard errors, Wald tests, likelihood ratio tests for nested models, and so on may be carried out

in the same way. We will discuss the formulation and interpretation of questions of interest

under this model momentarily.
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• Information criteria may be used to compare non-nested models.

See these sections for descriptions, which go through unchanged for the model (9.10).

QUESTIONS OF INTEREST: Because of the way we motivated the random coefficient model, questions

of interest may be thought of in different ways. For definiteness, again consider the situation of the

dental study data. A vague statement of the main question of interest is: “Is the rate of change of

distance as children age different for boys and girls?”

Both here and in the previous chapter, we end up with a model that says that the mean of all possible

Yij values we might see at a particular age tij for girls is

E(Yij) = β0,G + β1,Gtij ,

and similarly for boys. How we arrive at the model involved different thinking, however.

• In the previous chapters, we always thought in terms of how the means at each time were related,

averaged across all units at each time point. In this way of thinking, we write down the model

above immediately, and β1,G and β1,B have the interpretation as the parameters that describe the

relationship of the mean responses over time; that is, the slope of the (assumed straight line)

relationship among means at different times tij .

• From the motivation for the random coefficient model, we think in terms of individual trajectories

and their “typical” features. In this way of thinking, β1,G and β1,B have the interpretation as the

means of the populations of child-specific slopes for all possible girls and boys, respectively.

Since the model we end up with is the same, either interpretation is valid. The result is that we may

think of the vague question of interest more formally in two ways, and both are correct. If we consider

testing

H0 : β1,G − β1,B = 0 vs. H1 : β1,G − β1,B ̸= 0,

we may interpret this as saying either of the following:

1. Does the rate of change in mean response over time differ between girls and boys?

2. Is the “typical” value of the slope of the individual straight lines for girls different from the

“typical” value of the slope of the individual straight lines for boys?
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THE “TYPICAL” PROFILE VS THE “TYPICAL” RATE OF CHANGE: This fuss over how to state

the vague question of interest and interpret this statement may seem to be overblown. However, it has

some important practical consequences.

• Depending on the subject matter, one interpretation may make more sense than another. The

process occurring over time may be something that is naturally thought of as happening within

a unit, such as growth. Under these circumstances, an investigator may find it easier to think

in terms of the random coefficient model, which says that each child has his/her own individual

trajectory with his/her own rate of change (slope). Then the question is naturally one about the

comparison of “typical” (mean) slopes.

• In other contexts, investigators may find it easier to think in terms of the “typical” response

profile; i.e. how the means across all units over time change. This might be true if the ultimate

goal is to make public policy recommendations. If the response is score on an achievement test

administered to each of m children each year for 5 years in two different curricula, the investigator

is interested in how the means over children in each group change over time; he would like to

claim that the average score for one curriculum got better faster than the other. His thinking will

tend to focus on how change happens over time to children as a group (means) rather than on

“typical” change over time for children.

The distinction in interpretation is quite a subtle one, and most people find it difficult to grasp at first.

As we have seen, either interpretation makes sense for our model.

• As we will see later, this is because the model both for mean response as a function of time and

the individual trajectories is linear in the parameters β and βi.

• When this model is not linear, we will see that the interpretation gets more difficult.

ALTERNATIVE FITTING METHOD: A natural inclination when thinking about random coefficient

models is to exploit the fact that the model says that each unit has its own trajectory and hence own

“regression model” with unit-specific “regression parameter” βi, where the βi come from a population

with mean (“typical value”) β. (We discuss one population here, but the following reasoning applies to

more than one.) This suggests that if we want to learn about β, a one way to do it would be to estimate

each βi from each unit separately, and then combine the results to estimate β; e.g. estimate β as

the sample mean of the individual unit estimates of βi.
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• Such an approach represents an alternative to fitting the full model by ML or REML as discussed

above, and is often called a two-stage estimation method. This is because fitting happens in two

stages.

• (1) Estimate each βi separately from the data on unit i only; e.g. if we believe Ri = σ2Ini
for

each i, then we might estimate βi by usual least squares applied to the data from unit i. Call

these estimates β̂i.

• (2) This distills the data Y i on each individual down to new “data” β̂i. This suggests using the

new “data” as the basis for inference. For example, a natural approach would be to average the

β̂i across all i to estimate β; e.g. if there is only one group, estimate β as

m−1
m∑

i=1

β̂i.

If there are several groups, do this on a group by group basis, e.g. average the estimates from

boys and girls separately.

• To compare groups, compare these sample averages of estimates across groups by using standard

statistical methods, e.g. apply an analysis of variance to the slope estimates to compare the mean

slope.

This sounds appealing, but it isn’t quite right.

• The new “data,” the individual estimates β̂i, are not exactly the “data” we’d like. The ideal for

learning about β would be to average the true βi across units. Of course, we don’t know these

and the best we can do is estimate them by β̂i. But this introduces additional uncertainty that

the above procedure does not take into account.

• For example, if the ni are very different across units, with some units having lots of measurements

and others only a few, then for some i, β̂i will be a better estimate of the true βi than for others.

Treating them all on equal footing as “data” is thus obviously not appropriate.

• Thus, simply averaging the β̂i as if they were the true βi can be misleading.

It turns out that if one wants to use individual estimates as “data,” one must instead take a weighted

average of the β̂i in an appropriate way to take these issues into account. This kind of approach is

discussed in Davidian and Giltinan (1995).

PAGE 327



CHAPTER 9 ST 732, M. DAVIDIAN

Historically, the use of two-stage methods was suggested quite a long time ago, in part because it made

intuitive sense. A fundamental paper advocating two-stage methods is Rowell and Walters (1976).

Other references to two-stage methods include Gumpertz and Pantula (1989) and Davidian and Gilti-

nan (1995). Because the methods of ML and REML are straightforward to implement with available

software, we do not consider two-stage methods further here.

SPECIAL CASE – BALANCED DATA: Recall in the last chapter we noted an interesting curiosity for

the dental data, which are balanced. When we assumed that the covariance matrix of a data vector, Σi

(which is actually the same for all i with balanced data) had the compound symmetry structure, we

saw that the generalized least squares estimator for β reduced to the ordinary least squares estimator

β̂OLS treating all data as if they were independent. That is, the GLS estimator

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1

Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1

Y i (9.11)

with Σ having the compound symmetry structure had the same value as the OLS estimator

β̂OLS =

(
m∑

i=1

X ′

iXi

)
−1 m∑

i=1

X ′

iY i.

It turns out that this is a special instance of a more general result. The general result says:

• For the random coefficient model, if (i) the data are balanced, with all units seen at the

same n times, so that the design matrix Z i of time points is the same for all units i, and (ii)

Ri = σ2In, then then the generalized least squares estimator is numerically equivalent to the OLS

estimator!

• To show this is a nasty but not impossible exercise in matrix algebra. Under conditions (i) and

(ii), Σi reduces to the same matrix for each i:

Σi = ZDZ ′ + σ2In.

Substitute this expression for Σ̂ in (9.11) for each i (even if D and σ2 are replaced by estimates,

the form is the same). Fancy footwork with matrix inversion formulæ like those in Chapter 2 may

then be used to show the equivalence. Those with strong stomachs might want to try it!
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The compound symmetry assumption for Σ directly in these circumstances is just a special case

of the particular covariance structure Σi = ZDZ ′ + σ2In for balanced data. To see this, consider a

simple model with one group, so that

Yij = (β0 + b0i) + (β1 + b1i)tj + eij ,

var(bi) = D =

⎛

⎜⎝
D11 D12

D12 D22

⎞

⎟⎠ , var(ei) = σ2In.

• It is straightforward to verify that (try it!)

var(Yij) = D11 + D22t
2
j + 2D12tj + σ2, cov(Yij , Yik) = D11 + D22tjtk + D12(tj + tk).

• Note that if D22 = 0 and D12 = 0, then these reduce to

var(Yij) = D11 + σ2, cov(Yij , Yik) = D11,

which is the compound symmetry model!

NEED FOR COVARIANCE STRUCTURE: As we have stressed before, just because the GLS estimator

is numerically identical to the OLS estimator under these circumstances is no reason to disregard the

need to characterize the covariance structure of a data vector correctly!

• The approximate covariance matrix of the GLS estimator, V̂ β , depends on the form of Σi, even

if the estimator β̂ doesn’t!

9.4 Inference on individuals

The random coefficient model is intuitively appealing – it comes from thinking first about individuals and

their own unique trajectories, and then about the population of individuals (in terms of the parameters

that characterize these trajectories). Thinking this way leads to a model for the mean and covariance of

a data vector that has a specific form; in particular, the covariance matrix of data vector is represented

explicitly as the sum of 2 terms, incorporating separately the impact of 2 sources of variation, within-

and among-units. This makes it easier for the data analyst:

• The sources of variation may be thought of separately. Thus, for example, a model Ri that best

captures the variation due to the nature of data collection on an individual unit may be entertained

separately from having to think about biological variation (D). In the modeling approach of the

last chapter, this had to be done all at once.
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The model has still another advantage. It is sometimes the case that investigators may wish not only to

learn about the population(s) of units through things such as the “typical” (mean) slope values and

how they compare across populations. Particularly in medical and educational studies, the investigators

may wish to understand the change in the response over time for specific subjects.

• In a study of AIDS patients, with response “viral load,” measuring “amount” of virus in the

system, investigators may wish to characterize the trajectory of viral load for particular patients

in order to aid in decisions about their future care.

• In educational studies, where response is some measure of “achievement,” investigators may wish

to characterize the progress of individual children in order to place them in the most suitable

learning environment.

If we think in terms of the random coefficient model, then, interest focuses on the subject-specific

parameters βi describing the trajectories of individual subjects. In particular, for individual subjects,

the investigators are interested in “estimating” βi for specific subjects based on the data.

• One way to do this would be just to use estimates based on treating each subject as a separate

regression problem – one could get β̂i from each subject’s data separately.

• However, if the numbers of observations on each i is not too large, these estimates will probably

not be very good.

• Moreover, this does not take into account (nor does it take advantage of) the fact that we have

data from an entire sample of similar subjects from the same population(s). Intuition suggests

that we could stand to gain something from acknowledging that we believe this!

We will take up this issue in the next chapter, when we discuss the general linear mixed effects

model, of which the random coefficient model is a special case.

• Note immediately, however, that the models we have talked about in this course up to now

(Chapters 4–7) do not even explicitly acknowledge individual trajectories!
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9.5 Discussion

“POPULATION-AVERAGED” VS. “SUBJECT-SPECIFIC”: We have seen that the random coefficient

model arises from thinking about the longitudinal data situation in an alternative way. Rather than

thinking in terms of the mean responses at each time point and how they are related, we think of

individual trajectories and then the means of individual-specific parameters that characterize these

trajectories (e.g. mean of the slopes in the population of subjects).

• The first approach, which was used in Chapter 7, is often called a population-averaged approach

for this reason – the focus of modeling is on the averages (means) across the population of

units at each time point, and how these averages are related over time.

• The current approach is often called a subject-specific approach – the focus of modeling is on

individual units.

• In the case where the models considered are linear, the two perspectives ultimately lead to the

same type of model for the mean, so that either interpretation is valid.

• The subject-specific, random coefficient approach has the additional feature that it “automati-

cally” leads to a particular assumption about the structure of the covariance matrix of a data

vector, which naturally acknowledges within- and among-unit variation separately. In contrast,

the population-averaged approach forces the data analyst to model this covariance, thinking about

the two sources of variation together. As a result, the subject-specific approach of the random

coefficient model, and, more generally, the linear mixed effects models we will consider in the

next chapter, has become incredibly popular.

ALTERNATIVE TERMINOLOGY: The random coefficient model, allowing for the possibility of dif-

ferent groups, is sometimes referred to as a growth curve model in the statistical and subject-matter

literature.

CHOICE OF COVARIANCE STRUCTURE: We have noted that the possibilities are quite broad for

modeling covariance structure within the random coefficient model framework.

• One may in principle take the covariance matrix Ri, corresponding to within-unit variation, to

be one of a variety of structures according to knowledge of the data collection process.

• If the main source of within-unit variation is measurement error, or if it is instead fluctuation but

observations are far apart in time taking Ri diagonal may be reasonable.
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• One may in principle take the covariance matrix var(bi), characterizing variation among units

(through how the parameters in the individual trajectories vary) to be the same for all groups or

different, depending on the belief about the pattern of variation for each group.

• The most commonly-used form of the random coefficient model is that where

Ri = σ2Ini
, var(bi) = D = same for all groups.

Often this structure is suitable; e.g. units tend to vary similarly for each group, although the

means may be different (same D is reasonable). This same kind of assumption (means differ,

variance the same) is standard in usual analysis of variance models and methods. This model is

considered extensively and almost exclusively in much of the literature. It is certainly possible to

relax these assumptions; for example, we discussed the possibility of taking D to be different for

each gender group in the dental data example.

• One pitfall of trying to get too fancy with modeling of Ri and var(bi) is that it is quite likely that

one will end up with a model that is too complicated to be sorted out given the data at hand.

This problem of identifiability is mentioned in the next section.

• Thus, many people are willing to risk the possibility that they may incorrectly specify Ri and/or

D by, for example, assuming that thevar(bi) = D is common to all groups when it may not be.

The form of the model

Σi = ZiDZ ′

i + Ri

is sufficiently general that, even if the two components D and Ri are not exactly correctly chosen,

the resulting Σi matrix will differ very little from that one would obtain if they were. Thus, if

one’s main interest is in estimating β and tests about it, this may be okay.

• However, if interest is focused on var(bi) and Ri themselves, then obviously one would want to

investigate all possibilities. Thus, in the first example of section 9.7, we illustrate how both the

commonly-used specification and fancier ones may be implemented in SAS. However, be aware

that fitting very fancy models may lead to difficulties and “over-fitting.” To read more about the

possibilities, see SAS System for Mixed Models (1996, chapter 8) and Vonesh and Chinchilli (1997,

section 6.3).
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9.6 Basic PROC MIXED sytnax

We are now in a position to explain fully exactly how PROC MIXED is set up. In the most general case

of a random coefficient model, we may write the model as

Y i = Xiβ + Zibi + ei.

In fact, just as we did in the previous chapter, we may present this mode in a streamlined form by

“stacking” the contributions from each unit. In particular, Define

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Y 1

Y 2

...

Y m

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

e1

e2

...

em

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

...

bm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...

0 0 · · · Zm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, D̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D 0 · · · 0

0 D · · · 0
...

...
. . .

...

0 0 · · · D

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where D̃ here has been displayed in the case where var(bi) = D for all units but could be modified if,

say, girls and boys had different matrices DG and DB. We may then write the model concisely as

Y = Xβ + Zb + e, var(Y ) = ZD̃Z ′ + R (9.12)

(verify). This type of concise expression is used in the documentation, except that SAS refers to D̃ as

G.

We have already seen that the model statement is the mechanism by which the analyst may specify

the form the mean vector, denoted X iβ for unit i or Xβ for all units, stacked. We have used the

repeated statement to specify the overall covariance matrix.

• In the context of a model of the above form, however, the repeated statement is used to specify

the within-unit covariance model Ri or, equivalently, R above.

• An additional statement, the random statement, is used to specify the assumption on var(bi) (D̃).

We will see specific examples in the next section.
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For now, we offer a summary of the basic syntax for quick reference.

proc mixed data=dataset method= (ML,REML);

class classification variables;

model response = columns of X / solution;

random columns of Z / type= subject= group= ;

repeated / type= subject= group= ;

run;

proc mixed statement

• method=REML is the default; no method= required in this case

model statement

• columns of X are variables (class or continuous) corresponding to variables associated with

fixed effects β

• Intercept is assumed unless noint option after slash

• solution is an option

random statement

• Describes the matrix D̃ = var(b) (i.e. the matrices var(bi) making up the blocks of D̃

• columns of Z are variables (class or continuous), i.e. variables associated with random effects

b

• subject= tells mixed what class variable denotes the grouping determining the units

• type= allows choice of matrix (e.g. un, unstructured)

• group= allows D to be different according to this class variable (e.g. dental study, boys, girls)
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repeated statement

• Describes the matrix R = var(e) (i.e. the matrices Ri = var(ei)

• If var(ei) = σ2Ini
same for all i repeated statement is NOT needed

• subject= tells mixed what class variable denotes the grouping determining the units

• type= allows choice other than diagonal (e.g. ar(1), cs, etc.

• group= allows Ri to be different depending on group membership (e.g. dental study, var(ei) = σ2
G

girls, var(ei) = σ2
B boys)

We may now observe that, in the previous chapter, to implement a general linear regression model

using proc mixed with the repeated statement, we simply made a correspondence between the model

of form (9.12) with no random effects b, which looks like

Y = Xβ + e,

and the model in that chapter of the form

Y = Xβ + ϵi.

From purely operational point of view (but not an interpretation point of view), the models have the

same structure – a mean plus a deviation with components of length ni, each of which has a covariance

matrix. Thus, purely to specify these covariance matrices for the second model, the repeated statement

can be used.

See the SAS documentation for PROC MIXED for much more detail on the use of these statements and

available options.
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9.7 Implementation with SAS

We illustrate how to carry out analyses based on random coefficient models for two examples we have

already considered:

1. The dental study data

2. The ultrafiltration data

For each data set, we consider different random coefficient models and address questions of interest such

as whether the mean slope differs across groups (gender or center). As discussed in the last section,

we use SAS PROC MIXED with the random statement to impose the random coefficient model structure

– this statement allows the user to specify var(bi). If there is no repeated statement, it is assumed

that var(ei) = σ2Ini
(see the last section). Otherwise, if a random and repeated statement appear

simultaneously, the repeated statement sets up some other model for var(ei) = Ri.

WARNING – LACK OF IDENTIFIABILITY: It is important to use PROC MIXED with version 6.12 or

higher of SAS; here, we use version 8.2. Even with this improved version, as well as with programs in

other software packages that are designed to fit these models, things may not always go as planned. It

is important to keep in mind that the models are being fit via numerical algorithms that are used to

maximize the likelihood or restricted likelihood. It is possible to specify a model with var(bi) and var(ei)

sufficiently complex that it is too complicated to be fitted given the information available in the data.

That is, one may choose these models in such a way that there are too many parameters, more than

are required to give an adequate characterization of the true covariance structure. Such a model is said

to be over-identified or unidentifiable. The result of specifying such models is that the numerical

algorithms will either fail to find a solution (converge) or will lead to a solution that is nonsensical).

Thus, one pitfall to be aware of when fitting these models and more generally those of the next chapter

is the possibility of getting “carried away” in choosing the structure for Ri, making it too complicated

and leading to an unidentifiable model. If PROC MIXED fails to converge for a particular model choice,

then the analyst may have to consider whether the implied model for Σi is “too rich” for the problem

and adopt simpler choices (at the risk of being “wrong”).
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EXAMPLE 1 – DENTAL STUDY DATA:

• For illustration purposes only, we fit the random coefficient model assuming that the mean inter-

cept and slope differ for the two genders. Note that when fitting a random coefficient model, it is

natural to think in terms of the parameterization of the model that contains intercept and slope

explicitly rather than their difference:

Yij = β0i + β1itij + eij ,

βi = β + bi, β =

⎛

⎜⎝
β0,G

β1,G

⎞

⎟⎠ girls, β =

⎛

⎜⎝
β0,B

β1,B

⎞

⎟⎠ boys.

We consider this parameterization in our fitting.

• For fitting this model, we illustrate how to instruct PROC MIXED to fit models for a number of

different assumptions on the matrices Ri and var(bi). These are:

(i) Ri = σ2I, D same for both genders. This is the most common specification. Recall this

implies a belief that within-child sources of correlation are negligible (Ri diagonal) and

among-child variation is similar in each group. The parameter σ2 may be interpreted as the

aggregate variance due to within-child “fluctuations” in distance and measurement error.

(ii) Ri = σ2
GI if i is a girl and Ri = σ2

BI if i is a boy, D same for both genders. This allows for

the possibility that within-child variation might be different for the different genders (due to

measurement error and fluctuation).

(iii) Ri is the AR(1) covariance matrix, same for both genders, and D is the same for both

genders. This choice of Ri allows for the possibility of nonnegligible within-child correlation.

(iv) Ri = σ2
GI if i is a girl and Ri = σ2

BI if i is a boy, and var(bi) = DG if i is a girl and = DB

if a boy. This allows for the possibility that within-child variation might be different for

the different genders and the possibility that variability in intercepts and slopes is different.

This essentially amounts to fitting two separate models, one for each gender!

(v) Ri is the sum of two components: an AR(1) covariance matrix (corresponding to the fluctua-

tions, allowing within-child correlation) and σ2
2I, which now corresponds to the measurement

error component (assumed common). D is the same for both genders. Specifically, we have

Ri = σ2
1Γ + σ2

2I,

where Γ is the (4×4) AR(1) correlation matrix. To fit this model, we use of the local option

of the repeated statement, which adds the matrix σ2
2I to the requested AR(1) matrix.
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PROGRAM:

/*******************************************************************

CHAPTER 9, EXAMPLE 1

Analysis of the dental study data by fitting a random coefficient
model in time using PROC MIXED.

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

The model for each child is assumed to be a straight line.
The intercepts and slopes may have different means depending on
gender, with the same covariance matrix D for each gender.

We use the RANDOM and REPEATED statements to fit models that
make several different assumptions about the forms of the matrices
Ri and D.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set (See Example 1 of Chapter 4)

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

/*******************************************************************

Use PROC MIXED to fit the random coefficient model via the
RANDOM statement. For all of the fits, we use usual normal
ML rather than REML (the default).

In all cases, we use the usual parameterization for the mean
model.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The G and GCORR options in the RANDOM statement asks that the
D matrix and the corresponding correlation matrix it implies
be printed. The V and VCORR options ask that the overall
Sigma matrix be printed (for the first subject or particular
subjects).

To fit a random coefficient model, we must specify that both
intercept and slope are random in the RANDOM statement.

If no REPEATED statement appears, then PROC MIXED assumes that
Ri = sigma^2*I. Otherwise, we use a REPEATED statement to set
a structure for Ri with the TYPE = option.

*******************************************************************/

* MODEL (i);
* Ri = diagonal with constant variance sigma^2 same in both genders;
* No REPEATED statement necessary to fit this Ri (default);
* D = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution;
random intercept age / type=un subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (ii);
* Fit the same model but with a separate diagonal Ri matrix for;
* each gender. Thus, there are 2 separate variances sigma^2_(G and B);
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER’;
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title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class child gender;
model distance = gender gender*age / noint solution;
repeated / group=gender subject=child;
random intercept age / type=un subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (iii);
* Ri is AR(1) with the same variance and rho value for each gender;
* Specified in the REPEATED statement;
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD’;
title2 ’CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender gender*age / noint solution ;
random intercept age / type=un subject=child g gcorr v vcorr;
repeated / type=ar(1) subject=child rcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (iv);
* Fit the same model but with a separate diagonal Ri matrix for;
* each gender. Thus, there are 2 separate variances sigma^2_(G and B);
* D still = (2x2) unstructured matrix differs across genders;
* Specified in the RANDOM statement by the GROUP=GENDER option;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER’;
title3 ’DIFFERENT D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class child gender;
model distance = gender gender*age / noint solution;
repeated / group=gender subject=child;
random intercept age / type=un group=gender subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (v)
* Ri is the sum of two components, an AR(1) component for fluctuations;
* and a diagonal component with variance sigma^2 common to both genders;
* The LOCAL option adds the diagonal component to the AR(1) structure;
* specified in the REPEATED statement;
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD’;
title2 ’CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender gender*age / noint solution ;
random intercept age / type=un subject=child g gcorr v vcorr;
repeated / type=ar(1) local subject=child rcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 1
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 427.80595080 0.00000000

Convergence criteria met.

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 2
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 4.5569 -0.1983
2 age 1 -0.1983 0.02376

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.6025
2 age 1 -0.6025 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6216 2.8891 2.8727 2.8563
2 2.8891 4.6839 3.0464 3.1251
3 2.8727 3.0464 4.9363 3.3938
4 2.8563 3.1251 3.3938 5.3788

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6209 0.6014 0.5729
2 0.6209 1.0000 0.6335 0.6226
3 0.6014 0.6335 1.0000 0.6586
4 0.5729 0.6226 0.6586 1.0000

PAGE 340



CHAPTER 9 ST 732, M. DAVIDIAN

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 4.5569
UN(2,1) child -0.1983
UN(2,2) child 0.02376
Residual 1.7162

Fit Statistics

-2 Log Likelihood 427.8
AIC (smaller is better) 443.8
AICC (smaller is better) 445.3
BIC (smaller is better) 454.2

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 3
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 50.44 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1820 54 14.70 <.0001
gender 1 16.3406 0.9801 54 16.67 <.0001
age*gender 0 0.4795 0.09980 54 4.80 <.0001
age*gender 1 0.7844 0.08275 54 9.48 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 247.00 <.0001
age*gender 2 54 56.46 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1296 54 -2.35 0.0224

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 14.19 7.10 0.0008 0.0018

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 4
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

child 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

gender 2 0 1

Dimensions
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Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 418.92503842 1.16632499
2 1 416.18869903 1.23326209
3 1 407.89638533 0.01954268
4 2 406.88264563 0.00645800
5 1 406.10632159 0.00056866
6 1 406.04318997 0.00000764
7 1 406.04238894 0.00000000

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 5
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Convergence criteria met.

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 3.1978 -0.1103
2 age 1 -0.1103 0.01976

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.4388
2 age 1 -0.4388 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 3.1426 2.7933 2.8889 2.9845
2 2.7933 3.4128 3.1426 3.3172
3 2.8889 3.1426 3.8411 3.6499
4 2.9845 3.3172 3.6499 4.4275

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8529 0.8315 0.8001
2 0.8529 1.0000 0.8680 0.8534
3 0.8315 0.8680 1.0000 0.8851
4 0.8001 0.8534 0.8851 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1978
UN(2,1) child -0.1103
UN(2,2) child 0.01976
Residual child gender 0 0.4449
Residual child gender 1 2.6294

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 6
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 406.0
AIC (smaller is better) 424.0
AICC (smaller is better) 425.9
BIC (smaller is better) 435.7

Null Model Likelihood Ratio Test
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DF Chi-Square Pr > ChiSq

4 72.20 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7386 54 23.52 <.0001
gender 1 16.3406 1.1114 54 14.70 <.0001
age*gender 0 0.4795 0.06180 54 7.76 <.0001
age*gender 1 0.7844 0.09722 54 8.07 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 384.72 <.0001
age*gender 2 54 62.66 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1152 54 -2.65 0.0106

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 14.32 7.16 0.0008 0.0017

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 7
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured,

Autoregressive
Subject Effects child, child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 424.08934703 0.00028001
2 1 424.05684775 0.00000096
3 1 424.05673965 0.00000000

Convergence criteria met.

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 8
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CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER
SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 -0.4680 0.2190 -0.1025
2 -0.4680 1.0000 -0.4680 0.2190
3 0.2190 -0.4680 1.0000 -0.4680
4 -0.1025 0.2190 -0.4680 1.0000

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 10.1459 -0.7198
2 age 1 -0.7198 0.07508

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.8248
2 age 1 -0.8248 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6275 2.6363 3.2182 2.5959
2 2.6363 4.4510 2.7601 3.6423
3 3.2182 2.7601 4.8751 3.4846
4 2.5959 3.6423 3.4846 5.8999

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5809 0.6776 0.4968
2 0.5809 1.0000 0.5925 0.7108
3 0.6776 0.5925 1.0000 0.6497
4 0.4968 0.7108 0.6497 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 10.1459
UN(2,1) child -0.7198
UN(2,2) child 0.07508

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 9
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) child -0.4680
Residual 1.1940

Fit Statistics

-2 Log Likelihood 424.1
AIC (smaller is better) 442.1
AICC (smaller is better) 443.9
BIC (smaller is better) 453.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

4 54.19 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.4166 1.1586 54 15.03 <.0001
gender 1 16.1544 0.9607 54 16.82 <.0001
age*gender 0 0.4757 0.1010 54 4.71 <.0001
age*gender 1 0.7978 0.08374 54 9.53 <.0001
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 254.37 <.0001
age*gender 2 54 56.48 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3220 0.1312 54 -2.45 0.0174

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 10
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 13.46 6.73 0.0012 0.0025

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 11
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effects gender, gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

child 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

gender 2 0 1

Dimensions

Covariance Parameters 8
Columns in X 4
Columns in Z Per Subject 4
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 405.11800674 0.00000000

Convergence criteria met.
RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 12

COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER
DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated G Matrix

Row Effect child gender Col1 Col2 Col3 Col4

1 Intercept 1 0 2.9716 -0.07539
2 age 1 0 -0.07539 0.02151
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3 Intercept 1 1 5.6468 -0.2827
4 age 1 1 -0.2827 0.02530

Estimated G Correlation Matrix

Row Effect child gender Col1 Col2 Col3 Col4

1 Intercept 1 0 1.0000 -0.2982
2 age 1 0 -0.2982 1.0000
3 Intercept 1 1 1.0000 -0.7480
4 age 1 1 -0.7480 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 3.5889 3.3357 3.5292 3.7226
2 3.3357 4.0618 3.8947 4.1742
3 3.5292 3.8947 4.7069 4.6258
4 3.7226 4.1742 4.6258 5.5240

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8737 0.8587 0.8361
2 0.8737 1.0000 0.8907 0.8812
3 0.8587 0.8907 1.0000 0.9072
4 0.8361 0.8812 0.9072 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child gender 0 2.9716
UN(2,1) child gender 0 -0.07539
UN(2,2) child gender 0 0.02151
UN(1,1) child gender 1 5.6468
UN(2,1) child gender 1 -0.2827
UN(2,2) child gender 1 0.02530
Residual child gender 0 0.4466
Residual child gender 1 2.5891

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 13
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 405.1
AIC (smaller is better) 429.1
AICC (smaller is better) 432.4
BIC (smaller is better) 444.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

7 73.12 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7252 25 23.96 <.0001
gender 1 16.3406 1.1715 25 13.95 <.0001
age*gender 0 0.4795 0.06313 25 7.60 <.0001
age*gender 1 0.7844 0.09835 25 7.98 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 384.22 <.0001
age*gender 2 25 60.65 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1169 25 -2.61 0.0151

Contrasts
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Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 25 14.12 7.06 0.0009 0.0037

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 14
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured,

Autoregressive
Subject Effects child, child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 6
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 428.22548286 24.55088017
2 2 427.26075815 1.09477678
3 2 426.51452533 1.16919129
4 2 425.99015592 0.08543213
5 2 424.91951841 0.01458002
6 2 424.32018203 0.00323017
7 3 424.01683319 .
8 1 423.99457950 0.00007763

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 15
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

9 1 423.99420143 0.00000054
10 2 423.99415208 0.00000007
11 2 423.99414400 0.00000000

Convergence criteria met.

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 -0.2256 0.2241 -0.2227
2 -0.2256 1.0000 -0.2256 0.2241
3 0.2241 -0.2256 1.0000 -0.2256
4 -0.2227 0.2241 -0.2256 1.0000

Estimated G Matrix

Row Effect child Col1 Col2
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1 Intercept 1 6.9045 -0.4333
2 age 1 -0.4333 0.04828

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.7505
2 age 1 -0.7505 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.5375 2.6344 3.2041 2.4504
2 2.6344 4.5423 2.8323 3.5951
3 3.2041 2.8323 4.9333 3.4165
4 2.4504 3.5951 3.4165 5.7106

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 16
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5803 0.6772 0.4814
2 0.5803 1.0000 0.5983 0.7059
3 0.6772 0.5983 1.0000 0.6437
4 0.4814 0.7059 0.6437 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 6.9045
UN(2,1) child -0.4333
UN(2,2) child 0.04828
Variance child 0.3351
AR(1) child -0.9935
Residual 1.1408

Fit Statistics

-2 Log Likelihood 424.0
AIC (smaller is better) 444.0
AICC (smaller is better) 446.3
BIC (smaller is better) 457.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

5 54.25 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.4148 1.1651 54 14.95 <.0001
gender 1 16.1917 0.9661 54 16.76 <.0001
age*gender 0 0.4757 0.1010 54 4.71 <.0001
age*gender 1 0.7979 0.08376 54 9.53 <.0001

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 17
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 252.17 <.0001
age*gender 2 54 56.46 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3222 0.1312 54 -2.45 0.0173

Contrasts
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Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 13.97 6.99 0.0009 0.0020
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INTERPRETATION:

• For each assumed model, the output shows the estimates of D (or different such matrices where

appropriate), the estimates of parameters making up Ri, and, as usual, the estimates of β. For

the fit of model (i), the estimate of the assumed common D is (Estimated G Matrix) and the

implied correlation matrix (Estimated G Correlation Matrix) are

⎛

⎜⎝
4.5569 −0.1983

−0.1983 0.02376

⎞

⎟⎠ ,

⎛

⎜⎝
1.0000 −0.6025

−0.6025 1.0000

⎞

⎟⎠ ,

respectively. The estimate of σ2 in the assumed model Ri = σ2I is in the Covariance Parameter

Estimates table (along with the distinct elements of D repeated) and is equal to 1.716 (Residual).

Recall that these are balanced data; thus, under this assumption, the matrix Σi is the same for

all children. The estimate of Σi implied by the above estimates and the associated correlation ma-

trix are given in the tables Estimated V Matrix for CHILD 1 and Estimated V Correlation

Matrix for CHILD 1 (see the output, page 1 and 2).

For the other models (ii) – (v), the estimates of the components of the overall covariance structure

are given in a similar fashion. For model (ii), the estimates of D and its implied correlation

matrix appear on page 5 of the output. Here, we assume that the within-child variance is different

depending on gender; from the table Covariance Parameter Estimates, the estimates are given

as σ̂2
G = 0.445 and σ̂2

B = 2.629. These estimates are quite different. The implied matrix Σi is

now different for different i; in particular, it will be the same for all boys and the same for all

girls. The v and vcorr options cause PROC MIXED to print the estimate of Σi for the first child,

so the estimates of Estimated V Matrix for CHILD 1 and Estimated V Correlation Matrix

for CHILD 1 correspond to the estimate for girls.

For the fit of model (iii), where a common AR(1) structure is assumed for both boys and girls,

the estimates of ρ and σ2 may be found on page 9–10 of the output in the table Covariance

Parameter Estimates as -0.468 and 1.194, respectively.

For model (iv), where a different D matrix and Ri matrix as in model (ii) are assumed for each

gender, SAS prints the estimates of the two matrices DG and DB in the Estimated G Matrix

together on page 12; that for girls is
⎛

⎜⎝
2.9716 −0.0754

−0.0754 0.0215

⎞

⎟⎠ .
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The corresponding correlation matrices are printed in Estimated G Correlation Matrix. Again,

the implied Σi matrices will differ for boys and girls; those for the first girl are printed on page

12.

For model (v), which included two components for Ri, results begin on page 14 of the output.

In the Covariance Parameter Estimates table, Variance is generated by the local option and

refers to the estimate of σ2
2. Residual refers to the common variance σ2

1 that appears as part of

the structure requested in type=. AR(1) refers to the estimate of ρ. Note that the estimated value

is −0.99, which is virtually 1! The estimate has wandered off toward the “boundary” of what its

possible values are. Note that the overall covariance model is very “rich.” This is typical behavior

under these conditions and probably reflects that this model is too fancy to be well-identified.

• Note in cases (i), (ii), and (iv) that the estimates of β found in the Solution for Fixed Effects

are identical and are equal to the ordinary least squares estimator. This reflects the argument

given in section 9.3. Of course, the estimated standard errors are different for the different fits,

reflecting the different assumptions about Σi that go into forming V̂ β . For (iii) and (v), where

the AR(1) matrix is involved so that Ri does not have a form like sigma2I for all units, this does

not hold.

• For all analyses, the Wald test of different slopes carried out by the estimate statement gives

a significant result at level α = 0.05. Also obtained is a Wald test for the “overall difference”

between genders – the L matrix for this contrast is

L =

⎛

⎜⎝
1 −1 0 0

0 0 1 −1

⎞

⎟⎠ ;

thus, we are testing whether the mean intercepts and slopes are the same for each gender simul-

taneously. Regardless of the assumption on Σi, the evidence supporting rejection of this null

hypothesis seems very strong.
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• Inspection of the AIC and BIC values for these fits on pages 2, 6, 9, and 13 of the output shows

that model (ii), where a different within-child variance is assumed for each gender and D the same

seem preferable among the four models considered. The AIC and BIC values for this model are

424.0 and 435.7, respectively. Comparing the values to those for the general regression models

considered in the analysis of these data in section 8.8 reveals that these AIC and BIC values seem

comparable to those for the preferred model in that section, where Σi was modeled as following a

different compound symmetry structure for boys and girls. Thus, among all models considered for

these data so far, either of these seems plausible. Model (ii) here may be more pleasing to many

analysts, because it considers the two sources of variation explicitly. The key element seems to

be allowing the within-child variance to be different for the two genders; allowing D to differ as

well in model (iv) offered no improvement in fit. Inspection of the original data plot reveals the

potential source of this result. Note that 2 of the boys, and one especially, have trajectories that

seem to “bounce around” much more than those of the other children. From above, the estimate

of variance for boys, σ2
B, was much larger than that for girls, σ2

G. Otherwise, the trajectories

seem similarly spread out across girls and boys, supporting the choice of common D. Being able

to model the covariance structure in terms of the two sources of variation explicitly makes this

clear, allowing a pleasing interpretation of how the overall covariance structure differs. Such an

interpretation is more difficult with the model of section 8.8.
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EXAMPLE 2 – DIALYZER DATA: In the following program, we consider the issue of whether the

mean slope of a trajectory differs across the centers.

• The “full” model is that assuming that each dialyzer has its own straight line trajectory with its

own intercept and slope. Then, each center has its own mean intercept and slope. We assume

a common var(bi) = D and a common diagonal within-unit covariance matrix Ri = σ2I for all

centers. Other specifications could be investigated to see if they provide a better fit.

• The model is

Yij = β0i + βi1tij + eij ,

βi = Aiβ + bi, β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β01

β11

β02

β12

β03

β13

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, bi ∼ N2(0, D).

where β0ℓ, β1ℓ are the mean intercept and slope for the ℓth center, ℓ = 1, 2, 3. Ai is the appropriate

matrix of 0’s and 1’s that “picks off” the correct elements of β for the i dialyzer; e.g. if i is from

center 1, then

Ai =

⎛

⎜⎝
1 0 0 0 0 0

0 1 0 0 0 0

⎞

⎟⎠ .

We fit this model by ML and REML.

• We also consider the reduced model where the slopes are the same for each center (with different

intercepts). Thus, for this model

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β01

β02

β03

β1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where β1 is the common slope. Thus, Ai would be the (2 × 4) matrix to “pick off” the right

intercept and β1 for the ith center; e.g. for i from center 1,

Ai =

⎛

⎜⎝
1 0 0 0

0 0 0 1

⎞

⎟⎠ .

We fit this model by ML so that we can construct the likelihood ratio test of this model against

the full model.
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• For the full model fits, we use the estimate and contrast statements of PROC MIXED to construct

the Wald test statistics for different mean slopes, different intercepts, and pairwise comparison of

mean slopes for each pair of centers.

PROGRAM:

/*******************************************************************

CHAPTER 9, EXAMPLE 2

Analysis of the ultrafiltration data by fitting a random
coefficient model in transmembrane pressure (mmHg)

- the repeated measurement factor is transmembrane pressure (tmp)

- there is one "treatment" factor, center

- the response is ultrafiltration rate (ufr, ml/hr)

The model for each dialyzer is a straight line. The intercepts
and slopes have different means for each center. The covariance
matrix D is the same for each center. The matrix Ri is taken
to be diagonal with variance sigma^2 for all units.

We use the RANDOM statement to fit the random coefficient model.

These data are unbalanced both in the sense that the pressures
under which each dialyzer is observed are different.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data ultra; infile ’ultra.dat’;
input subject tmp ufr center;

* rescale the pressures -- see Chapter 8;

tmp=tmp/1000;

run;

/*******************************************************************

Use PROC MIXED to fit the random coefficient model via the
RANDOM statement. For all of the fits, we use REML.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

In all cases, we take the (2 x 2) matrix D to be unstructured
(TYPE=UN) in the RANDOM statement.

The G and GCORR options in the RANDOM statement asks that
the D matrix and its corresponding correlation matrix
be printed. The V and VCORR options ask that the overall
Sigma matrix be printed (for the first subject or particular
subjects).

To fit a random coefficient model, we must specify that both
intercept and slope are random in the RANDOM statement.

No REPEATED statement is used because we assume Ri = sigma^2 I,
which is the default.

*******************************************************************/

* "Full" model with different intercept, slope for each center;

title ’FULL MODEL, FIT BY REML’;
proc mixed data=ultra;
class center subject;
model ufr = center center*tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;
contrast ’diff in slope’ center 0 0 0 center*tmp 1 -1 0,
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center 0 0 0 center*tmp 1 0 -1 / chisq;
contrast ’diff in int’ center 1 -1 0 center*tmp 0 0 0 ,

center 1 0 -1 center*tmp 0 0 0 / chisq;
estimate ’slope 1 vs 2’ center 0 0 0 center*tmp 1 -1 0 ;
estimate ’slope 1 vs 3’ center 0 0 0 center*tmp 1 0 -1 ;
estimate ’slope 2 vs 3’ center 0 0 0 center*tmp 0 1 -1 ;

run;

title ’FULL MODEL, FIT BY ML’;
proc mixed method=ml data=ultra;
class center subject;
model ufr = center center*tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;
contrast ’diff in slope’ center 0 0 0 center*tmp 1 -1 0,

center 0 0 0 center*tmp 1 0 -1 / chisq;
contrast ’diff in int’ center 1 -1 0 center*tmp 0 0 0 ,

center 1 0 -1 center*tmp 0 0 0 / chisq;
estimate ’slope 1 vs 2’ center 0 0 0 center*tmp 1 -1 0 ;
estimate ’slope 1 vs 3’ center 0 0 0 center*tmp 1 0 -1 ;
estimate ’slope 2 vs 3’ center 0 0 0 center*tmp 0 1 -1 ;

run;

* "Reduced" model with different intercepts but same slope for all;
* centers;

title ’REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML’;
proc mixed method=ml data=ultra;
class center subject;
model ufr = center tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;

run;

OUTPUT: Following the output, we consider the issue of common slopes in several ways.

FULL MODEL, FIT BY REML 1

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1714.69627411
1 2 1621.10582541 0.00000580
2 1 1621.10190144 0.00000000

Convergence criteria met.

FULL MODEL, FIT BY REML 2
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The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 2327.18 -5715.33
2 tmp 1 -5715.33 32378

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.6584
2 tmp 1 -0.6584 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2010.79 1271.01 1217.53 1169.94
2 1271.01 2255.46 1858.33 2113.31
3 1217.53 1858.33 3152.24 3011.76
4 1169.94 2113.31 3011.76 4495.01

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5968 0.4836 0.3891
2 0.5968 1.0000 0.6969 0.6637
3 0.4836 0.6969 1.0000 0.8001
4 0.3891 0.6637 0.8001 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 2327.18
UN(2,1) subject -5715.33
UN(2,2) subject 32378
Residual 683.63

Fit Statistics

-2 Res Log Likelihood 1621.1
AIC (smaller is better) 1629.1
AICC (smaller is better) 1629.4
BIC (smaller is better) 1636.0

FULL MODEL, FIT BY REML 3

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 93.59 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.43 14.9676 82 -11.65 <.0001
center 2 -172.20 16.9846 82 -10.14 <.0001
center 3 -151.72 19.2842 82 -7.87 <.0001
tmp*center 1 4409.53 51.9683 82 84.85 <.0001
tmp*center 2 4126.00 59.7776 82 69.02 <.0001
tmp*center 3 4067.73 66.9954 82 60.72 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 100.17 <.0001
tmp*center 3 82 5216.74 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slope 1 vs 2 283.53 79.2090 82 3.58 0.0006
slope 1 vs 3 341.80 84.7885 82 4.03 0.0001
slope 2 vs 3 58.2698 89.7872 82 0.65 0.5182
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Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

diff in slope 2 82 20.83 10.41 <.0001 <.0001
diff in int 2 82 0.96 0.48 0.6194 0.6211

FULL MODEL, FIT BY ML 4

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1670.84436023 0.00000724
2 1 1670.83930877 0.00000001

Convergence criteria met.

FULL MODEL, FIT BY ML 5

The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 2055.33 -5005.31
2 tmp 1 -5005.31 29044

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.6478
2 tmp 1 -0.6478 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1880.09 1159.53 1123.70 1091.81
2 1159.53 2125.05 1711.25 1950.78
3 1123.70 1711.25 2953.75 2768.83
4 1091.81 1950.78 2768.83 4179.84

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5801 0.4768 0.3895
2 0.5801 1.0000 0.6830 0.6545
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3 0.4768 0.6830 1.0000 0.7880
4 0.3895 0.6545 0.7880 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 2055.33
UN(2,1) subject -5005.31
UN(2,2) subject 29044
Residual 682.93

Fit Statistics

-2 Log Likelihood 1670.8
AIC (smaller is better) 1690.8
AICC (smaller is better) 1692.3
BIC (smaller is better) 1708.0

FULL MODEL, FIT BY ML 6

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 91.91 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.44 14.4204 82 -12.10 <.0001
center 2 -172.19 16.3531 82 -10.53 <.0001
center 3 -151.74 18.6268 82 -8.15 <.0001
tmp*center 1 4409.54 50.0369 82 88.13 <.0001
tmp*center 2 4125.92 57.5800 82 71.66 <.0001
tmp*center 3 4067.81 64.6780 82 62.89 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 107.85 <.0001
tmp*center 3 82 5618.74 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slope 1 vs 2 283.62 76.2833 82 3.72 0.0004
slope 1 vs 3 341.74 81.7737 82 4.18 <.0001
slope 2 vs 3 58.1182 86.5950 82 0.67 0.5040

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

diff in slope 2 82 22.43 11.21 <.0001 <.0001
diff in int 2 82 1.03 0.51 0.5986 0.6005

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 7

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41
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Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1780.28736784
1 3 1689.51609987 0.00086966
2 1 1688.81130525 0.00008904
3 1 1688.74503369 0.00000128
4 1 1688.74413473 0.00000000

Convergence criteria met.

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 8

The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 3102.51 -9985.70
2 tmp 1 -9985.70 52598

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.7817
2 tmp 1 -0.7817 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1938.92 1088.75 931.75 792.02
2 1088.75 2189.12 1899.08 2250.88
3 931.75 1899.08 3505.66 3640.26
4 792.02 2250.88 3640.26 5562.15

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5285 0.3574 0.2412
2 0.5285 1.0000 0.6855 0.6451
3 0.3574 0.6855 1.0000 0.8244
4 0.2412 0.6451 0.8244 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 3102.51
UN(2,1) subject -9985.70
UN(2,2) subject 52598
Residual 685.33

Fit Statistics

-2 Log Likelihood 1688.7
AIC (smaller is better) 1704.7
AICC (smaller is better) 1705.7
BIC (smaller is better) 1718.5

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 9

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 91.54 <.0001

Solution for Fixed Effects
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Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -136.02 12.8851 82 -10.56 <.0001
center 2 -194.43 13.7986 82 -14.09 <.0001
center 3 -187.31 14.8087 82 -12.65 <.0001
tmp 4230.63 40.4983 40 104.46 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 90.15 <.0001
tmp 1 40 10912.8 <.0001
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INTERPRETATION:

• Comparing to the analysis of these data by ordinary least squares in section 8.8, we see that none

of the estimates for β in the full model agree with the OLS estimates for the full model. This is

not surprising, as these data are not balanced.

• In fact, note that the estimates of β and their standard errors in the full model in the Solution

for Fixed Effects table differ slightly for the ML and REML fits. This is to be expected – the

“weighting” by the estimated covariance matrices Σ̂i is slightly different in each case, because the

estimates of (the distinct) elements of D and σ2 are slightly different. This can be seen by in-

specting the estimates of D in Estimated G Matrix and Estimated G Correlation Matrix for

each of the ML and REML fits on pages 2 (REML) and page 5 (ML). Similarly, from Covariance

Parameter Estimates for REML and ML on pages 2 and 5, the estimate of σ2 may be found

(Residual). The estimates differ slightly – σ̂2 = 683.63 for REML and σ̂2 = 682.93 for ML.

Note that the estimates of Σi for the dialyzer i = 1 in Estimated V Matrix for SUBJECT 1 and

Estimated V Correlation Matrix for Subject 1) are similar for the two fits.

• The results of the estimate and contrast statements for each fit lead to the same qualitative

conclusions. From pages 3 and 6, there is strong evidence according to the Wald (chisq) test for

difference in slope with 2 degrees of freedom obtained from the contrast statement that there is

a difference in mean slope for the 3 centers. Here, the L matrix has 2 rows:

L =

⎛

⎜⎝
0 0 0 1 −1 0

0 0 0 1 0 −1

⎞

⎟⎠ .

A contrast statement for difference in intercepts, with corresponding L matrix

L =

⎛

⎜⎝
1 −1 0 0 0 0

1 0 −1 0 0 0

⎞

⎟⎠ ,

yields in each case a Wald test statistic TL = 0.96 (REML) and 1.03 (ML). Comparing these to a

χ2
2 distribution, it is clear that there is not enough evidence to suggest that the intercepts differ

among centers.
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The pairwise comparisons of slopes among centers are obtained from the results of the estimate

statements for each analysis, on pages 3 and 5. Inspection of the results supports the contention

that the mean slope for center 1 is different from that for the other two centers. The estimate of

this mean slope is 4409.5 (mmHg/100 ml/hr) for each analysis, while those for the other centers

are considerably smaller. Thus, it appears that the “typical” rate of change of ultrafiltration rate

with transmembrane pressure is faster for dialyzers used at center 1. A possible explanation for

this result would be up to the investigators. Perhaps the subject population is different at the

first center, or personnel at the first center have different skills operating the devices.

• We may also conduct the test of equal mean slopes via a likelihood ratio test. Here, we use the

“full” and “reduced” model results for the fits based on ML. From pages 5 and 8, −2 log-likelihood

for the “full” and “reduced” models is 1670.8 and 1688.7, respectively, so that the likelihood ratio

test statistic is 1688.7 − 1670.8 = 17.9. This is to be compared to the χ2 distribution with r = 2

degrees of freedom. As χ2
2,0.95 = 5.99, we have strong evidence on the basis of this test to suggest

that there is a difference among the mean slopes, which is in agreement with the inference based

on the Wald test above.

• For the fit of the “full” model by ML, from page 5, we have AIC = 1690.8 and BIC = 1708.0. Re-

call that in section 8.8, we fit the same mean model (although arriving at it from the “population-

averaged” perspective) with several different choices of model for Σi. We may compare those fits

to that here, which implies yet another assumption for Σi, on the basis of AIC and BIC values.

The (AIC, BIC) values assuming Σi has a compound symmetry and Markov structure, respec-

tively (from pages 4 and 7 of the output in section 8.8), are (1713.5,1727.2) and (1706.0,1719.7),

giving support for the “subject-specific” random coefficient modeling approach over the direct,

“population-averaged” regression approach in terms of modeling the covariance structure.
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10 Linear mixed effects models for multivariate normal data

10.1 Introduction

Random coefficient models, where we develop an overall statistical model by thinking first about indi-

vidual trajectories in a “subject-specific” fashion, are a special case of a more general model framework

based on the same perspective. This model framework, known popularly as the linear mixed effects

model, is still based on thinking about individual behavior first, of course. However, the possibilities

for how this is represented, and how the variation in the population is represented, are broadened. The

result is a very flexible and rich set of models for characterizing repeated measurement data.

The broader possibilities that are encompassed are best illustrated by examples. In the next section,

we consider several examples that highlight some of these possibilities. We then note that all of the

examples, as well as the random coefficient model as described in the last chapter, may be written in a

unified way. Moreover, the same inferential techniques of maximum likelihood and restricted maximum

likelihood are also applicable.

As mentioned in our discussion of random coefficient models, one advantage is that the model naturally

represents individual trajectories in a formal way, so that questions of interest about individual

behavior may be considered. In this chapter, we will show in the context of the general linear mixed

effects model framework how “estimation” of individual trajectories may carried out.

10.2 Examples

RANDOM COEFFICIENT MODEL: To set the stage, recall the random coefficient model where each

unit is assumed to have its own inherent straight line trajectory, with its own intercept and slope β0i

and β1i, i.e.

Yij = β0i + β1itij + eij , βi =

⎛

⎜⎝
β0i

β1i

⎞

⎟⎠ .

If furthermore units are from, say, q = 2 groups, then the population model would be

βi = Aiβ + bi, bi ∼ N (0, D),
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Note that, although the profiles clearly begin at different responses at time 0, the rate of change (slope)

of each profile over time seems very similar across units (keeping in mind that there is variation within

units making the profiles not look perfectly like straight lines). The upshot is that the intercepts of

the individual “true” straight lines definitely appear to vary across units; however, the slopes do not

seem to vary much at all.

• One possibility is that (though impossible to tell from just a graph) that the “true” underlying

slopes are identical for all units in the population. When the units are biological entities,

and the response something like growth, this seems practically implausible. However, in some

applications, like engineering, where the units may have been manufactured to change over time

in an identical fashion, this may not be so farfetched.

• A more reasonable explanation may be that, relative to how the intercepts vary across units, the

variation among the slopes is much less, making them appear to vary hardly at all. It may be

that the rate of change over time for this population is quite similar, but not exactly identical, for

all units.

If we had reason to believe the first possibility, we might want to consider a model that reflects the fact

that slopes are virtually identical across units explicitly. The following “second-stage” model would

accomplish this:

β0i = β0 + b0i

β1i = β1. (10.1)

In (10.1), note that the individual-specific slope β1i has no random effect associated with it. This

reflects formally the belief that the β1i do not vary in the population of units.

• Thus, under this population model, while the intercepts are random, with an associated random

effect and thus varying in the population, the slopes are all equal to the fixed value β1 and do

not vary at all across units.

• Thus, there is only a single, scalar random effect, b0i. Consideration of a covariance matrix

for the population, D, reduces to consideration of just a single variance, that of b0i.
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If we believed that the second possibility were likely, we might still want to consider model (10.1). If

we considered the usual random coefficient model with

β0i = β0 + b0i

β1i = β1 + b1i,

then for the matrix D, the D11, represents the variance of b0i (among intercepts) and D22 that of b1i

(among slopes). If D11 is nonnegligible relative to the mean intercept, then this suggests that intercepts

vary perceptibly. If on the other hand D22 is virtually negligible relative to the size of the mean slope,

then this suggests that variation in slopes is almost undetectable.

• It is a fact of life that, when this is the case, the numerical algorithms used to implement fitting

of the model (e.g. by ML or REML) may experience serious difficulties. The algorithm simply

cannot pin down D22, and this makes it also have a hard time pinning down the covariance D12.

• Thus, in situations where this is true, it may be a reasonable approximation to the truth to

say that, for all practical purposes, the variation among β1i slopes is negligible. Although we

don’t necessarily believe that the slopes don’t vary at all, saying their variance is negligible is

an approximation that is probably reasonably close enough to the truth to accept for practical

purposes. This assumption will allow implementation of the model to be feasible.

In either case, we are faced with a situation that does not quite fit into the random coefficient framework.

The individual-specific parameters βi no longer have all elements varying! How may we represent this?

This is most easily seen by “brute force.” We have

Yij = β0i + β1itij + eij ,

β0i = β0 + b0i, β1i = β1. (10.2)

Plugging the representations for β0i and β1i into the first stage model, we obtain

Yij = β0 + β1tij + b0i + eij . (10.3)
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If we think of the implication of (10.3) for the entire vector Y i, it is straightforward to see that we may

write this succinctly as

Y i = X iβ + 1b0i + ei,

where as usual 1 is a (ni × 1) vector of 1’s and X i is the design matrix for individual i

Xi =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠
.

Note that if we let Zi = 1 and bi = b0i (1 × 1), we may write this in the form

Y i = X iβ + Zibi + ei (10.4)

as before – this looks identical to the general representation we used in the last chapter, except that

the definitions of X i and Zi we used in the single group case are now different. Other than this, the

model has exactly the same form, once we’ve defined X i and Zi appropriately.

Alternatively, we can do the same calculation with more fancy footwork. We will illustrate this in a

way that allows immediate extension to the case of more than one group; to this end, it is convenient

to use a different symbol to represent the design matrix for individual i (we called it X i above). Thus,

write

Ci =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠
.

Furthermore, note that we may write (10.2) as follows (verify)

βi = Aiβ + Bibi, bi = b0i (1 × 1), (10.5)

where Ai is an identity matrix and

Bi =

⎛

⎜⎝
1

0

⎞

⎟⎠ , (2 × 1).

With these representations, if we think of the model that says each child has his/her own straight line

regression model with child-specific regression parameter βi, i.e.

Y i = Ciβi + ei,

plugging (10.5) into this expression gives

Y i = CiAiβ + CiBibi + ei. (10.6)
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It is straightforward to verify (try it) that

CiBi = 1.

With a single group, Ai is an identity matrix, so, furthermore, C iAi = Ci in this case. If we rename

CiAi = Ci = Xi, then, writing Zi = 1,, we have the model (10.4) above with these definitions of X i

and Zi.

This argument extends immediately to the case of more than one group. In this situation, the Ai

for each individual i are appropriate (k × p) matrices of 0’s and 1’s rather than identity matrices

and β must be defined appropriately as well. For the dental data, k = 2 and p = 4, and we define

β = (β0,G, β1,G, β0,B, β1,B)′. However, the same manipulations apply; the only difference is that in this

case X i = CiAi is now the appropriate (ni ×p) matrix for the group to which individual i belongs; e.g.

in the dental study, for boys, we have

Xi = CiAi =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎝
0 0 1 0

0 0 0 1

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎝

0 0 1 ti1
...

...
...

...

0 0 1 tini

⎞

⎟⎟⎟⎟⎠

and similarly for girls. It is straightforward to verify that, with these definitions, the model implied for

an observation Yij is

Yij = β0,G + β1,Gtij + b0i + eij for girls

= β0,B + β1,Btij + b0i + eij for boys.

Thus, by the above, we are able to write down a model that says that all boys have slope β1,B and girls

β1,G, with intercepts that vary about the respective mean intercepts β0,B and β0,G.

RESULT: This is, of course, the same representation we considered in the last chapter. The difference

between the models here and the random coefficient model is that the matrix Z i, which dictates how

the random effects enter the model, and the bi themselves, are allowed to be defined differently to

accommodate the belief that the slopes β1i do not vary across individuals.

We thus see that it is possible to consider a more general form of the random coefficient model and

write it in the same form as we did previously, i.e. in terms of matrices X i and Zi. The definition of

these matrices depends on the features we wish to represent. That is, the random coefficient model of

Chapter 9 is a special case of a more general model, where the X i and Zi matrices may be defined in

other ways.
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To gain a further understanding of this, consider another possibility.

OTHER COVARIATES: In some instances, the question of interest may in fact involve the possible

association between the values of measured covariates and rate of change of a response over time.

We now see that it is possible to write models appropriate for this situation in the form (10.4) for

suitable choices of X i and Zi.

An example arises in understanding the progression of disease in HIV-infected patients assigned to

follow a certain therapeutic regimen. HIV attacks the immune system, so HIV-infected subjects often

have compromised immune system characteristics. A standard measure of immune status is CD4 count,

where lower counts indicate poorer status. Now a standard measure of how well a patient is doing is

viral load, roughly the “amount” of virus present in the body, and it is routine to follow viral load

over time to monitor a patient’s well-being. HIV scientists may be interested in whether the nature of

viral load progression is different depending on a subject’s immune system at the time of initiation of

therapy. To develop a formal model to address this issue, suppose initially there is only one group.

• Let Yij be the viral load measurement taken on subject i at time tij (usually measured in units of

“log copy number”) following start of therapy at time 0, and suppose that for any given subject, the

trajectory of viral load measurements over time appears to be a straight line, with subject-specific

intercept and slope; i.e.

Yij = β0i + β1itij + eij , βi = (β0i, β1i)
′

• In addition, suppose that at time 0 (“baseline”) for all subjects, a CD4 count measurement is

available; denote this measurement as ai for the ith subject.

• In terms of the individual model, then, the question of interest is whether the magnitude and

direction of individual rates of change, i.e. slopes β1i, are associated with the value of ai. We

may state such an association formally as

β1i = β2 + β3ai + b1i.

• For illustration, suppose that we do not believe that the intercepts, which represent viral load

at time 0, are associated with CD4 count (this is actually unlikely, but we assume it here for

purposes of developing a simple model). We may state this as

β0i = β1 + b0i.
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We may write this succinctly as

βi = Aiβ + bi, β =

⎛

⎜⎜⎜⎜⎝

β1

β2

β3

⎞

⎟⎟⎟⎟⎠
, bi =

⎛

⎜⎝
b0i

b1i

⎞

⎟⎠ , Ai =

⎛

⎜⎝
1 0 0

0 1 ai

⎞

⎟⎠

• Note that this model allows the possibility that both intercepts and slopes vary in the population

of subjects. However, it states that the fact that slopes vary across individuals may in part be

associated with their baseline CD4 counts.

• The question of interest in the context of this model is about the value of β3; if β3 = 0, then this

says that there is no association between baseline CD4 and subsequent rate of change of viral load

while on this therapy.

• The model for βi itself has the flavor of a “regression model.” Here, ai is a covariate in this

model.

It is straightforward to see that this model may be put into the form of (10.4). Plugging in the form of

βi into the individual model, we see that

Yij = β1 + β2tij + β3aitij + b0i + b1itij + eij , j = 1, . . . , ni.

It may be verified that this may be written succinctly as

Y i = Xiβ + Zibi + ei,

where

Xi =

⎛

⎜⎜⎜⎜⎝

1 ti1 aiti1
...

...
...

1 tini
aitini

⎞

⎟⎟⎟⎟⎠
, Zi =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠
= Ci, say.
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Alternatively, using a matrix argument, note that we may write

βi = Aiβ + Bibi, Bi = I2

and Ai as above. Writing the first-stage individual model as

Y i = Ciβi + ei

and plugging in for βi, we obtain

Y i = (CiAi)β + (CiBi)bi + ei = X iβ + Zibi + ei, (10.7)

where

Xi = CiAi =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎝
1 0 0

0 1 ai

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎝

1 ti1 ait1i

...
...

...

1 tini
aitini

⎞

⎟⎟⎟⎟⎠

and CiBi = CiI = Ci = Zi.

It is straightforward to see that this model could be extended to allow

• More than one group, by suitable redefinition of β and Ai; e.g. with two treatment groups we

could write

β0i = β1 + b0i for treatment 1,

= β4 + b0i for treatment 2,

β1i = β2 + β3ai + b1i for treatment 1,

= β5 + β6ai + b1i for treatment 2,

and define β = (β1, β2, β3, β4, β5, β6)′ and bi = (b0i, b1i)′. The matrices Ai would be (2 × 6); for

example, for subject i in treatment 1,

Ai =

⎛

⎜⎝
1 0 0 0 0 0

0 1 ai 0 0 0

⎞

⎟⎠ .

Then βi = Aiβ + Bibi with Ai and β as above and Bi = I2.
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• Some parameters not to vary in the population, as above. As a hypothetical example, suppose we

wanted a model that expresses the belief that variation among slopes is entirely attributable

to CD4 count and that none of the variation in slopes is random, while variation in intercepts

is random. (This sounds biologically questionable, but we consider it for illustration.) With 2

groups, this could be expressed as

β0i = β1 + b0i for treatment 1,

= β4 + b0i for treatment 2,

β1i = β2 + β3ai for treatment 1,

= β5 + β6ai for treatment 2,

We could again write this as βi = Aiβ + Bibi with Ai and β as above but with bi = b0i and

Bi = (1, 0)′.

By plugging these representations into the first stage model as in (10.7), we arrive at a model of the

form

Y i = Xiβ + Zibi + ei, (10.8)

where the matrices X i and Zi are determined by the particular definitions of Ai, Bi, and Ci.

RESULT: It should be clear that it is possible to represent even fancier specifications in this way. E.g.,

we could also incorporate association of the intercepts with ai, and we may have more than one

covariate in the second-stage population model. We consider an example at the end of this chapter.

Once we write down the model in the form βi = Aiβ + Bibi for appropriately defined matrices Ai and

Bi reflecting the features of interest, we may write a model of the form (10.8), where the definitions of

Xi and Zi are dictated by the form of the first- and second-stage models.

THE SIMPLEST MODEL: It is in fact the case that the general model

Y i = X iβ + Zibi + ei

includes as special cases may simple models for repeated measurements.
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A particularly simple model is as follows. Suppose there is only one group, and, for each unit, we have

repeated measurements Yij . However, suppose that these measurements are not necessarily over

time; e.g. the m units are mother rats, and for the ith mother, Yij represent birthweights of her ni

pups. In the absence of further information, a very simple model for this situation is

Yij = µ + bi + eij , j = 1, . . . , ni. (10.9)

The model says that the population of all possible pup weights is centered about µ, and allows for the

possibility of 2 sources of variation, among mother rats, through bi (some mothers have larger pups

than others) and within mother rats, through eij (pups born to a given mother are not all identical,

and weights may be measured with error).

If we define X i = 1, Zi = 1, and bi = bi, then it is straightforward to see that we may write (10.9) in

the form of (10.8).

It is straightforward to extend this simple model to allow different treatment groups with mean µℓ =

µ + τℓ for the ℓth group by redefining β and X i (try it!).

In fact, the univariate ANOVA model of Chapter 5 can also be written in this form. Recall that in

Chapter 5 (see page 119) we wrote this model in the form

Y i = Xiβ + 1bi + ei

Thus, we see this is again a special case of the general model as above (Z i = 1, bi = bi) with the

particular forms of X i and β on page 119.

SUMMARY: It should be clear from these examples that it is possible to consider a wide variety of

subject-specific models of the form

Y i = X iβ + Zibi + ei

by suitably defining X i, β, Zi, and bi. This model in its general form is known as the linear mixed

effects model.
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10.3 General linear mixed effects model

For convenience, we summarize the form of the linear mixed effects here.

THE MODEL: With Y i a (ni × 1) vector of responses for the ith unit, i = 1, . . . , m,

Y i = X iβ + Zibi + ei (10.10)

where

• Xi is a (ni × p) “design matrix” that characterizes the systematic part of the response, e.g.

depending on covariates and time.

• β is a (p × 1) vector of parameters usually referred to as fixed effects, that complete the char-

acterization of the systematic part of the response.

• Zi is a (ni × k) “design matrix” that characterizes random variation in the response attributable

to among-unit sources.

• bi is a (k × 1) vector of random effects that completes the characterization of among-unit

variation. Note that k and p need not be equal.

• ei is a (ni × 1) vector of within-unit deviations characterizing variation due to sources like

within-unit fluctuations and measurement error.

ASSUMPTIONS ON RANDOM VARIATION: The model components bi (k × 1) and ei (ni × 1) char-

acterize the two sources of variation, among- and within-units. The usual assumptions are

• ei ∼ Nni
(0, Ri). Here, Ri is a (ni ×ni) covariance matrix that characterizes variance and correla-

tion due to within-unit sources (see the discussion in the last chapter). The most common choice

is the model that says variance is the same at all time points for all units and that measurements

are sufficiently far apart in time that correlation, if any, is negligible, i.e.

Ri = σ2Ini
.

As discussed in the previous chapter, other models for Ri are also possible.
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• bi ∼ Nk(0, D). Here, D is a (k×k) covariance matrix that characterizes variation due to among-

unit sources, assumed the same for all units. The dimension of D corresponds to the number of

among-unit random effects in the model.

It is possible to allow D to have a particular form or to be unstructured. It is also possible to

have different D matrices for different groups, as we discussed in the last chapter. In our discussion

here, we will present things under the assumption of a common D for all units, regardless of group

or anything else. This may often be a reasonable assumption unless there is strong evidence that

different conditions have a nonnegligible effect on variation as well as mean. Much of what we

discuss in the sequel can be extended to more complex models, e.g., with different D matrices

and fancier Ri matrices.

• With these assumptions, we have

E(Y i) = X iβ, var(Y i) = ZiDZ ′

i + Ri = Σi

Y i ∼ Nni
(Xiβ,Σi). (10.11)

That is, the model with the above assumptions on ei and bi implies that the Y i are multivariate

normal random vectors of dimension ni with a particular form of covariance matrix. The form of

Σi implied by the model has two distinct components, the first having to do with variation solely

from among-unit sources and the second having to do with variation solely from within-unit

sources.

“SUBJECT-SPECIFIC” MODEL: Although the forms of X i, β, Zi, and bi are allowed more possibil-

ities here than in the random coefficient model, the spirit of the model is the same. If we think about

the general form of the model, it is clear that the model is a subject-specific one. In particular, if we

examine the form of the model

Y i = Xiβ + Zibi + ei,

• If we “zero in” on unit i, and consider this unit alone and in its own right, regardless of other

units, the model has the form of a “regression model” for the data Y i. The “mean” part of this

regression model is

Xiβ + Zibi =
(

Xi Zi

)
⎛

⎜⎝
β

bi

⎞

⎟⎠ .
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The vector ei characterizes random variation associated with within-unit sources. This way of

writing this part of the model highlights the fact that individual unit behavior is being charac-

terized by some combination of β, which describes the mean for the population, and bi, which

describes how this particular unit deviates from the population mean.

• Thus, the model may be thought of as subject-specific; as it incorporates the behavior of the

individual unit.

• We will focus on individual behavior shortly; in particular, we will be more formal about the

notion of the unit’s “own mean.”

10.4 Inference on regression and covariance parameters

As in the previous chapter, once we note that the model implies (10.11), the methods of maximum

likelihood and restricted maximum likelihood may be used to estimate the parameters that char-

acterize the “mean” or systematic part of the model, β, and those that characterize the “variation” or

random part of the model, the distinct parameters that make up Ri and D. Thus, the methods and

considerations discussed in the previous two chapters apply exactly as described:

• The generalized least squares estimator for β and its large sample approximate sampling

distribution will have the same form, with X i and Σi as defined in the model.

• Computation of estimated standard errors, Wald and likelihood ratio tests is as before.

• The “subject-specific” versus “population-averaged” interpretations of the model both apply.

• When the data are balanced in the sense that the times of observation are all the same and the

matrices Zi are the same for all units, then when σ2In, the GLS and OLS estimators yield the

same numerical value. As before, however, the estimated approximate covariance matrices of the

estimators will be different; that based on the OLS analysis will be incorrect, because it will

not take proper account of the nature of variation for the data vectors Y i. (Recall that the OLS

estimator just assumes that all the Yij are independent, so that Σi = I for all i.) The estimated

covariance matrix V̂ β for β̂, which does take variation into account, requires estimates of the

components of Ri and D.

Because we have already discussed these issues in detail in earlier chapters, we do not need to do so

again here. See section 9.3 and chapter 8 for more.
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10.5 Best linear unbiased prediction

In chapter 9, we mentioned that an objective of analysis is sometimes to characterize individual

behavior. As we mentioned above, the linear mixed effects model (which contains the random coefficient

model as a special case) is a subject-specific model in the sense that an individual’s “regression model”

is characterized as having “mean” X iβ + Zibi.

• Thus, if we want to characterize individual behavior in this model, we’d like to “estimate” both

β and bi. We could then form “estimates” of things like βi where applicable and “estimates” of

the “mean” of a single response at certain times and covariate settings for a particular individual.

• We already know how to estimate β. However, how do we “estimate” bi? We have been putting

the word “estimate” in quotes because, technically, bi is not a fixed constant like β; rather,

it is a random effect – it varies across units. Thus, when we seek to “estimate” bi, we seek

to characterize a random, not a fixed, quantity – the units were randomly chosen from the

population.

• In situations where interest focuses on characterizing a random quantity, it is customary to use

different terminology in order to preserve the notion that we are interested in something that

varies. Thus, “estimation” of a random quantity is often called prediction to emphasize the

fact we are trying to get our hands on something that is not fixed and immutable, but something

whose value arises in a random fashion (through, for example, the fact that units are randomly

selected from the population).

Thus, in order to characterize individual unit behavior, we wish to develop a method for prediction of

the bi.

NOT THE MEAN: In ordinary regression analysis, a prediction problem arises when one wishes

to get a sense of future values of the response that might be observed; that is, it is desired to predict

future Y values that might be observed at certain covariate settings on the basis of the data at hand.

• In this case, the “best guess” for the value of Y at a certain covariate value x0 is the mean of Y

values that might be seen at x0, x′

0β, say.

• As the mean is not known (because β is not known), the approach is to use as the prediction

the estimated mean, x′

0β̂, where β̂ is the estimate of β.
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By analogy, one’s first thought for prediction of bi would be to use the mean of the population of bi.

However,

• An assumption of the model is that bi ∼ Nk(0, D), so that E(bi) = 0 for all i.

• Thus, following this logic, we would use 0 as the prediction for bi for any unit. This would lead

to the same “estimate” for individual-specific quantities like βi in a random coefficient model for

all units.

• But the whole point is that individuals are different; thus, this tactic does not seem sensible, as

it gives the same result regardless of individual!

Thus, simply using the mean of the population of random effects bi will not provide a useful result.

Something that preserves the “individuality” of the bi is needed instead.

Another thing to note is that this approach does not at all take advantage of the fact that we have

some additional information available – the data! Under the model, we have Y i = Xiβ + Zibi + ei;

that is, the data Y i and the underlying random effects bi are related. This suggests that there must

be information about bi in Y i that we could exploit. In particular, is there some sensible function of

the data Y i that could be used as a predictor for bi? Of course, this function would also be random,

as it is a function of the random data Y i.

CONDITIONAL EXPECTATION: To make the discussion a little easier, we will assume for the moment

that bi is a scalar; i.e. k = 1. The same reasoning goes through for k > 1. Call this scalar random

effect bi.

For our predictor, we’d like something that is “close to” bi. If we let c(Y i) be the function of the

data we will use as the predictor, then one possibility would be to say we’d like to choose c(Y i) so that

distance between c(Y i) and bi, which we can measure as

{bi − c(Y i)}2,

is “small.” This makes sense – we’d like to use as a predictor something that resembles bi in some sense.
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As both Y i and bi are random, and hence vary in the population, we’d like the distance to be “small”

considered over all possible values they might take on. Thus, it seems reasonable to consider the

expectation of this distance, averaging it over all possible values; i.e.

E{bi − c(Y i)}2 (10.12)

How “small” is “small?” A natural way to think is that we’d like the function c(Y i) we use to be the

function that makes (10.12) as small as possible; that is, the function c(Y i) we’d like to choose is the

one that minimizes E{bi − c(Y i)}2 across all possible functions we might choose.

The particular function c(Y i) that minimizes this expected distance is called the conditional

expectation of bi given Y i. The usual notation is to write the conditional expectation as

E(bi|Y i). (10.13)

• The conditional expectation is itself a random quantity; it is a function of the random vector

Y i. Thus, do not be confused into thinking it is a fixed quantity because of the notation – the

“E” is being used in a different way.

• This definition may be extended to the case where bi is a vector.

CONDITIONAL EXPECTATION AND MULTIVARIATE NORMALITY: It turns out that when Y i

and bi are both normally distributed, it is possible to find an explicit expression for the conditional

expectation. We first discuss this in detail in a special case: the simplest form of the linear mixed model

given in equation (10.9), where bi is a scalar bi:

Yij = µ + bi + eij

with Y i = (Yi1, . . . , Yini
)′, ei = (ei1, . . . , eini

)′, bi ∼ N (0, D), and ei ∼ Nni
(0, σ2I). It of course follows

that Yij ∼ N (µ, D + σ2) (verify).

It may be shown that, under this model,

E(bi|Y i) =
niD

niD + σ2
(Y i − µ), (10.14)

where Y i is the mean of the ni Yij values in Y i.
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• Note that we might equally well write E(bi|Y i); all the information about bi is summarized in the

individual unit mean Y i. This says that to find the function of the data Y i that is “closest” to bi

in the sense of minimizing (10.12), all we need to know is the sample mean of the data on unit

i; this is sufficient. This make sense – if bi is “large” (positive), then we’d expect this to lead

to a Y i that is “large” (larger than the mean µ), and similarly, if bi is “small” (negative), we’d

expect this to lead to a Y i that is “small” (smaller than the mean µ).

• Note further that (10.14) is a linear function of the elements of Y i (through Y i)

• In addition, note that the expression (10.14) we’d like to use as our predictor depends on µ, D,

and σ2, which are all unknown (but which we can estimate).

• Finally, note that if we were to know µ, D, and σ2, and we take the expectation of the predictor

(that is, averaging the value of the predictor across all possible values of the elements of Y i, Yij),

we get

E{E(bi|Y i) } =
niD

niD + σ2
E(Y i − µ) = 0

because E(Y i) = µ. That is, the average of the predictor across all possible values of the data is

0, which is exactly equal to the expectation of bi, the thing we are trying to predict! This seems

like a good property; if we were trying to estimate a fixed quantity, we would call this property

unbiasedness.

BEST LINEAR UNBIASED PREDICTOR: All of these observations are reflected in the name that

is often given to the predictor for bi that results from thinking about (10.14). Here is the way the

thinking goes. In practice, to actually calculate the value of the conditional expectation for bi, we would

need to know µ, D, and σ2, but these are unknown. It is thus natural to think of substituting estimates

for them.

• As we have considered before, first think of the “ideal” situation in which we were lucky enough

to know the elements of ω, which in this case is made up of D and σ2. Our model may be written

as

Y i = 1ni
µ + 1ni

bi + ei,

so that X i = Zi = 1ni
, with µ thus playing the role of β and Σi = 1ni

D1′

ni
+σ2Ini

= DJni
+σ2Ini

(compound symmetry) for all i (because 1ni
1′

ni
= Jn1

; verify).
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• If ω is known, then Σi is known, and in this case the maximum likelihood estimator for µ is the

weighted least squares estimator [see equation (8.17)], which in our case (X i = 1ni
) is

µ̂ =

(
m∑

i=1

1′

ni
Σ−1

i 1ni

)
−1 m∑

i=1

1′

ni
Σ−1

i Y i,

which may be shown to lead to the result that

µ̂ =

∑m
i=1(niD + σ2)−1Y i∑m

i=1(niD + σ2)−1
. (10.15)

(Try it – you will need to use the matrix fact that

Σ−1
i =

1

σ2

(
Ini

− D

σ2 + niD
Jni

)

in your calculation.) Note that µ̂ is a linear function of the data Yij (through Y i).

• Thus, under these “ideal” conditions, to calculate the predictor for practical use, we would sub-

stitute µ̂ for µ in the conditional expectation to arrive at

niD

niD + σ2
(Y i − µ̂). (10.16)

Note that (10.16) is still a linear function of the data through Y i.

• It may be shown that, if we calculate the variance of (10.16), it is smaller than the variance of

any other linear function of Y i we might use to predict bi. That is, the “estimated” predictor

(10.16) is the least variable among all predictors we might have chosen that are linear functions

of the data. Thus, it is “best” in the sense that it exhibits the least variability, so is most reliable

as a predictor.

• The predictor (10.16) under these “ideal” conditions is also unbiased in the same sense described

above – if we find its expectation, it is still equal to 0 even with µ̂ substituted for µ (try it!).

• As a result, the predictor (10.16) is referred to as the Best Linear Unbiased Predictor for bi.

The popular acronym is BLUP.
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• Now, of course, in real life, the elements of ω are not known; rather, they are estimated. Thus,

instead of the “ideal” WLS estimator (10.15), we must use the generalized least squares

estimator for µ which has the same form as the WLS estimator but depends on Σ̂i, which is Σi

with the ML or REML estimates D̂ and σ̂2 plugged in. Moreover, these estimates must be plugged

into the rest of the form of the predictor. Thus, in practice, one uses as the predictor

b̂i =
niD̂

niD̂ + σ̂2
(Y i − µ̂), (10.17)

where µ̂ is the GLS estimator

µ̂ =

∑m
i=1(niD̂ + σ̂2)−1Y i

∑m
i=1(niD̂ + σ̂2)−1

.

The symbol b̂i is used to denote this predictor.

• Because we have plugged in these estimates, the properties of unbiasedness and smallest vari-

ance no longer hold exactly. However, it is hoped that they hold at least approximately. Thus,

the predictor (10.17) used in practice is usually also referred to as BLUP, although this is not

precisely true anymore. Another common term is empirical Bayes estimator for bi, which

comes from another interpretation of the BLUP we will not discuss here.

“ESTIMATION” OF INDIVIDUAL “MEAN”: Recall our earlier observation for the general model that,

if we “zero in” on a particular individual, we may think of them as having their own “regression model”

with individual-specific “mean” X iβ + Zibi. In our simple model here, this “mean” is 1ni
µ + 1ni

bi,

which implies that the “mean” for the jth observation is

µi = µ + bi

for all j = 1, . . . , ni. An important goal of predicting bi is to allow us to characterize the individual-

specific “mean” for each unit.

• We may in fact formalize this. We have been saying that µi = µ + bi is the “mean” for individual

i. Technically, µi is the conditional expectation of Y i, the data for unit i, given bi. That is,

µi is the function of bi that is “closest” to Y i. For the jth observation, this is written

µi = E(Yij |bi).

Heuristically, we may thus think of µi as the “mean” of Yij were we lucky enough to know bi.
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We’d like to predict not just bi, but µi.

• It turns out that the conditional expectation of µi given the data Y i is simply µi evaluated at

the conditional expectation of bi given Y i; that is, we define

E(µi|Y i) = µ + E(bi|Y i)

• Thus, it follows that the best linear unbiased predictor of µi in the “ideal” case where ω is

known is given by

µ̂ +
niD

niD + σ2
(Y i − µ̂). (10.18)

Here, we have replaced µ by the WLS estimate.

• For practical use, we would replace µ by the GLS estimates and D and σ2 by the ML or REML

estimates in (10.18). This predictor of µi is also commonly referred to as the BLUP or empirical

Bayes estimator for µi.

BLUP AS A “WEIGHTED AVERAGE”: Consider again the “ideal” situation where ω is known for

simplicity. It is possible by some simple algebra to write the BLUP for µi (10.18) in the alternative

form (
D

D + σ2/ni

)
Y i +

(
σ2/ni

D + σ2/ni

)

µ̂, (10.19)

where µ̂ is the WLS estimator.

• Inspection of (10.19) reveals that the BLUP has an interesting interpretation as a weighted

average between Y i and µ̂.

• In particular, note that Y i may be regarded as the “best guess” for µi based on the data for unit

i only. In contrast, µ̂ is the “best guess” for the overall mean of observations averaged across

all units in the population.

• Recall that D measures variation among units, while σ2 measures variation within units. Fur-

thermore, ni describes the amount of information available about a particular unit. Thus, σ2/ni

measures the “quality” of our knowledge about unit i, taking into account both variation due to

within-unit sources and how many measurements we have.

• If D is large, then units vary quite a bit, so that, even if we know a lot about the population of

units, this doesn’t help us too much for knowing about a particular unit. If D is small, then units

are pretty similar, so knowing a lot about the population of units helps us quite a bit for knowing

about a particular unit.
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• Thus, if D is large relative to σ2/ni, the information we have about unit i from unit i’s data is

more reliable than that from the population. In this case, note from (10.19) that D/(D + σ2/ni)

will be close to 1, while (σ2/ni)/(D + σ2/ni) will be close to 0. Thus, BLUP (µi) ≈ Y i. This

makes sense – the information we have about µi in Y i is better than that we have about the unit

through the (estimated) population mean µ̂.

• On the other hand, if D is small relative to σ2/ni, the information we have about unit i from the

population is better than that from unit i’s data. If ni were very small, so we have limited data on

i to begin with, this may very well be the case. Here, the situation is reversed – BLUP (µi) ≈ µ̂.

This also makes sense – the information we have about µi in Y i is not very good, so we rely on

the information about the population more heavily.

These results show that the BLUP for µi is a compromise between information from individual i alone

and information about the whole population (through all m units’ data). This compromise weights

these 2 sources of information in proportion to their quality. When neither term D or σ2/ni dominates,

the BLUP is a combination of both sources. Thus, by using BLUP to characterize individual unit

“means” or other features, it is popular to say that one “borrows strength across units,” supplementing

the information from unit i alone by information about the whole population from which i is assumed

to arise.

IN GENERAL: The implications of the above discussion carry over to the case of the general linear

mixed effects model

Y i = Xiβ + Zibi + ei,

where ω is composed of the distinct elements of D and Ri. Specifically:

• It may be shown that the conditional expectation of bi given the data Y i is

E(bi|Y i) = DZ ′

iΣ
−1
i (Y i − X iβ).

• In the “ideal” case where ω is known and β̂ is the WLS estimator,

DZ ′

iΣ
−1
i (Y i − Xiβ̂). (10.20)

is the best linear unbiased predictor (BLUP) for bi.
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• In the realistic case where ω is not known, one forms the “approximate” BLUP for bi as

b̂i = D̂Z ′

iΣ̂
−1
i (Y i − Xiβ̂), (10.21)

where Σ̂i is as usual Σi with the estimator for ω substituted. This predictor is also often referred

to as the BLUP for bi or the empirical Bayes estimator for bi.

• The “mean” for individual i is the conditional expectation E(Y i|bi) = X iβ + Zibi. The BLUP

for X iβ + Zibi is found by substituting (10.20) into this expression; i.e.

Xiβ̂ + ZiDZ ′

iΣ
−1
i (Y i − Xiβ̂), (10.22)

where β̂ is the WLS estimator.

• As in the simple model, the predictor (10.22) has the interpretation that it may be rewritten in

the form of a weighted average combining information from individual i only and information

from the population. Thus, the same implications given above apply in the general model – the

BLUP for X iβ + Zibi may be viewed as “borrowing strength” across individuals to get the best

prediction for individual i.

• In practice, the “approximate” BLUP for X iβ + Zibi is found by substituting b̂i; i.e.

Xiβ̂ + Zib̂i = X iβ̂ + ZiD̂Z ′

iΣ̂
−1
i (Y i − X iβ̂) = σ2Ini

Σ̂
−1
i Xiβ̂ + ZiD̂Z ′

iΣ̂
−1
i Y i, (10.23)

where now β̂ is the GLS estimator. This predictor is also referred to as the BLUP or empirical

Bayes estimator of the individual-specific “mean” X iβ + Zibi.

IN PRACTICE: If one is interested in characterizing individual trajectories, it is standard to use the

BLUPs for this purpose.

• One specific case is that of a random coefficient model where

Y i = Ciβi + ei, βi = Aiβ + bi.

For example, if the stage one model is a straight line, so that βi = (β0i, β1i)′ are the unit-specific

intercepts and slopes, then it is often of interest to characterize β0i and β1i.

• This may be done by finding the BLUP b̂i with X i = CiAi and Zi = Ci and then obtaining

β̂i = Aiβ̂ + b̂i,

where β̂ is the GLS estimator. The elements of β̂i are thus “estimates” of unit i’s specific intercept

and slope.
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• These “estimates” are often preferred over just carrying out individual regression fits to each

unit’s data separately, because they “borrow strength” across individuals by taking advantage of

the belief that the linear mixed effects model holds.

10.6 Testing whether a component is random

We have noted that one manifestation of the linear mixed effects model is to think of the usual random

coefficient model in which every unit has its own intercept, slope, etc., but then to consider the possibility

that the slopes, for example, do not vary across units. That is, we would think of slopes as being fixed

rather than random.

For definiteness, consider a situation with one group. Suppose that we consider a straight line model

for each subject. The “full” random coefficient model with random intercept and slope is

Yij = β0i + β1itij + eij , β0i = β0 + b0i, β1i = β1 + b1i

bi = var

⎛

⎜⎝
b0i

b1i

⎞

⎟⎠ , var(bi) = D =

⎛

⎜⎝
D11 D12

D12 D22

⎞

⎟⎠ .

If slopes do not vary across units, then we have the “reduced” model with slopes not random given by

Yij = β0i + β1i + eij , β0i = β0 + b0i, β1i = β1

bi = b0i, var(bi) = D11.

For definiteness, assume in each model that var(ei) = Ri = σ2Ini
.

These two models lead to the same specification for the mean of a data vector, E(Y i) = Xiβ, with

E(Yij) = β0 + β1tij . However, they involve different overall covariance models Σi = ZiDZ ′

i + σ2Ini
.

In particular, the “full” model, Σi has the usual form with

Zi =

⎛

⎜⎜⎜⎜⎝

1 ti1
...

...

1 tini

⎞

⎟⎟⎟⎟⎠
,

which we do not multiply out here.
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In contrast, under the “reduced” model, D = D11 and Zi = 1ni
so that ZiDZ ′

i = D11Jni
, so that

Σi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D11 + σ2 D11 · · · D11

D11 D11 + σ2 · · · D11

...
...

. . .
...

D11 · · · D11 D11 + σ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a simple compound symmetric assumption.

Thus, to address the issue of which model is more suitable, one might use techniques such as information

criteria to informally choose between these models.

Alternatively, noting that we have nested models, it is natural to consider conducting a formal hy-

pothesis test using the likelihood ratio test. However, there is a difficulty with this that makes the

usual approach of comparing the likelihood ratio test statistic to the χ2 distribution inappropriate, a

fact that is not often not appreciated by practitioners. The reasons are rather technical; here, we give

an intuitive description of what the issue is.

• Here, var(bi) is a (2 × 2) matrix for the “full” model, involving two variances and a covariance.

var(bi) is a scalar variance for the “reduced” model. Thus, although the models are indeed nested,

going from the “full” to “reduced” model requires that the variance D22 = 0. Moreover, there is

no longer the need to worry about the covariance D12 between intercepts and slopes, because all

slopes are the same.

• Thus, the difference in models is rather complicated, so that the null hypothesis corresponding

to the “reduced” model is complicated. So it is clear that his problem seems “non-standard”

relative to the other uses of the likelihood ratio test we have seen.

• A major source of the difficulty is that this null hypothesis involves asking whether D22 in the full

model is equal to 0. D22 is a variance, so it cannot take on any value; specifically, a variance

must be ≥ 0 by definition! Indeed, the value “0” is on the “edge,” or boundary, of possible

values for D22.

Asking whether D22 = 0 corresponds to whether D22 takes its value on the boundary of the

parameter space (i.e., the set of possible values) for D22. Contrast this to other situations

where we have considered nested models; e.g. if the issue is whether the kth component of β is

equal to 0, say, as βk values can be anything, the parameter space is unrestricted and thus

βk = 0 is not on a “boundary.”
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The theory that underlies the use of the likelihood ratio test breaks down when the null hypoth-

esis involves a boundary in this way. That is, as m → ∞, the likelihood ratio test does not

have a χ2 distribution anymore!

Thus, if one computes the likelihood ratio statistic and compares to the critical value from the χ2
2

sampling distribution (D22 = 0 and “D12 = 0”), it turns out that the test will tend to not reject

the null as often as it should, leading the analyst to end up using models that are too simple.

• It is possible to show that, instead, the correct sampling distribution is something called a mixture

of a χ2
1 distribution and a χ2

2 distribution. A random variable with this distribution takes its value

like a χ2
1 random variable 50% of the time and like a χ2

2 distribution 50% of the time.

A table of critical values for such χ2 mixtures is given, for instance, in Appendix C of Fitzmaurice,

Laird, and Ware (2004). For a test at level α = 0.05, χ2
2,0.95 = 5.99 while the corresponding critical

value for the mixture is 5.14. This shows that comparing to the χ2
2 sampling distribution will not

reject the null hypothesis as often as it should.

• It is important to realize that SAS PROC MIXED does not have an automatic way to carry out such

tests! So the analyst cannot simply expect the software to “know” that this is an issue.

This same issue arises more generally. For example, if we are entertaining a quadratic model

Yij = β0i + β1itij + β2it
2
ij + eij , βi = β + bi (3 × 3)

with bi = (b0i, b1i, b2i)′, and wonder whether we can do away with the quadratic term altogether,

the same problem occurs. Here, the relevant mixture can be very complicated. In such complicated

situations, Fitzmaurice, Laird and Ware (2004) recommend as an approximate ad hoc way to conduct

the test at level α = 0.05 to calculate the likelihood ratio test statistic and compare it to the usual χ2

critical value one would use if one did not know this was a problem but for α = 0.1 instead.

For more on this topic, see Verbeke and Molenberghs (2000, section 6.3.4) and Fitzmaurice, Laird, and

Ware (2004, sections 7.5 and 8.5).

10.7 Time-dependent covariates

In our development so far, we have restricted attention to covariates that do not change over time;

for example, treatment group, gender, age, CD4 count at baseline, and so on. Our interest has been

focused on features like whether the way things change over time is different for different groups or is

associated with baseline age, CD4, etc.
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In some settings, information may be collected that changes over time, and questions of interest may

focus on the relationship between the response and this information. As we now discuss, this can lead

to some important conceptual issues.

To fix ideas, consider a longitudinal study to investigate the relationship between a measure of respira-

tory health and smoking behavior. Suppose that at time tij following subject i’s entry into the study,

Yij , a measure of respiratory health status, is recorded along with Zij , a measure of i’s current smoking

behavior. Note that of necessity such a study must be observational; it would be unethical to assign

subjects to different patterns of smoking!

• Note that we use upper-case Zij to refer to smoking at time tij . This is to emphasize the fact

that smoking behavior is a characteristic that may vary within and among subjects both at any

time and over time in a way that we may only observe. That is, Zij should be viewed as a

random variable. In this situation, Zij is something that we may not view as “under control”

over time, in contrast to things like treatment group and gender.

• Contrast this with a study in which the goal is to investigate the relationship between respiratory

health status and exercise. Suppose that each subject is assigned to follow a pre-determined

exercise plan such that, at time tij , subject i engages in exercise intensity zij . Here, although

exercise intensity changes over time, its values are fixed in advance in this study in a way that

has nothing to do with how the subjects’ respiratory health status turns out. Thus, we use lower-

case zij to emphasize that the exercise intensities are not something we can only observe, but are

under control of the investigators.

• Returning to the first study, it is clear that there may be complicated interrelationships between

respiratory status and smoking behavior. For example, a subject may decide at some time point to

modify his future smoking behavior as a result of his respiratory status; e.g. a subject experiencing

poor respiratory health at time j may decide to cut back on smoking at time j + 1. In contrast,

a subject whose respiratory health is not compromised may continue to smoke in the same way.

Here, current smoking behavior and respiratory status impacts future smoking behavior, and, of

course, smoking behavior impacts future respiratory health.

This suggests that even stating the question of interest can be difficult. What do we mean by “the

relationship between smoking behavior and respiratory health?” Precise description of what is meant

by this is often side-stepped by investigators. Instead, they may plow ahead and write down a statistical

model. As we now discuss, this can lead to difficult or erroneous interpretations!

PAGE 389



CHAPTER 10 ST 732, M. DAVIDIAN

• In particular, a common approach is to specify a model relating Yij and Zij . For example, one

might adopt a population-averaged model; assuming a straight-line relationship,

Yij = β0 + β1Zij + ϵij ,

with some assumptions on the ϵij . Alternatively, a random coefficient model

Yij = β0i + β1iZij + eij

might be specified, with second stage model

β0i = β1 + b0i, β1i = β2 + b1i.

It should be clear that this second model can be written in the form Y i = Xiβ + Zibi + ei.

• The type of model is not the issue; both models imply that the mean of Yij is of the form

β0 + β1Zij . In fact, we must be careful how we interpret this. Because the Zij are random

variables that change with Yij , we can really only talk about this mean in the context of the Zij .

As we have discussed, Yij may be related to past, present, and future smoking behaviors; however,

this model seems to specify that respiratory health at time j is related only to smoking behavior

at time j.

• To be fancier about this, as discussed in Section 10.5, what we are really writing is a model that

describes the conditional expectation of Yij given knowledge of Zi1, . . . , Zini
. In the models

above, we are implicitly assuming that only Zij is associated with Yij in that knowing Zik, k ̸= j,

does not give us any more information about respiratory status at time tij . In symbols,

E(Yij |Zi1, . . . , Zini
) = E(Yij |Zij). (10.24)

If (10.24) does not hold, then it should be clear that we could end up drawing conclusions about

the relationship that may be misleading.

In fact, yet another issue arises. In many controlled studies, where units may be randomized to

different treatments, the goal is to claim that the use of a certain treatment relative to another causes

a more favorable mean response or more favorable rate of change of mean response over time.
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• It is widely accepted that such causal interpretation is possible under these circumstances,

because the assignment of the treatment was in no way related to how the response might turn

out (assigned at random). Here, the association between treatment and response may be given

a causal interpretation.

• On the other hand, suppose we measure smoking behavior and respiratory status at just a single

time point. Here, if there is an association between treatment and response, we cannot claim

that the smoking caused the respiratory status; there may be other factors, e.g. heredity, past

smoking behavior, environmental factors, etc., that are related both to how a person might be

smoking when we see him and how his respiratory health might turn out. These are referred to

as confounding factors.

• To take this into account, it is common to consider a statistical model that includes confounding

factors. If all such relevant factors are available, it may be possible to “adjust” for them in a

regression model so that causal interpretations can be made.

However, in the longitudinal context, the problems are compounded. The study may be carried out

the study because the investigators would like to claim that, say, higher levels of smoking cause poorer

respiratory health over time somehow.

• Even if we write out a model that accurately describes the relationship or association between

Yij and Zi1, . . . , Zini
, or even if (10.24) is true, we still cannot draw such a conclusion in general.

All the model does is describe the association, but that smoking actually causes health status

does not necessarily follow because of potential confounding.

• We would therefore need to adjust for confounding factors. However, the complicated interrela-

tionships between the Yij and Zij over time make this extremely difficult if not impossible! We

do not pursue this issue further, as it is quite complex, but it should be clear that simply testing

hypotheses about components of β in a simple model like those above will not address causal

questions in general.

This discussion is meant to convince the reader that models for longitudinal data that involve time-

dependent variables as covariates can be very difficult to specify and interpret. The analyst should be

aware of this and approach such situations with caution.

Some references related to this discussion are Pepe and Anderson (1994), Fitzmaurice, Laird, and Ware

(2004, Section 15.3), and Robins, Greenland, and Hu (1999).
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10.8 Discussion

The general linear mixed effects model, with its broad possibilities for modeling longitudinal data, has

become immensely popular as a framework for the analysis of these data. Although the basic model

has been considered in the statistical literature since the 1970s, it was not until a paper by Laird and

Ware (1982) appeared in Biometrics describing the model that it commanded widespread attention; this

article explained the model with more of an eye toward practical application than technical detail. As a

result, although the authors did not “invent” the model, it is sometimes referred to as the “Laird-Ware”

model in the statistical and subject matter literature.

MAIN FEATURES:

• The model allows the analyst to incorporate additional covariate information, allows the possibility

that some effects do not vary in the population, and includes as special cases many simpler, popular

models, such as the random coefficient model.

• The model explicitly acknowledges both among- and within-unit variation separately, allowing

the analyst to think about and characterize each source separately.

• Because the model is subject-specific in this sense, it allows the analyst to characterize individual

behavior through the use of best linear unbiased prediction.

10.9 Implementation with SAS

We consider two examples:

1. The dental study data – here, we use these data to illustrate how to fit a model with slopes fixed

rather than random and show how to obtain the BLUPs of the bi and βi.

2. Data from a strength-training study. We use these data to show how to fit and interpret general

linear mixed effects models with additional covariates.
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EXAMPLE 1 – DENTAL STUDY DATA:

• We fit two versions of the random coefficient model assuming a straight line relationship for each

child:

(i) The model with both intercepts and slopes random; i.e.

Yij = β0i + β1itij + eij ,

βi = β + bi, β =

⎛

⎜⎝
β0,G

β1,G

⎞

⎟⎠ girls, β =

⎛

⎜⎝
β0,B

β1,B

⎞

⎟⎠ boys.

This is the same model fitted in section 9.7. Here, also assume that var(bi) = D for both

genders and that

Ri = σ2
GI girls, Ri = σ2

BI boys.

(ii) The model with intercepts random but slopes considered as fixed in the populations of boys

and girls; i.e.

Yij = β0i + β1itij + eij ,

βi = β +

⎛

⎜⎝
b0i

0

⎞

⎟⎠ , β =

⎛

⎜⎝
β0,G

β1,G

⎞

⎟⎠ girls, β =

⎛

⎜⎝
β0,B

β1,B

⎞

⎟⎠ boys.

We also assume as in (i) that var(bi) = D for both genders and that

Ri = σ2
GI girls, Ri = σ2

BI boys.

• Thus, model (i) is the usual random coefficient model with random intercepts and slopes, while

(ii) is the modification with slopes all taken to be the same for all boys and for all girls. Note that

we may also write these models using the representation

βi = Aiβ + Bibi, β = (β0,G, β1,G, β0,B, β1,B)′,

where

(i) For model (i), Ai is the usual matrix of 0’s and 1’s that “picks off” the correct elements of

β depending on whether i is a boy or girl, Bi = I2, and bi = (b0i, b1i)′.

(ii) For model (ii), Ai is the usual matrix of 0’s and 1’s that “picks off” the correct elements of

β depending on whether i is a boy or girl, but now Bi = 12, and bi = b0i.

Of course, each model may be written in the general form

Y i = X iβ + Zibi + ei.
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• For each model, we show how to get PROC MIXED to produce and print out various “subject-

specific” quantities. In particular, we show how to use the outpred option of the model statement

to obtain the BLUPs at each time of observation for each child; i.e. the values of X iβ̂ +Zib̂i. We

also show how to obtain the values of the BLUPS of the bi, b̂i, by using the solution option of

the random statement. Finally, we exhibit how to obtain output data sets containing the estimates

of β and BLUPs of bi and how to manipulate these to obtain the BLUPs of the intercepts and

slopes, β̂i, for each individual.
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PROGRAM:

/*******************************************************************

CHAPTER 10, EXAMPLE 1

Illustration of

- fitting both a full random coefficient model as
in Chapter 9 and a and modified random coefficient model
with intercepts random and slopes fixed for the dental data
using PROC MIXED.

- obtaining BLUPs of random effects and random intercepts
(and slopes where applicable) for both models.

The model for each child is assumed to be a straight line.
The intercepts and slopes may have different means depending on
gender. However, for the modified model, slopes are taken
to be the SAME for all children within each gender. This assumption
is probably not true, but is made for illustrative purposes to
show how such a model may be specified in PROC MIXED.

For both models, we take D to be common to both genders and take
Ri = sigma^2_G I for girls and Ri = sigma^2_B for boys using the
REPEATED statement.

We use the RANDOM statement to specify how random effects enter the
model AND to ask for the BLUPs of the bi to be printed in each case.
We also use an option in the MODEL statement to ask for the
BLUPs of the individual means at each time point for each child.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set (See Example 1 of Chapter 4)

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

/*******************************************************************

Use PROC MIXED to fit the two linear mixed effects models.
For all of the fits, we use usual normal ML rather than REML
(the default). We call PROC MIXED twice to fit each model, for
reasons described below.

In all cases, we use the usual parameterization for the mean
model.

Here, we use the syntax for versions 7 and higher of SAS for
outputting calculations to data sets from PROC MIXED.

In the first call to PROC MIXED:

We use the OUTPRED=dataset option in the MODEL statement. This
requests that the (approximate) Best Linear Unbiased Predictors
for the individual means at each time point in the data set for
each child be put in dataset (along with the original data for comparison).
These may be printed with a print statement, as shown.

The SOLUTION option in the RANDOM statement requests that the
(approximate) Best Linear Unbiased Predictors for the random effects
bi be printed for each child.

In the second call to PROC MIXED, we use the ODS statement to
produce data sets containing the fixed effects estimates and
the BLUPs for the random effects. We use the Output Delivery System
in SAS, or ODS. The first ODS call with "listing exclude" suppresses
printing of the fixed and random effects.

To fit the full random coefficient model, we must specify that both
intercept and slope are random in the RANDOM statement. To fit
the modified model where slopes are taken to be constant across all
children within a gender, we specify only that intercept is random
in the RANDOM statement.

*******************************************************************/

* MODEL (i) -- full random coefficient model;
* Call to PROC MIXED to get the printed results;

title ’FULL RANDOM COEFFICIENT MODEL WITH BOTH’;
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title2 ’INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER’;
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution outpred=pdata;
random intercept age / type=un subject=child solution;
repeated / group=gender subject=child;

run;

proc print data=pdata;
run;

/*******************************************************************

The output data sets FIXED1 and RANDOM1 we ask PROC MIXED
to create in the ODS statements contain the estimated fixed
effects (betahats) and random effects (the BLUPs of bis),
respectively. We now combine these into a single data set
in order to compute the BLUPs of the individual betais.
This is accomplished by manipulating the output data sets and
then merging them.

*******************************************************************/

* Call to PROC MIXED to produce the output data sets;

proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution;
random intercept age / type=un subject=child solution ;
repeated / group=gender subject=child;
ods listing exclude SolutionF;
ods output SolutionF=fixed1;
ods listing exclude SolutionR;
ods output SolutionR=rand1;

run;

data fixed1; set fixed1;
keep gender effect estimate;

run;

title3 ’FIXED EFFECTS OUTPUT DATA SET’;
proc print data=fixed1; run;

proc sort data=fixed1; by gender; run;

data fixed12; set fixed1; by gender;
retain fixint fixslope;
if effect=’gender’ then fixint=estimate;
if effect=’age*gender’ then fixslope=estimate;
if last.gender then do;

output; fixint=.; fixslope=.;
end;
drop effect estimate;

run;

title3 ’RECONFIGURED FIXED EFFECTS DATA SET’;
proc print data=fixed12; run;

data rand1; set rand1;
gender=1; if child<12 then gender=0;
keep child gender effect estimate;

run;

title3 ’RANDOM EFFECTS OUTPUT DATA SET’;
proc print data=rand1; run;

proc sort data=rand1; by child; run;

data rand12; set rand1; by child;
retain ranint ranslope;
if effect=’Intercept’ then ranint=estimate;
if effect=’age’ then ranslope=estimate;
if last.child then do;

output; ranint=.; ranslope=.;
end;
drop effect estimate;

run;

proc sort data=rand12; by gender child; run;
title3 ’RECONFIGURED RANDOM EFFECTS DATA SET’;
proc print data=rand12; run;

data both1; merge fixed12 rand12; by gender;
beta0i=fixint+ranint;
beta1i=fixslope+ranslope;

run;

title3 ’RANDOM INTERCEPTS AND SLOPES’;
proc print data=both1; run;
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* MODEL (ii) -- common slope within each gender;
* Call to PROC MIXED to get the printed results;
* To save space, we do not print the predicted values;

title ’MODIFIED RANDOM COEFFICIENT MODEL WITH’;
title2 ’INTERCEPTS RANDOM, SLOPES FIXED’;
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution ;
random intercept / type=un subject=child solution;
repeated / group=gender subject=child;

run;

* Call to PROC MIXED to get the output data sets;

proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution;
random intercept / type=un subject=child solution;
repeated / group=gender subject=child;
ods listing exclude SolutionF;
ods output SolutionF=fixed2;
ods listing exclude SolutionR;
ods output SolutionR=rand2;

run;

data fixed2; set fixed2;
keep gender effect estimate;

run;

title3 ’FIXED EFFECTS OUTPUT DATA SET’;
proc print data=fixed2; run;

proc sort data=fixed2; by gender; run;

data fixed22; set fixed2; by gender;
retain fixint fixslope;
if effect=’gender’ then fixint=estimate;
if effect=’age*gender’ then fixslope=estimate;
if last.gender then do;

output; fixint=.; fixslope=.;
end;
drop effect estimate;

run;

title3 ’RECONFIGURED FIXED EFFECTS DATA SET’;
proc print data=fixed22; run;

data rand2; set rand2;
gender=1; if child<12 then gender=0;
keep child gender effect estimate;

run;

title3 ’RANDOM EFFECTS OUTPUT DATA SET’;
proc print data=rand2; run;

proc sort data=rand2; by child; run;

data rand22; set rand2; by child;
retain ranint ranslope;
if effect=’Intercept’ then ranint=estimate;
if last.child then do;

output; ranint=.;
end;
drop effect estimate;

run;

proc sort data=rand22; by gender child; run;
title3 ’RECONFIGURED RANDOM EFFECTS DATA SET’;
proc print data=rand22; run;

data both2; merge fixed22 rand22; by gender;
beta0i=fixint+ranint;
beta1i=fixslope;

run;

title3 ’RANDOM INTERCEPTS AND FIXED SLOPES’;
proc print data=both2; run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

FULL RANDOM COEFFICIENT MODEL WITH BOTH 1
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 418.92503842 1.16632499
2 1 416.18869903 1.23326209
3 1 407.89638533 0.01954268
4 2 406.88264563 0.00645800
5 1 406.10632159 0.00056866
6 1 406.04318997 0.00000764
7 1 406.04238894 0.00000000

FULL RANDOM COEFFICIENT MODEL WITH BOTH 2
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1978
UN(2,1) child -0.1103
UN(2,2) child 0.01976
Residual child gender 0 0.4449
Residual child gender 1 2.6294

Fit Statistics

-2 Log Likelihood 406.0
AIC (smaller is better) 424.0
AICC (smaller is better) 425.9
BIC (smaller is better) 435.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

4 72.20 <.0001

Solution for Fixed Effects

Standard
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Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7386 54 23.52 <.0001
gender 1 16.3406 1.1114 54 14.70 <.0001
age*gender 0 0.4795 0.06180 54 7.76 <.0001
age*gender 1 0.7844 0.09722 54 8.07 <.0001

Solution for Random Effects

Std Err
Effect child Estimate Pred DF t Value Pr > |t|

Intercept 1 -0.4853 1.1744 54 -0.41 0.6811
age 1 -0.06820 0.1017 54 -0.67 0.5052
Intercept 2 -1.1922 1.1744 54 -1.02 0.3146
age 2 0.1420 0.1017 54 1.40 0.1683
Intercept 3 -0.8535 1.1744 54 -0.73 0.4705
age 3 0.1773 0.1017 54 1.74 0.0869
Intercept 4 1.7024 1.1744 54 1.45 0.1530
age 4 0.04017 0.1017 54 0.40 0.6943
Intercept 5 0.9136 1.1744 54 0.78 0.4400

FULL RANDOM COEFFICIENT MODEL WITH BOTH 3
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Solution for Random Effects

Std Err
Effect child Estimate Pred DF t Value Pr > |t|

age 5 -0.08680 0.1017 54 -0.85 0.3970
Intercept 6 -0.6740 1.1744 54 -0.57 0.5684
age 6 -0.07292 0.1017 54 -0.72 0.4763
Intercept 7 -0.05461 1.1744 54 -0.05 0.9631
age 7 0.03641 0.1017 54 0.36 0.7217
Intercept 8 1.9350 1.1744 54 1.65 0.1052
age 8 -0.1149 0.1017 54 -1.13 0.2636
Intercept 9 -0.2190 1.1744 54 -0.19 0.8528
age 9 -0.1151 0.1017 54 -1.13 0.2624
Intercept 10 -2.9974 1.1744 54 -2.55 0.0136
age 10 -0.09085 0.1017 54 -0.89 0.3755
Intercept 11 1.9249 1.1744 54 1.64 0.1070
age 11 0.1530 0.1017 54 1.50 0.1382
Intercept 12 1.3469 1.4342 54 0.94 0.3519
age 12 0.08788 0.1232 54 0.71 0.4786
Intercept 13 -0.8676 1.4342 54 -0.60 0.5478
age 13 -0.04068 0.1232 54 -0.33 0.7424
Intercept 14 -0.3575 1.4342 54 -0.25 0.8041
age 14 -0.02176 0.1232 54 -0.18 0.8605
Intercept 15 1.5946 1.4342 54 1.11 0.2711
age 15 -0.02772 0.1232 54 -0.23 0.8228
Intercept 16 -1.1581 1.4342 54 -0.81 0.4229
age 16 -0.04153 0.1232 54 -0.34 0.7373
Intercept 17 0.8972 1.4342 54 0.63 0.5342
age 17 0.02260 0.1232 54 0.18 0.8551
Intercept 18 -0.6889 1.4342 54 -0.48 0.6329
age 18 -0.02853 0.1232 54 -0.23 0.8177
Intercept 19 -0.1443 1.4342 54 -0.10 0.9202
age 19 -0.07348 0.1232 54 -0.60 0.5533
Intercept 20 -0.1273 1.4342 54 -0.09 0.9296
age 20 0.02544 0.1232 54 0.21 0.8372
Intercept 21 2.5349 1.4342 54 1.77 0.0828
age 21 0.1088 0.1232 54 0.88 0.3811
Intercept 22 -0.2261 1.4342 54 -0.16 0.8753
age 22 -0.08535 0.1232 54 -0.69 0.4913
Intercept 23 -0.6374 1.4342 54 -0.44 0.6585
age 23 0.006510 0.1232 54 0.05 0.9580
Intercept 24 -1.7008 1.4342 54 -1.19 0.2409
age 24 0.1139 0.1232 54 0.92 0.3591
Intercept 25 0.2387 1.4342 54 0.17 0.8684
age 25 -0.03166 0.1232 54 -0.26 0.7981
Intercept 26 0.1180 1.4342 54 0.08 0.9347
age 26 0.06104 0.1232 54 0.50 0.6222
Intercept 27 -0.8223 1.4342 54 -0.57 0.5688
age 27 -0.07545 0.1232 54 -0.61 0.5427

FULL RANDOM COEFFICIENT MODEL WITH BOTH 4
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 384.72 <.0001
age*gender 2 54 62.66 <.0001
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FULL RANDOM COEFFICIENT MODEL WITH BOTH 5
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

S
t

d d
i E
s g r

o c t e r A L U R
b h a n P P l o p e

O s i a n d r r p w p s
b n l g c e e e D h e e i
s o d e e r d d F a r r d

1 1 1 8 21.0 0 20.1783 0.43711 54 0.05 19.3019 21.0546 0.82175
2 2 1 10 20.0 0 21.0009 0.33796 54 0.05 20.3234 21.6785 -1.00095
3 3 1 12 21.5 0 21.8236 0.34908 54 0.05 21.1238 22.5235 -0.32365
4 4 1 14 23.0 0 22.6463 0.46259 54 0.05 21.7189 23.5738 0.35366
5 5 2 8 21.0 0 21.1527 0.43711 54 0.05 20.2763 22.0290 -0.15266
6 6 2 10 21.5 0 22.3957 0.33796 54 0.05 21.7181 23.0733 -0.89570
7 7 2 12 24.0 0 23.6387 0.34908 54 0.05 22.9389 24.3386 0.36126
8 8 2 14 25.5 0 24.8818 0.46259 54 0.05 23.9543 25.8092 0.61822
9 9 3 8 20.5 0 21.7737 0.43711 54 0.05 20.8974 22.6501 -1.27372
10 10 3 10 24.0 0 23.0873 0.33796 54 0.05 22.4098 23.7649 0.91266
11 11 3 12 24.5 0 24.4010 0.34908 54 0.05 23.7011 25.1008 0.09905
12 12 3 14 26.0 0 25.7146 0.46259 54 0.05 24.7871 26.6420 0.28543
13 13 4 8 23.5 0 23.2329 0.43711 54 0.05 22.3565 24.1092 0.26713
14 14 4 10 24.5 0 24.2723 0.33796 54 0.05 23.5947 24.9499 0.22770
15 15 4 12 25.0 0 25.3117 0.34908 54 0.05 24.6119 26.0116 -0.31173
16 16 4 14 26.5 0 26.3512 0.46259 54 0.05 25.4237 27.2786 0.14884
17 17 5 8 21.5 0 21.4283 0.43711 54 0.05 20.5519 22.3046 0.07171
18 18 5 10 23.0 0 22.2138 0.33796 54 0.05 21.5362 22.8913 0.78623
19 19 5 12 22.5 0 22.9993 0.34908 54 0.05 22.2994 23.6991 -0.49926
20 20 5 14 23.5 0 23.7847 0.46259 54 0.05 22.8573 24.7122 -0.28474
21 21 6 8 20.0 0 19.9517 0.43711 54 0.05 19.0753 20.8280 0.04831
22 22 6 10 21.0 0 20.7649 0.33796 54 0.05 20.0874 21.4425 0.23506
23 23 6 12 21.0 0 21.5782 0.34908 54 0.05 20.8783 22.2781 -0.57819
24 24 6 14 22.5 0 22.3914 0.46259 54 0.05 21.4640 23.3189 0.10856
25 25 7 8 21.5 0 21.4457 0.43711 54 0.05 20.5694 22.3221 0.05426
26 26 7 10 22.5 0 22.4776 0.33796 54 0.05 21.8001 23.1552 0.02235
27 27 7 12 23.0 0 23.5096 0.34908 54 0.05 22.8097 24.2094 -0.50955
28 28 7 14 25.0 0 24.5415 0.46259 54 0.05 23.6140 25.4689 0.45854
29 29 8 8 23.0 0 22.2252 0.43711 54 0.05 21.3489 23.1016 0.77479
30 30 8 10 23.0 0 22.9546 0.33796 54 0.05 22.2770 23.6321 0.04542
31 31 8 12 23.5 0 23.6840 0.34908 54 0.05 22.9841 24.3838 -0.18396
32 32 8 14 24.0 0 24.4133 0.46259 54 0.05 23.4859 25.3408 -0.41333
33 33 9 8 20.0 0 20.0689 0.43711 54 0.05 19.1926 20.9453 -0.06892
34 34 9 10 21.0 0 20.7977 0.33796 54 0.05 20.1202 21.4753 0.20228
35 35 9 12 22.0 0 21.5265 0.34908 54 0.05 20.8266 22.2264 0.47349
36 36 9 14 21.5 0 22.2553 0.46259 54 0.05 21.3279 23.1827 -0.75531
37 37 10 8 16.5 0 17.4849 0.43711 54 0.05 16.6085 18.3612 -0.98488
38 38 10 10 19.0 0 18.2623 0.33796 54 0.05 17.5847 18.9398 0.73774
39 39 10 12 19.0 0 19.0396 0.34908 54 0.05 18.3398 19.7395 -0.03964
40 40 10 14 19.5 0 19.8170 0.46259 54 0.05 18.8896 20.7445 -0.31702
41 41 11 8 24.5 0 24.3578 0.43711 54 0.05 23.4814 25.2341 0.14223
42 42 11 10 25.0 0 25.6228 0.33796 54 0.05 24.9452 26.3004 -0.62280
43 43 11 12 28.0 0 26.8878 0.34908 54 0.05 26.1880 27.5877 1.11218
44 44 11 14 28.0 0 28.1529 0.46259 54 0.05 27.2254 29.0803 -0.15285
45 45 12 8 26.0 1 24.6655 0.81030 54 0.05 23.0410 26.2901 1.33449

FULL RANDOM COEFFICIENT MODEL WITH BOTH 6
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER
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46 46 12 10 25.0 1 26.4100 0.73529 54 0.05 24.9358 27.8842 -1.41001
47 47 12 12 29.0 1 28.1545 0.77585 54 0.05 26.5990 29.7100 0.84549
48 48 12 14 31.0 1 29.8990 0.91676 54 0.05 28.0610 31.7370 1.10099
49 49 13 8 21.5 1 21.4226 0.81030 54 0.05 19.7980 23.0471 0.07741
50 50 13 10 22.5 1 22.9100 0.73529 54 0.05 21.4358 24.3841 -0.40997
51 51 13 12 23.0 1 24.3974 0.77585 54 0.05 22.8419 25.9528 -1.39735
52 52 13 14 26.5 1 25.8847 0.91676 54 0.05 24.0467 27.7227 0.61526
53 53 14 8 23.0 1 22.0841 0.81030 54 0.05 20.4595 23.7086 0.91593
54 54 14 10 22.5 1 23.6093 0.73529 54 0.05 22.1351 25.0835 -1.10931
55 55 14 12 24.0 1 25.1345 0.77585 54 0.05 23.5791 26.6900 -1.13454
56 56 14 14 27.5 1 26.6598 0.91676 54 0.05 24.8218 28.4978 0.84022
57 57 15 8 25.5 1 23.9885 0.81030 54 0.05 22.3639 25.6130 1.51152
58 58 15 10 27.5 1 25.5018 0.73529 54 0.05 24.0276 26.9760 1.99821
59 59 15 12 26.5 1 27.0151 0.77585 54 0.05 25.4596 28.5706 -0.51510
60 60 15 14 27.0 1 28.5284 0.91676 54 0.05 26.6904 30.3664 -1.52841
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61 61 16 8 20.0 1 21.1253 0.81030 54 0.05 19.5007 22.7498 -1.12529
62 62 16 10 23.5 1 22.6110 0.73529 54 0.05 21.1368 24.0852 0.88902
63 63 16 12 22.5 1 24.0967 0.77585 54 0.05 22.5412 25.6522 -1.59668
64 64 16 14 26.0 1 25.5824 0.91676 54 0.05 23.7444 27.4204 0.41763
65 65 17 8 24.5 1 23.6936 0.81030 54 0.05 22.0690 25.3181 0.80642
66 66 17 10 25.5 1 25.3075 0.73529 54 0.05 23.8334 26.7817 0.19248
67 67 17 12 27.0 1 26.9215 0.77585 54 0.05 25.3660 28.4769 0.07853
68 68 17 14 28.5 1 28.5354 0.91676 54 0.05 26.6974 30.3734 -0.03541
69 69 18 8 22.0 1 21.6984 0.81030 54 0.05 20.0739 23.3230 0.30159
70 70 18 10 22.0 1 23.2101 0.73529 54 0.05 21.7359 24.6843 -1.21009
71 71 18 12 24.5 1 24.7218 0.77585 54 0.05 23.1663 26.2773 -0.22177
72 72 18 14 26.5 1 26.2335 0.91676 54 0.05 24.3955 28.0714 0.26655
73 73 19 8 24.0 1 21.8835 0.81030 54 0.05 20.2589 23.5080 2.11654
74 74 19 10 21.5 1 23.3053 0.73529 54 0.05 21.8311 24.7794 -1.80525
75 75 19 12 24.5 1 24.7270 0.77585 54 0.05 23.1716 26.2825 -0.22705
76 76 19 14 25.5 1 26.1488 0.91676 54 0.05 24.3108 27.9868 -0.64884
77 77 20 8 23.0 1 22.6918 0.81030 54 0.05 21.0673 24.3164 0.30818
78 78 20 10 20.5 1 24.3114 0.73529 54 0.05 22.8373 25.7856 -3.81145
79 79 20 12 31.0 1 25.9311 0.77585 54 0.05 24.3756 27.4866 5.06892
80 80 20 14 26.0 1 27.5507 0.91676 54 0.05 25.7127 29.3887 -1.55070
81 81 21 8 27.5 1 26.0207 0.81030 54 0.05 24.3961 27.6452 1.47931
82 82 21 10 28.0 1 27.8070 0.73529 54 0.05 26.3328 29.2812 0.19301
83 83 21 12 31.0 1 29.5933 0.77585 54 0.05 28.0378 31.1488 1.40672
84 84 21 14 31.5 1 31.3796 0.91676 54 0.05 29.5416 33.2176 0.12043
85 85 22 8 23.0 1 21.7067 0.81030 54 0.05 20.0822 23.3313 1.29325
86 86 22 10 23.0 1 23.1048 0.73529 54 0.05 21.6306 24.5790 -0.10480
87 87 22 12 23.5 1 24.5029 0.77585 54 0.05 22.9474 26.0583 -1.00286
88 88 22 14 25.0 1 25.9009 0.91676 54 0.05 24.0629 27.7389 -0.90091
89 89 23 8 21.5 1 22.0303 0.81030 54 0.05 20.4058 23.6549 -0.53035
90 90 23 10 23.5 1 23.6121 0.73529 54 0.05 22.1379 25.0863 -0.11212

FULL RANDOM COEFFICIENT MODEL WITH BOTH 7
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER
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91 91 23 12 24.0 1 25.1939 0.77585 54 0.05 23.6384 26.7494 -1.19389
92 92 23 14 28.0 1 26.7757 0.91676 54 0.05 24.9377 28.6136 1.22434
93 93 24 8 17.0 1 21.8262 0.81030 54 0.05 20.2017 23.4508 -4.82621
94 94 24 10 24.5 1 23.6228 0.73529 54 0.05 22.1486 25.0970 0.87720
95 95 24 12 26.0 1 25.4194 0.77585 54 0.05 23.8639 26.9749 0.58060
96 96 24 14 29.5 1 27.2160 0.91676 54 0.05 25.3780 29.0540 2.28401
97 97 25 8 22.5 1 22.6011 0.81030 54 0.05 20.9765 24.2256 -0.10106
98 98 25 10 25.5 1 24.1065 0.73529 54 0.05 22.6323 25.5807 1.39350
99 99 25 12 25.5 1 25.6119 0.77585 54 0.05 24.0565 27.1674 -0.11193
100 100 25 14 26.0 1 27.1174 0.91676 54 0.05 25.2794 28.9554 -1.11737
101 101 26 8 23.0 1 23.2220 0.81030 54 0.05 21.5974 24.8465 -0.22197
102 102 26 10 24.5 1 24.9128 0.73529 54 0.05 23.4386 26.3870 -0.41281
103 103 26 12 26.0 1 26.6036 0.77585 54 0.05 25.0482 28.1591 -0.60364
104 104 26 14 30.0 1 28.2945 0.91676 54 0.05 26.4565 30.1325 1.70552
105 105 27 8 22.0 1 21.1898 0.81030 54 0.05 19.5652 22.8143 0.81025
106 106 27 10 21.5 1 22.6076 0.73529 54 0.05 21.1334 24.0818 -1.10761
107 107 27 12 23.5 1 24.0255 0.77585 54 0.05 22.4700 25.5809 -0.52546
108 108 27 14 25.0 1 25.4433 0.91676 54 0.05 23.6053 27.2813 -0.44332

FULL RANDOM COEFFICIENT MODEL WITH BOTH 8
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23

PAGE 401



CHAPTER 10 ST 732, M. DAVIDIAN

24 25 26 27

Dimensions

Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 418.92503842 1.16632499
2 1 416.18869903 1.23326209
3 1 407.89638533 0.01954268
4 2 406.88264563 0.00645800
5 1 406.10632159 0.00056866
6 1 406.04318997 0.00000764
7 1 406.04238894 0.00000000

FULL RANDOM COEFFICIENT MODEL WITH BOTH 9
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1978
UN(2,1) child -0.1103
UN(2,2) child 0.01976
Residual child gender 0 0.4449
Residual child gender 1 2.6294

Fit Statistics

-2 Log Likelihood 406.0
AIC (smaller is better) 424.0
AICC (smaller is better) 425.9
BIC (smaller is better) 435.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

4 72.20 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 384.72 <.0001
age*gender 2 54 62.66 <.0001

FULL RANDOM COEFFICIENT MODEL WITH BOTH 10
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

FIXED EFFECTS OUTPUT DATA SET

Obs Effect gender Estimate

1 gender 0 17.3727
2 gender 1 16.3406
3 age*gender 0 0.4795
4 age*gender 1 0.7844

FULL RANDOM COEFFICIENT MODEL WITH BOTH 11
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

RECONFIGURED FIXED EFFECTS DATA SET

Obs gender fixint fixslope
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1 0 17.3727 0.47955
2 1 16.3406 0.78437

FULL RANDOM COEFFICIENT MODEL WITH BOTH 12
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

RANDOM EFFECTS OUTPUT DATA SET

Obs Effect child Estimate gender

1 Intercept 1 -0.4853 0
2 age 1 -0.06820 0
3 Intercept 2 -1.1922 0
4 age 2 0.1420 0
5 Intercept 3 -0.8535 0
6 age 3 0.1773 0
7 Intercept 4 1.7024 0
8 age 4 0.04017 0
9 Intercept 5 0.9136 0
10 age 5 -0.08680 0
11 Intercept 6 -0.6740 0
12 age 6 -0.07292 0
13 Intercept 7 -0.05461 0
14 age 7 0.03641 0
15 Intercept 8 1.9350 0
16 age 8 -0.1149 0
17 Intercept 9 -0.2190 0
18 age 9 -0.1151 0
19 Intercept 10 -2.9974 0
20 age 10 -0.09085 0
21 Intercept 11 1.9249 0
22 age 11 0.1530 0
23 Intercept 12 1.3469 1
24 age 12 0.08788 1
25 Intercept 13 -0.8676 1
26 age 13 -0.04068 1
27 Intercept 14 -0.3575 1
28 age 14 -0.02176 1
29 Intercept 15 1.5946 1
30 age 15 -0.02772 1
31 Intercept 16 -1.1581 1
32 age 16 -0.04153 1
33 Intercept 17 0.8972 1
34 age 17 0.02260 1
35 Intercept 18 -0.6889 1
36 age 18 -0.02853 1
37 Intercept 19 -0.1443 1
38 age 19 -0.07348 1
39 Intercept 20 -0.1273 1
40 age 20 0.02544 1
41 Intercept 21 2.5349 1
42 age 21 0.1088 1
43 Intercept 22 -0.2261 1
44 age 22 -0.08535 1
45 Intercept 23 -0.6374 1
46 age 23 0.006510 1
47 Intercept 24 -1.7008 1
48 age 24 0.1139 1
49 Intercept 25 0.2387 1
50 age 25 -0.03166 1
51 Intercept 26 0.1180 1
52 age 26 0.06104 1
53 Intercept 27 -0.8223 1

FULL RANDOM COEFFICIENT MODEL WITH BOTH 13
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

RANDOM EFFECTS OUTPUT DATA SET

Obs Effect child Estimate gender

54 age 27 -0.07545 1

FULL RANDOM COEFFICIENT MODEL WITH BOTH 14
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

RECONFIGURED RANDOM EFFECTS DATA SET

Obs child gender ranint ranslope

1 1 0 -0.48526 -0.06820
2 2 0 -1.19224 0.14198
3 3 0 -0.85346 0.17726
4 4 0 1.70243 0.04017
5 5 0 0.91363 -0.08680
6 6 0 -0.67403 -0.07292
7 7 0 -0.05461 0.03641
8 8 0 1.93498 -0.11486
9 9 0 -0.21898 -0.11515

10 10 0 -2.99738 -0.09085
11 11 0 1.92494 0.15297
12 12 1 1.34688 0.08788
13 13 1 -0.86755 -0.04068
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14 14 1 -0.35750 -0.02176
15 15 1 1.59462 -0.02772
16 16 1 -1.15811 -0.04153
17 17 1 0.89718 0.02260
18 18 1 -0.68894 -0.02853
19 19 1 -0.14433 -0.07348
20 20 1 -0.12730 0.02544
21 21 1 2.53489 0.10877
22 22 1 -0.22609 -0.08535
23 23 1 -0.63735 0.00651
24 24 1 -1.70079 0.11392
25 25 1 0.23870 -0.03166
26 26 1 0.11799 0.06104
27 27 1 -0.82229 -0.07545

FULL RANDOM COEFFICIENT MODEL WITH BOTH 15
INTERCEPTS AND SLOPES RANDOM FOR EACH GENDER

RANDOM INTERCEPTS AND SLOPES

Obs gender fixint fixslope child ranint ranslope beta0i beta1i

1 0 17.3727 0.47955 1 -0.48526 -0.06820 16.8875 0.41135
2 0 17.3727 0.47955 2 -1.19224 0.14198 16.1805 0.62152
3 0 17.3727 0.47955 3 -0.85346 0.17726 16.5193 0.65681
4 0 17.3727 0.47955 4 1.70243 0.04017 19.0752 0.51971
5 0 17.3727 0.47955 5 0.91363 -0.08680 18.2864 0.39274
6 0 17.3727 0.47955 6 -0.67403 -0.07292 16.6987 0.40662
7 0 17.3727 0.47955 7 -0.05461 0.03641 17.3181 0.51595
8 0 17.3727 0.47955 8 1.93498 -0.11486 19.3077 0.36469
9 0 17.3727 0.47955 9 -0.21898 -0.11515 17.1537 0.36440
10 0 17.3727 0.47955 10 -2.99738 -0.09085 14.3753 0.38869
11 0 17.3727 0.47955 11 1.92494 0.15297 19.2977 0.63251
12 1 16.3406 0.78437 12 1.34688 0.08788 17.6875 0.87225
13 1 16.3406 0.78437 13 -0.86755 -0.04068 15.4731 0.74369
14 1 16.3406 0.78437 14 -0.35750 -0.02176 15.9831 0.76262
15 1 16.3406 0.78437 15 1.59462 -0.02772 17.9352 0.75665
16 1 16.3406 0.78437 16 -1.15811 -0.04153 15.1825 0.74285
17 1 16.3406 0.78437 17 0.89718 0.02260 17.2378 0.80697
18 1 16.3406 0.78437 18 -0.68894 -0.02853 15.6517 0.75584
19 1 16.3406 0.78437 19 -0.14433 -0.07348 16.1963 0.71090
20 1 16.3406 0.78437 20 -0.12730 0.02544 16.2133 0.80981
21 1 16.3406 0.78437 21 2.53489 0.10877 18.8755 0.89315
22 1 16.3406 0.78437 22 -0.22609 -0.08535 16.1145 0.69903
23 1 16.3406 0.78437 23 -0.63735 0.00651 15.7033 0.79088
24 1 16.3406 0.78437 24 -1.70079 0.11392 14.6398 0.89830
25 1 16.3406 0.78437 25 0.23870 -0.03166 16.5793 0.75272
26 1 16.3406 0.78437 26 0.11799 0.06104 16.4586 0.84542
27 1 16.3406 0.78437 27 -0.82229 -0.07545 15.5183 0.70893

MODIFIED RANDOM COEFFICIENT MODEL WITH 16
INTERCEPTS RANDOM, SLOPES FIXED

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 3
Columns in X 4
Columns in Z Per Subject 1
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0
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Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 411.27740673 0.01732264
2 1 409.74920841 0.00328703
3 1 409.36512908 0.00011752
4 1 409.35237809 0.00000026
5 1 409.35235096 0.00000000

MODIFIED RANDOM COEFFICIENT MODEL WITH 17
INTERCEPTS RANDOM, SLOPES FIXED

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1405
Residual child gender 0 0.5920
Residual child gender 1 2.7286

Fit Statistics

-2 Log Likelihood 409.4
AIC (smaller is better) 423.4
AICC (smaller is better) 424.5
BIC (smaller is better) 432.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

2 68.89 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7903 79 21.98 <.0001
gender 1 16.3406 1.1272 79 14.50 <.0001
age*gender 0 0.4795 0.05187 79 9.24 <.0001
age*gender 1 0.7844 0.09234 79 8.49 <.0001

Solution for Random Effects

Std Err
Effect child Estimate Pred DF t Value Pr > |t|

Intercept 1 -1.2154 0.6434 79 -1.89 0.0626
Intercept 2 0.3364 0.6434 79 0.52 0.6025
Intercept 3 1.0527 0.6434 79 1.64 0.1058
Intercept 4 2.1270 0.6434 79 3.31 0.0014
Intercept 5 -0.02170 0.6434 79 -0.03 0.9732
Intercept 6 -1.4542 0.6434 79 -2.26 0.0266
Intercept 7 0.3364 0.6434 79 0.52 0.6025
Intercept 8 0.6945 0.6434 79 1.08 0.2837
Intercept 9 -1.4542 0.6434 79 -2.26 0.0266
Intercept 10 -3.9611 0.6434 79 -6.16 <.0001
Intercept 11 3.5595 0.6434 79 5.53 <.0001

MODIFIED RANDOM COEFFICIENT MODEL WITH 18
INTERCEPTS RANDOM, SLOPES FIXED

The Mixed Procedure

Solution for Random Effects

Std Err
Effect child Estimate Pred DF t Value Pr > |t|

Intercept 12 2.2849 0.8495 79 2.69 0.0087
Intercept 13 -1.3093 0.8495 79 -1.54 0.1272
Intercept 14 -0.5905 0.8495 79 -0.70 0.4890
Intercept 15 1.3607 0.8495 79 1.60 0.1132
Intercept 16 -1.6174 0.8495 79 -1.90 0.0606
Intercept 17 1.1553 0.8495 79 1.36 0.1777
Intercept 18 -1.0013 0.8495 79 -1.18 0.2421
Intercept 19 -0.8986 0.8495 79 -1.06 0.2934
Intercept 20 0.1284 0.8495 79 0.15 0.8803
Intercept 21 3.7227 0.8495 79 4.38 <.0001
Intercept 22 -1.1040 0.8495 79 -1.30 0.1975
Intercept 23 -0.5905 0.8495 79 -0.70 0.4890
Intercept 24 -0.5905 0.8495 79 -0.70 0.4890
Intercept 25 -0.07702 0.8495 79 -0.09 0.9280
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Intercept 26 0.7445 0.8495 79 0.88 0.3835
Intercept 27 -1.6174 0.8495 79 -1.90 0.0606

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 79 346.69 <.0001
age*gender 2 79 78.81 <.0001

MODIFIED RANDOM COEFFICIENT MODEL WITH 19
INTERCEPTS RANDOM, SLOPES FIXED

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 3
Columns in X 4
Columns in Z Per Subject 1
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 411.27740673 0.01732264
2 1 409.74920841 0.00328703
3 1 409.36512908 0.00011752
4 1 409.35237809 0.00000026
5 1 409.35235096 0.00000000

MODIFIED RANDOM COEFFICIENT MODEL WITH 20
INTERCEPTS RANDOM, SLOPES FIXED

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1405
Residual child gender 0 0.5920
Residual child gender 1 2.7286

Fit Statistics

-2 Log Likelihood 409.4
AIC (smaller is better) 423.4
AICC (smaller is better) 424.5
BIC (smaller is better) 432.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

2 68.89 <.0001

PAGE 406



CHAPTER 10 ST 732, M. DAVIDIAN

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 79 346.69 <.0001
age*gender 2 79 78.81 <.0001

MODIFIED RANDOM COEFFICIENT MODEL WITH 21
INTERCEPTS RANDOM, SLOPES FIXED
FIXED EFFECTS OUTPUT DATA SET

Obs Effect gender Estimate

1 gender 0 17.3727
2 gender 1 16.3406
3 age*gender 0 0.4795
4 age*gender 1 0.7844

MODIFIED RANDOM COEFFICIENT MODEL WITH 22
INTERCEPTS RANDOM, SLOPES FIXED

RECONFIGURED FIXED EFFECTS DATA SET

Obs gender fixint fixslope

1 0 17.3727 0.47955
2 1 16.3406 0.78438

MODIFIED RANDOM COEFFICIENT MODEL WITH 23
INTERCEPTS RANDOM, SLOPES FIXED
RANDOM EFFECTS OUTPUT DATA SET

Obs Effect child Estimate gender

1 Intercept 1 -1.2154 0
2 Intercept 2 0.3364 0
3 Intercept 3 1.0527 0
4 Intercept 4 2.1270 0
5 Intercept 5 -0.02170 0
6 Intercept 6 -1.4542 0
7 Intercept 7 0.3364 0
8 Intercept 8 0.6945 0
9 Intercept 9 -1.4542 0
10 Intercept 10 -3.9611 0
11 Intercept 11 3.5595 0
12 Intercept 12 2.2849 1
13 Intercept 13 -1.3093 1
14 Intercept 14 -0.5905 1
15 Intercept 15 1.3607 1
16 Intercept 16 -1.6174 1
17 Intercept 17 1.1553 1
18 Intercept 18 -1.0013 1
19 Intercept 19 -0.8986 1
20 Intercept 20 0.1284 1
21 Intercept 21 3.7227 1
22 Intercept 22 -1.1040 1
23 Intercept 23 -0.5905 1
24 Intercept 24 -0.5905 1
25 Intercept 25 -0.07702 1
26 Intercept 26 0.7445 1
27 Intercept 27 -1.6174 1

MODIFIED RANDOM COEFFICIENT MODEL WITH 24
INTERCEPTS RANDOM, SLOPES FIXED

RECONFIGURED RANDOM EFFECTS DATA SET

Obs child gender ranint

1 1 0 -1.21545
2 2 0 0.33642
3 3 0 1.05266
4 4 0 2.12703
5 5 0 -0.02170
6 6 0 -1.45420
7 7 0 0.33642
8 8 0 0.69454
9 9 0 -1.45420

10 10 0 -3.96105
11 11 0 3.55952
12 12 1 2.28494
13 13 1 -1.30935
14 14 1 -0.59049
15 15 1 1.36069
16 16 1 -1.61743
17 17 1 1.15531
18 18 1 -1.00127
19 19 1 -0.89857
20 20 1 0.12837
21 21 1 3.72265
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22 22 1 -1.10396
23 23 1 -0.59049
24 24 1 -0.59049
25 25 1 -0.07702
26 26 1 0.74453
27 27 1 -1.61743

MODIFIED RANDOM COEFFICIENT MODEL WITH 25
INTERCEPTS RANDOM, SLOPES FIXED

RANDOM INTERCEPTS AND FIXED SLOPES

Obs gender fixint fixslope child ranint beta0i beta1i

1 0 17.3727 0.47955 1 -1.21545 16.1573 0.47955
2 0 17.3727 0.47955 2 0.33642 17.7091 0.47955
3 0 17.3727 0.47955 3 1.05266 18.4254 0.47955
4 0 17.3727 0.47955 4 2.12703 19.4998 0.47955
5 0 17.3727 0.47955 5 -0.02170 17.3510 0.47955
6 0 17.3727 0.47955 6 -1.45420 15.9185 0.47955
7 0 17.3727 0.47955 7 0.33642 17.7091 0.47955
8 0 17.3727 0.47955 8 0.69454 18.0673 0.47955
9 0 17.3727 0.47955 9 -1.45420 15.9185 0.47955

10 0 17.3727 0.47955 10 -3.96105 13.4117 0.47955
11 0 17.3727 0.47955 11 3.55952 20.9322 0.47955
12 1 16.3406 0.78438 12 2.28494 18.6256 0.78438
13 1 16.3406 0.78438 13 -1.30935 15.0313 0.78438
14 1 16.3406 0.78438 14 -0.59049 15.7501 0.78438
15 1 16.3406 0.78438 15 1.36069 17.7013 0.78438
16 1 16.3406 0.78438 16 -1.61743 14.7232 0.78438
17 1 16.3406 0.78438 17 1.15531 17.4959 0.78438
18 1 16.3406 0.78438 18 -1.00127 15.3394 0.78438
19 1 16.3406 0.78438 19 -0.89857 15.4421 0.78438
20 1 16.3406 0.78438 20 0.12837 16.4690 0.78438
21 1 16.3406 0.78438 21 3.72265 20.0633 0.78438
22 1 16.3406 0.78438 22 -1.10396 15.2367 0.78438
23 1 16.3406 0.78438 23 -0.59049 15.7501 0.78438
24 1 16.3406 0.78438 24 -0.59049 15.7501 0.78438
25 1 16.3406 0.78438 25 -0.07702 16.2636 0.78438
26 1 16.3406 0.78438 26 0.74453 17.0852 0.78438
27 1 16.3406 0.78438 27 -1.61743 14.7232 0.78438

INTERPRETATION:

• The fit of Model (i) is identical to that in section 9.7 using the same assumption on the forms

of D and Ri. The results appear on pages 1–5 of the output. Also on pages 2–3, the BLUPs of

the elements of bi are printed for each child as requested in the solution option of the random

statement.
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• On pages 5–7 of the output, the data set created by outpred is printed. This data set contains

the values of

Xiβ̂ + Zib̂i

for each observation in the data set in the order of appearance in the column Pred. Also

printed are the contents of the original data set. Thus, we see that for child 1 with observa-

tions (21.0, 20.0, 21.5, 23.0) at ages (8, 10, 12, 14), the BLUP of this child’s trajectory at these

times are (20.178, 21.001, 21.824, 22.646).

• Pages 8–9 are a repeat of the results arising from the second call to proc mixed. Note that

the solutions for fixed and random effects are not printed, resulting from the first and third

ods statement. Page 10 results from printing out the data set containing the estimates of β

created by the ods output SolutionF=fixed1 statement. SolutionF is a key word recognized

by PROC MIXED as identifying this data set; the PROC MIXED documentation describes many more

possibilities of results that may be output to SAS data sets. The statements following the proc

print to print these results reconfigure the data set so that it appears in the form on page 11.

This is necessary in order to merge the estimates of β with the BLUPs for the bi in subsequent

data steps.

• On pages 12–13, the results of printing the data set containing the BLUPs of the bi for each child

created by the ods output SolutionR=rand1 statement. SolutionR is the key word identifying

this data set. Note that for each child, there is a separate row in the file for the intercept BLUP

and the slope BLUP (b0i and b1i). In the code, the data step following the printing of this data

set results in a reconfigured data set suitable for mergeing with that containing the estimates of

β. This data set is given on page 14. The two variables ranint and ranslope contain the BLUPs

for b01i and b1i, respectively.

• Finally, page 15 shows the result of printing out the data set obtained by mergeing the two

data sets above. The variables beta0i and beta1i are the BLUPs for the intercept and slope

components of βi for each child.

• Pages 16–18 shows the output of the fit of Model (ii), in which slopes are taken not to vary. For

brevity, the predicted values using outpred are not requested. The results printed on pages 19–20

arise from the second call to proc mixed; those on pages 21–25 are the consequence of the same

manipulations of output data sets obtained from ods statements within PROC MIXED as for Model

(i), described above. Note that on page 25, the BLUPs of β0i, the child-specific intercepts, vary,

while those of β1i, the child-specific slopes, do not – slope is the same for all girls and all boys.
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This, of course, is a result of the model assumption.

• Finally, note that, regardless of the assumption about how random effects enter the model, the

estimates of β are identical for Models (i) and (ii). This is a consequence of the fact that these

data are balanced, as previously noted.

EXAMPLE 2 – WEIGHT-LIFTING STUDY IN YOUNG MEN: Physical fitness researchers were in-

terested in whether following a new program including both a regimen of exercise and special diet would

lead to young men with an interest in weight-lifting to be able to bench press greater amounts of weight

and to do it more quickly than if they were to follow only the exercise part of the program alone. Thus,

they had a particular interest in the effects of the diet portion of the program.

To investigate, the researchers recruited 100 young men in high school, college, and beyond with either

existing interest and experience with weight-lifting or interest in becoming involved in weight-lifting. It is

well-known that the amount of weight a man can bench press may be associated with their body weight,

previous weight-lifting experience, and age. Thus, the researchers recorded these baseline characteristics

for each man:

Age mean (sd)=22.0 (2.7), min=16, max=32

Weight mean (sd)= 180.4 (24.8), min=119.7, man=227.6

Previous weight-lifting 27%

experience

Bench press (lbs) mean (sd)=163.7 (13.2)

The mean were randomized at the beginning of the study to 2 groups, 50 men per group:

• Follow the exercise part of the program only

• Follow both the exercise and diet parts of the program

The amount of weight each man was capable of bench pressing at entry into the study was recorded

for all men (day 0). Subsequently, the men were allowed to come to the gym at which the study was

conducted according to their own schedules, as would be the case in practice; most came at least 4

times per week. Periodically, members of the research staff would record the amount (lbs) each man

was able to bench press (the response). Because each man’s schedule was different due to their class or

work obligations, the times at which this was recorded for each man varied across men. Most men were

followed for about 9-10 months.
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Clearly, the amount a man can bench press cannot increase without bound forever – eventually, a man

would reach his maximum possible strength, and the amount he could bench press would likely “level

off.” Over the period of this study, it seems, however, that most if not all men have not shown such

“leveling-off.” Thus, a straight line may be a reasonable representation of the trajectories in this time

frame; however, at later times, this model may not be appropriate at all.

Let wi be man i’s body weight (lb) at baseline, let ai be his baseline age, and let pi = 1 if the man had

prior weight-lifting experience before the start of the study and pi = 0 if not. Let di be an indicator

of whether man i was randomized to follow the program with (di = 1) or without (di = 0) the diet

component.

The simplest population model that could be considered would simply follow the study design exactly.

Because the men were randomized to receive the diet or not, we would expect the mean weight bench

pressed at time 0 to be the same regardless of whether a man was assigned to the diet or no diet group.

That is, the mean of intercepts β0i would not be expected to be different for the two groups. The mean

of the slopes β1i, which characterize rate of change (as constant over the period of the study) may well

be different. Under these conditions, the population model is

β0i = β0 + b0i, β1i = β1 + β11di + b1i,

where here we have used the “difference parameterization” for the slopes, so that β1 represents the

“typical” rate of change for men who do not follow the diet and β11 represents the amount by which

the rate of change differs from this with the diet. The first, overall question of whether the mean rate

of change is different depending on whether the diet is followed may be addressed by asking whether

β11 = 0.

In the following program, this is Model (i).

More detailed and exploratory analyses may be carried out. Given that it is suspected that men’s

baseline characteristics may help to explain some of the variation in the men at time 0. We may modify

Model (i) to take this into account by allowing the mean intercept to be different depending on baseline

weight, age, and experience:

β0i = β0 + β01wi + β02ai + β03pi + b0i.

The hope in fitting this model, which adjusts for baseline characteristics, is that if some of the variation

in the data (at baseline) can be explained by systematic features, it may lead to more precise estimation

and testing for the rate of change.
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Model (i) with this modification is given in the program as Model (ii).

The model might be further modified to allow an exploratory analysis of whether previous experience

plays a role in how men’s ability to bench press changes over the time period in the study. The following

model takes into account baseline characteristics as in Model (ii), but also allows in the model for man-

specific slopes not only the possibility that the mean rate of change in weight bench-pressed may be

different because of whether a man followed the diet or not but also that this is differential depending

on whether the man has previous weight-lifting experience:

β0i = β0 + β01wi + β02ai + β03pi + b0i, β1i = β1 + β11di + β12pi + β13dipi + b1i.

In the program, this is Model (iii).

A final model is considered in the program, Model (iv), which does not allow mean rate of change to

depend on either diet or previous experience:

β1i = β1 + b1i;

this model may be used with Model (ii) to get a likelihood ratio test of whether mean rate of change is

different depending on whether the diet is followed, taking into account the baseline covariates.

The following SAS program uses PROC MIXED to fit these models to the data. It is assumed that

• With bi = (b0i, b1i)′, var(bi) = D, the same for both groups (diet or not).

• With ei = (ei1, . . . , eini
)′, var(ei) = σ2Ini

, σ2 the same for both groups.

Ideally, these assumptions should be evaluated for relevance and modified if necessary; we do not do

this here but encourage the reader to do this with the data (on the class web site).
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PROGRAM:

/*******************************************************************

CHAPTER 10, EXAMPLE 2

Illustration of fitting a linear mixed effects model derived
from a random coefficient model, where the mean slope in each
group depends on a continuous covariate.

The model for each man is assumed to be a straight line.
The intercepts are taken to depend on baseline covariates.
The slopes are taken to depend on baseline covariates, differentially
by group (diet or not).

We take D to be common for both groups and take Ri to be
common to both groups of the form Ri = sigma^2 I.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data pdat; infile ’press.dat’;
input id time press weight age prev diet;

run;

/*******************************************************************

Use PROC MIXED to fit linear mixed effects model (i); we use
normal ML rather than REML to get likelihood ratio tests

*******************************************************************/

title ’MODEL (i)’;
proc mixed method=ml data=pdat;
class id;
model press = time time*diet / solution;
random intercept time / type=un subject=id;
estimate "slp w/diet" time 1 time*diet 1;

run;

/*******************************************************************

Model (ii) that includes "adjustments" for
normal ML rather than REML to get likelihood ratio tests

*******************************************************************/

title ’MODEL (ii)’;
proc mixed method=ml data=pdat;
class id;
model press = weight prev age time time*diet / solution;
random intercept time / type=un subject=id;
estimate "slp w/diet" time 1 time*diet 1;

run;

/*******************************************************************

Model (iii) includes this adjustment plus the possibility that
rate of change depends on both diet and previous experience.
We include estimate statements to estimate each slope and
contrast statements to make some comparisons.

*******************************************************************/

title ’MODEL (iii)’;
proc mixed method=ml data=pdat;
class id;
model press = weight prev age

time time*diet time*prev time*diet*prev / solution;
random intercept time / type=un subject=id;
estimate "slp, diet, no prev" time 1 time*diet 1;
estimate "slp, no diet, prev" time 1 time*prev 1;
estimate "slp, diet, prev" time 1 time*prev 1 time*diet 1 time*diet*prev 1;
contrast "overall slp diff" time*diet 1,

time*prev 1,
time*diet*prev 1 / chisq;

contrast "prev effect" time*prev 1, time*diet*prev 1 / chisq;
contrast "diet effect" time*diet 1, time*diet*prev 1 /chisq;

run;
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/*******************************************************************

Model (iv) -- "reduced" model with no diet or previous weightlifting
effect

*******************************************************************/

title ’MODEL (iv)’;
proc mixed method=ml data=pdat;
class id;
model press = weight prev age time / solution;
random intercept time / type=un subject=id;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

MODEL (i) 1

The Mixed Procedure

Model Information

Data Set WORK.PDAT
Dependent Variable press
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

id 100 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100

Dimensions

Covariance Parameters 4
Columns in X 3
Columns in Z Per Subject 2
Subjects 100
Max Obs Per Subject 12

Number of Observations

Number of Observations Read 839
Number of Observations Used 839
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 7787.64461022
1 2 5564.11759892 0.03057689
2 1 5483.82830125 0.01602275
3 1 5443.30531416 0.00679897
4 1 5426.68613900 0.00212555
5 1 5421.70939610 0.00036790

MODEL (i) 2

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

6 1 5420.90966177 0.00001661
7 1 5420.87642307 0.00000004
8 1 5420.87634256 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) id 164.79
UN(2,1) id 0.6063
UN(2,2) id 0.01228
Residual 13.7306

Fit Statistics

-2 Log Likelihood 5420.9
AIC (smaller is better) 5434.9
AICC (smaller is better) 5435.0
BIC (smaller is better) 5453.1

Null Model Likelihood Ratio Test
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DF Chi-Square Pr > ChiSq

3 2366.77 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 163.89 1.3056 99 125.53 <.0001
time 0.2020 0.01523 98 13.27 <.0001
time*diet 0.1665 0.02060 639 8.08 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

time 1 98 175.97 <.0001
time*diet 1 639 65.35 <.0001

MODEL (i) 3

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slp w/diet 0.3685 0.01520 639 24.24 <.0001

MODEL (ii) 4

The Mixed Procedure

Model Information

Data Set WORK.PDAT
Dependent Variable press
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

id 100 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z Per Subject 2
Subjects 100
Max Obs Per Subject 12

Number of Observations

Number of Observations Read 839
Number of Observations Used 839
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 7377.92880597
1 2 5414.72631658 0.00700491
2 1 5397.79499881 0.00207735
3 1 5392.99291567 0.00033764
4 1 5392.26713310 0.00001407
5 1 5392.23925291 0.00000003

MODEL (ii) 5

The Mixed Procedure
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Iteration History

Iteration Evaluations -2 Log Like Criterion

6 1 5392.23919542 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) id 104.54
UN(2,1) id 0.1806
UN(2,2) id 0.01227
Residual 13.7285

Fit Statistics

-2 Log Likelihood 5392.2
AIC (smaller is better) 5412.2
AICC (smaller is better) 5412.5
BIC (smaller is better) 5438.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 1985.69 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 130.86 12.3075 96 10.63 <.0001
weight 0.06093 0.04260 639 1.43 0.1531
prev 15.0642 2.3490 639 6.41 <.0001
age 0.8181 0.3876 639 2.11 0.0352
time 0.2014 0.01578 98 12.76 <.0001
time*diet 0.1674 0.02221 639 7.54 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

weight 1 639 2.05 0.1531
prev 1 639 41.13 <.0001

MODEL (ii) 6

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

age 1 639 4.45 0.0352
time 1 98 162.94 <.0001
time*diet 1 639 56.79 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slp w/diet 0.3688 0.01576 639 23.40 <.0001

MODEL (iii) 7

The Mixed Procedure

Model Information

Data Set WORK.PDAT
Dependent Variable press
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values
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id 100 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100

Dimensions

Covariance Parameters 4
Columns in X 8
Columns in Z Per Subject 2
Subjects 100
Max Obs Per Subject 12

Number of Observations

Number of Observations Read 839
Number of Observations Used 839
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 7270.05573644
1 2 5342.30391536 0.00013213
2 1 5342.03719070 0.00000140
3 1 5342.03451402 0.00000000

MODEL (iii) 8

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) id 103.90
UN(2,1) id 0.1075
UN(2,2) id 0.007303
Residual 13.7266

Fit Statistics

-2 Log Likelihood 5342.0
AIC (smaller is better) 5366.0
AICC (smaller is better) 5366.4
BIC (smaller is better) 5397.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 1928.02 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 130.83 12.3290 96 10.61 <.0001
weight 0.06032 0.04267 639 1.41 0.1580
prev 16.8923 2.3608 639 7.16 <.0001
age 0.8011 0.3883 639 2.06 0.0395
time 0.1715 0.01428 96 12.00 <.0001
time*diet 0.1444 0.02027 639 7.12 <.0001
prev*time 0.1154 0.02805 639 4.11 <.0001
prev*time*diet 0.07575 0.03915 639 1.93 0.0534

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

weight 1 639 2.00 0.1580
prev 1 639 51.20 <.0001
age 1 639 4.26 0.0395
time 1 96 144.11 <.0001
time*diet 1 639 50.76 <.0001
prev*time 1 639 16.92 <.0001
prev*time*diet 1 639 3.74 0.0534

MODEL (iii) 9
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The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slp, diet, no prev 0.3158 0.01443 639 21.89 <.0001
slp, no diet, prev 0.2869 0.02415 639 11.88 <.0001
slp, diet, prev 0.5070 0.02329 639 21.77 <.0001

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall slp diff 3 639 158.73 52.91 <.0001 <.0001
prev effect 2 639 65.40 32.70 <.0001 <.0001
diet effect 2 639 93.96 46.98 <.0001 <.0001

MODEL (iv) 10

The Mixed Procedure

Model Information

Data Set WORK.PDAT
Dependent Variable press
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

id 100 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100

Dimensions

Covariance Parameters 4
Columns in X 5
Columns in Z Per Subject 2
Subjects 100
Max Obs Per Subject 12

Number of Observations

Number of Observations Read 839
Number of Observations Used 839
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 7681.55258304
1 2 5479.69566892 0.01095523
2 1 5451.98795580 0.00464486
3 1 5440.63977067 0.00134099
4 1 5437.54085223 0.00017376
5 1 5437.17181826 0.00000404

MODEL (iv) 11

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

6 1 5437.16382593 0.00000000

Convergence criteria met.

Covariance Parameter Estimates
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Cov Parm Subject Estimate

UN(1,1) id 104.01
UN(2,1) id 0.1711
UN(2,2) id 0.01930
Residual 13.7321

Fit Statistics

-2 Log Likelihood 5437.2
AIC (smaller is better) 5455.2
AICC (smaller is better) 5455.4
BIC (smaller is better) 5478.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 2244.39 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 130.96 12.3232 96 10.63 <.0001
weight 0.06097 0.04265 639 1.43 0.1533
prev 15.7659 2.3516 639 6.70 <.0001
age 0.8044 0.3881 639 2.07 0.0386
time 0.2851 0.01399 99 20.39 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

weight 1 639 2.04 0.1533
prev 1 639 44.95 <.0001
age 1 639 4.29 0.0386

MODEL (iv) 12

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

time 1 99 415.58 <.0001

INTERPRETATION:

• From the output for the fits of Models (i) and (ii) on pages 2 and 5, difference in rate of change

for using the diet versus not is estimated as about β̂11 = 0.17 lbs/day (standard error 0.02); the

estimate is almost identical whether “adjustment” for baseline characteristics is included or not.

The p-value of 0.0001 for the Wald test indicates that the evidence is very strong that the diet

does have a positive effect on the rate of change. From the estimate statement in each case, we

have that the estimated slopes are β̂1 = 0.20 (0.15) lbs/day with no diet and β̂1 + β̂11 = 0.37

(0.16) lbs/day.

We can obtain the likelihood ratio statistic in the case of baseline adjustment from the output

of models (ii) and (iv). The observed statistic is 5437.2 − 5392.2 = 45.0. The statistic has a χ2
1

distribution, for which the critical value for a 0.05 level test is χ2
1,0.95 = 3.84. Thus, it is clear that

the evidence is very strong that the diet makes a different.

• Turning to the exploratory analyses, consider the output for Model (iii) on pages 7–10. Here,
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there is a separate slope for each combination of diet or not and experience or not, given by

β1 rate of change with no diet and no previous experience

β1 + β11 rate of change with diet but no experience

β1 + β12 rate of change with no diet but experience

β1 + β11 + β12 + β13 rate of change with diet and previous experience.

The estimates and their standard errors may be seen in the main table of Solution for Fixed

Effects (β1) and in the output of the estimate statement (others). To test whether there is an

overall slope difference at all, we consider the null hypothesis H0 : β11 = β12 = β13 = 0. The first

contrast statement provides the result of this test (3 degrees of freedom) and shows that there

is very strong evidence of a difference.

The second two contrast statements attempt to gain further insight. In the first, we test H0 :

β12 = β13 = 0, which says there is no effect of previous experience, allowing the possibility of a

difference due to diet. There is strong evidence of a departure from this null hypothesis (prev

effect contrast). The third contrast is similar.

A more focused question is whether the difference in mean rate of change between using the diet

or not is different depending on whether a man has had previous weight-lifting experience. This is

simply the “diet-by-previous experience” interaction. The term β13 allows this possibility; thus, at

test of H0 : β13 = 0 addresses this question. From the Solution for Fixed Effects table, the

test corresponding to prev*time*diet yields a p-value of 0.05, so that the evidence is inconclusive

in this regard. It seems that whether men have prior experience is important in how the progress

in their bench pressing, as above, but the evidence is not clear on whether the way in which this

happens is similar regardless of whether they follow the diet or not.
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11 Generalized linear models for nonnormal response

11.1 Introduction

So far, in our study of “regression-type” models for longitudinal data, we have focused on situations

where

• The response is continuous and reasonably assumed to be normally distributed.

• The model relating mean response to time and possibly other covariates is linear in parameters

that characterize the relationship. For example, regardless of how we modeled covariance (by

direct modeling or by introducing random effects), we had models for the mean response of a data

vector of the form

E(Y i) = Xiβ;

i.e. for the observation at time tij on unit i,

E(Yij) = β0 + β1tij .

Under these conditions, we were led to methods that were based on the assumption that

Y i ∼ N (X iβ,Σi);

the form of the matrix Σi is dictated by what one assumes about the nature of variation. To fit the

model, we used the methods of maximum likelihood and restricted maximum likelihood under

the assumption that the data vectors are distributed as multivariate normal. Thus, the fitting

method was based on the normality assumption.

As we noted at the beginning of the course, the assumption of normality is not always relevant for some

data. This issue is not confined to longitudinal data analysis – it is an issue even in ordinary regression

modeling. If the response is in the form of small counts, or is in fact binary (yes/no), it is clear that

the assumption of normality would be quite unreasonable. Thus, the modeling and methods we have

discussed so far, including the classical techniques, would be inappropriate for these situations.
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One possibility is to analyze the data on a transformed scale on which they appear to be more nearly

normal; e.g. count data may be transformed via a square-root or other transformation, and then

represented by linear models on this scale. This is somewhat unsatisfactory, however, as the model

no longer pertains directly to the original scale of measurement, which is usually of greatest interest.

Moreover, it tries to “force” a model framework and distributional assumption that may not be best

for the data.

In the late 1970’/early 1980’s, in the context of ordinary regression modeling, a new perspective emerged

in the statistical literature that generated much interest and evolved into a new standard for analysis

in these situations. For data like counts and binary outcomes, as well as for continuous data for which

the normal distribution is not a good probability model, there are alternative probability models

that might be better representations of the way in which the response takes on values. The idea was

to use these more appropriate probability models as the basis for developing new regression models

and methods, rather than to try and make things fit into the usual (and inappropriate) normal-based

methods. Then, in the mid-1980’s, these techniques were extended to allow application to longitudinal

data; this topic still is a focus of current statistical research.

In this chapter, we will gain the necessary background for understanding longitudinal data methods for

nonnormal response. To do this, we will step away from the longitudinal data problem in this chapter,

and consider just the ordinary regression situation where responses are scalar and independent.

Armed with an appreciation of regression methods for nonnormal response, we will then be able to

see how these might be extended to the harder problem of longitudinal data. As we will see, this

extension turns out to not be quite as straightforward as it was in the normal case.

Thus, in this chapter, we will consider the following problem as a prelude to our treatment of nonnormal

longitudinal data:

• As in multiple regression, suppose we have responses Y1, . . . , Yn each taken at a setting of k

covariates xj1, . . . , xjk, j = 1, . . . , n.

• The Yj values are mutually independent.

• The goal is to develop a statistical model that represents the response as a function of the

covariates, as in usual linear regression.

• However, the nature of the response is such that the normal probability model is not appropriate.
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We might think of the data as arising either as

• n observations on a single unit in a longitudinal data situation, where we focus on this individual

unit only, so that the only relevant variation is within the unit. If observations are taken far

enough apart in time, they might be viewed as independent.

• n scalar observations, each taken on a different unit (thus, the independence assumption is

natural). Here, j indexes observations and units (recall the oxygen intake example in section 3.4).

• Either way of thinking is valid – the important point is that we wish to fit a regression model to

data that do not seem to be normally distributed. As we will see, the data type might impose

additional considerations about the form of the regression model.

• We use the subscript j in this chapter to index the observations; we could have equally well used

the subscript i.

The class of regression models we will consider for this situation is known in the literature as generalized

linear models (not to be confused with the name of the SAS procedure GLM standing for General Linear

Model). Our treatment here is not comprehensive; for everything you ever wanted to know and more

about generalized linear models, see the book by McCullagh and Nelder (1989).

11.2 Probability models for nonnormal data

Before we discuss regression modeling of nonnormal data, we review a few probability models that are

ideally suited to representation of these data. We will focus on three models in particular; a more

extensive catalogue of models may be found in McCullagh and Nelder (1989):

• The Poisson probability distribution as a model for count data (discrete)

• The Bernoulli probability distribution as a model for binary data (discrete) (this may be ex-

tended to model data in the form of proportions

• The gamma probability distribution as a model for continuous but nonnormal data with con-

stant coefficient of variation.
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We will see that all of these probability models are members of a special class of probability models.

This class also includes the normal distribution with constant variance (the basis for classical linear

regression methods for normal data); thus, generalized linear models will be seen to be an extension

of ordinary linear regression models.

COUNT DATA – THE POISSON DISTRIBUTION: Suppose we have a response Y that is in the form

of a count – Y records the number of times an event of interest is observed. Recall the epileptic seizure

data discussed at the beginning of the course; here, Y was the number of seizures suffered by a particular

patient in a two-week period.

When the response is a count, it should be clear that the possible values of the response must be non-

negative integers; more precisely, Y may take on the values 0, 1, 2, 3, . . .. In principle, any nonnegative

integer value is possible; there is no upper bound on how large a count may be. Realistically, if the

thing being counted happens infrequently, large counts may be so unlikely as to almost never be seen.

The Poisson probability distribution describes probabilities that a random variable Y that describes

counts takes on values in the range 0, 1, 2, 3, . . .. More precisely, the probability density function de-

scribes the probability that Y takes on the value y:

f(y) = P (Y = y) =
µye−µ

y!
, y = 0, 1, 2, . . . , µ > 0. (11.1)

• It may be shown that the mean (expectation) of Y is µ; i.e. E(Y ) = µ. Note that µ is positive,

which makes sense – the average across all possible values of counts should be positive.

• Furthermore, it may be shown that the variance of Y is also equal to µ; i.e. var(Y ) = µ. Thus,

the variance of Y is nonconstant. Thus, if Y1 and Y2 are both Poisson random variables, the

only way that they can have the same variance is if they have the same mean.

• This has implications for regression – if Y1 and Y2 correspond to counts taken at different settings

of the covariates, so thus at possibly different mean values, it is inappropriate to assume that they

have the same variance. Recall that a standard assumption of ordinary regression under normality

is that of constant variance regardless of mean value; this assumption is clearly not sensible for

count data.

Figure 1 shows the probability histogram for the case of a Poisson distribution with µ = 4. Because

the random variable in question is discrete, the histogram is not smooth; rather, the blocks represent

the probabilities of each value on the horizontal axis by area.
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Figure 1: Poisson probabilities with mean = 4.
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Some features:

• Probabilities of seeing counts larger than 12 are virtually negligible, although, in principle, counts

may take on any nonnegative value.

• Clearly, if µ were larger, the values for which probabilities would become negligible would get

larger and larger.

• For “smallish” counts, where the mean is small (e.g. µ = 4), the shape of the probability histogram

is asymmetric. Thus, discreteness aside, the normal distribution would be a lousy approximation

to this shape. For larger and larger µ, it may be seen that the shape gets more and more symmetric.

Thus, when counts are very large, it is common to approximate the Poisson probability distribution

by a normal distribution.
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EXAMPLE – HORSE-KICK DATA: As an example of a situation where the response is a (small) count,

we consider a world-famous data set. These data may be found on page 227 of Hand et al. (1994). Data

were collected and maintained over the 20 years 1875 – 1894, inclusive, on the numbers of Prussian

militiamen killed by being kicked by a horse in each of 10 separate corps of militiamen. For example,

the data for the first 6 years are as follows:

Year Corps

1 2 3 4 5 6 7 8 9 10

1875 0 0 0 0 1 1 0 0 1 0

1876 0 0 1 0 0 0 0 0 1 1

1877 0 0 0 0 1 0 0 1 2 0

1878 2 1 1 0 0 0 0 1 1 0

1879 0 1 1 2 0 1 0 0 1 0

1880 2 1 1 1 0 0 2 1 3 0

Thus, for example, in 1877, 2 militiamen were killed by kicks from a horse in the 9th corps. Note that,

technically, counts may not be any number – there is an “upper bound” (the total number of men in

the corps). But this number is so huge relative to the size of the counts that, for all practical purposes

it is “infinite.” Clearly, the numbers of men killed (counts) in each year/corps combination are small;

thus, the normal distribution is a bad approximation to the true, Poisson distribution.

It was of interest to determine from these data whether differences in the numbers of men kicked could

be attributed to systematic effects of year or corps. That is, were members of certain corps more

susceptible to horse-kick deaths than others? Were certain years particularly bad for horse-kick deaths?

• If the data were normal, a natural approach to this question would be to postulate a regression

model that allows mean response to depend on the particular corps and year.

• Specifically, if we were to define 19 dummy variables for year and 9 for corps, we might write a

linear model for the mean of the jth observation in the data set (n = 200 total) as

β0 + β1xj1 + · · · + β19xj,19 + β20zj1 + · · · + β28zj9, (11.2)

xjk = 1 if observation j is from year k = 1875, . . . , 1893

= 0 otherwise

zjk = 1 if observation j is from corps k = 1, . . . , 9

= 0 otherwise
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With these definitions, note that β0 corresponds to what happens for year 1894 with corps 10.

The remaining parameters describe the change from this due to changing year or corps.

• Note that, aside from the normality issue, letting (11.2) represent the mean of observation Yj ,

E(Yj) has a problem. Recall that counts must be nonnegative by definition. However with this

model, it is possible to end up with an estimated value for E(Yj) that is negative – this restriction

is not enforced. This seems quite possible – many of the observations are 0, so that it would not

be surprising to end up estimating some means as negative. More on this later.

BINARY DATA – THE BERNOULLI DISTRIBUTION: Suppose we have a response y that takes

on either the value 0 or 1 depending on whether an event of interest occurs or not. Recall the child

respiratory data at the beginning of the course; here, y was 0 or 1 according to whether a child did not

or did “wheeze.”

Here, the response can take on only two possible values. Clearly, the normal distribution should not

even be considered as a model.

The Bernoulli probability distribution describes probabilities that a random variable Y that charac-

terizes whether an event occurs or not takes on its two possible values (0, 1). The probability density

function is given by

f(1) = P (Y = 1) = µ, f(0) = P (Y = 0) = 1 − µ

for 0 ≤ µ ≤ 1. The extremes µ = 0, 1 are not particularly interesting, so we will consider 0 < µ < 1.

This may be summarized succinctly as

f(y) = P (Y = y) = µy(1 − µ)(1−y), 0 < µ < 1, y = 0, 1. (11.3)

• It may be shown that the mean of Y is µ. Also, note that µ is also the probability of seeing the

event of interest (y = 1). As a probability, it must be between 0 and 1, so that the mean of Y

must be between 0 and 1 as well.

• Furthermore, it may be shown that the variance of Y is equal to µ(1−µ); i.e. var(Y ) = µ(1−µ).

As with the Poisson distribution, the variance of Y is nonconstant. Thus, if Y1 and Y2 are both

Bernoulli random variables, the only way that they can have the same variance is if they have

the same mean.
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• This has implications for regression – if Y1 and Y2 correspond to binary responses taken at dif-

ferent settings of the covariates, so thus at possibly different mean values, it is inappropriate to

assume that they have the same variance. Thus, again, the usual assumption of constant variance

is clearly not sensible when modeling binary data.

EXAMPLE – MYOCARDIAL INFARCTION DATA: The response is often binary in medical studies.

Here, we consider an example in which 200 women participated in a study to investigate risk factors

associated with myocardial infarction (heart attack). On each woman, the following information was

observed:

• Whether the woman used oral contraceptives in the past year (1 if yes, 0 if no)

• Age in years

• Whether the woman currently smokes more than 1 pack of cigarettes per day (1 if yes, 0 if no)

• Whether the woman has suffered a myocardial infarction – the response (y = 0 if no, y = 1 if yes).

The data for the first 10 women are given below:

Woman Contracep. Age Smoke MI

1 1 33 1 0

2 0 32 0 0

3 1 37 0 1

4 0 36 0 0

5 1 50 1 1

6 1 40 0 0

7 0 35 0 0

8 1 33 0 0

9 1 33 0 0

10 0 31 0 0

The objective of this study was to determine whether any of the covariates, or potential risk factors

(oral contraceptive use, age, smoking), were associated with the chance of having a heart attack. For

example, was there evidence to suggest that smoking more than one pack of cigarettes a day raises the

probability of having a heart attack?
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• If the data were normal, a natural approach to this question would be to postulate a regression

model that allows mean response (which is equal to probability of having a heart attack as this

is a binary response) to depend on age, smoking status, and contraceptive use.

• Define for the jth woman

xj1 = 1 if oral contraceptive use

= 0 otherwise

xj2 = age in years

xj3 = 1 if smoke more then one pack/day

= 0 otherwise

Then we would be tempted to model the mean (probability of heart attack) as a linear model,

writing the mean for the j observation

β0 + β1xj1 + β2xj2 + β3xj3.

• Using a linear function of the covariates like this to represent the mean (probability of heart

attack) has an immediate problem. Because the mean is a probability, it must be between 0 and

1. There is nothing to guarantee that the estimates of means we would end up with after fitting

this model in the usual way would honor this restriction. Thus, we could end up with negative

estimates of probabilities, or estimated probabilities that were greater than one! More on this

later.

CONTINUOUS DATA WITH CONSTANT COEFFICIENT OF VARIATION – THE GAMMA DIS-

TRIBUTION: As we have already remarked, just because the response is continuous does not mean

that the normal distribution is a sensible probability model.

• For example, most biological responses take on only positive values. The normal distribution in

principle assigns positive probability to all values on the real line, negative and positive.
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• Furthermore, the normal distribution says that values to the left and right of its mean are equally

likely to be seen, by virtue of the symmetry inherent in the form of the probability density.

This may not be realistic for biological and other kinds of data. A common phenomenon is to

see “unusually large” values of the response with more frequency than “unusually small” values.

For example, if the response is annual income, the distribution of incomes is mostly in a limited

range; however, every so often, a “chairman of the board,” athlete, or entertainer may command

an enormous income. For this situation, a distribution that says small and large values of the

response are equally likely is not suitable.

Other probability models are available for continuous response that better represent these features.

Several such models are possible; we consider one of these.

The gamma probability distribution describes the probabilities with which a random variable Y takes

on values, where Y can only be positive. More precisely, the probability density function for value y

is given by

f(y) =
1

yΓ(1/σ2)

(
y

σ2µ

)1/σ2

exp
(
− y

σ2µ

)
, µ, σ2 > 0, y > 0. (11.4)

• In (11.4), Γ(·) is the so-called “Gamma function.” This function of a positive argument may only

be evaluated on a computer. If the argument is a positive integer k, however, then it turns out

that Γ(k) = (k − 1)! = (k − 1)(k − 2) · · · (2)(1).

• It may be shown that the mean of Y is µ; i.e. E(Y ) = µ. Note that µ must be positive, which

makes sense.

• It may also be shown that the variance of Y is var(Y ) = σ2µ2. That is, the variance of Y is

nonconstant; it depends on the value of µ. Thus, if Y1 and Y2 are both gamma random variables,

then the only way that they can have the same variance is if they have the same mean µ and the

same value of the parameter σ2.

• Thus, for regression, if Y1 and Y2 correspond to responses taken at different covariate settings, it is

inappropriate to take them to have the same variance. Thus, as above, the assumption of constant

variance is not appropriate for a response that is well-represented by the gamma probability model.
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• In fact, note here that the symbol σ2 is being used here in a different way from how we have

used it in the past, to represent a variance. Here, it turns out that σ (not squared) has the

interpretation as the coefficient of variation (CV), defined for any random variable Y as

CV =
{var(Y )}1/2

E(Y )
;

that is, CV is the ratio of standard deviation of the response to mean, or “noise to signal.”

This ratio may be expressed as a proportion or a percentage; in either case, CV characterizes

the “quality” of the data by quantifying how large the “noise” is relative to the size of the thing

being measured.

• “Small” CV (“high quality”) is usually considered to be CV ≤ 0.30. “Large” CV (“low quality”)

is larger.

• Note that for the gamma distribution,

CV =
(σ2µ2)1/2

µ
= σ,

so that, regardless of the value of µ, the ratio of “noise” to “signal” is the same. Thus, rather than

having constant variance, the gamma distribution imposes constant coefficient of variation.

This is often a realistic model for biological, income, and other data taking on positive values.

Figure 2 shows gamma probability density functions for µ = 1 and progressively smaller choices of σ2,

corresponding to progressively smaller CV.

• As σ2 becomes smaller, the shape of the curve begins to look more symmetric. Thus, if CV

is “small” (“high quality” data), gamma probability distribution looks very much like a normal

distribution.

• On the other hand, when σ2 is relatively large, so that CV is “large” (“low quality” data), the

shape is skewed. For example, with σ2 = 0.5, corresponding to CV = 0.707, so “noise” that is

70% the magnitude of the “signal” (upper left panel of Figure 2), the shape of the gamma density

does not resemble that of the normal at all.
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SUMMARY: The Poisson, Bernoulli, and gamma distributions are three different probability distribu-

tions that are well-suited to modeling data in the form of counts, binary response, and positive contin-

uous response where constant coefficient of variation is more likely than constant variance, respectively.

As mentioned above, still other probability distributions for other situations are available; discussion

of these is beyond our scope here, but the implications are similar to the cases we have covered. We

now turn to regression modeling in the context of problems where these probability distributions are

appropriate.

11.3 Generalized linear models

THE CLASSICAL LINEAR REGRESSION MODEL: The classical linear regression model for scalar

response Yj and k covariates xj1, . . . , xjk is usually written as

Yj = β0 + β1xj1 + · · · + βkxjk + ϵj

or, defining xj = (1, xj1, . . . , xjk)′, where xj is (p × 1), p = k + 1,

Yj = x′

jβ + ϵj , β = (β0, . . . ,βk)
′. (11.5)

The Yj are assumed to be independent across j. When the response is continuous, it is often assumed

that the ϵj are independent N (0, σ2), so that

Yj ∼ N (x′

jβ, σ2).

That is, the classical, normal-based regression model may be summarized as:

(i) Mean: E(Yj) = x′

jβ.

(ii) Probability distribution: Yj follow a normal distribution for all j and are independent.

(iii) Variance: var(Yj) = σ2 (constant regardless of the setting of xj).

As we have discussed through our examples, this approach has several deficiencies as a model for count,

binary, or some positive continuous data:

• The normal distribution may not be a good probability model.

• Variance may not be constant across the range of the response.
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• Because the response (and its mean) are restricted to be positive, a model that does not build

this in may be inappropriate – in (11.5), there is nothing that says that estimates of the mean

response must be positive everywhere – it could very well be that the estimated value of β could

produce negative mean estimates for some covariate settings, even if ideally this is not possible

for the problem at hand.

Models appropriate for the situations we have been discussing would have to address these issues.

GENERALIZATION: For responses that are not well represented by a normal distribution, it is not

customary to write models in the form of (11.5) above, with an additive deviation.. This is because, for

distributions like the Poisson, Bernoulli, or gamma, there is no analogue to the fact that if ϵ is normally

distributed with mean 0, variance σ2, then Y = µ + ϵ is also normal with mean µ, variance σ2.

It is thus standard to express regression models as we did in (i), (ii), and (iii) above – in terms of (i) an

assumed model for the mean, (ii) an assumption about probability distribution, and (iii) an assumption

about variance. As we have noted, for the Poisson, Bernoulli, and gamma distributions, the form of the

distribution dictates the assumption about variance.

We now show how this modeling is done for the three situations on which we have focused. We will then

highlight the common features. Because these models are more complex that usual linear regression

models, special fitting techniques are required, and will be discussed in section 11.4.

COUNT DATA: For data in the form of counts, we have noted that a sensible probability model is the

Poisson distribution. This model dictates that variance is equal to the mean; moreover, any sensible

representation of the mean ought to be such that the mean is forced to be positive.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj . However, this representation should ensure the mean can only be positive. A

model that would accomplish this is

E(Yj) = exp(β0 + β1xj1 + · · · + βkxjk) = exp(x′

jβ). (11.6)

In (11.6), the positivity requirement is enforced by writing the mean as the exponential of the

linear function of β x′

jβ. Note that the model implies

log{E(Yj)} = β0 + β1xj1 + · · · + βkxjk = x′

jβ;

i.e. the logarithm of the mean response is being modeled as a linear function of covariates and

regression parameters. As a result, a model like (11.6) is often called a loglinear model.
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Loglinear modeling is a standard technique for data in the form of counts, especially when the

counts are small. When the counts are small, it is quite possible that using a linear model

instead, E(Yj) = x′

jβ, would lead to an estimated value for β that would allow estimates of the

mean to be negative for some covariate settings. This is less of a worry when the counts are very

large. Consequently, loglinear modeling is most often employed for small count data.

It is important to note that a loglinear model for the mean response is not the only possibility

for count data. However, it is the most common.

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a Poisson

distribution with mean as in (11.6) and are assumed to be independent.

(iii) Variance: Under the Poisson assumption and the mean model (11.6), we have that the variance

of Yj is given by

var(Yj) = E(Yj) = exp(x′

jβ) (11.7)

BINARY DATA: For binary data, the relevant probability model is the Bernoulli distribution. Here, the

mean is also equal to the probability of seeing the event of interest; thus, the mean should be restricted

to lie between 0 and 1. In addition, the model dictates that the variance of a response is a particular

function of the mean.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj with the important restriction that this function always be between 0 and 1. A

model that accomplishes this is

E(Yj) =
exp(x′

jβ)

1 + exp(x′

jβ)
. (11.8)

Note that, regardless of the value of the linear combination x′

jβ, this function must always

be less than 1. Similarly, the function must always be greater than 0. (Convince yourself).

It is an algebraic exercise to show that (try it!)

log

(
E(Yj)

1 − E(Yj)

)

= x′

jβ. (11.9)

The function of E(Yj) on the left hand side of (11.9) is called the logit function. Recall that here

E(Yj) is equal to the probability of seeing the event of interest. Thus, the function

(
E(Yj)

1 − E(Yj)

)

is the ratio of the probability of seeing the event of interest to the probability of not seeing it!
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This ratio is often called the odds for this reason. Thus, the model (11.8) may be thought of as

modeling the log odds as a linear combination of the covariates and regression parameters.

Model (11.8) is not the only model appropriate for representing the mean of a Bernoulli random

variable; any function taking values only between 0 and 1 would do. Other such models are

the probit and complementary log-log functions (see McCullagh and Nelder 1989, page 31).

However, (11.8) is by far the most popular, and the model is usually referred to as the logistic

regression model (for binary data).

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a Bernoulli

distribution with mean as in (11.8) and are assumed to be independent.

(iii) Variance: For binary data, if the mean is represented by (11.8), then we must have that the

variance of Yj is given by

var(Yj) = E(Yj){1 − E(Yj)} =
exp(x′

jβ)

1 + exp(x′

jβ)

(

1 −
exp(x′

jβ)

1 + exp(x′

jβ)

)

(11.10)

CONTINUOUS, POSITIVE DATA WITH CONSTANT COEFFICIENT OF VARIATION: For these

data, there are a number of relevant probability models; we have discussed the gamma distribution.

Here, the mean must be positive, and the variance must have the constant CV form.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj If the size of the responses is not too large, then using a linear model, E(Yj) = x′

jβ

could be dangerous; thus, it is preferred to use a model that enforces positivity. One common

model is the loglinear model (11.6), which is also commonly used for count data. Both types of

data share the requirement of positivity, so this is not surprising.

When the size of the response is larger, it is often the case that the positivity requirement is not

a big concern – even if a linear model is used to represent the data, because the responses are

all so big, estimated means will still all be positive for covariate settings like those of the original

data. This opens up the possibility for other models for the mean.

With a single covariate (k = 1), linear models are seldom used – here, the linear model would be

a straight line. This is because it is fairly typical that, for phenomena where constant coefficient

of variation occurs, the relationship between response and covariate seldom looks like a straight

line; rather it tends to look more like that in the upper left panel of Figure 3.
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Note that in the lower left panel of Figure 3, once the response is placed on the log scale, the

relationship looks much more like a straight line. This suggests that a model like

log{E(Yj)} = β0 + β1xj ,

where xj = log percent concentration, might be reasonable; that is, log of response is a straight

line in xj . This is exactly the loglinear model (11.6) in the special case k = 1, of course.

However, note that in the upper right panel, once the response is inverted by taking the recip-

rocal (so plotting 1/Yj on the vertical axis), the relationship looks even more like a straight line.

This observation indicates that a model like

1

E(Yj)
= β0 + β1xj

might be appropriate.

More generally, for k covariates, this suggests the model

E(Yj) =
1

x′

jβ
. (11.11)

This model does not preserve the positivity requirement; however, for situations where this is

not really a concern, the inverse or reciprocal model (11.11) often gives a better representation

than does a plain linear model for E(Yj), as was the case for the clotting time data.

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a gamma distri-

bution with mean as in (11.6), (11.11), or some other model deemed appropriate. The Yj are also

assumed to be independent.

(iii) Variance: Under the gamma assumption, the variance of Yj is proportional to the square of the

mean response; i.e. constant coefficient of variation. Thus, if the mean is represented by (11.6),

then we must have that the variance of Yj is given by

var(Yj) = σ2E(Yj)
2 = σ2{exp(x′

jβ)}2. (11.12)

If the mean is represented by (11.11), then we must have that

var(Yj) = σ2E(Yj)
2 = σ2

(
1

x′

jβ

)2

. (11.13)
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IN GENERAL: All of the regression models we have discussed share the features that

• Appropriate models for mean response are of the form

E(Yj) = f(x′

jβ), (11.14)

where f(x′

jβ) is a suitable function of a linear combination of the covariates xj and regression

parameter β.

• The variance of Yj may be represented as a function of the form

var(Yj) = φV {E(Yj) } = φV { f(x′

jβ) }, (11.15)

where V is a function of the mean response and φ is a constant usually assumed to be the same

for all j. For the Poisson and Bernoulli cases, φ = 1; for the gamma case, φ = σ2.

SCALED EXPONENTIAL FAMILY: It turns out that these regression models share even more. It was

long ago recognized that certain probability distributions all fall into a general class. For distributions

in this class, if the mean is equal to µ, then the variance must be a specific function φV (µ) of µ.

Distributions in this class include:

• The normal distribution with mean µ, variance σ2 (not related to µ in any way, so a function of

µ that is the same for all µ).

• The Poisson distribution with mean µ, variance µ.

• The gamma distribution with mean µ, variance σ2µ2.

• The Bernoulli distribution with mean µ, variance µ(1 − µ).

The class includes other distributions we have not discussed as well. This class of distributions is known

as the scaled exponential family. As we will discuss in section 11.4, because these distributions share

so much, fitting regression models under them may be accomplished by the same method.
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GENERALIZED LINEAR MODELS: We are now in a position to state all of this more formally. A

generalized linear model is a regression model for response Yj with the following features:

• The mean of Yj is assumed to be of the form (11.14)

E(Yj) = f(x′

jβ).

It is customary to express this a bit differently, however. The function f is almost always chosen

to be monotone; that is, it is a strictly increasing or decreasing function of x′

jβ. This

means that there is a unique function g, say, called the inverse function of f , such that we may

re-express (11.14) model in the form

g{E(Yj)} = x′

jβ.

For example, for binary data, we considered the logistic function (11.8); i.e.

E(Yj) = f(x′

jβ) =
exp(x′

jβ)

1 + exp(x′

jβ)
.

This may be rewritten in the form (11.9),

log

(
E(Yj)

1 − E(Yj)

)

= g{E(Yj)} = x′

jβ.

The function g is called the link function, because it “links” the mean and the covariates. The

linear combination of covariates and regression parameters x′

jβ is called the linear predictor.

Certain choices of f , and hence of link function g, are popular for different kinds of data, as we

have noted.

• The probability distribution governing Yj is assumed to be one of those from the scaled expo-

nential family class.

• The variance of Yj is thus assumed to be of the form dictated by the distribution:

var(Yj) = φV {E(Yj) },

where the function V depends on the distribution and φ might be equal to a known constant.

The function V is referred to as the variance function for obvious reasons. The parameter φ is

often called the dispersion parameter because it has to do with variance. It may be known,

as for the Poisson or Bernoulli distributions, or unknown and estimated, which is the case for the

gamma.

The models we have discussed for count, binary, and positive continuous data are thus all generalized

linear models. In fact, the classical linear regression model assuming normality with constant variance

is also a generalized linear model!
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11.4 Maximum likelihood and iteratively reweighted least squares

The class of generalized linear models may be thought of as extending the usual classical linear model

to handle special features of different kinds of data. The extension introduces some complications,

however. In particular:

• The model for mean response need no longer be a linear model.

• The variance is allowed to depend on the mean; thus, the variance depends on the regression

parameter β.

The result of these more complex features is that it is no longer quite so straightforward to estimate

β (and φ, if required). To appreciate this, we first review the method of least squares for the normal,

linear, constant variance model.

LINEAR MODEL AND MAXIMUM LIKELIHOOD: For the linear model with constant variance σ2

and normality, the usual method of least squares involves minimizing in β the distance criterion

n∑

j=1

(yj − x′

jβ)2, (11.16)

where y1, . . . , yn are observed data. This approach has another motivation – the estimator of β obtained

in this way is the maximum likelihood estimator. In particular, write the observed data as y =

(y1, . . . , yn)′. Because the Yj are assumed independent, the joint density of all the data (that is, the

joint density of Y ), is just the product of the n individual normal densities:

f(y) =
n∏

j=1

(2π)−1/2σ−1 exp{−(yj − x′

jβ)2/(2σ2)}.

It is easy to see that the only place that β appears is in the exponent; thus, if we wish to maximize

the likelihood f(y), we must maximize the exponent. Note that the smaller (Yj − x′

jβ)2 gets, the

larger the exponent gets (because of the negative sign). Thus, to maximize the likelihood, we wish

to minimize (11.16), which corresponds exactly to the method of least squares!

• Thus, obtaining the least squares estimator in a linear regression model under the normality and

constant variance assumptions is the same as finding the maximum likelihood estimator.

• In this case, minimizing (11.16) may be done analytically; that is, we can write down an explicit

expression for the estimator (as a function of the random vector Y ):

β̂ = (X ′X)−1X ′Y ,
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where X is the usual design matrix.

• This follows from calculus – the minimizing value of (11.16) is found by setting the first derivative

of the equation to 0 and solving for β. That is, the least squares (ML) estimator solves the set of

p equations
n∑

j=1

(Yj − x′

jβ)xj = 0. (11.17)

• Note that the the estimator and the equation it solves are linear functions of the data Yj .

GENERALIZED LINEAR MODELS AND MAXIMUM LIKELIHOOD: A natural approach to esti-

mating β in all generalized linear models is thus to appeal to the principle of maximum likelihood. It is

beyond the scope of our discussion to give a detailed treatment of this. We simply remark that it turns

out that, fortuitously, the form of the joint density of random variables Y1, . . . , Yn that arise from any

of the distributions in the scaled exponential family class has the same general form. Thus, it turns out

that the ML estimator for β in any generalized linear model solves a set of p equations of the same

general form:
n∑

j=1

1

V {f(x′

jβ)}{Yj − f(x′

jβ)}f ′(x′

jβ)xj = 0, (11.18)

where f ′(u) =
d

du
f(u), the derivative of f with respect to its argument.

The equation (11.18) and the equation for the linear, normal, constant variance model (11.17) share

the feature that they are both linear functions of the data Yj and are equations we would like to solve

in order to obtain the maximum likelihood estimator for β. Thus, they are very similar in spirit.

However, they differ in several ways:

• Each deviation {Yj − f(x′

jβ)} in (11.18) is weighted in accordance with its variance (the

scale parameter φ is a constant). Of course, so is each deviation in (11.17); however, in that

case, the variance is constant for all j. Recall that weighting in accordance with variance is a

sensible principle, so it is satisfying to see that, despite the difference in probability distributions,

this principle is still followed. Here, the variance function depends on β, so now the weighting

depends on β! Thus, β appears in this equation in a very complicated way.

• Moreover, β also appears in the function f , which can be quite complicated – the function f is

certainly not a linear function of β!

The result of these differences is that, while it is possible to solve (11.17) explicitly, it is not possible

to do the same for (11.18). Rather, the solution to (11.18) must be found using a numerical algorithm.
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The numerical algorithm is straightforward and works well in practice, so this is not an enormous

drawback.

ITERATIVELY REWEIGHTED LEAST SQUARES: It turns out that there is a standard algorithm

that is applicable for solving equations of the form (11.18); discussion of the details is beyond our scope.

The basic idea is (operating on the observed data)

• Given a starting value, or guess, for β, β(0), say, evaluate the weights at β(0): 1/V {f(xj , β
(0))}.

• Pretending the weights are fixed constants not depending on β, solve equation (11.18). This still

requires a numerical technique, but may be accomplished by something that is approximately

like solving (11.17). This gives a new guess for β, β(1), say.

• Evaluate the weights at β(1). and repeat. Continue updating until two successive β values are the

same.

The repeatedly updating of the weights along with the approximation to solve an equation like (11.17)

gives this procedure its name: iteratively reweighted least squares, often abbreviated as IRWLS

or IWLS.

Luckily, there are standard ways to find the starting value based on the data and knowledge of the

assumed probability distribution. Thus, the user need not be concerned with this (usually); software

typically generates this value automatically.

SAMPLING DISTRIBUTION: It should come as no surprise that the sampling distribution of the

estimator β̂ solving (11.18) cannot be derived in closed form. Rather, it is necessary to resort to

large sample theory approximation. Here, “large sample” refers to the sample size, n (number of

independent observations). This is sensible – each Yj is typically from a different unit.

We now state the large sample result. For n “large,” the IRWLS/ML estimator satisfies

β̂
·∼ N{β, φ(∆′V −1∆)−1}. (11.19)

Here,

• ∆ is a (n × p) matrix whose (j, s) element (j = 1, . . . , n, s = 1, . . . , p) is the derivative of f(x′

jβ)

with respect to the sth element of β.

• V is the (n × n) diagonal matrix with diagonal elements V {f(x′

jβ)}.
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A little thought about the form of ∆ and V reveals that both depend on β. However, β is unknown

and has been estimated. In addition, if φ is not dictated to be equal to a specific constant (e.g. φ = 1

if Yj are Poisson or Bernoulli but is unknown if Yj is gamma), then it, too, must be estimated. In this

situation, the standard estimator for φ is

φ̂ = (n − p)−1
n∑

j=1

{Yj − f(x′

jβ̂)}2

V {f(x′

jβ̂)}
.

In the context of fitting generalized linear models, this is often referred to as the Pearson chi-square

(divided by its degrees of freedom). Other methods are also available; we use this method for illustration

in the examples of section 11.6.

Thus, it is customary to approximate (11.19) by replacing β and φ by estimates wherever they appear.

Standard errors for the elements of β̂ are then found as the square roots of the diagonal elements of

the matrix

V̂ β = φ̂(∆̂
′

V̂
−1

∆̂)−1,

where the “hats” mean that β and φ are replaced by estimates. We use the same notation, V̂ β, as in

previous chapters to denote the estimated covariance matrix; the definition of V̂ β should be clear from

the context.

HYPOTHESIS TESTS: It is common to use Wald testing procedures to test hypotheses about β.

Specifically, for null hypotheses of the form

H0 : Lβ = h,

we may approximate the sampling distribution of the estimate Lβ̂ by

Lβ̂
·∼ N (Lβ, LV̂ βL′).

Construction of test statistics and confidence intervals is then carried out in a fashion identical to that

discussed in previous chapters. For example, if L is a row vector, then one may form the “z-statistic”

z =
Lβ̂ − h

SE(Lβ̂)
.

More generally, the Wald χ2 test statistic would be

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

(of course = z2 in the case L has a single row).
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REMARK: Note that all of this looks very similar to what is done in classical, linear regression under

the assumption of constant variance and normality. The obvious difference is that the results are now

just large sample approximations rather than exact, but the form and spirit are the same.

11.5 Discussion

Generalized linear models may be regarded as an extension of classical linear regression when the usual

assumptions of normality and constant variance do not apply. Because of the additional considerations

imposed by the nature of the data, sensible models for mean response may no longer be linear functions

of covariates and regression parameters directly. Rather, the mean response is modeled as a function

(nonlinear) of a linear combination of covariates and regression parameters (the linear predictor).

Although the models and fitting methods become more complicated as a result, the spirit is the same.

11.6 Implementation with SAS

We illustrate how to carry out fitting of generalized linear models for the three examples discussed in

this section:

1. The horsekick data

2. The myocardial infarction data

3. The clotting times data

As our main objective is to gain some familiarity with these models in order to appreciate their extension

to the case of longitudinal data from m units, we do not perform detailed, comprehensive analyses

involving many questions of scientific interest. Rather, we focus mainly on how to specify models using

SAS PROC GENMOD and how to interpret the output. In the next chapter, we will use PROC GENMOD with

the REPEATED statement to fit longitudinal data.
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EXAMPLE 1 – HORSEKICK DATA: Recall that it was reasonable to model these data using the

Poisson distribution assumption. Define Yj to be the jth observations of number of horsekick deaths

suffered corresponding to a particular corps and year denoted by dummy variables

xjk = 1 if observation j is from year k = 1875, . . . , 1893

= 0 otherwise

zjk = 1 if observation j is from corps k = 1, . . . , 9

= 0 otherwise

We thus consider the loglinear model

E(Yj) = exp(β0 + β1xj1 + · · · + β19xj,19 + β20zj1 + · · · + β28zj9) (11.20)

for the mean response. This model represents the mean number of horse kicks as an exponential function;

for example, for j corresponding to 1894 and corps 10,

E(Yj) = exp(β0);

for j corresponding to 1875 and corps 1,

E(Yj) = exp(β0 + β1 + β20).

An obvious question of interest would be to determine whether some of the regression parameters are

different from 0, indicating that the particular year or corps to which they correspond does not differ

from the final year and corps (1894, corps 10). This may be addressed by inspecting the Wald test

statistics corresponding to each element of β. To address the issue of how specific years compared,

averaged across corps, one would be interested in whether the appropriate differences in elements of

β were equal to zero. For example, if we were interested in whether 1875 and 1880 were different, we

would be interested in the difference β1 − β6.
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PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 1

Fit a loglinear regression model to the horse-kick data.
(Poisson assumption)

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 6 records)

1875 0 0 0 0 1 1 0 0 1 0
1876 0 0 1 0 0 0 0 0 1 1
1877 0 0 0 0 1 0 0 1 2 0
1878 2 1 1 0 0 0 0 1 1 0
1879 0 1 1 2 0 1 0 0 1 0
1880 2 1 1 1 0 0 2 1 3 0

.

.

.

column 1 year
columns 2-11 number of fatal horsekicks suffered by corps 1-10.

******************************************************************/

data kicks; infile ’kicks.dat’;
input year c1-c10;

run;

/******************************************************************

Reconfigure the data so that the a single number of kicks
for a particular year/corps combination appears on a separate
line.

******************************************************************/

data kicks2; set kicks;
array c{10} c1-c10;
do corps=1 to 10;
kicks = c{corps};
output;
end;
drop c1-c10;

run;

proc print data=kicks2 ; run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD. Here,
the dispersion parameter phi=1, so is not estimated. We let SAS
form the dummy variables through use of the CLASS statement.
This results in the model for mean response being parameterized
as in equation (11.20).

The DIST=POISSON option in the model statement specifies
that the Poisson probability distribution assumption, with its
requirement that mean = variance, be used. The LINK=LOG option
asks for the loglinear model. Other LINK= choices are available.

We also use a CONTRAST statement to investigate whether there is
evidence to suggest that 1875 differed from 1880 in terms of numbers
of horsekick deaths. The WALD option asks that the usual large sample
chi-square test statistic be used as the basis for the test.

*****************************************************************/

proc genmod data=kicks2;
class year corps;
model kicks = year corps / dist = poisson link = log;
contrast ’1875-1880’ year 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 / wald;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1
Obs year corps kicks

1 1875 1 0
2 1875 2 0
3 1875 3 0
4 1875 4 0
5 1875 5 1
6 1875 6 1
7 1875 7 0
8 1875 8 0
9 1875 9 1
10 1875 10 0
11 1876 1 0
12 1876 2 0
13 1876 3 1
14 1876 4 0
15 1876 5 0
16 1876 6 0
17 1876 7 0
18 1876 8 0
19 1876 9 1
20 1876 10 1
21 1877 1 0
22 1877 2 0
23 1877 3 0
24 1877 4 0
25 1877 5 1
26 1877 6 0
27 1877 7 0
28 1877 8 1
29 1877 9 2
30 1877 10 0
31 1878 1 2
32 1878 2 1
33 1878 3 1
34 1878 4 0
35 1878 5 0
36 1878 6 0
37 1878 7 0
38 1878 8 1
39 1878 9 1
40 1878 10 0
41 1879 1 0
42 1879 2 1
43 1879 3 1
44 1879 4 2
45 1879 5 0
46 1879 6 1
47 1879 7 0
48 1879 8 0
49 1879 9 1
50 1879 10 0
51 1880 1 2
52 1880 2 1
53 1880 3 1
54 1880 4 1
55 1880 5 0

The SAS System 2
Obs year corps kicks

56 1880 6 0
57 1880 7 2
58 1880 8 1
59 1880 9 3
60 1880 10 0
61 1881 1 0
62 1881 2 2
63 1881 3 1
64 1881 4 0
65 1881 5 1
66 1881 6 0
67 1881 7 1
68 1881 8 0
69 1881 9 0
70 1881 10 0
71 1882 1 0
72 1882 2 0
73 1882 3 0
74 1882 4 0
75 1882 5 0
76 1882 6 1
77 1882 7 1
78 1882 8 2
79 1882 9 4
80 1882 10 1
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81 1883 1 1
82 1883 2 2
83 1883 3 0
84 1883 4 1
85 1883 5 1
86 1883 6 0
87 1883 7 1
88 1883 8 0
89 1883 9 0
90 1883 10 0
91 1884 1 1
92 1884 2 0
93 1884 3 0
94 1884 4 0
95 1884 5 1
96 1884 6 0
97 1884 7 0
98 1884 8 2
99 1884 9 1

100 1884 10 1
101 1885 1 0
102 1885 2 0
103 1885 3 0
104 1885 4 0
105 1885 5 0
106 1885 6 0
107 1885 7 2
108 1885 8 0
109 1885 9 0
110 1885 10 1

The SAS System 3
Obs year corps kicks

111 1886 1 0
112 1886 2 0
113 1886 3 1
114 1886 4 1
115 1886 5 0
116 1886 6 0
117 1886 7 1
118 1886 8 0
119 1886 9 3
120 1886 10 0
121 1887 1 2
122 1887 2 1
123 1887 3 0
124 1887 4 0
125 1887 5 2
126 1887 6 1
127 1887 7 1
128 1887 8 0
129 1887 9 2
130 1887 10 0
131 1888 1 1
132 1888 2 0
133 1888 3 0
134 1888 4 1
135 1888 5 0
136 1888 6 0
137 1888 7 0
138 1888 8 0
139 1888 9 1
140 1888 10 0
141 1889 1 1
142 1889 2 1
143 1889 3 0
144 1889 4 1
145 1889 5 0
146 1889 6 0
147 1889 7 1
148 1889 8 2
149 1889 9 0
150 1889 10 2
151 1890 1 0
152 1890 2 2
153 1890 3 0
154 1890 4 1
155 1890 5 2
156 1890 6 0
157 1890 7 2
158 1890 8 1
159 1890 9 2
160 1890 10 2
161 1891 1 0
162 1891 2 1
163 1891 3 1
164 1891 4 1
165 1891 5 1
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The SAS System 4
Obs year corps kicks

166 1891 6 1
167 1891 7 0
168 1891 8 3
169 1891 9 1
170 1891 10 0
171 1892 1 2
172 1892 2 0
173 1892 3 1
174 1892 4 1
175 1892 5 0
176 1892 6 1
177 1892 7 1
178 1892 8 0
179 1892 9 1
180 1892 10 0
181 1893 1 0
182 1893 2 0
183 1893 3 0
184 1893 4 1
185 1893 5 2
186 1893 6 0
187 1893 7 0
188 1893 8 1
189 1893 9 0
190 1893 10 0
191 1894 1 0
192 1894 2 0
193 1894 3 0
194 1894 4 0
195 1894 5 0
196 1894 6 1
197 1894 7 0
198 1894 8 1
199 1894 9 0
200 1894 10 0

The SAS System 5
The GENMOD Procedure

Model Information

Data Set WORK.KICKS2
Distribution Poisson
Link Function Log
Dependent Variable kicks

Number of Observations Read 200
Number of Observations Used 200

Class Level Information

Class Levels Values

year 20 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

corps 10 1 2 3 4 5 6 7 8 9 10

Parameter Information

Parameter Effect year corps

Prm1 Intercept
Prm2 year 1875
Prm3 year 1876
Prm4 year 1877
Prm5 year 1878
Prm6 year 1879
Prm7 year 1880
Prm8 year 1881
Prm9 year 1882
Prm10 year 1883
Prm11 year 1884
Prm12 year 1885
Prm13 year 1886
Prm14 year 1887
Prm15 year 1888
Prm16 year 1889
Prm17 year 1890
Prm18 year 1891
Prm19 year 1892
Prm20 year 1893
Prm21 year 1894
Prm22 corps 1
Prm23 corps 2
Prm24 corps 3
Prm25 corps 4
Prm26 corps 5
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Prm27 corps 6
Prm28 corps 7
Prm29 corps 8
Prm30 corps 9

The SAS System 6
The GENMOD Procedure

Parameter Information

Parameter Effect year corps

Prm31 corps 10

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 171.6395 1.0037
Scaled Deviance 171 171.6395 1.0037
Pearson Chi-Square 171 160.6793 0.9396
Scaled Pearson X2 171 160.6793 0.9396
Log Likelihood -161.8886

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -2.0314 0.7854 -3.5707 -0.4921 6.69 0.0097
year 1875 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1876 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1877 1 0.6931 0.8660 -1.0042 2.3905 0.64 0.4235
year 1878 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1879 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1880 1 1.7047 0.7687 0.1981 3.2114 4.92 0.0266
year 1881 1 0.9163 0.8367 -0.7235 2.5561 1.20 0.2734
year 1882 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1883 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1884 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1885 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1886 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1887 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1888 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1889 1 1.3863 0.7906 -0.1632 2.9358 3.07 0.0795
year 1890 1 1.7918 0.7638 0.2948 3.2887 5.50 0.0190
year 1891 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1892 1 1.2528 0.8018 -0.3187 2.8242 2.44 0.1182
year 1893 1 0.6931 0.8660 -1.0042 2.3905 0.64 0.4235
year 1894 0 0.0000 0.0000 0.0000 0.0000 . .
corps 1 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 2 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 3 1 -0.0000 0.5000 -0.9800 0.9800 0.00 1.0000
corps 4 1 0.3185 0.4647 -0.5923 1.2292 0.47 0.4931
corps 5 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 6 1 -0.1335 0.5175 -1.1479 0.8808 0.07 0.7964
corps 7 1 0.4855 0.4494 -0.3952 1.3662 1.17 0.2799
corps 8 1 0.6286 0.4378 -0.2295 1.4867 2.06 0.1510

The SAS System 7

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

corps 9 1 1.0986 0.4082 0.2985 1.8988 7.24 0.0071
corps 10 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type

1875-1880 1 3.98 0.0461 Wald

INTERPRETATION:
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• Pages 1–4 of the output show the reconfigured data set.

• The results of running PROC GENMOD appear on pages 5–7 of the output. On page 6, the results

of the fit by IRWLS/ML are displayed. The table Analysis of Parameter Estimates contains

the estimates of the parameters β0 – β28, along with their estimated standard errors (square roots

of the elements of V̂ β). The column Chi-Square gives the value of the Wald test statistic for

testing whether the parameter in that row is equal to zero.

• The row SCALE corresponds to φ; here, for the Poisson distribution, φ = 1, so nothing is estimated.

This is noted at the bottom of page 6 (The scale parameter was held fixed.).

• Page 7 shows the result of the contrast statement to address the null hypothesis that there was

no difference in mean horsekick deaths in 1875 and 1880 (see the program). The Wald test statistic

is 3.98 with an asociated p-value of 0.046, suggesting that there is some evidence to support a

difference. Note that if β1 and β6 are different, then the mean responses for 1875 and 1880 must

be different for any corps. However, note that the difference β1 − β6 does not correspond to the

actual difference in mean response. Inspection of the estimates of β1 and β6 on page 6 shows

β̂1 = 0.4055 and β̂6 = 1.7047. This suggests that the mean response for 1880, which depends on

exp(β6), is larger than that for 1875, which depends on exp(β1).

EXAMPLE 2 – MYOCARDIAL INFARCTION DATA: Here, the response (whether or not a woman

has suffered a myocardial infarction) is binary, so we wish to fit a generalized linear model assuming

the Bernoulli distribution. The mean function must honor the restriction of being between 0 and 1;

here, we fit the logistic regression model, using the logit link.

Recall that we defined

xj1 = 1 if oral contraceptive use

= 0 otherwise

xj2 = age in years

xj3 = 1 if smoke more then one pack/day

= 0 otherwise

Thus, we model the mean response, equivalently, the probability of suffering a heart attack, as

E(Yj) =
exp(β0 + β1xj1 + β2xj2 + β3xj3)

1 + exp(β0 + β1xj1 + β2xj2 + β3xj3)
. (11.21)

Interest focuses on whether or not β1, β2, and β3. corresponding to the association of oral contraceptive

use, age, and smoking, respectively, with probability of myocardial infarction, are different from zero.
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If β1 is different from zero, for example, the interpretation is that oral contraceptive use does change

the probability of suffering a heart attack. We say more about this shortly.

PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 2

Fit a logistic regression model to the myocardial infarction
data.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 10 records)

1 1 33 1 0
2 0 32 0 0
3 1 37 0 1
4 0 36 0 0
5 1 50 1 1
6 1 40 0 0
7 0 35 0 0
8 1 33 0 0
9 1 33 0 0
10 0 31 0 0

.

.

.

column 1 subject id
column 2 oral contraceptive indicator (0=no,1=yes)
column 3 age (years)
column 4 smoking indicator (0=no,1=yes)
column 5 binary response -- whether MI has been suffered

(0=no,1=yes)

******************************************************************/

data mi; infile ’infarc.dat’;
input id oral age smoke mi;

run;

/*****************************************************************

Fit the logistic regression model using PROC GENMOD.
We do not use a CLASS statement here, as the covariates are
either continuous (AGE) or already in "dummy" form (ORAL, SMOKE).
The model statement with the LINK=LOGIT option results in the
logistic regression model in equation (10.21). The DIST=BINOMIAL
specifies the Bernoulli distribution, which is the simplest case
of a binomial distribution.

In versions 7 and higher of SAS, PROC GENMOD will model by
default the probability that the response y=0 rather than
the conventional y=1! To make PROC GENMOD model probability
y=1, as is standard, one must include the DESCENDING option in
the PROC GENMOD statement. In earlier versions of SAS, the
probability y=1 is modeled by default, as would be expected.

If the user is unsure which probability is being modeled, one
can check the .log file. In later versions of SAS, an explicit
statement about what is being modeled will appear. PROC GENMOD
output should also contain a statement about what is being
modeled.

******************************************************************/

proc genmod data=mi descending;
model mi = oral age smoke / dist = binomial link = logit;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

The GENMOD Procedure

Model Information

Data Set WORK.MI
Distribution Binomial
Link Function Logit
Dependent Variable mi

Number of Observations Read 200
Number of Observations Used 200
Number of Events 43
Number of Trials 200

Response Profile

Ordered Total
Value mi Frequency

1 1 43
2 0 157

PROC GENMOD is modeling the probability that mi=’1’.

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 oral
Prm3 age
Prm4 smoke

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 196 150.3748 0.7672
Scaled Deviance 196 150.3748 0.7672
Pearson Chi-Square 196 177.5430 0.9058
Scaled Pearson X2 196 177.5430 0.9058
Log Likelihood -75.1874

Algorithm converged.

The SAS System 2

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -9.1140 1.7571 -12.5579 -5.6702 26.90 <.0001
oral 1 1.9799 0.4697 1.0593 2.9005 17.77 <.0001
age 1 0.1626 0.0445 0.0753 0.2498 13.32 0.0003
smoke 1 1.8122 0.4294 0.9706 2.6538 17.81 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square

smk log odds ratio 1.8122 0.4294 0.05 0.9706 2.6538 17.81
Exp(smk log odds ratio) 6.1241 2.6297 0.05 2.6396 14.2084

Contrast Estimate Results

Label Pr > ChiSq

smk log odds ratio <.0001
Exp(smk log odds ratio)

INTERPRETATION:

• From the output, the Wald test statistics in the Chi-Square column of the table Analysis Of
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Parameter Estimates of whether β1 = 0, β2 = 0, and β3 = 0 are all large, with very small p-

values. This suggests that there is strong evidence that oral contraceptive use, age, and smoking

affects the probability of having a heart attack.
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• In each case, note that the estimate is positive. The logistic function

exp(u)

1 + exp(u)

is an increasing function of u. Note that because the estimated values of β1, β2, and β3 are

positive, if xj1 changes from 0 (no contraceptives) to 1 (contraceptives), the linear predictor

β0 + β1xj1 + β2xj2 + β3xj3

evaluated at the estimates increases, and the same is true if age xj2 increases or if xj3 changes

from 0 (no smoking) to 1 (smoking). Thus, the fit indicates that the probability of having a heart

attack increases if one uses oral contraceptives or smokes, and increases as women age.

• In fact, we can say more. According to this model, the odds of having a heart attack, given

a woman has particular settings of contraceptive use, age, and smoking (xj1, , xj2, xj3) is, from

(11.9), which is the ratio of the probability of having a heart attack to not having one, is

exp(β0 + β1xj1 + β2xj2 + β3xj3).

A common quantity of interest is the so-called odds ratio. For example, we may be interested

in comparing the odds of having a heart attack if a randomly chosen woman smokes (xj3 = 1) to

those if she does not (xj3 = 0). The ratio of the odds under smoking to those under not smoking,

for any settings of age or contraceptive use, is thus

exp(β0 + β1xj1 + β2xj2 + β3)

exp(β0 + β1xj1 + β2xj2)
= exp(β3).

Thus, expβ3 is a multiplicative factor that measures by how much the odds of having a heart

attack change if we move from not smoking to smoking. If β3 > 0, this multiplicative factor is

> 1, meaning that the odds go up; if β3 is negative, the factor is < 1, and the odds go down. β3

itself is referred to as the log odds ratio for obvious reasons.

Here, we estimate the log odds ratio for smoking as 1.81 and the odds ratios as exp(β̂3) =

exp(1.81) = 6.12; the odds increase by 6-fold if a woman smokes! Note that, ideally, we would

like a standard error to attach to this estimated odd ratios.
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One can actually get PROC GENMOD to print out a log odds ratio and odds ratio and associated

standard errors in an estimate statement with the exp option by choosing L appropriately. Here,

to get the log odds ratio, which is just β3, we take L = (0, 0, 0, 1). The estimate tatement would

be

estimate "smk log odds ratio" int 0 oral 0 age 0 smoke 1 / exp;

try adding this to the program and see what happens (see the program on the class web site for

the results).

• An interesting aside: Logistic regression is a standard technique in public health studies. Chances

are, when you read in the newspaper that a certain behavior increases the risk of developing a

disease, the analysis that was performed to arrive at that conclusion was like this one.

EXAMPLE 3 – CLOTTING TIME DATA: These data are positive and continuous with possible con-

stant coefficient of variation. Thus, we consider the gamma probability model. Letting Yj be the clotting

time at percentage concentration xj , we consider two models for the mean response:

• Loglinear: E(Yj) = exp(β0 + β1xj)

• Reciprocal (inverse): E(Yj) = 1/(β0 + β1xj).

Note that although in both models β1 has to do with how the changing percentage concentration affects

the mean response, this happens in different ways in each model, so the parameters have different

interpretations, so it is not interesting to compare their values for the different models.

Here, because of the gamma assumption, the dispersion parameter φ is not equal to a fixed, known

constant. It is thus estimated from the data. Note that PROC GENMOD does not print out the estimate

of φ; rather, it prints out 1/φ.

We also show how to obtain results of the fit in a table that may be output to a SAS data set using

the ods statement, which is relevant in versions 7 and higher of SAS. Earlier versions use the make

statement.
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PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 3

Fitting loglinear and reciprocal models to the clotting data.
(Gamma assumption)

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like

5 118
10 58
15 42
20 35
30 27
40 25
60 21
80 19
100 18

column 1 percentage concentration plasma
column 2 clotting time (seconds)

******************************************************************/

data clots; infile ’clot.dat’;
input u y;
x=log(u);

run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD. The
DIST=GAMMA option specifies the gamma distribution assumption.
We then fit two models: the loglinear model in the first
call to PROC GENMOD, obtained with the LINK=LOG option,
and the reciprocal (inverse) model, obtained with the
LINK=POWER(-1) option -- this option asks that the linear
predictor be raised to the power in parentheses as the model
for the mean response.

Here, the dispersion parameter phi is unknown so must be estimated.
This may be done a number of ways -- here, we use the PSCALE
option in MODEL statement to ask that phi be estimated
by the Pearson chi-square divided by its degrees of freedom.
Actually, for the gamma distribution, what is printed under
SCALE parameter is the reciprocal of this quantity, so we must
remember to invert the result from the output to obtain the estimate
of phi.

Also, use the OBSTATS option in the MODEL statement to output a
table of statistics such as predicted values (estimates of the mean
response) and residuals (response-estimated mean). We show
how to output these to a data set using the ODS statement for
for the loglinear fit (although we don’t do anything with them).
The ODS statement works with version 7 and higher of SAS.
Note that the obstats option causes the output of GENMOD to contain
these statistics; printing the output data set simply repeats
these values.

******************************************************************/

proc genmod data=clots;
model y = x / dist = gamma link = log obstats pscale;
ods output obstats=outlog;

run;

proc print data=outlog; run;

/*****************************************************************

Fit the inverse reciprocal regression model using PROC GENMOD.
Phi is again calculated by the Pearson chi-square/dof.

******************************************************************/

proc genmod data=clots;
model y = x / dist = gamma link = power(-1) obstats pscale;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

The GENMOD Procedure

Model Information

Data Set WORK.CLOTS
Distribution Gamma
Link Function Log
Dependent Variable y

Number of Observations Read 9
Number of Observations Used 9

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 7 0.1626 0.0232
Scaled Deviance 7 6.6768 0.9538
Pearson Chi-Square 7 0.1705 0.0244
Scaled Pearson X2 7 7.0000 1.0000
Log Likelihood -26.4276

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 5.5032 0.1799 5.1506 5.8559 935.63 <.0001
x 1 -0.6019 0.0520 -0.7039 -0.4999 133.80 <.0001
Scale 0 41.0604 0.0000 41.0604 41.0604

NOTE: The Gamma scale parameter was estimated by DOF/Pearson’s Chi-Square

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 0.3069 0.5796

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

1 118 1.6094379 93.175154 4.5344811 0.1026374 52.000165
76.196496 113.93712 24.824846 0.266432 0.2458801
2.1728608 2.3544798 2.2608074

The SAS System 2

The GENMOD Procedure

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

2 58 2.3025851 61.39102 4.1172636 0.0738424 38.792341
53.119026 70.951174 -3.39102 -0.055236 -0.056288
-0.413325 -0.405606 -0.411497

3 42 2.7080502 48.096382 3.873207 0.0607149 35.855825
42.700382 54.174268 -6.096382 -0.126753 -0.132544
-0.9248 -0.8844 -0.918591

4 35 2.9957323 40.449166 3.700046 0.0545252 35.528863
36.349431 45.011297 -5.449166 -0.134716 -0.141291
-0.967048 -0.92205 -0.961605

5 27 3.4011974 31.689627 3.4559894 0.052237 34.984
28.605721 35.106001 -4.689627 -0.147986 -0.155989
-1.060815 -1.006389 -1.054851

6 25 3.6888795 26.651048 3.2828285 0.0556359 38.516653
23.897747 29.721562 -1.651048 -0.061951 -0.063278
-0.434509 -0.425393 -0.433342

7 21 4.0943446 20.879585 3.0387719 0.0661298 41.297168
18.341382 23.769042 0.1204152 0.0057671 0.0057561
0.0409427 0.0410213 0.0409576

8 19 4.3820266 17.559778 2.865611 0.0762872 44.428066
15.121094 20.391766 1.4402218 0.0820182 0.0798774
0.5932165 0.6091154 0.5973195
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9 18 4.6051702 15.352785 2.7312969 0.0851497 48.140231
12.992945 18.141231 2.6472147 0.1724257 0.1634065
1.2715487 1.3417313 1.2945556

The SAS System 3

Obs Observation y x Pred Xbeta

1 1 118 1.6094379 93.175154 4.5344811
2 2 58 2.3025851 61.39102 4.1172636
3 3 42 2.7080502 48.096382 3.873207
4 4 35 2.9957323 40.449166 3.700046
5 5 27 3.4011974 31.689627 3.4559894
6 6 25 3.6888795 26.651048 3.2828285
7 7 21 4.0943446 20.879585 3.0387719
8 8 19 4.3820266 17.559778 2.865611
9 9 18 4.6051702 15.352785 2.7312969

Obs Std Hesswgt Lower Upper Resraw

1 0.1026374 52.000165 76.196496 113.93712 24.824846
2 0.0738424 38.792341 53.119026 70.951174 -3.39102
3 0.0607149 35.855825 42.700382 54.174268 -6.096382
4 0.0545252 35.528863 36.349431 45.011297 -5.449166
5 0.052237 34.984 28.605721 35.106001 -4.689627
6 0.0556359 38.516653 23.897747 29.721562 -1.651048
7 0.0661298 41.297168 18.341382 23.769042 0.1204152
8 0.0762872 44.428066 15.121094 20.391766 1.4402218
9 0.0851497 48.140231 12.992945 18.141231 2.6472147

Obs Reschi Resdev Stresdev Streschi Reslik

1 0.266432 0.2458801 2.1728608 2.3544798 2.2608074
2 -0.055236 -0.056288 -0.413325 -0.405606 -0.411497
3 -0.126753 -0.132544 -0.9248 -0.8844 -0.918591
4 -0.134716 -0.141291 -0.967048 -0.92205 -0.961605
5 -0.147986 -0.155989 -1.060815 -1.006389 -1.054851
6 -0.061951 -0.063278 -0.434509 -0.425393 -0.433342
7 0.0057671 0.0057561 0.0409427 0.0410213 0.0409576
8 0.0820182 0.0798774 0.5932165 0.6091154 0.5973195
9 0.1724257 0.1634065 1.2715487 1.3417313 1.2945556

The SAS System 4

The GENMOD Procedure

Model Information

Data Set WORK.CLOTS
Distribution Gamma
Link Function Power(-1)
Dependent Variable y

Number of Observations Read 9
Number of Observations Used 9

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 7 0.0167 0.0024
Scaled Deviance 7 6.8395 0.9771
Pearson Chi-Square 7 0.0171 0.0024
Scaled Pearson X2 7 7.0000 1.0000
Log Likelihood -16.1504

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -0.0166 0.0009 -0.0184 -0.0147 318.53 <.0001
x 1 0.0153 0.0004 0.0145 0.0162 1367.15 <.0001
Scale 0 408.8247 0.0000 408.8247 408.8247

NOTE: The Gamma scale parameter was estimated by DOF/Pearson’s Chi-Square

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 0.2600 0.6101

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik
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1 118 1.6094379 122.85904 0.0081394 0.0003814 6170940.5
112.52367 135.28505 -4.859041 -0.03955 -0.040083
-2.535827 -2.502059 -2.50553

The SAS System 5

The GENMOD Procedure

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

2 58 2.3025851 53.263889 0.0187744 0.0003353 1159852.7
51.462321 55.196169 4.7361113 0.0889179 0.0864112
1.8736358 1.9279877 1.8808138

3 42 2.7080502 40.007131 0.0249955 0.0004121 654352.76
38.754832 41.343065 1.9928686 0.0498128 0.049009
1.0510498 1.0682898 1.0529795

4 35 2.9957323 34.002638 0.0294095 0.0004948 472674.68
32.917102 35.162214 0.9973619 0.0293319 0.0290499
0.6246313 0.6306943 0.625336

5 27 3.4011974 28.065779 0.0356306 0.0006317 322026.28
27.12331 29.076102 -1.065779 -0.037974 -0.038466

-0.833125 -0.822477 -0.831765
6 25 3.6888795 24.972206 0.0400445 0.0007367 254947.6

24.103101 25.906332 0.0277938 0.001113 0.0011126
0.0242347 0.0242437 0.024236

7 21 4.0943446 21.614323 0.0462656 0.0008909 190994.29
20.828244 22.462064 -0.614323 -0.028422 -0.028696
-0.629919 -0.623908 -0.629011

8 19 4.3820266 19.731822 0.0506796 0.001003 159173.77
18.99499 20.528126 -0.731822 -0.037088 -0.037557

-0.828624 -0.818283 -0.826977
9 18 4.6051702 18.48317 0.0541033 0.0010911 139665.78

17.780391 19.243791 -0.48317 -0.026141 -0.026372
-0.583988 -0.578865 -0.583139

INTERPRETATION:

• Pages 1–2 of the output show the results of fitting the loglinear model. The estimates of β0 and β1

and their estimated standard errors are given in the table Analysis of Parameter Estimates.

The SCALE parameter estimate corresponds to an estimate of 1/φ; thus, the estimate of φ itself

is 1/41.0604 = 0.02435. Recall that the coefficient of variation σ is defined as σ2 = φ; thus, the

estimated coefficient of variation under the loglinear fit is 0.15606.

• The table Observation Statistics on pages 1 and 2 lists a number of results based on the

fit. Of particular interest is the column PRED, which gives the estimates of the mean response at

each xj value (the column Y contains the actual data values for comparison). These numbers are

repeated on page 3, which shows the result of the call to proc print to print the data set created

by the ods statement. This illustrates how it is possible to output such results so that further

manipulation may be undertaken.

• Pages 4–5 contain the same information for the reciprocal link fit. Here, the estimate of φ is

1/408.8247 = 0.002446, so that the estimated coefficient of variation σ is 0.04946.

• Note that the estimates of CV do not agree well at all between the two fits. The reason can

be appreciated when one inspects the lower right panel of Figure 3. Here, the estimated mean
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response for each fit is superimposed on the actual data – the solid line represents the fit of the

loglinear model, the dashed line is the fit of the reciprocal model. Note that this second model

appears to provide a much better fit to the data. The calculation of φ, and hence of σ, is based

on squared deviations {Yj − f(x′

jβ̂)}2. Because the loglinear model fits poorly, these deviations

are large, leading to an estimate of CV that is misleading large. The reciprocal model, which fits

the data very well, leads to a much smaller estimate because the deviations of the fit from the

observed responses are much smaller. Based on the visual evidence, the fit of the reciprocal model

is preferred for describing the percentage concentration of plasma-clotting time relationship.
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12 Population-averaged models for nonnormal repeated measure-

ments

12.1 Introduction

In the previous chapter, we discussed regression models for data that may not be normally distributed,

such as count or binary data or data that take on positive values but that may have skewed distributions.

These models, known as generalized linear models, have several features:

• A by-product of dealing with these types of variables is that the model for mean response may

need to satisfy some restrictions. The most extreme case was that of models for binary data; here,

the mean response is also the probability of seeing the event of interest, which must lie between

0 and 1. The main consequence is that models of interest are no longer necessarily linear in

regression parameters β (p× 1); instead, plausible models tend to be nonlinear functions f of β

through a linear predictor x′

jβ. Thus, the usual theory of linear models does not apply.

• The variance of the response is no longer legitimately viewed as being constant for all values of

the mean response (that is, for all settings of the covariates). Rather, the distributional models

that are sensible for these data impose a relationship between mean and variance; that is, the

variance of a response taken at a particular value of the mean is some known function V of the

mean.

• Because of the nonlinearity of mean response models and the fact that variance also is a function

of the mean, it is no longer possible to derive an expression for the estimator of β in closed form.

However, fortunately, it turns out that for all distributions in the class containing the relevant

distributions, such as the Poisson, Bernoulli, and gamma, the (ML) estimator of β solves a set

of p equations that is a sum of weighted deviations. Although these equations cannot be solved

analytically, they may be solved via a general numerical algorithm (IRWLS). Furthermore, large

sample approximations are available for the sampling distribution of the estimator β̂, so that

approximate inference may be carried out.

Generalized linear models may thus be viewed as an extension of ordinary linear regression models

for normal data with constant variance. These models and methods are of course only applicable to

the standard regression problem where independent scalar responses Y1, . . . , Yn have been observed at

covariate settings xj1, . . . , xjk for the jth response, j = 1, . . . , n.
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In this chapter, we are concerned with how we might extend generalized linear models to the situation

of longitudinal data, where now the responses are vectors Y i of repeated count, binary, or other

observations on each of m units.

• Recall in the the case of the linear model with the assumption of normality, the extension from

ordinary regression problems to the longitudinal problem was facilitated by thinking about the

multivariate normal distribution. That is, there is a natural generalization of the probability

model we use for ordinary linear regression (the normal distribution) to that we use for longitudinal

response vectors (multivariate normal).

• Specifically, if individual observations are assumed to be normally distributed, as they are in clas-

sical linear regression, then vectors of such observations have a multivariate normal distribution.

Each component of the data vector is normally distributed individually, with mean determined by

the regression model and variance that of the individual normal distribution. To fully characterize

the multivariate normal distribution that is appropriate, the only additional piece of information

we must specify is how the components of the vector are correlated. Put another way, as long as

(i) we believe individual observations are normally distributed and (ii) are willing to specify the

form of the mean vector through a regression model and the form of the covariance matrix

of a data vector, either by outright assumption or using a mixed effects structure, we can fully

specify the particular multivariate normal distribution that will be used as the basis for infer-

ence. Because of this, it was straightforward to contemplate models for longitudinal, normally

distributed data. Moreover, because we thus had a full probability model, we could write down the

joint probability distribution of the data and use the methods of maximum likelihood or restricted

maximum likelihood to fit the model and make inference.

• By analogy, it is natural to hope that we could do something similar when the elements of a data

vector Y i are now counts, binary responses, or positive responses with constant CV. That is, it

would be desirable if there were extensions of the Poisson, Bernoulli, and gamma distributions

that could be fully specified by simply adding assumptions about correlation to the individual

observation assumptions on mean and variance.
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• Unfortunately, this is not the case. This same kind of generalization is not so easy for the other

distributions in the scaled exponential family class, like the Poisson, Bernoulli, or gamma. In

particular, multivariate extensions of these probability models are unwieldy or require more than

just an assumption about the correlations among components of a data vector. Thus, sadly, trying

to use multivariate extensions of the distributions used for ordinary regression (generalized linear

models) to longitudinal data vectors is simply too complex to yield useful statistical models for

real situations.

To make matters worse, still another problem complicates things further. We have noted two perspec-

tives on modeling: population-averaged and subject-specific. For continuous, normally distributed

data, it is often relevant, as we have seen, to specify models that are linear:

• With the population-averaged perspective, we modeled the mean response of the elements of

a data vector by some function of time and possibly other covariates. This function was linear

in parameters β, e.g.

E(Yij) = β0 + β1tij .

We then modeled the covariance matrix Σi of a data vector explicitly. This model would (hope-

fully) take into account variation from all sources, among and within individuals simultaneously.

• With the subject-specific perspective, we modeled the individual trajectory of the elements of

a data vector by some function of time. This function was linear in individual-specific parameters;

e.g. we wrote models like the straight-line random coefficient model

Yij = β0i + β1itij + eij .

The individual-specific parameters β0i and β1i were in turn modeled as linear functions of a fixed

parameter β and random effects bi, βi = Aiβ+bi, that characterized respectively the “typical”

values of the elements of βi and how individual values deviated from these typical values. The

result was again a model for mean response averaged across individuals that was a linear function

of β; e.g., with Ai = I,

E(Yij) = β0 + β1tij .

The covariance model Σi arose from the combination of assumptions about bi and ei, thus natu-

rally taking into account variation from both sources separately.
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Thus, in both cases, although the perspective starts out differently, we end up with a model for mean

response E(Yij) that is a linear function of fixed parameters β of interest. We can end up with the

same linear mean model from either perspective. So, even if two data analysts start out with these

different perspectives, they are likely to arrive at the same mean model, and either of their interpretations

of the model will be valid. The difference will be in what they end up assuming about covariance.

As we will discuss, when we consider models of the generalized linear model type that are no longer

linear, it is no longer the case that the population-averaged and subject-specific perspectives neces-

sarily can lead to the same mean model! Moreover, as a result, the interpretations of the different

types of models are no longer both valid at the same time. This unfortunate problem is the result of

the nonlinearity of the generalized linear models.

Historically, as a consequence of all of these issues, models and method for nonnormal responses that

individually would follow generalized linear models were not widely available. The main impediments

were that

• there are not easy multivariate generalizations of the necessary probability distributions, and

• population-averaged and subject-specific approaches do not necessarily lead to the same models

for mean response.

Because there was no easy resolution to these problems, no one knew quite what to do. Then, in the

mid-1980’s, a paper appeared in the statistical literature that brought to the attention of statisticians

an approach for modeling these data, along with an associated fitting method, that made good practical

sense from a population-averaged perspective. The paper, Liang and Zeger (1986), generated a huge

amount of interest in this approach.

In this chapter, we will introduce this approach and the associated fitting method known as generalized

estimating equations, or GEEs. We will also show how to use PROC GENMOD in SAS to carry out such

analyses. As we will detail in the next section, the modeling of data vectors follows from a population-

averaged perspective, where the mean response of a data vector is modeled explicitly as a function

of time, parameters β, and possibly other covariates. No subject-specific random effects are involved.

We will contrast this approach with one that does use subject-specific random effects in Section 12.5

and in the next chapter.
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12.2 Population-averaged model

RECALL: The population-averaged approach is focused on modeling the mean response across

the population of units at each time point as a function of time. Thus, the model describes how the

averages across the population of responses at different time points are related over time. The model

usually describes the mean response at any time tij , say, for unit i as a function of fixed parameters β,

time tij , and possibly additional covariates. The model is set up so that questions about how the mean

response changes as a function of time and other covariates may be phrased in terms of questions about

the value of contrasts of the elements of β.

PROBLEM: In the case of normally distributed responses, if we specify such a mean response model

and a model for the covariance matrix of a data vector, we have provided all the necessary ingredi-

ents to write down a multivariate normal probability distribution that we believe describes the

population(s) of data vectors.

• Technically, if we can provide a mean vector and a covariance matrix, this is all we need to fully

describe a corresponding multivariate normal distribution.

• This is a desirable feature of the multivariate normal distribution – it is fully characterized

by a mean and covariance matrix.

In the case of nonnormally distributed response, if we specify such a mean response model and a model

for the covariance matrix, we have not necessarily provided all the necessary ingredients to write down

a corresponding multivariate probability distribution that we believe describes a population of data

vectors. Here is a brief heuristic explanation:

• Technically, to develop multivariate extensions of probability distributions like the those un-

derlying generalized linear models, it is not enough to provide just a mean vector and covariance

matrix.

• Because in these probability distributions the mean and variance of an observation are related in

a specific way, it turns out that it is much more difficult to fully describe a multivariate probability

distribution for several such observations in a data vector. To do so requires not only mean and

covariance matrix models, but additional assumptions about more complicated properties

of observations taken three, four, . . ., n at a time.

• With only the data at hand to guide the data analyst, it may be too difficult and risky to make

PAGE 469



CHAPTER 12 ST 732, M. DAVIDIAN

all of the assumptions required about these complicated properties. Furthermore, the resulting

probability models can be so complex that fitting them to real data may be an insurmountable

challenge.

APPROACH: The approach popularized by Liang and Zeger (1986) is to forget about trying to model

the whole multivariate probability distribution of a data vector. Instead, the idea is just to model the

mean response and the covariance matrix of a data vector as in the normal case, and leave it at

that.

• The problem with this approach is that, consequently, there is no multivariate probability distribu-

tion upon which to base fitting methods and inference on parameters (like maximum likelihood).

• However, Liang and Zeger (1986) described an alternative approach to model fitting for such

mean-covariance models for nonnormal longitudinal data that does not require specification

of a full probability model but rather just requires the mean and covariance matrix. We discuss

this method in the next section.

Here, we describe the modeling strategy.

MEAN–VARIANCE MODEL: The idea is to take generalized linear models for individual observa-

tions as the starting point.

• If we consider a single component of a data vector Y i consisting of counts, binary responses,

or continuous positive response with constant CV at different times, the distribution of possible

values across the population of units might be well-represented by the Poisson, Bernoulli, and

gamma probability models, respectively.

• Thus, the distribution of each observation in a data vector is taken to have ideally a mean and

variance model of the type relevant to or imposed by these distributions.
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EXAMPLE – EPILEPTIC SEIZURE DATA: Recall Example 4 from Chapter 1, given by Thall and

Vail (1990). Here, 59 subjects suffering from epileptic seizures were assigned at random to receive either

a placebo (subjects 1–28) or the anti-seizure drug progabide (subjects 29–59) in addition to a standard

chemotherapy regimen all were taking. On each subject, the investigators recorded the subject’s age,

ai, say for the ith subject, i = 1, . . . , 59, a baseline number of seizures experienced by each subject

over the 8-week period prior to the start of the study, and then the number of seizures over a 2 week

period for four visits following initiation of assigned treatment. Let δi be the treatment indicator for

the ith patient,

δi = 0 for placebo subjects

= 1 for progabide subjects

Before we consider a model for these data, we discuss an issue that has been of some debate among

practitioners, that of “how to handle “baseline?”

In all of our examples up till now involving different groups, we have treated a baseline response, that

is, a measure of the response taken at the start of a study (and prior to administration of treatment if

there is one) as part of the overall response vector Y i. This takes automatic account of the information

in the baseline response, its correlation with other responses, and the fact that different subjects have

different baseline characteristics.

However, a common approach is to instead view the response vector as just the post-baseline responses

and treat the baseline response as a covariate in a model for mean of this response vector. The idea

is that this takes into account, or “adjusts for,” the fact that different subjects have different baseline

response characteristics.

Here, the baseline response and subsequent responses are not on the same scale; the baseline response

is the number of seizures recorded over an 8-week period prior to the start of the study (initiation of

assigned treatment) while the post-baseline responses are the number recorded in the 2-week period

between the four visits. This discrepancy might especially motivate an analyst to treat baseline as a

covariate, as it does not seem comparable with the rest of the response variables. In fact, the original

analysis of these data by Thall and Vail (1980) did this.

However, this seems to be suboptimal, as it would seem to ignore the fact that baseline response would

be expected to vary within subjects; that is, baseline response is a random variable. It is a simple

matter to address the scaling issue; in the current study, one may divide the baseline responses by 4 to

place them on a two-week basis.
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The more fundamental issue is whether it is a good idea to treat a baseline response as a covariate in

order to take into account the fact that units differ in their responses prior to treatment or whether it

is preferable to treat the baseline value as part of the response vector for each unit. In the case of a

linear mean response, it turns out that the two strategies can be equivalent, which is why we have

not discussed this until now. However, when the model for mean response is nonlinear, this no longer

holds.

Our position is that as a general strategy, it is preferable to treat a baseline response as part of the

response vector rather than as a covariate. There are theoretical reasons, beyond our scope here, that

support this position. We continue to follow this strategy for the rest of this course.

A very nice, detailed discussion of this issue is given by Fitzmaurice, Laird, and Ware (2004, Section

5.7).

Returning to the seizure data, adopting this view, we take the data vector corresponding to subject i

to be Y i = (Yi1, Yi2, . . . , Yi5)′, where Yi1 is the baseline response based on 8 weeks, and Yi2, . . . , Yi5 are

the responses at each of visits 1–4 based on 2 weeks (we discuss how to take into account the different

time periods momentarily).

Before we specify the model, we consider some summary statistics. This was a randomized study, so

we would expect subjects in the two groups to be similar in their characteristics prior to administration

of the treatment. This seems plausible; the following table lists sample means (standard deviations) of

age and baseline 8-week seizure counts (Yi1) for each group.

Age Baseline

Placebo 29.6 (6.0) 30.8 (26.1)

Progabide 27.7 (6.6) 31.6 (27.9)

Notice that the subjects vary considerably in their baseline seizure counts.

Table 1 lists sample mean seizure counts at baseline and each visit time; those for baseline are divided

by 4 to put them on the same 2-week scale as the others.
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Table 1: Sample mean seizure counts at baseline and each visit time for the 28 subjects assigned to

placebo and 30 subjects assigned to progabide.

Visit Placebo Progabide

0 (baseline) 7.70 7.90

1 9.35 8.58

2 8.29 8.42

3 8.79 8.13

4 7.96 6.71

average over 8.60 7.96

visits 1–4

The raw sample means suggest a possible slight initial increase in 2-week seizure count followed by a

“leveling-off,” with a possible lowering by visit 4 in the progabide group.

Based on these observations, we might adopt a model for mean response that allows the possibility of

a different mean at baseline and visits 1–4, where the mean at visits 1–4 is the same, and these might

be different by group. Because the responses may be small counts for some subjects and are indeed

counts for all, it is natural to consider a loglinear model.

Define vij = 0 if j = 1 (baseline) and vij = 1 otherwise (visits 1–4), and let oij = 8 if j = 1 and oij = 2

otherwise, so that oij records the observation period on which Yij is based (8 or 2 weeks). Then the

following loglinear model incorporates these features:

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3δivij), (12.1)

where thus β = (β0, β1, . . . , β3)′ is the vector of fixed regression parameters characterizing the mean

response vector for any subject.

• The fixed quantity log oij cleverly takes account of the different observation periods for baseline

and post-treatment visits. If we take the log of both sides of (12.1) and subtract log oi from both

sides, we get

log{E(Yij)}− log oij = log{E(Yij/oij)} = β0 + β1vij + β2δi + β3δivij ,

so this is equivalent to modeling the means of Yi1/8 and Yij/2 for j = 2, . . . , 5.
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• Model (12.1) says that, at baseline, the mean response is

log{E(Yi1/8)} = β0 + β2δi

while for visits 1–4 the mean is

log{E(Yij/2)} = β0 + β1 + β2δi + β3δi,

which is the same for all 4 post-baseline visits and may be viewed as reflecting the “overall”

behavior averaged across them. Here, β1 is the amount by which the logarithm of the mean

“shifts” after the study begins. β2 allows the baseline mean to be different by treatment, and β3

reflects the additional amount by which the mean differs by treatment after treatment starts.

As the study was randomized, we would not necessarily expect baseline mean responses to be

different by treatment; certainly the sample means given above do not support this. We might

thus eliminate this term from the model.

• A fancier model might allow the mean response to change smoothly with time (measured in weeks)

following visit 1 somehow. One possibility would be to allow a straight-line relationship between

baseline and visit 1, and then another straight-line relationship from visit 1 onward.

• Alternatively, the sample means seem to suggest that the effect of the progabide may not become

apparent until the last visit. We consider such a model later in this chapter. We also consider

taking into account age.

• On the original scale, note that as before that, for a loglinear model like (12.1), receiving treatment

versus not has the effect of causing a multiplicative change in mean response. In particular,

exp(β3) is the multiplicative effect of progabide relative to placebo post-baseline. If β3 is positive,

then the multiplicative factor is greater than one, and the mean response increases; if β2 is

negative, then the multiplicative factor is less than one, and the mean response decreases.

EXAMPLE – WHEEZING DATA: Recall Example 5 from Chapter 1, given by Lipsitz, Laird, and

Harrington (1992). These data are from a large public health study (the Six Cities study) and concerned

the association between maternal smoking and respiratory health of children. In section 12.7, we will

consider a subset of the full data set, data on 32 of these children. Each child was examined once a year

at a clinic visit (visits at ages 9, 10, 11, and 12) for evidence of “wheezing” – the response was recorded

as a binary variable (0=wheezing absent, 1=wheezing present).
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In addition, the mother’s current smoking status was recorded (0=none, 1=moderate, 2=heavy). For

some children, visits were missed, so that both the response (wheezing indicator) and maternal smoking

status were missing; for our purposes, we will assume that the reasons for this missingness are not

related to the focus of study. (See Chapter 13 for more on missing data.)

Let Yij be the wheezing indicator (=0 or 1) on the ith child at the jth age tij , where tij ideally takes

on all the values 9, 10, 11, 12. Thus, j = 1, . . . , ni for any child, with ni ≤ 4. As the response is binary,

a logistic regression model would be appropriate for representing E(Yij). For child i, let

δ0ij = 1 if smoking=none at tij

= 0 otherwise

δ1ij = 1 if smoking=moderate at tij

= 0 otherwise

ci = 0 if city=Portage

= 1 if city=Kingston

Recall the discussion in Chapter 10 regarding time-dependent covariates. As maternal smoking

is a time-dependent covariate, the considerations raised in that discussion are relevant. Here, we are

interested in a model for mean response for the jth element of a data vector, E(Yij).

• As a mother’s smoking behavior is something we only can observe, we should probably be more

careful and acknowledge that it should be thought of as random; thus, we would think of the

pair δij = (δ0ij , δ1ij)′ as a random vector characterizing the observed smoking behavior at age

j. Thus, following the discussion in Chapter 10, we are really modeling the E(Yij |δi1, . . . , δini
).

• The model used by Lipsitz, Laird, and Harrington (1992) takes E(Yij) as depending on a mother’s

smoking status (δ0ij , δ1ij) at time j only; that is, they assume

E(Yij |δi1, . . . , δini
) = E(Yij |δij) = E(Yij |δ0ij , δ1ij).

One possible rationale is that, because measurements are so far apart in time (one year), it might

be believed that a mother’s smoking behavior at one time is not associated with respiratory

problems at another time. However, given the discussion in Chapter 10, this is something that

must be considered critically.

In this example, an objective (see Chapter 1) is to understand whether maternal smoking behavior has

an effect on wheezing.
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A little thought suggests that this is indeed a complicated question; the children have not been subjected

to a “one-time” treatment (smoking or not) that distinguishes them into groups, as in previous examples.

Rather, the “treatment” changes with time and may be related to the response in a complicated way,

as discussed in Chapter 10. It is not at all clear that a simple model like that above addresses this.

Indeed, this question would seem to involve a causal interpretation! At best, all we can hope for is to

understand associations.

Thus, writing down an appropriate model for E(Yij) requires considerable thought and a clear idea of

how the model is to be used.

• It is sometimes argued that, if the goal is to use the model only to estimate a future child’s risk

of wheezing based on information at a particular time point only, then a model for E(Yij) as a

function of (δ0ij , δ1ij) at j only may be of interest, even if it doesn’t capture the true underlying

mechanism leading to wheezing.

• However, this is almost always not the goal! Rather, the objective is as above: to assess and

compare the effects of smoking patterns on wheezing patterns. Trying to do this based on the

simple model we discuss next is likely to result in flawed and meaningless interpretations.

Further discussion is beyond the scope of this course; however, it is critical that the data analyst

confronted with data such as these appreciate that there are profound issues involved in modeling

them! Frankly, one should be extremely careful when dealing with time dependent covariates

and longitudinal data.

• We again refer the reader to Fitzmaurice, Laird, and Ware (2004) for discussion. A very technical

paper that also discusses this issue is from the literature on causal inference [Robins, Greenland,

and Hu (1999)].

With the above caveats in mind, we show for illustration a model similar to that proposed by Lipsitz,

Laird, and Harrington (1992). The model is

E(Yij) =
exp(β0 + β1ci + β2δ0ij + β3δ1ij)

1 + exp(β0 + β1ci + β2δ0ij + β3δ1ij)
, (12.2)

where thus β = (β0, β1, . . . , β3)′ is the vector of fixed regression parameters characterizing the mean

response vector for any subject. Of course, this implies (see the previous chapter) that the log odds is

given by

log

(
E(Yij)

1 − E(Yij)

)

= β0 + β1ci + β2δ0ij + β3δ1ij .
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• Model (12.2) thus says that the log odds of having a wheezing response relative to not having

it depends (linearly) on city and maternal smoking status. We could additionally add an “age”

term to allow dependence on age (maybe as children grow older their tendency toward wheezing

changes).

• Specifically, the model says that the log odds at age tij is equal to β0 for a child from Portage

whose mother is a heavy smoker at tij , since under these conditions ci = δ0ij = δ1ij = 0. For

a child from Kingston, the log odds would change by adding the amount β1; for a child whose

mother was a non (moderate) smoker, the log odds would change by adding the amount β2 (β3).

• With the model written as (12.2), we see that, because the logistic function increases (decreases)

as the linear predictor increases (decreases), we see that the probability of wheezing at time tij ,

E(Yij), will, for example, increase if β1 > 0 and a child is from Kingston (ci = 1) rather than

Portage (ci = 0). If β1 < 0, then the probability of wheezing is smaller for a child from Kingston

than for one from Portage. Similarly, if β2 < 0, this would say that the probability of wheezing

is smaller for a child whose mother is a non- rather than heavy smoker (and similarly for β3 < 0

and moderate smoking).

VARIANCE: The above examples illustrate how one might model the mean response as a function of

time and other covariates using the types of models appropriate for nonnormal data. The next part of

the modeling strategy is to model the variance of each element of the data vector.

• Recall that in the population-averaged approach, the covariance matrix of a data vector is modeled

directly; i.e. the model selected incorporates the aggregate effects both of within- and among-

unit variation. Thus, the diagonal elements of the covariance matrix represent the combined

effects of variance from both sources.

• Thus, in the approach here, when we specify a model for variance of an element Yij , we are

modeling the aggregate variance from both sources.

Thus, for the different types of data, the model for var(Yij) is meant to represent the overall variance

of Yij from both sources. That is, the distribution of each observation in a data vector across the

population of all units and including variability in taking measurements is assumed to have variance

related to the assumed mean for Yij as in the models above. How variance is related to the mean

depends on the type of data:
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• For example, for binary responses Yij taken on unit i at times tij , variance would be taken to be

that of a binary random variable as imposed by the Bernoulli distribution; i.e.

var(Yij) = E(Yij){1 − E(Yij)}. (12.3)

Thus, for the wheezing data, variance would be modeled as in (12.3) with E(Yij) as in (12.1).

• For responses Yij in the form of counts taken at times tij on unit i, variance would be taken to

be that of a Poisson random variable; i.e.

var(Yij) = E(Yij) (12.4)

• For positive responses with constant coefficient of variation, variance would be modeled as

var(Yij) = σ2{E(Yij)}2, where E(Yij) is modeled by a suitable function like the loglinear or

reciprocal model.

OVERDISPERSION: Sometimes, these models for variance turn out to be inadequate for representing

all the variation in observations taken at a particular time across units. There are many reasons why

this may be the case:

• The aggregate effects of (i) error introduced by taking measurements and (ii) variation because

units differ add up to be more than would be expected if we only considered observations on a

particular unit.

• There may be other factors involved in data collection that make things look more variable than

the usual assumptions might indicate; e.g. the subjects in the seizure study may have not kept

accurate records of the number of seizures that they experienced during a particular period, and

perhaps recalled it as being greater or less than it actually was. This is usually not a problem for

binary data, since it is generally easy to reliably record whether the event of interest occurred.

Theses issue could make the variance in the population of all possible observations across all units

appear to be more variable than expected. Note that the second issue could arise even in the cases

considered in Chapter 11. The extension we are about to discuss may be applied to ordinary generalized

linear regression modeling as well in this case.
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The phenomenon where variance may be greater than that dictated by a standard model based on one

of these distributions is called overdispersion. To take this phenomenon into account, it is customary

to be a little more flexible about modeling overall variance in some of these models.

• For example, for count data, it is standard to modify the variance model to allow for an additional

scale or overdispersion parameter; i.e.

var(Yij) = φE(Yij). (12.5)

• For binary data, this is not generally required; if we wrote a model

var(Yij) = φE(Yij){1 − E(Yij)},

we would expect φ to be estimated as equal to 1, as the variance of a binary response should be

just E(Yij){1 − E(Yij)}

Fancier ways to deal with “overdispersion” are described in, for example McCullagh and Nelder (1989).

“WORKING” CORRELATION MATRIX: The last requirement is to specify a model describing cor-

relation among pairs of observations on the same data vector. Again, because the modeling is of the

population-averaged type, the model for correlation is attempting to represent how all sources of

variation that could lead to associations among observations “add up,” the aggregate of

• Correlation due to the within-subject “fluctuations” on a particular unit (and possibly measure-

ment error).

• Correlation due to the simple fact the observations on the same unit are “more alike” than those

from different units.

The models that are chosen to represent the overall correlation are the same ones used in modeling

normally distributed data that were discussed in Chapter 8. In the current context one thinks of associ-

ations exclusively in terms of correlations, as the variance is modeled by thinking about it separately

from associations. Popular models are the ones in Chapter 8, which we write here in terms of the

correlation matrices they dictate:
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• Unstructured correlation: For observations taken at the same time points for different units,

this assumption places no restriction on the nature of associations among elements of a data

vector. If Yij and Yik, j, k = 1, . . . , n, are two observations on the same unit where all units are

observed at the same n times, and if ρjk represents the correlation between Yij and Yik, then

ρjk = 1 if j = k and −1 ≤ ρjk ≤ 1 if j ̸= k. The implied correlation matrix for a data vector with

all n observations is the (n × n) matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n

...
...

...
...

ρn1 · · · ρn,n−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where of course ρjk = ρkj for all j, k. Thus, the unstructured “working” correlation assumption

depends on n(n − 1)/2 distinct correlation parameters.

• Compound symmetry (exchangeable) correlation: This assumption says that the correla-

tion between distinct observations on the same unit is the same regardless of when in time the

observations were taken. In principle, this model could be used with balanced data, ideally bal-

anced data with missing values, and unbalanced data where time points are different for different

units. This structure may be written in terms of a single correlation parameter 0 < ρ < 1; i.e.

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
...

...

ρ · · · ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

• One-dependent: This assumption says that only observations adjacent in time are correlated

by the same amount −1 < ρ < 1. In principle, this model could be used with any situation;

however, for unbalanced data with different time points, it may not make sense, as we discussed

in Chapter 8. The model may be written

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ 0 · · · 0

ρ 1 ρ · · · 0
...

...
...

...
...

0 · · · 0 ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

PAGE 480



CHAPTER 12 ST 732, M. DAVIDIAN

• AR(1) correlation: This assumption says that correlation among observations “tails off;” if

−1 < ρ < 1, the model is ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

...

ρn−1 · · · ρ2 ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

In principle, this model could be used with any situation; however, again, for unbalanced data

with different time points, it may not make sense.

Note that in the case of ideally balanced data, if some data vectors are missing some observations, then

the forms of these matrices must be constructed carefully to reflect this, as discussed in Chapter 8. E.g.,

for n = 5 and a vector missing the observations corresponding to j = 2 and 4, the unstructured matrix

would be constructed as ⎛

⎜⎜⎜⎜⎝

1 ρ13 ρ15

ρ13 1 ρ35

ρ15 ρ35 1

⎞

⎟⎟⎟⎟⎠
,

where we have used the fact that ρjk = ρkj .

For unbalanced data where the observations on each unit are taken at possibly different times, the

models such as the Markov model discussed in Chapter 8 may be used in the obvious way; currently,

this capability is not part of PROC GENMOD in SAS. The examples we consider in this chapter are from

longitudinal studies designed (ideally) to be balanced.

The correlation model so specified is popularly referred to in the context of these models as the “working

correlation matrix.” This designation is given because it is well-recognized that such modeling carries

with it much uncertainty; as we have discussed, we are attempting to capture variance and correlation

from all sources with a single model. Thus, the model is considered to be only a “working” model

rather than necessarily representing what is probably a very complex truth. “Working” correlation

became popular in the context of modeling longitudinal data with generalized linear models; however,

it is equally applicable when discussing the the modeling of Chapter 8 in the normal case. Thus, although

this term gained popularity in nonnormal data situations, it has come to be used in the linear, normal

case, too. As we have seen in the linear, normal case, introducing random effects is an alternative way

to generate covariance models that may have an easier time at capturing both sources of variation.
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ALL TOGETHER: Combining the models for variance and correlation gives a model for the covariance

matrix for a data vector Y i. It is customary to represent this in the “alternative” form in Equation (3.7).

Suppose that unit i has a vector of associated covariates, possibly including time tij , xij .

• It may well be the case that xij does not vary with j, or varies with j only through tij . In this

case, covariates are time-independent.

• Following our previous discussion, it may be that xij includes time-dependent covariates. It

may even include values of such covariates or even responses at other j!

Thus, the notation xij is meant to include all components deemed relevant at j.

We write the mean response model as

µij = E(Yij) = f(x′

ijβ),

where f is one of the functions such as the exponential (loglinear) or logistic regression models. Then

the variance of Yij is modeled by some function of the mean response µij ; e.g.

var(Yij) = φV (µij),

where we include a dispersion parameter φ. The standard deviation of Yij is given by {φV (µij)}1/2.

Suppose that unit i has ni observations, so that j = 1, . . . , ni. Define the standard deviation matrix

for unit i as the (ni × ni) diagonal matrix whose diagonal elements are the standard deviations of the

Yij under this model, except for the dispersion parameter; that is, let

T
1/2
i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

{V (µi1)}1/2 0 · · · 0

0 {V (µi2)}1/2 · · · 0
...

...
...

...

0 · · · 0 {V (µini
)}1/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (12.6)

Let Γi be the (ni × ni) correlation matrix under one of the assumptions above, properly constructed

for this unit’s time pattern. Then we may write the covariance matrix Σi for the data vector Y i

implied by the assumptions as (verify)

Σi = φT
1/2
i ΓiT

1/2
i ;

note that we have multiplied by the overdispersion parameter φ = φ1/2φ1/2 to complete the specification

of the standard deviations in each matrix T
1/2
i .
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Note that the “i” subscript is needed on both T
1/2
i and Γi to remind us that the dimensions of these

matrices and the diagonal elements of T
1/2
i depend on the particular unit i with its own mean response

vector and number of observations ni.

SUMMARY: We may now summarize the modeling strategy and resulting statistical model. To specify

a population-averaged model for mean and covariance matrix of a data vector for nonnormal responses

using this approach:

• The mean response of a data vector Y i is modeled as a function of time, other covariates, and

parameters β by using a generalized linear model-type mean structure to represent the mean

response of each element of Y i.

• The variance of each element of Y i is modeled by the function of the mean that is appropriate

for the type of data; e.g. count data are taken to have the Poisson variance structure, which

says that variance of any element of Y i is equal to the corresponding model for the mean. These

models are often modified to allow for the greater variation both within- and among-units by the

addition of a dispersion parameter φ.

• Correlation among observations on the same unit (elements of Y i) is represented by choosing

a model, such as the correlation structures corresponding to the AR(1), one-dependent, Markov,

or other specifications. Because there is some uncertainty in doing this and (as we’ll see) no

formal way to check it, the chosen model is referred to as the “working correlation matrix” to

emphasize this fact.

With these considerations, we have the following statistical model for the mean vector and covariance

matrix of a data vector Y i consisting of observations Yij , j = 1, . . . , ni on unit i. If

• Mean response of Yij is modeled by a suitable function f of a linear predictor x′

ijβ

• Variance is thus modeled as some function V of mean response times a dispersion parameter φ,

which defines a standard deviation matrix T
1/2
i as in (12.6) above,

• Correlation is modeled by a “working” correlation assumption Γi

E(Y i) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

f(x′

i1β)

f(x′

i2β)
...

f(x′

ini
β)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= f i(β), var(Y i) = φT
1/2
i ΓiT

1/2
i = Σi = φΛi. (12.7)
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Let ω refer to the distinct unknown parameters that fully describe the chosen “working” correlation

matrix Γi. For example, for the compound symmetry, AR(1), and one-dependent structure, ω = ρ;

for the unstructured model, ω consists of the distinct possible correlation parameters ρjk for the data

vector of maximal size n.

As always, it is assumed that the individual data vectors Y i are independent across individual units.

As noted above, however, we are not in a position to specify a full multivariate probability distribution

corresponding to this mean and covariance model.

12.3 Generalized estimating equations

The considerations in the last section allow specification of a model for the mean and covariance of a

data vector of the form (12.7). However, because this is not sufficient to specify an entire appropriate

multivariate probability distribution, it is not possible to appeal immediately to the principle of

maximum likelihood to develop a framework for estimation and testing.

IDEA: Although we do not have a basis for the maximum likelihood, why not try to emulate situations

where there is such a basis? We have two situations to which we can appeal:

• The normal case with a linear mean model, discussed in Chapter 8. Here, the model was

E(Y i) = Xiβ, var(Y i) = Σi

for suitable choice of covariance matrix Σi depending on a vector of parameters ω, say. Assuming

that the Y i follow a multivariate normal, we were led to the estimator for β

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i, (12.8)

where Σ̂i is the covariance matrix with the estimator for ω plugged in. It may be shown (try it!)

that it is possible to rewrite (12.8) in the following form:

m∑

i=1

X ′

iΣ̂
−1
i (Y i − Xiβ̂) = 0. (12.9)

That is, the estimator for β solves an a set of p equations for β (p × 1) (with the estimator for

ω plugged in).
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• In the case of ordinary generalized linear models, recall that considering maximum likelihood,

which was possible in that case, led to solving a set of equations of the form (11.18); i.e.
n∑

j=1

1

V {f(x′

jβ)}{Yj − f(x′

jβ)}f ′(x′

jβ)xj = 0, (12.10)

where f ′(u) =
d

du
f(u), the derivative of f with respect to its argument. The method of iteratively

reweighted least squares was used to solve this equation. Note that if there is a scale parameter,

it need not be taken into account in this calculation.

• Comparing (12.9) and (12.10), we see that there is a similar theme – the equations are linear

functions of deviations of observations from their assumed mean are weighted in accordance

with their covariance (for vectors) and variance (for individual observations). The variance or

covariance matrix is not entirely known but is evaluated at estimates of the unknown quantities

it contains (ω in the first case and β in the second case).

GENERALIZED ESTIMATING EQUATION: From these observations, a natural approach for fitting

model (12.7) is suggested: solve an estimating equation consisting of p equations for β (p × 1) that

(i) is a linear function of deviations

Y i − f i(β),

and (ii) weights these deviations in the same way as in (12.9) and (12.10), using the inverse of the

assumed covariance matrix Σi of a data vector with an estimator for the unknown parameters ω in the

“working” correlation matrix plugged in.

Note that even if there is a scale parameter, we really need only use the inverse of Λi in (12.7). As

in (12.10), Σi and Λi will also depend on β through the variance functions V {f(x′

ijβ)}; more in a

moment.

These results lead to consideration of the following equation to be solved for β (with a suitable estimator

for ω plugged in):
m∑

i=1

∆′

iΛ̂
−1
i {Y i − f i(β̂)} = 0, (12.11)

where ∆i is the (ni × p) matrix whose (j, s) element (j = 1, . . . , ni, s = 1, . . . , p) is the derivative of

f(x′

ijβ) with respect to the sth element of β, and Λ̂i is the matrix Λi in (12.7) with an estimator for

ω plugged in (see below). Note that φ can be disregarded here.

The matrix ∆i is a function of β. It is also a function of X i, which here is defined as the (ni×p) matrix

whose rows are x′

ij . It is possible to write out the form of ∆i precisely in terms of X i and the elements

f ′(x′

ijβ); this is peripheral to our discussion here; see Liang and Zeger (1986) for the gory details.

PAGE 485



CHAPTER 12 ST 732, M. DAVIDIAN

An equation of the form (12.11) to be solved to estimate a parameter β in a mean response model is

referred to popularly as a generalized estimating equation, or GEE for short.

ESTIMATION OF ω: To use (12.11) to estimate β, an estimator for ω is required. There are a number

of methods that have been proposed to obtain such estimators; the books by Diggle, Heagerty, Liang,

and Zeger (2002) and Vonesh and Carter (1997) discuss this in detail. One intuitive way, and that used

by PROC GENMOD in SAS and originally proposed by Liang and Zeger (1986), is to base the estimation

on appropriate functions of deviations

Y i − f i(β̂),

where β̂ is some estimator for β.

• For example, one could fit the mean model for all m individuals assuming independence among

all observations using the techniques of Chapter 11 to obtain such an estimate. This estimate

could be used to form deviations and thus to estimate ω.

To see how this might work, let

rij =
Yij − f(x′

ijβ̂)

[V {f(x′

ijβ̂)}1/2

be the deviation corresponding to the jth observation on unit i divided by an estimate of its standard

deviation. Then the dispersion parameter φ is usually estimated by

φ̂ = (N − p)−1
m∑

i=1

ni∑

j=1

{Yij − f(x′

ijβ̂)}2

V {f(x′

ijβ̂)}
= (N − p)−1

m∑

i=1

ni∑

j=1

r2
ij . (12.12)

Compare this to the Pearson chi-square in ordinary generalized linear models in Chapter 11; it is the

same function but taken across all deviations for all units.

• If Γi corresponds to the unstructured correlation assumption, then estimate ρjk by

ρ̂jk = m−1φ̂−1
m∑

i=1

rijrik.

• If Γi corresponds to the compound symmetry structure, then the single parameter ρ may be

estimated by

ρ̂ = m−1φ̂−1
m∑

i=1

(ni − 1)−1
ni−1∑

j=1

rijri,j+1.

Note that the rationale here is to consider only adjacent pairs, as you might expect.

ω for other covariance models may be estimated by a similar approach.
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ALL TOGETHER: The above ideas may be combined to define an estimation scheme for β, ω, and φ

in the model (12.7). Heuristically, the scheme has the following form:

1. Obtain an initial estimator for β by assuming all observations across all individuals are inde-

pendent. This may be carried out using the method of IRWLS for ordinary generalized linear

models, as described in Chapter 11.

2. Using this estimator for β, estimate φ and then ω as appropriate for the assumed “working”

correlation matrix.

3. Use these estimators for β and ω to form an estimate of Λi, Λ̂i. Treat this as fixed in the

generalized estimating equation (12.11). The resulting equation may then be solved by a numerical

technique that is an extended version of the IRWLS method used in the ordinary case. Obtain

a new estimator β̂.

4. Return to step 2 if desired and repeat the process. Steps 2, 3, and 4 can be repeated until the

results of two successive tries stay the same (“convergence”).

The spirit of this scheme is implemented in the SAS procedure PROC GENMOD.

SAMPLING DISTRIBUTION: As before, it should not be surprising that we must appeal to large

sample theory to obtain an approximation to the sampling distribution of the estimator β̂ obtained

by solving the GEE. Here, “large sample” refers to the number of units, m; this is sensible; each Y i is

from a different unit.

The results may be stated as follows: For m “large,” the GEE estimator β̂ for β satisfies

β̂
·∼ N

⎧
⎨

⎩β, φ

(
m∑

i=1

∆′

iΛ
−1
i ∆i

)
−1

⎫
⎬

⎭ , (12.13)

where ∆i is as defined previously. As in the ordinary generalized linear model case, ∆i and Λi depend

on β and ω; moreover, φ is also unknown. Thus, for practical use, these quantities are replaced by

estimates. Specifically, define

V̂ β = φ̂

(
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1

,

where ∆̂i and Λ̂i are ∆i and Λi with the final estimates of β and ω plugged in and φ̂ is the estimate

of φ. φ̂ would just be equal to 1 if no scale parameter is in the model. Again, we use the notation V̂ β

to represent the estimated covariance matrix of β̂.
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As usual, standard errors for the elements of β̂ may be obtained as the square roots of the diagonal

elements of V̂ β .

HYPOTHESIS TESTS: As in the ordinary generalized linear model case, Wald testing procedures are

used to test null hypotheses of the form

H0 : Lβ = h.

As usual, we have the large sample approximation

Lβ̂
·∼ N (Lβ, LV̂ βL′),

which may be used to construct test statistics and confidence intervals in a fashion identical to that

discussed previously; for example, if L is a row vector, then the test may be based on comparing

z =
Lβ̂ − h

SE(Lβ̂)

to the critical values from the standard normal distribution. For more general L, one may form the

Wald χ2 statistic More generally, the Wald χ2 test statistic

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

and compare to the appropriate χ2 critical value with degrees of freedom equal to the number of rows

of L.

12.4 “Robust” estimator for sampling covariance

ISSUE: It is important to recognize that the GEE fitting method for estimating the parameters in

model (12.7) is not a maximum likelihood method; rather, it was arrived at from an ad hoc perspective.

As a result, it is not possible to derive quantities like AIC and BIC to compare different “working”

correlation matrices to determine which assumption is most suitable. Consequently, it is sensible to be

concerned that the validity of inferences on β such as the estimator itself, calculation of approximate

confidence intervals, and tests may be compromised if the assumption on correlation is incorrect.

SOLUTION: One solution to this dilemma is to modify the estimated covariance matrix V̂ β to allow

for the possibility that the choice of Γi used in the model is incorrect. The modified version of V̂ β is

V̂
R
β =

(
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1 (

m∑

i=1

∆̂
′

iΛ̂
−1
i ŜiΛ̂

−1
i ∆̂i

) (
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1

, (12.14)

where

Ŝi = {Y i − f i(β̂)}{Y i − f i(β̂)}′.
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• Even if the model has a scale parameter. (12.14) does not require an estimate of it.

• Note that if Ŝi were equal to Σ̂i = φ̂Λ̂i, then (12.14) would be equivalent to V̂ β (verify).

• The rationale for the modification may be appreciated by considering the definition of the true

covariance matrix for Y i; specifically,

var(Y i) = E{Y i − f i(β)}{Y i − f i(β)}′.

In the model, we have chosen Σi (through choosing Γi as our assumption about var(Y i). By

including the “middle” term in (12.14), we are thus hoping to “balance out” an alternative guess

for var(Y i) against the assumed model Σi.

• It turns out that, for large m, V̂
R
β will provide a reliable estimate of the true sampling covariance

matrix of β̂ even if the chosen model Σi (Γi) is incorrect. In contrast, if the model is incorrect,

V̂ β will not provide a reliable estimate.

The alternative estimate of the sampling covariance matrix of β̂ V̂
R
β is often referred to as the robust

covariance matrix estimate. The term is derived from the fact that V̂
R
β is “robust” to the fact that we

may be incorrect about Γi. V̂ β is often referred to as the model-based covariance matrix estimate,

because it uses the model assumption on Γi with no attempt to correct for the possibility it is wrong.

This “robust” modification may also be applied to the linear, normal models in Chapter 8. To get “ro-

bust” standard errors, use the empirical option in the proc mixed statement: proc mixed empirical

data=;

The decision whether to use the model-based estimate V̂ β or the robust estimate V̂
R
β is an “art-

form.” No consensus exists on which one is to be preferred in finite samples in practical problems. If

they are very different, some people take that as an indication that the original assumption is wrong.

On the other hand, if one or more of the Y i vectors contains “unusual” values that are very unlikely

to be seen, this would be enough to “throw off” the estimate V̂
R
β . Because there is no “iron-clad” rule,

we offer no recommendation on which to use.

12.5 Contrasting population-averaged and subject-specific approaches

The model (12.7) is, as stated, a population-averaged model. The mean of a data vector and its

covariance matrix are modeled explicitly. As a result, from our discussions in Chapter 9, we know

that β has the interpretation as the parameters that describe the relationship of the mean response

over time and other covariates.
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An alternative perspective we discussed was that of the subject-specific approach. In this approach,

one starts with thinking about individual unit trajectories rather than about the mean (average)

across all units. In the linear model case, we did this by the introduction of random effects; e.g., the

random coefficient model that says each unit has its own intercept and slope β0i and β1i, which in

turn are represented as

β0i = β0 + b0i, β1i = β1 + b1i, β = (β0, β1)
′.

In this model, the interpretation of β is as the “typical” value of intercept and slope in the population.

It just so happened that in the case of a linear model for either the mean response or individual

trajectory, one arrives at the same mean response model. Thus, in this case, the distinction between

these two interpretations was not important – either was valid.

SUBJECT-SPECIFIC GENERALIZED LINEAR MODEL: It is natural to consider the subject-

specific approach in the case where the functions of generalized linear models are appropriate. For

example, recall the seizure data, where the response is a count. By analogy to linear random coefficient

and mixed effects models, suppose we decided to model the individual trajectory of counts for an

individual subject as a subject-specific loglinear regression model. That is, suppose we wrote the

“mean” for subject i as a function of subject-specific parameters β0i and β3i as

exp(β0i + β3itij) (12.15)

In (12.15), β0i and β3i thus describe the subject’s own (conditional) mean response as a function of

time and individual “intercept” and “slope” on the log scale. Under this perspective, each subject has

his/her own such parameters β0i and β3i that characterize his/her own mean response over time.

Now, just as we did earlier, suppose we thought of the β0i and β4i as arising from populations of such

values. For example, suppose that

β3i = β3 + b3i,

where b3i is a random effect for subject i with mean 0. b3i describes how subject i deviates from the

“typical” value β3. Similarly, we might suppose that

β0i = β0 + b0i

for another mean-zero random effect b0i.
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To incorporate the covariate information on treatment and age, we might assume that the “typical”

rate of change of log mean with time does not depend on these covariates, but maybe the “typical”

intercept does; e.g., we could write an alternative model depending on covariates ai and δi, say, as

β0i = β0 + β1ai + β2δi + b0i.

Putting all of this together, we arrive at a model for the “mean” for subject i, depending on the random

effect vector bi = (b0i, b3i)′:

E(Yij | bi) = exp(β0 + β1ai + β2δi + b0i + β3tij + b3itij) (12.16)

Following with the analogy, we could assume that the random effects bi ∼ N (0, D) for some covariance

matrix D.

We could write this model another way. Let βi = (β0i, β3i). The we have a first-stage model that says

the conditional mean for Y i, given bi on which βi depends is f i(βi), where

f i(βi) =

⎛

⎜⎜⎜⎜⎝

exp(β0i + β3iti1)
...

exp(β0i + β3itini
)

⎞

⎟⎟⎟⎟⎠
.

At the second stage, we could assume

βi = Aiβ + bi;

for the model above, β = (β0, β1, β2, β3)′ and, for subject i

Ai =

⎛

⎜⎝
1 ai δi 0

0 0 0 1

⎞

⎟⎠ .

(Verify.)

ARE THE TWO MODELS THE SAME? All of this is very similar to what we did in the normal, linear

case. In that case, both approaches led to the same representation of the ultimate mean response vector

E(Y i), but with different covariance matrices. The population-averaged model for mean response is

E(Y i) = X iβ. In the subject-specific general linear mixed model, by contrast, the “individual mean”

is

E(Y i | bi) = Xiβ + Zibi. (12.17)

But this “individual mean” has expectation

E{Xiβ + Zibi} = X iβ,

since bi has mean zero, which is identical to the population-averaged model.
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Here, our two competing models are the population-averaged model that says immediately that

E(Y i) has jth element

E(Yij) = exp(β0 + β1ai + β2δi + β3tij),

and, from (12.16), the subject-specific model that says E(Y i | bi) has jth element

exp(β0 + β1ai + β2δi + b0i + β3tij + b3itij).

If the models were the same, we would expect that the expectation of this would be identical to

E(Yij) above. However, this is not the case. Note that we need to evaluate

E {exp(β0 + β1bi + β2ai + β3δi + b0i + β3tij + b3itij)} .

Contrast this with the calculation in (12.17) above – because that function of bi was linear, evaluating

the expectation was straightforward. Here, however, evaluating the expectation is not straightforward,

because it involves a complicated nonlinear function of bi = (b0i, b3i)′. Even though bi are normal, the

expectation of this nonlinear function is not possible to evaluate by a simple rule as in the linear case.

As a result, it is not true that the expectation is identical to E(Yij) above.

RESULT: This is a general phenomenon, although we showed it just for a specific model. In a nonlinear

model, it is no longer true that the population-averaged and subject-specific perspectives lead to the

same model for mean response E(Y i). Thus, the two models are different. Furthermore, the parameter

we called β in each model has a different interpretation; e.g. in the seizure example,

• β for the population-averaged model has the interpretation as the value that leads to the “typical”

or mean response vector

• β for the subject-specific model has the interpretation as the value that is the “typical” value of

“intercept” and “slope” of log mean.

This may seem like a subtle and difficult-to-understand difference, which it is. But the main point is

that the two different modeling strategies lead to two different ways to describe the data with different

interpretations. Obviously, in these more complex models, the distinction matters. See Chapter 13 for

more.
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12.6 Discussion

The presentation here just scratches the surface of the area of population-averaged modeling for longi-

tudinal data that may not be normally distributed. In fact, this is still an area of active research, and

papers on the subject may be found in current issues of Journal of the American Statistical Association,

Biometrics, and others. See the books by Diggle, Liang, and Zeger (1995) and Vonesh and Carter (1997)

for more extensive treatment.

12.7 Implementation with SAS

We illustrate how to carry out fitting of population-averaged generalized linear models for longitudinal

data via the use of generalized estimating equations for the two examples discussed in this chapter:

1. The epileptic seizure data

2. Wheezing data from the Six Cities study

our main focus is on the use of PROC GENMOD to fit models like those in the examples. We show how to

specify different “working” correlation models via the repeated statement in this procedure, both for

balanced (the seizure data) and unbalanced (the wheezing data) cases and how to interpret the output.

ASIDE: It is possible to implement this fitting, and more variations on it, in SAS in other ways –

one possibility is through use of the GLIMMIX SAS macro, developed at SAS, that is meant to be used

for fitting generalized linear mixed models, which are subject-specific models for nonnormal

longitudinal data incorporating random effects, as the name suggests (see Chapter 13). This is similar

in spirit to using PROC MIXED to fit linear population-averaged regression models to normal data; these

models contain no random effects, yet this procedure may be used to fit them, as we have seen. The

details are beyond the scope of this course.
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EXAMPLE 1 – EPILEPTIC SEIZURE DATA: We first consider the model (12.1),

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3vijδi),

discussed earlier. We fit this model using several working correlation matrices. Here, the coefficient

of greatest interest is β3, which reflects whether post-baseline mean response is different in the two

treatment groups.

There is one “unusual” subject (subject 207 in the progabide group) whose seizure counts are very high;

this subject had a baseline count of 151 in the 8 week pre-treatment period. This subject’s data are

sufficiently unusual relative to those for the rest of the participants that it is natural to be concerned

over whether the conclusions are sensitive to them. To investigate, we fit the model excluding the data

for this subject.

Finally, we also allow for the possibility that the mean response changes at the 4th visit and include

age as a covariate to take account of possible association of baseline seizure characteristics with age

of the subject. For the first issue, we define an additional indicator variable v4ij = 0 unless j = 5

corresponding to the visit 4. The model is modified to

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3vijδi + β4v4ij + β5v4ijδi).

The parameter β5 reflects whether the difference in post-baseline mean response in fact changes at the

fourth visit, while β4 allows the possibility that the mean response “shifts” at the 4th visit relative to

the earlier ones.

To incorporate oij , in the program we use the offset option in the model statement of proc genmod.
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PROGRAM:

/******************************************************************

CHAPTER 12, EXAMPLE 1

Fit a loglinear regression model to the epileptic seizure data.
These are count data, thus we use the Poisson mean/variance
assumptions. This model is fitted with different working
correlation matrics.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 8 records on first 2 subjects)

104 11 0 0 11 31
104 5 1 0 11 31
104 3 2 0 11 31
104 3 3 0 11 31
104 3 4 0 11 31
106 11 0 0 11 30
106 3 1 0 11 30
106 5 2 0 11 30
106 3 3 0 11 30
106 3 4 0 11 30

.

.

.

column 1 subject
column 2 number of seizures
column 3 visit (baseine (0) and 1--4 biweekly visits)
column 4 =0 if placebo, = 1 if progabide
column 5 baseline number of seizures in 8 weeks prior to study
column 6 age

******************************************************************/

data seizure; infile ’seize.dat’;
input subject seize visit trt base age;

run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD and
three different working correlation matrix assumptions:

- unstructured
- compound symmetry (exchangeable)
- AR(1)

Subject 207 has what appear to be very unusual data -- for
this subject, both baseline and study-period numbers of seizures
are huge, much larger than any other subject. In some published
analyses, this subjectis deleted. See Diggle, Heagerty, Liang,
and Zeger (2002) and Thall and Vail (1990) for more on this subject.
We carry out the analyses with and without this subject.

We fit the mean model in equation (12.1) first. We then add age
as a covariate to allow for systematic differences in baseline response
due to age. We use log(age) as has been the case in other analyses.

The DIST=POISSON option in the model statement specifies
that the Poisson requirement that mean = variance, be used.
The LINK=LOG option asks for the loglinear model. Other
LINK= choices are available.

The REPEATED statement specifies the "working" correlation
structure to be assumed. The CORRW option in the REPEATED
statement prints out the estimated working correlation matrix
under the assumption given in the TYPE= option. The COVB
option prints out the estimated covariance matrix of the estimate
of beta -- both the usual estimate and the "robust" version
are printed. The MODELSE option specifies that the standard
error estimates printed for the elements of betahat are based
on the usual theory. By default, the ones based on the "robust"
version of the sampling covariance matrix are printed, too.

The dispersion parameter phi is estimated rather then being held
fixed at 1 -- this allows for the possibility of "overdispersion"

The new version of SAS will not allow the response to be a noninteger
when we declare dist = poisson. Thus, analyzing seize/o is not
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possible. Instead, one can use the OFFSET option in the MODEL
statement. This will fit the model exactly how it is written in
model (12.1) -- the term log(o_ij) is the known "offset." To get
SAS to include this "offset," we form the variable logo in the
data set and then declare logo to be an offset.

******************************************************************/

data seizure; set seizure;
logage=log(age);
o=2; v=1;
if visit=0 then o=8;
if visit=0 then v=0;
logo=log(o);

run;

title "UNSTRUCTURED CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=un corrw covb modelse;

run;

title "EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

title "AR(1) CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=ar(1) corrw covb modelse;

run;

/******************************************************************

Delete the unusual subject and run again; we only use the
compound symmetric covariance for the rest of the analyses.

******************************************************************/

data weird; set seizure;
if subject=207 then delete;

run;

title "SUBJECT 207 DELETED";
proc genmod data=weird;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

/******************************************************************

Now we fit two additional models on the full data (with 207).
In the first, we add logage as a covariate. In the second,
we allow an additional shift at visit 4. To do this,
we define visit4 to be an indicator of the last visit.

******************************************************************/

data seizure; set seizure;
visit4=1;
if visit<4 then visit4=0;

run;

title "AGE ADDED";
proc genmod data=seizure;
class subject;
model seize = logage v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

title "MODIFIED MODEL";
proc genmod data=seizure;
class subject;
model seize = v visit4 trt trt*v trt*visit4 /

dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

UNSTRUCTURED CORRELATION 1

The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

UNSTRUCTURED CORRELATION 2
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Unstructured
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01205 0.01924 -0.01205 -0.01924
Prm2 0.01924 0.03091 -0.01924 -0.03091
Prm3 -0.01205 -0.01924 0.02220 0.03696
Prm4 -0.01924 -0.03091 0.03696 0.06209

Covariance Matrix (Empirical)
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Prm1 Prm2 Prm3 Prm4

Prm1 0.23193 0.0007209 -0.23193 -0.000721
Prm2 0.0007209 0.01564 -0.000721 -0.01564
Prm3 -0.23193 -0.000721 0.32478 -0.03058
Prm4 -0.000721 -0.01564 -0.03058 0.06334

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.9435 0.7324 0.8213 0.6856
Row2 0.9435 1.0000 0.8187 0.9435 0.7819
Row3 0.7324 0.8187 1.0000 0.7146 0.5375
Row4 0.8213 0.9435 0.7146 1.0000 0.6841
Row5 0.6856 0.7819 0.5375 0.6841 1.0000

UNSTRUCTURED CORRELATION 3
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.1186 0.4816 0.1747 2.0625 2.32 0.0202
v 0.1233 0.1251 -0.1218 0.3684 0.99 0.3241
trt 0.0711 0.5699 -1.0459 1.1881 0.12 0.9007
v*trt -0.1140 0.2517 -0.6072 0.3793 -0.45 0.6507

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.1186 0.1098 0.9034 1.3338 10.19 <.0001
v 0.1233 0.1758 -0.2213 0.4679 0.70 0.4831
trt 0.0711 0.1490 -0.2209 0.3631 0.48 0.6331
v*trt -0.1140 0.2492 -0.6023 0.3744 -0.46 0.6474
Scale 4.9502 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 4
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803
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Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 5
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02286 0.01051 -0.02286 -0.01051
Prm2 0.01051 0.02393 -0.01051 -0.02393
Prm3 -0.02286 -0.01051 0.04296 0.02132
Prm4 -0.01051 -0.02393 0.02132 0.04838

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152
Prm2 -0.001152 0.01348 0.001152 -0.01348
Prm3 -0.02476 0.001152 0.04922 0.01525
Prm4 0.001152 -0.01348 0.01525 0.04563

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7716 0.7716 0.7716 0.7716
Row2 0.7716 1.0000 0.7716 0.7716 0.7716
Row3 0.7716 0.7716 1.0000 0.7716 0.7716
Row4 0.7716 0.7716 0.7716 1.0000 0.7716
Row5 0.7716 0.7716 0.7716 0.7716 1.0000

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 6
The GENMOD Procedure

Exchangeable Working
Correlation

Correlation 0.7715879669

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt 0.0265 0.2219 -0.4083 0.4613 0.12 0.9049
v*trt -0.1037 0.2136 -0.5223 0.3150 -0.49 0.6274

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1512 1.0513 1.6439 8.91 <.0001
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v 0.1108 0.1547 -0.1924 0.4140 0.72 0.4739
trt 0.0265 0.2073 -0.3797 0.4328 0.13 0.8982
v*trt -0.1037 0.2199 -0.5348 0.3274 -0.47 0.6374
Scale 4.4388 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

AR(1) CORRELATION 7
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

AR(1) CORRELATION 8
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02046 0.007458 -0.02046 -0.007458
Prm2 0.007458 0.02829 -0.007458 -0.02829
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Prm3 -0.02046 -0.007458 0.03859 0.01571
Prm4 -0.007458 -0.02829 0.01571 0.05781

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02620 -0.003809 -0.02620 0.003809
Prm2 -0.003809 0.01248 0.003809 -0.01248
Prm3 -0.02620 0.003809 0.04494 0.01198
Prm4 0.003809 -0.01248 0.01198 0.06782

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.8131 0.6611 0.5375 0.4371
Row2 0.8131 1.0000 0.8131 0.6611 0.5375
Row3 0.6611 0.8131 1.0000 0.8131 0.6611
Row4 0.5375 0.6611 0.8131 1.0000 0.8131
Row5 0.4371 0.5375 0.6611 0.8131 1.0000

AR(1) CORRELATION 9
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3119 0.1619 0.9947 1.6292 8.10 <.0001
v 0.1515 0.1117 -0.0675 0.3704 1.36 0.1751
trt 0.0188 0.2120 -0.3968 0.4343 0.09 0.9295
v*trt -0.1283 0.2604 -0.6388 0.3821 -0.49 0.6222

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3119 0.1430 1.0316 1.5923 9.17 <.0001
v 0.1515 0.1682 -0.1782 0.4811 0.90 0.3678
trt 0.0188 0.1965 -0.3663 0.4038 0.10 0.9240
v*trt -0.1283 0.2404 -0.5996 0.3429 -0.53 0.5935
Scale 4.4907 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

SUBJECT 207 DELETED 10
The GENMOD Procedure

Model Information

Data Set WORK.WEIRD
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 290
Number of Observations Used 290

Class Level Information

Class Levels Values

subject 58 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
208 209 210 211 213 214 215 217 218 219 220 221
222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
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Deviance 286 2413.0245 8.4371
Scaled Deviance 286 2413.0245 8.4371
Pearson Chi-Square 286 3015.1555 10.5425
Scaled Pearson X2 286 3015.1555 10.5425
Log Likelihood 5631.7547

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

SUBJECT 207 DELETED 11
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 -0.1080 0.0486 -0.2034 -0.0127 4.93 0.0264
v*trt 1 -0.3016 0.0697 -0.4383 -0.1649 18.70 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (58 levels)
Number of Clusters 58
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01223 0.001520 -0.01223 -0.001520
Prm2 0.001520 0.01519 -0.001520 -0.01519
Prm3 -0.01223 -0.001520 0.02495 0.005427
Prm4 -0.001520 -0.01519 0.005427 0.03748

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152
Prm2 -0.001152 0.01348 0.001152 -0.01348
Prm3 -0.02476 0.001152 0.03751 -0.002999
Prm4 0.001152 -0.01348 -0.002999 0.02931

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5941 0.5941 0.5941 0.5941
Row2 0.5941 1.0000 0.5941 0.5941 0.5941
Row3 0.5941 0.5941 1.0000 0.5941 0.5941
Row4 0.5941 0.5941 0.5941 1.0000 0.5941
Row5 0.5941 0.5941 0.5941 0.5941 1.0000

SUBJECT 207 DELETED 12

The GENMOD Procedure

Exchangeable Working
Correlation

Correlation 0.5941485833

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt -0.1080 0.1937 -0.4876 0.2716 -0.56 0.5770
v*trt -0.3016 0.1712 -0.6371 0.0339 -1.76 0.0781
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1106 1.1309 1.5644 12.19 <.0001
v 0.1108 0.1233 -0.1308 0.3524 0.90 0.3687
trt -0.1080 0.1579 -0.4176 0.2015 -0.68 0.4940
v*trt -0.3016 0.1936 -0.6811 0.0779 -1.56 0.1193
Scale 3.2469 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

AGE ADDED 13
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 logage
Prm3 v
Prm4 trt
Prm5 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 290 3520.0007 12.1379
Scaled Deviance 290 3520.0007 12.1379
Pearson Chi-Square 290 5476.2836 18.8837
Scaled Pearson X2 290 5476.2836 18.8837
Log Likelihood 6694.8957

Algorithm converged.

AGE ADDED 14
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 3.2206 0.2482 2.7340 3.7071 168.30 <.0001
logage 1 -0.5616 0.0740 -0.7066 -0.4166 57.61 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181
trt 1 -0.0043 0.0469 -0.0962 0.0876 0.01 0.9271
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4 Prm5
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Prm1 1.88238 -0.56242 0.009622 -0.05729 -0.009622
Prm2 -0.56242 0.17001 -4.92E-18 0.01073 -4.7E-17
Prm3 0.009622 -4.92E-18 0.02306 -0.009622 -0.02306
Prm4 -0.05729 0.01073 -0.009622 0.04165 0.01956
Prm5 -0.009622 -4.7E-17 -0.02306 0.01956 0.04657

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4 Prm5

Prm1 1.88843 -0.56699 -0.02199 0.01540 0.03990
Prm2 -0.56699 0.17266 0.006605 -0.01262 -0.01202
Prm3 -0.02199 0.006605 0.01348 0.0005524 -0.01348
Prm4 0.01540 -0.01262 0.0005524 0.04566 0.01574
Prm5 0.03990 -0.01202 -0.01348 0.01574 0.04563

Algorithm converged.

AGE ADDED 15

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7617 0.7617 0.7617 0.7617
Row2 0.7617 1.0000 0.7617 0.7617 0.7617
Row3 0.7617 0.7617 1.0000 0.7617 0.7617
Row4 0.7617 0.7617 0.7617 1.0000 0.7617
Row5 0.7617 0.7617 0.7617 0.7617 1.0000

Exchangeable Working
Correlation

Correlation 0.7617417343

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 4.4338 1.3742 1.7404 7.1272 3.23 0.0013
logage -0.9275 0.4155 -1.7419 -0.1131 -2.23 0.0256
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt -0.0266 0.2137 -0.4454 0.3923 -0.12 0.9011
v*trt -0.1037 0.2136 -0.5223 0.3150 -0.49 0.6274

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 4.4338 1.3720 1.7447 7.1228 3.23 0.0012
logage -0.9275 0.4123 -1.7356 -0.1194 -2.25 0.0245
v 0.1108 0.1519 -0.1869 0.4084 0.73 0.4656
trt -0.0266 0.2041 -0.4266 0.3735 -0.13 0.8965
v*trt -0.1037 0.2158 -0.5266 0.3193 -0.48 0.6309
Scale 4.3350 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

MODIFIED MODEL 16
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238
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Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 visit4
Prm4 trt
Prm5 v*trt
Prm6 visit4*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 289 3567.6314 12.3447
Scaled Deviance 289 3567.6314 12.3447
Pearson Chi-Square 289 5673.2719 19.6307
Scaled Pearson X2 289 5673.2719 19.6307
Log Likelihood 6671.0804

Algorithm converged.

MODIFIED MODEL 17

The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1351 0.0501 0.0369 0.2333 7.27 0.0070
visit4 1 -0.1009 0.0764 -0.2506 0.0489 1.74 0.1867
trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.0769 0.0694 -0.2129 0.0591 1.23 0.2676
visit4*trt 1 -0.1210 0.1092 -0.3350 0.0931 1.23 0.2679
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4 Prm5 Prm6

Prm1 0.02277 0.01031 0.001711 -0.02277 -0.01031 -0.001711
Prm2 0.01031 0.02436 -0.004423 -0.01031 -0.02436 0.004423
Prm3 0.001711 -0.004423 0.02569 -0.001711 0.004423 -0.02569
Prm4 -0.02277 -0.01031 -0.001711 0.04280 0.02052 0.005259
Prm5 -0.01031 -0.02436 0.004423 0.02052 0.04828 -0.006694
Prm6 -0.001711 0.004423 -0.02569 0.005259 -0.006694 0.05315

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4 Prm5 Prm6

Prm1 0.02476 -0.000931 -0.000952 -0.02476 0.0009314 0.0009516
Prm2 -0.000931 0.01770 -0.01079 0.0009314 -0.01770 0.01079
Prm3 -0.000952 -0.01079 0.01447 0.0009516 0.01079 -0.01447
Prm4 -0.02476 0.0009314 0.0009516 0.04922 0.01554 -0.001292
Prm5 0.0009314 -0.01770 0.01079 0.01554 0.05058 -0.01277
Prm6 0.0009516 0.01079 -0.01447 -0.001292 -0.01277 0.01681

Algorithm converged.

MODIFIED MODEL 18

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7772 0.7772 0.7772 0.7772
Row2 0.7772 1.0000 0.7772 0.7772 0.7772
Row3 0.7772 0.7772 1.0000 0.7772 0.7772
Row4 0.7772 0.7772 0.7772 1.0000 0.7772
Row5 0.7772 0.7772 0.7772 0.7772 1.0000

Exchangeable Working
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Correlation

Correlation 0.7771671618

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1351 0.1330 -0.1257 0.3958 1.02 0.3099
visit4 -0.1009 0.1203 -0.3366 0.1349 -0.84 0.4017
trt 0.0265 0.2219 -0.4083 0.4613 0.12 0.9049
v*trt -0.0769 0.2249 -0.5177 0.3639 -0.34 0.7323
visit4*trt -0.1210 0.1297 -0.3751 0.1331 -0.93 0.3507

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1509 1.0518 1.6434 8.93 <.0001
v 0.1351 0.1561 -0.1708 0.4410 0.87 0.3868
visit4 -0.1009 0.1603 -0.4150 0.2133 -0.63 0.5292
trt 0.0265 0.2069 -0.3790 0.4320 0.13 0.8980
v*trt -0.0769 0.2197 -0.5076 0.3537 -0.35 0.7262
visit4*trt -0.1210 0.2305 -0.5728 0.3308 -0.52 0.5997
Scale 4.4307 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

INTERPRETATION:

• Pages 1–3 report the fit of the first model assuming the unstructured “working” correlation struc-

ture; pages 4–6 show the results for the compound symmetry assumption, and pages 7–9 show the

results for the AR(1) assumption.

• On pages 1, 4, and 7, the table Analysis of Initial Parameter Estimates gives the estimates

of β under the independence assumption (thus, these tables are the same for each fit).

• The results of solving the GEE begin on pages 2, 5, and 8 with the Model Information head-

ing. The Covariance Matrix (Model Based) is the estimate V̂ β ; the Covariance Matrix

(Empirical) is the “robust” estimate V̂
R
β . They are somewhat similar for each fit, but differ-

ent enough. How different can be seen in the tables Analysis of GEE Parameter Estimates

that follow; that labeled Empirical Standard Error Estimates uses V̂
R
β to compute standard

errors; that labeled Model-Based Standard Error Estimates uses V̂ β .

• The fits are qualitatively very similar. In all cases, there does not seem to be any evidence that

β3 is different from zero.

• We have no formal method of choosing among the various “working” correlation assumptions.

A practical approach is to inspect the results as above for each one – if they are in qualitative

agreement, then we feel reasonably confident that results are not too dependent on the correlation

assumption.

PAGE 506



CHAPTER 12 ST 732, M. DAVIDIAN

• Pages 10–12 show the results of the fit with the compound symmetric assumption and “un-

usual”subject 207 deleted. Note that now the results are suggestive of an effect of progabide;

β̂3 = −0.30 with a (robust) standard error of 0.17, yielding a p-value for a test of β3 = 0 of 0.08.

• Adding age to the model [as log(age)] does not alter the results. Taking special account of the

4th visit does not yield any additional insight. It seems that, perhaps due to the magnitude of

variation in the data and probable lack of a strong treatment effect, there is little evidence favoring

progabide over placebo.
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EXAMPLE 2 – WHEEZING DATA FROM THE SIX CITIES STUDY: Here, we consider fitting the

model (12.2) similar to that fitted in Lipsitz, Laird, and Harrington (1992),

E(Yij) =
exp(β0 + β1ci + β2δ0ij + β3δ1ij)

1 + exp(β0 + β1ci + β2δ0ij + β3δ1ij)
.

We consider as in the seizure example several different “working” correlation assumptions. The output

is in the same form as for the seizure example.

Recall, of course, our previous discussion about time-dependent covariates. The model for E(Yij) may

well suffer the flaws we mentioned earlier; this fitting is mainly for illustration.

A difference between this fit and that in the seizure example is that there are missing values for some

subjects. To make sure that SAS uses the correct convention to construct the covariance matrix for

each individual (and hence the estimate of ω), the within= option of the repeated statement is used

with the class variable time, which is identically equal to the numerical variable age. This has the

effect of telling the program that it should consult the variable time to make sure each observation is

classified correctly at its appropriate level of age.

Because these are binary data, we do not consider an overdispersion scale parameter. This is held fixed

at 1.0 in the analyses by default for binary data.
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PROGRAM:

/******************************************************************

CHAPTER 12, EXAMPLE 2

Fit a logistic regression model to the "wheezing" data.
These are binary data, thus, we use the Bernoulli (bin)
mean/variance assumptions. The model is fitted with different
working correlation matrices.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 4 records):

1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0

.

.

.

column 1 child
column 2 city
columns 3-5 age=9, smoking indiciator, wheezing response
columns 6-8 age=10, smoking indiciator, wheezing response
columns 9-11 age=11, smoking indiciator, wheezing response
columns 12-14 age=12, smoking indiciator, wheezing response

Some of the children have missing values for smoking and wheezing,
as shown in Chapter 1. There are 32 children all together. See the
output for the full data printed out one observation per line.

We read in the data using the "@@" symbol so that SAS will continue
to read for data on the same line and the OUTPUT statement to
write each block of three observations for each age in as a separate
data record. The resulting data set is one with a separate line for
each observation. City is a character variable, so the dollar
sign is used to read it in as such.

******************************************************************/

data wheeze; infile ’wheeze.dat’;
input child city $ @@;
do i=1 to 4;
input age smoke wheeze @@;
output;

end;
run;

proc print data=wheeze; run;

/*****************************************************************

Fit the logistic regression model using PROC GENMOD and
three different working correlation matrix assumptions:

- unstructured
- compound symmetry (exchangeable)
- AR(1)

We fit a model with linear predictor allowing effects of
city and maternal smoking status but no "interaction"
terms among these.

The DIST=BIN option in the MODEL statement specifies that the
Bernoulli mean-variance relationship be assumed. The LINK=LOGIT
option asks for the logistic mean model.

The REPEATED statement specifies the "working" correlation
structure to be assumed. The CORRW option in the REPEATED
statement prints out the estimated working correlation matrix
under the assumption given in the TYPE= option. The COVB
option prints out the estimated covariance matrix of the estimate
of beta -- both the usual estimate and the "robust" version
are printed. The MODELSE option specifies that the standard
error estimates printed for the elements of betahat are based
on the usual theory. By default, the ones based on the "robust"
version of the sampling covariance matrix are printed, too.

The dispersion parameter phi is held fixed at 1 by default.

The missing values are coded in the usual SAS way by periods (.).
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We delete these from the full data set, so that the data set input
to PROC GENMOD contains only the observed data. We assume that the
fact that these observations are missing has nothing to do with the
thing under study (which may or may not be true). Thus,
because these data are not balanced, we use the WITHIN option of
the REPEATED statement to give SAS the time variable AGE as a
classification variable so that it can figure out where the missing
values are and use this information in estimating the correlation
matrix.

In versions 7 and higher of SAS, PROC GENMOD will model by
default the probability that the response y=0 rather than
the conventional y=1! To make PROC GENMOD model probability
y=1, as is standard, one must include the DESCENDING option in
the PROC GENMOD statement. In earlier versions of SAS, the
probability y=1 is modeled by default, as would be expected.

If the user is unsure which probability is being modeled, one
can check the .log file. In later versions of SAS, an explicit
statement about what is being modeled will appear. PROC GENMOD
output should also contain a statement about what is being
modeled.

******************************************************************/

data wheeze; set wheeze;
if wheeze=. then delete;
time=age;

run;

title "UNSTRUCTURED CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=un corrw covb modelse within=time;

run;

title "COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=cs corrw covb modelse within=time;

run;

title "AR(1) CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=ar(1) corrw covb modelse within=time;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

Obs child city i age smoke wheeze

1 1 portage 1 9 0 1
2 1 portage 2 10 0 1
3 1 portage 3 11 0 1
4 1 portage 4 12 0 0
5 2 kingston 1 9 1 1
6 2 kingston 2 10 2 1
7 2 kingston 3 11 2 0
8 2 kingston 4 12 2 0
9 3 kingston 1 9 0 1
10 3 kingston 2 10 0 0
11 3 kingston 3 11 1 0
12 3 kingston 4 12 1 0
13 4 portage 1 9 0 0
14 4 portage 2 10 0 1
15 4 portage 3 11 0 1
16 4 portage 4 12 1 0
17 5 kingston 1 9 0 0
18 5 kingston 2 10 1 0
19 5 kingston 3 11 1 0
20 5 kingston 4 12 1 0
21 6 portage 1 9 0 0
22 6 portage 2 10 1 0
23 6 portage 3 11 1 0
24 6 portage 4 12 1 0
25 7 kingston 1 9 1 0
26 7 kingston 2 10 1 0
27 7 kingston 3 11 0 0
28 7 kingston 4 12 0 0
29 8 portage 1 9 1 0
30 8 portage 2 10 1 0
31 8 portage 3 11 1 0
32 8 portage 4 12 2 0
33 9 portage 1 9 2 1
34 9 portage 2 10 2 0
35 9 portage 3 11 1 0
36 9 portage 4 12 1 0
37 10 kingston 1 9 0 0
38 10 kingston 2 10 0 0
39 10 kingston 3 11 0 0
40 10 kingston 4 12 1 0
41 11 kingston 1 9 1 1
42 11 kingston 2 10 0 0
43 11 kingston 3 11 0 1
44 11 kingston 4 12 0 1
45 12 portage 1 9 1 0
46 12 portage 2 10 0 0
47 12 portage 3 11 0 0
48 12 portage 4 12 0 0
49 13 kingston 1 9 1 0
50 13 kingston 2 10 0 1
51 13 kingston 3 11 1 1
52 13 kingston 4 12 1 1
53 14 portage 1 9 1 0
54 14 portage 2 10 2 0
55 14 portage 3 11 1 0

The SAS System 2

Obs child city i age smoke wheeze

56 14 portage 4 12 2 1
57 15 kingston 1 9 1 0
58 15 kingston 2 10 1 0
59 15 kingston 3 11 1 0
60 15 kingston 4 12 2 1
61 16 portage 1 9 1 1
62 16 portage 2 10 1 1
63 16 portage 3 11 2 0
64 16 portage 4 12 1 0
65 17 portage 1 9 2 1
66 17 portage 2 10 2 0
67 17 portage 3 11 1 0
68 17 portage 4 12 1 0
69 18 kingston 1 9 0 0
70 18 kingston 2 10 0 0
71 18 kingston 3 11 0 0
72 18 kingston 4 12 0 0
73 19 portage 1 9 0 0
74 19 portage 2 10 . .
75 19 portage 3 11 . .
76 19 portage 4 12 . .
77 20 kingston 1 9 . .
78 20 kingston 2 10 0 1
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79 20 kingston 3 11 . .
80 20 kingston 4 12 . .
81 21 portage 1 9 . .
82 21 portage 2 10 . .
83 21 portage 3 11 2 1
84 21 portage 4 12 . .
85 22 kingston 1 9 . .
86 22 kingston 2 10 . .
87 22 kingston 3 11 . .
88 22 kingston 4 12 1 0
89 23 portage 1 9 2 0
90 23 portage 2 10 1 1
91 23 portage 3 11 . .
92 23 portage 4 12 . .
93 24 kingston 1 9 2 0
94 24 kingston 2 10 . .
95 24 kingston 3 11 0 0
96 24 kingston 4 12 . .
97 25 portage 1 9 0 1
98 25 portage 2 10 . .
99 25 portage 3 11 . .

100 25 portage 4 12 0 0
101 26 portage 1 9 . .
102 26 portage 2 10 0 0
103 26 portage 3 11 1 0
104 26 portage 4 12 . .
105 27 portage 1 9 . .
106 27 portage 2 10 1 0
107 27 portage 3 11 . .
108 27 portage 4 12 1 0
109 28 kingston 1 9 . .
110 28 kingston 2 10 . .

The SAS System 3
Obs child city i age smoke wheeze

111 28 kingston 3 11 2 0
112 28 kingston 4 12 1 1
113 29 portage 1 9 1 0
114 29 portage 2 10 0 0
115 29 portage 3 11 0 0
116 29 portage 4 12 . .
117 30 kingston 1 9 1 1
118 30 kingston 2 10 1 0
119 30 kingston 3 11 . .
120 30 kingston 4 12 1 1
121 31 kingston 1 9 1 0
122 31 kingston 2 10 . .
123 31 kingston 3 11 1 0
124 31 kingston 4 12 2 1
125 32 portage 1 9 . .
126 32 portage 2 10 1 1
127 32 portage 3 11 1 0
128 32 portage 4 12 1 0

UNSTRUCTURED CORRELATION 4
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.
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Parameter Information

Parameter Effect city smoke

Prm1 Intercept
Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

UNSTRUCTURED CORRELATION 5
The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Unstructured
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

UNSTRUCTURED CORRELATION 6

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.25733 -0.09887 -0.19993 -0.18313
Prm2 -0.09887 0.22799 -0.02525 -0.02022
Prm4 -0.19993 -0.02525 0.36412 0.20072
Prm5 -0.18313 -0.02022 0.20072 0.27654

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.19295 -0.05378 -0.16907 -0.23162
Prm2 -0.05378 0.21935 -0.03901 -0.06092
Prm4 -0.16907 -0.03901 0.32007 0.30071
Prm5 -0.23162 -0.06092 0.30071 0.46706
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Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.1967 0.1807 -0.1604
Row2 0.1967 1.0000 0.5531 -0.1131
Row3 0.1807 0.5531 1.0000 0.2524
Row4 -0.1604 -0.1131 0.2524 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.6197 0.4393 -1.4806 0.2413 -1.41 0.1583
city kingston 0.3126 0.4683 -0.6053 1.2306 0.67 0.5044
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3851 0.5657 -1.4940 0.7237 -0.68 0.4960
smoke 1 -0.4098 0.6834 -1.7493 0.9296 -0.60 0.5487
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.6197 0.5073 -1.6139 0.3745 -1.22 0.2219
city kingston 0.3126 0.4775 -0.6232 1.2485 0.65 0.5126

UNSTRUCTURED CORRELATION 7
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3851 0.6034 -1.5678 0.7976 -0.64 0.5233
smoke 1 -0.4098 0.5259 -1.4405 0.6209 -0.78 0.4358
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 8
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.

Parameter Information

Parameter Effect city smoke

Prm1 Intercept
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Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 9

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 10

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.30777 -0.11319 -0.24502 -0.22930
Prm2 -0.11319 0.25956 -0.02313 -0.01878
Prm4 -0.24502 -0.02313 0.40717 0.24963
Prm5 -0.22930 -0.01878 0.24963 0.35226

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.20021 -0.08869 -0.15237 -0.23871
Prm2 -0.08869 0.24782 -0.03222 -0.005869
Prm4 -0.15237 -0.03222 0.33433 0.28719
Prm5 -0.23871 -0.005869 0.28719 0.45634

Algorithm converged.

Working Correlation Matrix

PAGE 515



CHAPTER 12 ST 732, M. DAVIDIAN

Col1 Col2 Col3 Col4

Row1 1.0000 0.1251 0.1251 0.1251
Row2 0.1251 1.0000 0.1251 0.1251
Row3 0.1251 0.1251 1.0000 0.1251
Row4 0.1251 0.1251 0.1251 1.0000

Exchangeable Working
Correlation

Correlation 0.1251298267

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.4771 0.4475 -1.3541 0.3999 -1.07 0.2863
city kingston 0.2456 0.4978 -0.7301 1.2213 0.49 0.6217
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.4006 0.5782 -1.5338 0.7327 -0.69 0.4885
smoke 1 -0.8492 0.6755 -2.1732 0.4748 -1.26 0.2087
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 11
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.4771 0.5548 -1.5644 0.6102 -0.86 0.3898
city kingston 0.2456 0.5095 -0.7529 1.2442 0.48 0.6297
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.4006 0.6381 -1.6512 0.8501 -0.63 0.5302
smoke 1 -0.8492 0.5935 -2.0125 0.3141 -1.43 0.1525
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

AR(1) CORRELATION 12
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.

Parameter Information

Parameter Effect city smoke

Prm1 Intercept
Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2
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Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

AR(1) CORRELATION 13
The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

AR(1) CORRELATION 14

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.31680 -0.12039 -0.24953 -0.22783
Prm2 -0.12039 0.27022 -0.02180 -0.01881
Prm4 -0.24953 -0.02180 0.42144 0.24916
Prm5 -0.22783 -0.01881 0.24916 0.34094

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.22402 -0.08293 -0.18320 -0.26011
Prm2 -0.08293 0.23368 -0.02015 -0.007078
Prm4 -0.18320 -0.02015 0.34711 0.30564
Prm5 -0.26011 -0.007078 0.30564 0.45771

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2740 0.0751 0.0206
Row2 0.2740 1.0000 0.2740 0.0751
Row3 0.0751 0.2740 1.0000 0.2740
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Row4 0.0206 0.0751 0.2740 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5442 0.4733 -1.4719 0.3835 -1.15 0.2502
city kingston 0.2755 0.4834 -0.6720 1.2230 0.57 0.5687
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3776 0.5892 -1.5323 0.7771 -0.64 0.5216
smoke 1 -0.6861 0.6765 -2.0121 0.6399 -1.01 0.3105
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5442 0.5629 -1.6474 0.5590 -0.97 0.3336
city kingston 0.2755 0.5198 -0.7433 1.2943 0.53 0.5961

AR(1) CORRELATION 15
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3776 0.6492 -1.6500 0.8948 -0.58 0.5608
smoke 1 -0.6861 0.5839 -1.8305 0.4583 -1.18 0.2400
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

INTERPRETATION:

• In this example, the analyses in each “working” case appear to be far less sensitive to whether

V̂ β or V̂
R
β is used to construct standard errors; comparison of these matrices in each case shows

that they are fairly similar.

• It is perhaps because it does not appear that there is any effect of any of the covariates on prob-

ability of wheezing that the analyses all seem to agree. Note from Analysis of GEE Parameter

Estimates in each case that the signs (positive or negative) appear to be intuitively in the right

direction; e.g., the coefficients for the “smoking” indicators are negative, suggesting that probabil-

ity of wheezing is lower for children whose mothers do not smoke or only moderately smoke versus

those who have heavy-smokers for mothers. However, in no case is there evidence to suggest these

are different than zero. As there are only 32 children on which this analysis is based, perhaps the

sample size is too small to detect departures from the various null hypotheses being tested.

• Keep in mind that this interpretation only makes sense under the assumption that the model for

E(Yij) is correct!
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13 Advanced topics

13.1 Introduction

In this chapter, we conclude with brief overviews of several advanced topics. Each of these topics could

realistically be the subject of an entire course!

13.2 Generalized linear mixed models

The models considered in Chapter 12 were of the population-averaged type; that is, the focus was

on explicit modeling of the mean E(Y i) of a data vector. Of course, the elements of E(Y i), E(Yij),

represent the mean response at a particular time tij and possibly setting of covariates; i.e. the average

over all possible values of Yij we might see under those conditions, the average being over all members

of the population. The models used to represent E(Yij) as a function of tij and other covariates were

of the generalized linear type, so were no longer linear functions of the parameter β characterizing

mean response.

In Section 12.5, we discussed briefly the alternative strategy of subject-specific models for nonnormal

data. Here, the idea is to model individual trajectories, where the “mean” at time tij over all

observations we might see for a specific individual is represented again by a generalized linear model,

but where the parameters are in turn allowed to depend on random effects. A general representation

of such a model is as follows; recall that the conditional expectation of Y i given a vector of random

effects bi unique to individual i may be thought of as the “mean” response for a particular individual.

We have for an element of Y i that, for a suitable function f ,

E(Yij | bi) = f(x′

ijβi), (13.1)

where the subject-specific parameter βi may be represented as before, e.g. in the most general case,

βi = Aiβ + Bibi. (13.2)

Here, then β is the parameter that describes the “typical” value of βis across all individuals with

covariate matrix Ai; e.g. all individual in a particular treatment group. bi is a random effect

assumed to come from a distribution with mean 0, almost always taken to be the multivariate normal

distribution, so that

bi ∼ N (0, D).
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It is further assumed that, at the level of the individual, the data in Y i follow one of the distributions

such as the binomial, Poisson, or gamma in the scaled exponential family. It is common to assume that

observations on a given individual are taken far apart enough in time so that there is no correlation

introduced by the way the data are collected (within an individual); in fact, the observations on a

particular individual i, Yij , j = 1, . . . , ni, are assumed to be independent at the level of the individual.

The variance of an observation at the level of the individual will thus depend on the mean of an

observation at the individual level. Thus, we think of the variance associated with observations within

a particular individual as being conditional on that individual’s random effects, because the mean is

conditional on them. Thus, we think of the variance within an individual as

var(Yij | bi) = φV {f(x′

ijβi)},

where φ may or may not be known depending on the nature of the data. For example, if the Yij are

counts, then appropriate distribution; for example, if the Yij are counts, then it follows that

var(Yij | bi) = f(x′

ijβi).

The model defined in (13.1) and (13.2) with the stated properties is referred to in the statistical liter-

ature as a generalized linear mixed model, for obvious reasons. It is an alternative model to the

population-averaged models in Chapter 12. Just as in the linear case, it may be more advantageous or

natural to think of individual trajectories rather than the average response over the population; this

model allows thinking this way.

However, as discussed in Section 12.5, it is not the case that this model and a population-averaged

model constructed using the same function f lead to the same model for E(Yij), as was fortuitously

true in the case of a linear model. Thus, whether one adopts a population-averaged or subject-

specific approach will lead to different implied models for the mean response for the population!

Technically, this is because, under the population-averaged model, we would take

E(Yij) = f(x′

ijβ),

while under the subject-specific approach, we would take

E(Yij | bi) = f(x′

ijβi),

which implies upon averaging over the population that

E(Yij) = E{f(x′

ijβi)}.
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Plugging in (13.2) for βi, we see that under the subject-specific approach, the implied model for mean

over the population is

E(Yij) = E[f{x′

ij(Aiβ + Bibi)}].

It is a mathematical fact that, because f is not a linear function of bi, taking this expectation is an

operation that is likely to be impossible to do in closed form. It follows that it is simply not possible

that

f(x′

ijβ) = E[f{x′

ij(Aiβ + Bibi)}];

that is, the two types of model for mean response implied by each strategy are almost certainly not the

same.

This has caused some debate about which strategy is more appropriate. For linear models, the debate

is not as strong, because the mean response model turns out to be the same, the only difference being

how one models the covariance. Here, instead, what is implied about the most prominent aspect, the

mean over the population, is not the same. The debate has not been resolved and still rages in the

statistical literature. In real applications, the following is typically true:

• For studies in public health, education, and so on, where the main goal of data analysis is to make

proclamations about the population, the usual strategy has been to use population-averaged

models. The rationale is that interest focuses on what happens on the average in a population,

so why not just model that directly? For example, if a government health agency wishes to

understand whether maternal smoking affects child respiratory health for the purposes of making

public policy statements, it wants to make statements about what happens “on the average” in

the whole population. For the purposes of making general policy, there is no real interest in

individual children and their respiratory trajectories. Thus, the thinking is – “why complicate

matters by assuming a subject-specific model when there is no interest in individual subjects?”

• On the other hand, in the context of a clinical trial, there may be interest in individual patients

and understanding how they evolve over time. For example, in the epileptic seizure study in

Chapter 12, researchers may think that the process of how epileptic seizures occur over time is

something that happens “within” a subject, and they may wish to characterize that for individual

subjects. As a result, it is more common to see generalized linear mixed models used in this kind

of setting.
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INFERENCE: One major complication in implementing the fitting of generalized linear mixed models

is that it is no longer straightforward to write down the implied likelihood of a data vector. The actual

form of this likelihood is quite complicated and will involve an integral with respect to the elements

of bi. Rather than write down this mess, we note what the problem is by considering again something

that is related to the full likelihood of a data vector – the mean vector. Here, the mean vector is

E(Yij) = E[f{x′

ij(Aiβ + Bibi)}],

which is a calculation that we have already noted is generally not possible to do in closed form. This

suggests that trying to derive the whole likelihood function in closed form would be equally difficult,

which it is!

The result is that the function we would like to use as the basis of estimation and testing is not even

something we can write down! A variety of approaches to dealing with this problem by way of

approximations that might allow something “close to” the true likelihood function to be written

down have been proposed. Discussion of these methods is beyond our scope; see the references in

Diggle, Heagerty, Liang, and Zeger (2002) for an introduction to the statistical literature. One of these

approximate approaches is implemented in a macro provided by SAS, glimmix. The procedure proc

nlmixed fits these models directly. A new procedure, proc glimmix, is being developed. It is important

that the user fully understand the basis of these approximate approaches before attempting to fit such

models – the interpretation and fitting can be very difficult!

13.3 Nonlinear mixed effects models

A more complicated version of generalized linear mixed models is possible. In many applications, a

suitable model for individual trajectories is dictated by theoretical concerns. Recall, for example,

the soybean growth data introduced in Chapter 1; the plot is reproduced here as Figure 1. A common

model for the process of growth is the so-called logistic growth function; this function is of a similar

form as the logistic regression model discussed previously, but the interpretation is different.

If one assumes that the rate of change of the growth value (“size” or “weight”, for example) of the

organism (here, plants in a soybean plot) relative to the size of the organism at any time declines in a

linear fashion with increasing growth, it may be shown that the growth value at any particular time t

may be represented by a function of the form

f(t, β) =
β1

1 + β2 exp(−β3t)
, (13.3)

where β1, β2, β3 > 0.
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This seems like a natural way to think, and it is indeed the way scientists feel comfortable thinking

when trying to formally represent the data. Of course, the model (13.4) and more general versions of

it (e.g. other functions f) is a subject-specific model. Thus, for many applications in the biological

sciences, there is a “theoretical” basis for preferring the subject-specific modeling approach.

This model looks very similar to the general form of a generalized linear mixed model, with one important

exception. The function f in (13.3) is not a function of a single argument, so that tij and the

parameter enter the model only in terms of a linear predictor. Rather, the way time and parameters

enter this model is more complicated. The result is that we have a model one might think of as being

even “more” nonlinear. Indeed, it is the case in biological and physical sciences that theoretical

models that may be derived from scientific principles are typically nonlinear in this more complicated

way.

INFERENCE: The same issues that make model fitting difficult in the generalized linear mixed model

case apply here as well – it is not generally possible to write down the likelihood of a data vector in

closed form. Again, approximations are often used. A full account of these models in biological and

physical applications may be found in Davidian and Giltinan (1995). There is a SAS macro, nlinmix,

that implements approximate methods to accomplish this fitting; however, as above, it should only be

used by those who have a full understanding of the model framework and the approximations used.

13.4 Issues associated with missing data

As we have mentioned, a common issue with longitudinal data, particularly when the units are humans,

is that data may be missing. That is, although we may intend to collect data according to some

experimental plan in which all units are seen at the same n times, it is quite often the case that things

do not end up this way. The obvious consequence is that the resulting data may not be balanced as

was originally intended. However, the fact that the data are not balanced is the least of the problems

– all of the modern methods we have discussed can handle this issue with ease! The real problems are

more insidious and were not in fact truly appreciated until quite recently.

As we have discussed, data may be “missing” for different reasons:

1. Mistakes, screw-ups, etc. – for example, a sample is dropped or contaminated, so that a measure-

ment may not be taken.

2. Issues related to the thing being studied (more in a moment).
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Missingness of the first type is mainly an annoyance, unless it happens a lot. Missingness of the second

type can be a problem; previously in the course we have noted that if missingness happens in this

way, then intuition suggests that the very fact that data are missing may have information about the

issues under study! The fear is that if we treat the “missingness” as if it has no information, by simply

attributing the fact that data vectors are of different length by chance, and this is not really true, the

inference we draw may be misleading. We are now more formal about this.

TERMINOLOGY: In the literature on missing data, a certain terminology has been developed to

characterize different ways missingness happens. This terminology seems somewhat arcane, but it is

in widespread use. A statistical reference book that introduces this terminology is Little and Rubin

(2002); the recent and current statistical literature always has papers about missing data, too. In

reading further about the consequences of missing data, it is useful to be familiar with this terminology.

MISSING COMPLETELY AT RANDOM: In the first type of example, where, say, a sample is dropped

and ruined, the fact that the associated observation is thus missing has nothing to do with what is

being studied. If the sample is from a patient in a study to compare two treatments, the fact that it

was dropped has nothing to do with the treatments and their effect, but rather (most likely) with the

clumsiness of the person handling the sample! In the event that missingness is in no way related to

the issues under study, it is referred to as occurring completely at random, or MCAR.

The consequence of MCAR is simply that we get less data than we’d hoped. Thus, concerns about

sample size may be an issue – we may not be able to have the power to detect differences that we’d

hoped. If a lot of observations are missing, obviously power will be much less than we had bargained

for, and the ability of a study to detect a desired difference or estimate a particular quantity with a

desired degree of precision will be compromised. If the problem isn’t too bad, then power may not be

too seriously affected. However, we don’t have to worry about the inferences being misleading. Luckily,

because the reason for the missingness has nothing to do with the issues under study, we can assume

that the observation and the individual it came from are similar to all the others in the study, so that

what’s left is legitimately viewed as a fair representation of the response of interest in the population

of interest. What’s left might just be smaller than we hoped.
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MISSING AT RANDOM: In the second type of example, we may have a situation where a patient

is a participant in a longitudinal study to evaluate a blood pressure medication. The patient’s blood

pressure at the outset may have been very high, which is why he was recruited into the study. The

study plan dictates that the patient be randomized to receive one of two study treatments and return

monthly to the hospital to have his blood pressure recorded. For ethical reasons, however, a patient

may be withdrawn from the study; e.g.

• In many such studies, the study plan dictates that if a patient’s measured blood pressure on

any visit goes above a certain “danger” level, the patient must be removed from the study and

have his treatment options be decided based solely on his condition (rather than continue on his

randomized treatment, which in some cases may be a placebo). This protects patients in the event

they are assigned to a medication that does not work for them.

• The patient’s personal physician may review the measurements taken over his previous monthly

visits and make a judgment that the patient would be better off being removed from the study

treatment. This, of course, would mean that the patient would be removed from the study.

In each of these cases, the patient will have data that are missing after a certain point because he is no

longer a participant. The reason the data will be missing in this way is a direct result of observation

of his previous response values!

Formally, in the event that missingness results because of the values of responses and other variables

already seen for a unit, the missingness is said to be at random, abbreviated MAR.

• The reason for this name is that missingness still happens as the result of observation of random

quantities (the response observed so far), but is no longer necessarily just an annoyance. Because

observations on any given patient are subject to (within-patient) variation, it could be that the

patient registered above the “danger” level just by chance due to measurement error, and, in

reality, his “true” blood pressure is really not high enough to remove him from the study.

• On the other hand, his blood pressure may have registered above the “danger” level because his

true pressure really is high.

We have to be concerned that the latter situation is true; if this is the case, then we fear that the data

end up seeing are not truly representative of the population; data values from patients who may have

registered “high” at some point, whether by chance or not, are not seen.
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It turns out that, as long as one uses maximum likelihood methods and the assumptions underlying

them are correct, estimation of quantities of interest will not be compromised. However, implementa-

tion of such methods becomes more complicated, and specialized techniques may be necessary. Thus,

some acknowledgment of the problem is required. In the case of GEE methods, things are worse –

because these methods are not based on a likelihood, it is possible that the estimates themselves will

be unreliable; in particular, they can end up being biased. Thus, if MAR is suspected, the user must

be aware that the usual analyses may be flawed. Fancy methods to “correct” the problem are becoming

more popular; these are beyond our scope here.

NONIGNORABLE NONRESPONSE: A more profound case of the second type of missingness is as

follows. We discussed earlier in the course the case of patients in a study to evaluate AIDS treatments.

Suppose patients are to come to the clinic at scheduled intervals and measurements of viral load, a

measure of roughly “how much” HIV virus is in the system, are to be made. Patients with “high” viral

load tend to be sicker than those with “low” viral load. Viral load is thus likely to be seen increasing

over time for patients who are sicker. Moreover, the faster the rate of increase, the more rapidly patients

seem to deteriorate.

Suppose that a particular patient fails to come in for his scheduled clinic visits because his disease has

progressed to the point where he is too sick to come to the clinic ever again. If we think in terms of

a the patient’s individual trajectory of viral load, a patient who is too sick to come in probably also

has a viral load trajectory that is increasing, and may be increasing more quickly than those for other

patients who have not become so sick. Thus, if we think formally of a random coefficient model to

describe viral load as a function of time, e.g.

Yij = β0i + β1itij + eij ,

say, then it may be that the fact that a patient is too sick to come in is reflected in the fact that his

individual slope β1i is large and positive.
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Now, if the treatment is supposed to be targeting the disease, obviously the fact that this patient is

too sick to return (yielding missing data) is caught up with the treatment. If we think of the random

coefficient model, the fact that data for this patient end up being missing is a consequence of the fact

that his slope β1i, which is supposedly influenced by the treatment, is too large and positive. The

patient has missing data not just because of data already seen, but in a sense because of his underlying

characteristics (represented through his slope) that will carry him through the rest of time, even

beyond the current time. Thus, missingness in this example is even more profound than missingness

that results from values of data already seen; here, missingness is related to all data, observed or not,

that we might see for this patient, because those data would all be the consequence of the patient’s very

steep slope!

This kind of missingness, which is caused by an underlying phenomenon that cannot be observed and

operates throughout time, is known as nonignorable nonresponse, or NINR. Unlike the MAR

situation, as the name indicates, if missingness happens this way, then a patient has missing data not

just by chance, but because of an underlying characteristic of that patient that may be influenced by

the treatment. Thus, we will have a completely unrealistic picture of the population of individuals from

the available data, because we will only have incomplete information from part of it. The result can be

that estimates of quantities of interest (like the difference in typical slope between two treatments) can

be flawed (biased), because information from people who are the sickest is underrepresented.

“Correcting” the problem can be difficult, if not impossible, because the missingness is a consequence

of something we cannot see! If NINR is suspected, it may not be possible to obtain reliable inferences

without making assumptions about things like random effects that cannot be observed. This is a serious

drawback, and one that is not always appreciated.

A full treatment of the consequences of missing data and how to handle the issues in the longitudinal

context would fill an entire course. The foregoing discussion is meant simply to highlight some of the

basic issues.

The book by Verbeke and Molenberghs (2000) devotes considerable attention to issues associated with

missing data in the particular context of the linear mixed effects model. The book by Fitzmaurice,

Laird, and Ware (2004) also offers more extensive introductory discussion.
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